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Abstract. Body Sensor Networks (BSN) are an emerging application 
that places sensors on the human body. Given that a BSN is typically 
powered by a battery, one of the most critical challenges is how to 
prolong the lifetime of all sensor nodes. Recently, using clusters to 
reduce the energy consumption of BSN has shown promising results. 
One of the important parameters in these cluster-based algorithms is 
the selection of cluster heads (CHs). Most prior works selected CHs 
either probabilistically or based on nodes’ residual energy. In this work, 
we first discuss the efficiency of cluster-based approaches for saving 
energy. We then propose a novel cluster head selection algorithm to 
maximize the lifetime of a BSN for motion detection. Our results show 
that we can achieve above 90% accuracy for the motion detection, 
while keeping energy consumption as low as possible. 

Keywords: body sensor network, motion detection, energy 
conservation, KNN. 

1. Introduction 

In recent years Body Sensor Networks (BSNs) have attracted increasing 
attention for their use in remote healthcare such as remotely monitoring the 
elderly and children. A BSN is composed of a number of tiny wireless sensors 
placed on the user’s body. Sensor nodes can transmit data to a remote server 
for online or offline analysis via various wireless technologies (e.g., IEEE 
802.15.4 [1] or Bluetooth) so that doctors can monitor the patient’s 
physiological states in real-time. BSNs have been widely used for various 
healthcare applications [2, 3, 4, 5], motion detection/analysis [6, 7, 8, 9], and 
gaming [10]. 

A critical issue when designing a BSN is the energy consumption, since 
wireless sensors typically employ small batteries for ease of deployment. A 
number of works have studied the issue of reducing the energy consumption 
of BSN. For example, Xiao et al. [3] proposed a method to reduce the 
transmission power at the physical layer without sacrificing the reliability for a 
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single-hop body area network. Lamprinos et al. [11] and Omeni et al. [12] 
employed a TDMA-based approach to avoid collisions. In addition, with 
TDMA a node only needs to turn on its radio in its assigned time slot to save 
energy. Furthermore, Xia et al. [2] proposed a prediction-based data 
transmission scheme for static data (e.g., blood pressure and heartbeat). In 
their method, both the sensor node and the base station (BS) periodically and 
independently execute an identical predictor (i.e., dual prediction) and thus 
they will obtain the same estimate. If the error between real and predicted 
data is acceptable, the sensor node just updates the state of the system using 
the predicted data without actually transmitting data to the base station. 
Similarly, the BS also simply updates the system using the predicted data 
unless it receives the real data from the sensor node. However, this approach 
only considered an individual sensor node instead of the entire BSN. 

Cluster-based algorithms have recently been proposed for sensor 
networks, and showed promising results. In these approaches, nodes are 
organized into clusters and one node is then chosen as the cluster head (CH). 
The task of the CH is to aggregate sensor data and then transmits this to BS 
while the other cluster nodes (CNs) communicate only with the CH. Given 
that it typically consumes more power to communicate with BS than with 
other cluster nodes, a CH will consume more energy than a CN does. 
Therefore, each sensor node will take turns to serve as the CH in order to 
evenly distribute the energy load. Abbasi and Younis [13] have surveyed 
clustering algorithms and classified them based on clustering attributes such 
as the cluster property, cluster head capability, and clustering process. Most 
prior approaches randomly selected their CHs. For instance, LEACH [14] and 
DMCLUSTER [15] choose CHs probabilistically or based on the nodes’ 
remaining energy. However, these prior works cannot guarantee to uniformly 
distribute the energy load and minimize the total intra-cluster energy 
consumption at the same time.  

