
DOI: 10.2298/CSIS110303059G

A Model-Based Software Development Method for

Automotive Cyber-Physical Systems

Zhigang Gao1, Haixia Xia
2
, and Guojun Dai1

1 College of Computer Science, Hangzhou Dianzi University,
Hangzhou 310018, China

gaozhigang@zju.edu.cn, daigj@hdu.edu.cn
2 College of Informatics & Electronics, Zhejiang Sci-Tech University,

Hangzhou 310018, China
lansehaimj@163.com

Abstract. The development of automotive cyber-physical systems
(CPS) software needs to consider not only functional requirements, but
also non-functional requirements and the interaction with physical
environment. In this paper, a model-based software development
method for automotive CPS (MoBDAC) is presented. The main
contributions of this paper are threefold. First, MoBDAC covers the
whole development workflow of automotive CPS software from
modeling and simulation to code generation. Automatic tools are used
to improve the development efficiency. Second, MoBDAC extracts non-
functional requirements and deals with them in the implementation
model level and source code level, which helps to correctly manage
and meet non-functional requirements. Third, MoBDAC defines three
kinds of relations between uncertain physical environment events and
software internal actions in automotive CPS, and uses Model Modifier
to integrate the interaction with physical environment. Moreover, we
illustrate the development workflow of MoBDAC by an example of a
power window development.

Keywords: Automotive cyber-physical systems, non-functional
requirements, physical environment, model-based methods, model
transformation, code generation.

1. Introduction

From smart power grids to intelligent homes and from environmental
monitoring to transportation systems [1-3], CPS are increasingly permeated
into every aspect of our society. Unlike traditional computer systems which
mainly focus on computing and information processing, CPS need to
consider computing, communication, physical environment, and their
interaction [4]. Therefore, CPS software is hard to develop because
developers need to consider functional properties, non-functional properties,

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1278

such as timeliness, energy, memory, safety and reliability, and the interaction
with physical environment.

In the recent two decades, both academia and industry have made efforts
to explore approaches which are more applicable to the development of
embedded software, such as the real-time object-oriented modeling (ROOM)
[5], the UML-RT (implemented by IBM Rational Rose) [6], the Specification
and Description Language (SDL), a language widely used in
telecommunications domain [7], and Model-integrated Computing [8]. Among
them, the model-based development of embedded software has become one
of the most promising methods.

The current research on model-based development of embedded software
basically focuses on high-level modeling and simulations (e.g. Ptolemy [9]),
or integration methodologies of tools (e.g. MoBIES [10]) for embedded
software, but seldom involves a suite of complete implementation for a
specific domain and considers both the non-functional requirements and
environment requirements. Although there are a few of model-based CPS
development methods [11-12], these methods only stay on high-level design
model or require well-defined components. In this paper, we propose
MoBDAC, which supports the implementation under the OSEK/VDX (Open
Systems and the Corresponding Interfaces for Automotive Electronics (in
German)/Vehicle Distributed eXecutive (in French)) specification [13].
MoBDAC covers the whole development workflow of automotive CPS
applications from modeling and simulation to code generation. MoBDAC
helps to increase development efficiency and improve software quality, and it
is easy to integrate the interaction with physical environment.

The rest of this paper is organized as follows. Section 2 summarizes the
related work. Section 3 presents the architecture of MoBDAC. The
implementation process is presented in section 4. In section 5 we illustrate
the implementation of a power window control system as a case study and
discuss the characteristics of MoBDAC. We conclude this paper in section 6.

2. Related Work

Ptolemy is one of the first research projects in the model-based development
of embedded software. Ptolemy II [9], the current modeling tool of Ptolemy, is
a hierarchical heterogeneous modeling environment for modeling, simulation,
and design of concurrent, real-time, embedded systems. The purpose of
Ptolemy II is to provide a trial platform for heterogeneous models of
computation (MOC). Ptolemy II supports many kinds of MOC, such as
synchronous dataflow (SDF), process networks (PN), finite-state machines
(FSM), etc. Different components can be hierarchically integrated into a
complex system under the government of different MOC. GME (The Generic
Modeling Environment) [14] is a domain-specific meta-modeling
environment, which provides different views to model the objects, relations
and constraints. Because GME only provides meta-meta models, a whole

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1279

modeling process includes third phases: meta-modeling, modeling, and
system-modeling. MoBIES (Model-Based Integration of Embedded Software)
[10] is a tool chain for the integration of reusable embedded software.
MoBIES integrates several kinds of existing commercial and academic tools
to cover the modeling, model analysis, code generation, and runtime analysis
in the development of embedded software, and uses standard XML file
formats to exchange information among different tools. Currently, many
commercial model-based development tools, such as Matlab/Simulink [15],
MetaEdit+ [16], DOME [17], Rhapsody [18], etc., have been used to the
development of embedded software, such as automotive electronic or avionic
controlling software.