The objective of this work is to prolong the lifetime of a body sensor 
network for motion detection by distributing the energy load evenly among 
sensors while, at the same time, minimizing the total intra-cluster energy 
consumption. In this paper we focus on an application of BSN: posture 
detection. We develop a novel CH selection algorithm to maximize the 
lifetime of the BSN. We utilize the k-nearest neighbors (KNN) method to 
detect the motion of the user. In this work, we classify nodes in a BSN into 
two types: fixed and moving. Fixed nodes are nodes whose positions remain 
relatively static (i.e. unchanged) when the user changes to a new posture. We 
analyze different parameters such as the ratio between the number of moving 
and fixed nodes and the effect of CH selection on the energy-saving. We 
propose an algorithm for selecting a CH that can minimize the intra-cluster 
energy consumption by considering the relationship between inter-node 
distance and allowable power levels. In addition, a threshold-based method is 
developed to avoid a certain node from depleting its energy quickly by being 
frequently selected as the CH. Our contributions are threefold: 1) We discuss 
and analyze the amount of energy that can be saved using a cluster-based 
approach. 2) We propose a novel cluster head selection algorithm by 
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considering the required power level for sending a packet from the cluster 
nodes to the cluster head for a given posture. 3) We implement our cluster-
head selection algorithm on a testbed for motion detection using KNN and 
show that we can achieve high accuracy (above 90%) while saving energy for 
a body sensor network. 

The remainder of this paper is organized as follows. In Section II we review 
the related work. We briefly describe different motion detection 
methodologies in Section III. In section IV, we propose a methodology to 
minimize the transmission cost in a BSN while balancing each node’s energy 
consumption. The results of the experiment are shown in section V and we 
conclude this paper in Section VI.  

2. Related Work 

In this section, we describe the related work. Our work builds on prior 
research on body sensor networks, motion detection, and energy 
conservation. 

2.1. Body Sensor Network 

Numerous studies have proposed the use of body sensor networks (BSN) for 
healthcare applications [3, 4, 6]. Earlier works also pointed out that QoS [5] 
and energy conservation [2, 16] are key research issues for the BSN, since 
the former could affect life-or-death matters while the latter decides the 
lifetime of the network especially for those sensors embedded in a patient’s 
body. In addition, BSN can be also applied to sports applications using 
inertial sensors to monitor the trainee’s posture during actions such as 
walking/running [7], golf swings [8], and hand swings [9]. However, most of 
these prior studies either can only identify basic postures (sitting, standing, 
walking, and running) or can only detect single motions. While using some 
techniques such as machine learning [9] to detect more complex motion is 
possible, this might increase the latency or computation cost of the BSN. 

2.2. Motion/Posture Detection 

Various kinds of sensors can be used to capture the motion of a user, and 
these are briefly described as follows: Acoustic trackers can use high-
frequency sound to triangulate a source [17, 18, 19]. These systems rely on 
line-of-sight (LOS) between the source and the sensors, and may therefore 
suffer from interference when surrounded by hard walls or other acoustic 
signal/noise. Inertial systems employ devices such as accelerometers or 
gyroscopes to measure positions and angles. They are often used in 
conjunction with other systems to provide updates and improvements of 
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measurements, since they only measure relative changes instead of absolute 
positions. Most prior works focused on analyzing the characteristics of inertial 
sensors to capture some basic postures or daily behaviors [20, 21, 22]. 
Image-based systems use cameras to capture the movements of a subject 
who is attached with retro-reflective markers. The number of cameras used 
depends on what type of motions are being captured [23, 24, 25]. However, 
these image-based approaches are limited by the location of cameras 
because of the LOS requirement [26, 27, 28]. Magnetic systems measure 
changes in the magnetic field to estimate the position and orientation of an 
object [29, 30, 31], but these can be affected by any metallic material nearby, 
and thus are easily influenced by electromagnetic interference. Some hybrid 
systems have been proposed [32, 33, 34] that combine two or more of the 
above techniques to improve accuracy. In our work, we use G-sensors to 
capture the motions of the users. 

2.3. Energy Conservation 

While most of the prior studies focus on energy conservation at the physical 
layer ([35], [36]), data link layer (PAMAS [37], EAR [38], DBTMA [39], S-MAC 
[40]), and network layer (LEACH [14], DMCLUSTER [15]), our work employs 
an energy-efficient cluster-based routing system to reduce energy 
consumption in data transmission. The basic idea of using cluster-based 
routing is to choose a CH that will aggregate data from other CNs and then 
communicate with the remote BS. Given that the CH is generally much closer 
to CNs than the BS, the transmission power required to send a packet from 
the CN to the CH will be lower than that needed to send one from the CN to 
the BS. Therefore, if CNs only communicate with the CH, CNs will consume 
less energy (as compared to then every CN sends its packets directly to the 
BS), and the overall energy consumption will be reduced to prolong the 
lifetime of the sensor nodes and the entire network. Note that, given that CHs 
will consume more energy than other sensor nodes, in such a cluster-based 
architecture these need to be periodically re-selected to ensure the energy 
load is evenly distributed. Otherwise, some nodes which are frequently 
chosen as the CHs might quickly run out of power quickly, thus rendering the 
BSN useless. 

In LEACH [14], clusters of the sensor nodes are formed based on the 
received signal strength. Each node in a cluster randomly elects itself as the 
CH depending on a pre-defined probability, which is based on the desired 
percentage (P) of CHs required. In 1/P rounds, all nodes will become CHs 
once so that the energy load can be evenly distributed. However, selecting 
CHs based on probability cannot guarantee that the selection is always 
optimal since these CHs might not be chosen uniformly over time. PEGASIS 
[41] is a near-optimal chain-based protocol that presents an improvement of 
LEACH. In this protocol, each node only communicates with its adjacent node 
and takes turns becoming the cluster leader that receives at most two 
packets before transmitting the aggregated data to a BS. This approach 
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distributes the energy load more evenly among sensor nodes, but also 
causes a long delay. A hierarchical PEGASIS [42] was thus proposed to 
overcome this problem. Both PEGASIS and hierarchical PEGASIS operate 
with the following assumptions, which might be difficult to realized in some 
cases. First, all sensor nodes are static (i.e. there is no mobility). Second, 
every node has global knowledge of the network. Bandyopadhyay and Coyle 
[43] analyzed the optimal parameters p (the optimal probability of becoming a 
CH) and k (the maximum number of hops allowed from a sensor to its CH) to 
minimize the energy consumption, and extended the cluster from one level to 
multiple hierarchies. They focused on the minimization of energy without 
considering evenly distributing the energy load among nodes. In addition, the 
computational cost of obtaining p and k might increase the end-to-end 
latency. HEED [44] is a distributed clustering protocol in which tentative CHs 
are periodically selected based on the residual energy of sensor nodes. Intra-
cluster communication cost, cluster properties (e.g., cluster size) and cluster 
power levels are considered for selecting the CH. However, HEED cannot 
guarantee an optimal CH selection, because it relies on secondary 
parameters to resolve conflicts. Furthermore, selecting temporary CHs could 
increase the energy consumption. 

Generally speaking, all the above techniques aim to save energy by either 
minimizing the intra-cluster communication or balancing the energy load 
among nodes, which is also the goal of our work. 

3. Motion Detection 

In this work, we employ a KNN algorithm [45] to detect the motions of the 
subject. In this section, we briefly describe the KNN process, which can be 
divided into the training and detection phases, as follows. 

3.1. Training Phase 

Each accelerometer sensor has triaxial sensing data, and each axis 
represents a dimension. We adopt the concept of a Bit-code and Distance 
based index (BD) [46] to implement the KNN algorithm. In the training phase, 
the training data of each motion is separately measured, collected and 
combined together (i.e., d(d1,d2,…,dh ), h = number of the axes (i.e. 3) × 
number of sensor nodes), in the multi-dimensional data space, as shown in 
Fig. 1. We then decide a reference point O(o1,o2,…,oh) to split the data space 
into 2

h’
 partitions represented in bit code (h’ is a user-defined positive integer 

and h’ < h). Thus, the partition/bit code S(s1,s2,…,sh’) of each set of training 
data d(d1,d2,…,dh) is defined as 
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For instance, if h’=2, the space will be divided into 2
2
 partitions, encoded by 

‘00’, ‘01’, ‘10’, and ‘11’ respectively, as depicted in Fig. 2(a) [46]. The purpose 
of using the reference point is to set a central point in the multi-dimensional 
space to evenly distribute the data density of each partition. For non-uniform 
data distributions, reference points can be acquired by using some existing 
techniques, such as K-means, BIRCH or CURE [47]. An efficient KNN search 
can thus be used by exploiting these partitions. In other words, the KNN 
algorithm only compares and computes the data in the intersected partitions 
rather than the entire space. 

 

Fig. 1. Flow chart of the training phase 

 

Fig. 2. (a) four-partition data space; (b) in this case, when |q1-o1|≧R, s1=1; when 

|q2-o2|<R, s2=0,1 so intersected partitions are (10) and (11) 
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3.2. KNN Detecting Phase 

When the training phase is completed, motions can be detected in the KNN 
detecting phase, the flow chart of which is shown in Fig. 3. First of all, when 
the BS receives all sensing data as a query Q(q1,q2,…,qh) via a BS, the bit 
code S of the query Q can be defined as in equation (1), but using qi instead 
of di. Then, based on the information obtained above, the intersected 

partitions T(t1,t2,…,th), the number of intersected partitions ( ≧ 1) are 

computed by the equation (2) [46], so that only data in the intersected 
partitions needs to be compared/computed.  

,          ,
   1 ',

0 and 1,   otherwise,

i i i

i

s q o R
t i h

  
  


 (2) 

where R is the radius for building the desired search field, as the example in 
Fig. 2(b). 
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?)( 2 Rdq ii 

 

Fig. 3. Flow chart of the KNN detection phase 

Next, in order to save computation time by first comparing rather than 
calculating the square and radical expressions for all data in the intersected 
partitions, the radius R becomes a pre-filter to filter out the data with any i, |qi-

di| > R for 1 ≦ i ≦ h, e.g., filtering out the data which is out of the smaller 

square in Fig. 2(b). Alternatively, one can calculate the Euclidean distance, 
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q d
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between the training data and the query to check if the sum is equal to or 
smaller than R, to ensure that the desired data is inside the circle. When that 
happens, the counter for the classified motion will be increased by one. This 
process will be repeated until all data in the intersected partitions are 
computed. KNN will then choose the motion that has the maximum count 
which is equal or larger than k. Here k is a user-defined threshold. However, 
if none of the motions has a count that is equal to or larger than k, then the 
radius R will be increased to enlarge the desired field for searching and the 
aforementioned process will be repeated. If more than two motions have the 
same maximum count or the count of every motion is smaller than k when R 
is already over the upper bound, then the detection is considered as a failure. 

4. Energy Conservation 

In this section, we first discuss the amount of energy that can be saved using 
a cluster-based approach. We then propose a novel cluster-head selection 
algorithm for energy-efficient data transmission. In the context of motion 
detection, nodes are placed at different places on the body (e.g. arms and 
legs). During any motion, some nodes might remain at the same positions 
between two consecutive postures, while others might change their locations. 
Here we consider two cases. Full-transmission (FT): all nodes periodically 
send their sensing data directly to the BS, for any motion. Partial-
transmission (PT): Only nodes changing their locations will send their data to 
the CH. We use a threshold-based method to decide whether the nodes have 
moved from the last sampling time. 

4.1. The Benefit of Using a Cluster-based Approach for Motion 

Capture 

In this section, we provide an analysis of the amount of energy that can be 
saved using a cluster-based approach. We first define some parameters that 
will be used throughout our analysis. ETx(BS) is the energy consumption for 

sending data from a CN to a BS. ETx(CH) is the energy consumption for 

sending data from a CN to a CH. ERx is the energy consumption for receiving 
a packet. n is total number of sensor nodes and m is the number of static 
nodes. To simplify our analysis, here we assume that every CN has the same 
ETx(CH) and all nodes have the same ETx(BS) and ERx. One common practice 
to save energy is to compress the aggregated data before sending it to the 
BS [48, 49]. Here we assume that r is the compression ratio.  
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If all sensor nodes transmit their data directly to the BS without using 
clusters, the energy consumption E to detect one posture would be: 

1 ( )TxE E BS n s    (4) 

where s is the size of sensor data. 
In a cluster-based approach, a CH receives and integrates CNs’ sensing 

data and then transmits the aggregated data to a BS. Here we consider two 
situations when using clusters for the case of PT. 

Case 1: CH is Moving at The Time of Sampling  

2 ( ( ) ) ( 1 ) ( )E E CH E n m s E BS kTx Rx Tx         (5) 

Case 2: CH is Static at The Time of Sampling 

2 ( ( ) ) ( ) ( )E E CH E n m s E BS kTx Rx Tx        (6) 

where k is the aggregated packet size. For example, in case 2, 

( - )k n m s r   . 

Here (n-m) nodes have sensing data to be sent out. In case 1 the CH is 
one of the moving nodes, so it will receive packets from the other (n-m-1) 
moving nodes. 

Different kinds of transceivers could have different energy consumption for 
the transmission and reception of packets [50]. Here we consider the case for 
different ratios of ETx(BS):ETx(CH) from 1.0 to 2.4 (the distance between BS 
and CH is always longer than that between CH and CNs) and different ratios 
of ERx:ETx(CH) from 0.1 to 2.5. To understand the effect of compression on 
the aggregated data, we also look at two different compression ratios, r=0.2 
and 0.4. 

In general, the combination of highest ETx(BS):ETx(CH) and lowest 
ERx:ETx(CH) can achieve the best performance in energy saving (i.e. E1 – 
E2), since it represents the situation when a cluster-based approach is the 
most efficient. This can be quickly observed from equations (4), (5) and (6). 

Fig. 4 and Fig. 5 show that the ratio of n and m (i.e. n/m) could strongly 
affect the amount of energy saved. In general, more energy can be saved 
when there are more static nodes (i.e. m) in the network. Using clusters does 
not guarantee that energy can always be saved, especially for the case of low 
ETx(BS):ETx(CH) and high ERx:ETx(CH). In addition, the compression ratio r 
could also affect the results. Based on the above insight, a network protocol 
designer might need to be careful when employing a cluster-based approach 
by taking the transceiver characteristics, the motion patterns and the network 
topology into consideration. 
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Fig. 4. The percentage of saved energy when n and r (4 graphs as a set) are fixed 
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(e) r=0.4, n=4, m=2 
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(f) r=0.4, n=5, m=2 
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(g) r=0.4, n=6, m=2 
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(h) r=0.4, n=7, m=2 

Fig. 5. The percentage of saved energy when m and r (4 graphs as a set) are fixed 
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4.2. Cluster Head (CH) Selection 

In most previous studies, the CH is typically selected randomly or 
probabilistically. Some prior works chose the CH based on the nodes’ 
residual energy. In this work, we develop a novel algorithm by minimizing the 
required energy for intra-cluster communication and preventing certain nodes 
from serving as the CH too often in order to prolong the lifetime of the entire 
network. 

1) Minimization of Intra-cluster Communication Energy. Here we assume 
that all postures can be predefined. Therefore, the possible network 
topologies can be estimated in advance so that the maximum distance 
between any node in the BSN can be measured. Given that the required 
transmission power is a function of the distance, we can infer the minimum 
power level required if the maximum distance is known. Fig. 6 shows the 
relation between the power levels and node distances based on the 
measurement collected using Chipcon CC2420 RF transceivers [51]. As 
shown in Fig. 6, the transmission range using power level 3 is probably 
sufficient to cover the entire BSN including the BS. Therefore, we first 
measure all postures with different CHs to collect the total distances between 
all nodes and the CHs by 

1 2

1

( , )  , ( , ,..., )
n

ni

i

Dis N CH CH N N N


  (7) 

where n is the total number of sensor nodes and Dis(Ni, CH) is the distance 
between node i and CH. Based on the above insight, we select the CH by 
choosing the one which has the smallest distance from all CNs as the CH. 
Therefore, CNs can use the smallest allowable power level when transmitting 
their data to the CH. In other words, for each posture we find a CH that can 
minimize intra-cluster energy consumption by 

1 2

1

( , )  , ( , ,..., )
n

Tx i n

i

E N CH CH N N N


  (8) 

where n is the total number of sensor nodes and ETx(Ni, CH) is the energy 
consumption of transmitting data from node i to a CH. We assign a unique 
priority number, ranging from 1 to n (where n is the number of nodes in the 
BSN), for each node. A smaller number means a higher priority. The node 
that consumes the least energy in equation (8) will have the highest priority 
(i.e. priority number=1). Therefore, by assigning the node with the highest 
priority to be the CH for every posture, we can minimize the intra-cluster 
energy consumption of the network. 
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Fig. 6. Power level versus Distance. The range of power level is 0 to 31 for CC2420 
RF transceiver 

2) Energy Load Distribution. Assume xi is the number of times node i 
serves as the CH and yi is the number of times node i is a CN during the 
lifetime of a BSN. For a given set of motions we can estimate the maximum 
amount of energy a node might consume when it is a CH, denoted as E(CH). 
Similarly, we can also estimate E(CN), which is the maximum amount of 
energy a node might consume when a node is a CN. To simplify our analysis, 
here we assume that every node has the same E(CH) and the same E(CN). If 
the initial energy of each node is I, then the residual energy, rE(Ni), for node i 
after (xi + yi) runs can be computed by 

( )  ( )  ( )   i i irE N I E CH x E CN y      (9) 

The objective here is to maximize the sum of all x i for 1 ≦ i ≦ n while 

keeping rE(Ni) greater than zero. 

1

:
n

i

i

Maximize x


  (10) 
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  (11) 

Based on equation (11), the server can compute the threshold xi that 
maximizes the objective function for each node i. 

When selecting a CH, a node with the highest priority will be considered 
first. This node will then check if the number of times it has acted as the CH 
exceeds the assigned threshold. If not, it will be elected as the next CH. 
Otherwise, the node with the second highest priority will be considered. In 
addition, the server will recompute new thresholds based on each node’s 
residual energy and broadcast them to each node. This process will be 
repeated until a node is finally selected as the CH. 

In some situations, one node might accidentally be selected as the CH one 
more time than its assigned threshold, which leads to 

1,

n

i j

j j i

y x
 

   (12) 

When this happens, all the other nodes need to readjust their thresholds. 
Specifically, all xj (except j = i) are proportionally decreased by 

1,

 
    ,1   .

j

j i n

k

k k i

old x
new x y j n and j i

x
 

    


 

(13) 

An example of cluster head selection is shown in Fig. 7. There are four 
sensor nodes in this scenario. We assume that each round represents a 
different posture and CH is selected form the node with the highest priority. In 
this example, N1 is first selected to be the CH in round i and then N3 is 
selected as the CH in round i+1. In every round, when the server receives the 
aggregated data from the CH, it also records the number of times each node 
has acted as the CH. Once the number of times of that a node has acted as 
the CH exceeds its assigned threshold (in Figure 7, N3 exceeds its threshold 
in round i+k so that N2, the node with the second highest priority, is chosen 
as the CH instead), server will compute, according to equation (11), new 
thresholds for all sensor nodes based on the residual energy of each node, 
and then transmits the re-computed thresholds to all nodes.  
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Fig. 7. Example of energy load distribution 

5. Implementation 

To evaluate the performance of our protocol, we compare it with the case of 
PT, as in Section 4, (in which all nodes use the same power level, one that is 
sufficient reach the entire BSN). We look at the real packet format in TinyOS 
in which sensing data is a small part (6 Bytes) of the whole packet (26 Bytes) 
and thus conservatively choose a compression ratio r=0.5 in our analysis. In 
addition, in our analysis we model the energy consumption for transmission 
and reception based on the specifications of a CC2420 transceiver. As shown 
in Fig. 8, our protocol can achieve more energy saving when the ratio of 

/m n  increases. Here n is the number of nodes in the network and m is the 
number of static (non-moving) nodes. For a 10-node network, our protocol 
can achieve up to 90% less energy consumption as compared to PT. Here 

the saved energy is defined as  ( ) /PT our protocol PTE E E
. In other words, in 

the best case, our protocol can prolong the lifetime of the network to be ten 
times longer as compared to PT.  
We used KNN algorithm for the motion detection and implemented a testbed 
using the TelosB mote [52] which has a TI MSP430 [53] processor and a 
Chipcon CC2420 RF transceiver [51] that supports the IEEE 802.15.4 for 
communication. A pair of AA batteries are used for power supply. The data 
rate is 250 kbps when operating at the frequency of 2.4 GHz. We employed 
four triaxial MEMS accelerometer sensors placed on the wrists and ankles of 
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a person to capture the subject’s motions. The BS receives sensing data from 
the BSN and forwards it to a PC server where KNN is executed. We 
developed our program under TinyOS [54], which is a component-based and 
embedded operating system written in the nesC programming language. 

 

Fig. 8. Comparison between PT and our protocol for saving energy  

To evaluate the accuracy of our cluster-based approach and compare it 
with the FT case, we used five pre-defined motions from boxing, namely 
Right Straight Punch (RSP), Right Hook Punch (RHP), Right Uppercut Punch 
(RUP), Right Front Kick (RFK), and Right Side Kick (RSK) in our 
experiments. 
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Fig. 9. Detecting accuracy based on varying combinations of ss and k 
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Our experiments were run in real time. In Fig. 9, each point represents the 
results from 50 repetitions of each motion (250 times in total). Sample size 
(ss) and k are important parameters for the KNN algorithm, so both of them 
are dynamically tuned to find the highest accuracy. Generally, when k is 
fixed, the accuracy will go up with the increase in sample size, but the 
reverse is not true. There is a tradeoff between (ss, k) and the accuracy, 
since we need to consider the computation cost/time depending on the 
characteristics of the applications. The results indicate our cluster-based 
algorithm (known as PT) can achieve similar performance as that of FT. 
When ss=300 and k=10, the accuracy is 94.8% for FT and 91% for PT 
respectively. The performance is slightly better when we increase the sample 
size to 400. The accuracies for FT and PT are 94% and 92%, respectively. 
Generally, the accuracy of FT is higher than that of PT, since it provides 
more information to the KNN. 

6. Conclusion 

In this paper, we provide a detailed analysis of how different parameters in a 
cluster-based algorithm can affect the amount of energy saving. Additionally, 
we propose a novel CH selection algorithm by considering the required power 
level for sending a packet from the CN to the CH. Furthermore, we use a 
threshold-based approach to evenly distribute the energy load among nodes 
by considering the number of times a node has acted as a CN and a CH. We 
implement our cluster-based algorithm on a testbed using the KNN algorithm 
and show that it can achieve high accuracy (above 90%). We are currently 
working on a prediction mechanism to reduce the number of transmissions 
required when motions of CNs can be predicted.  
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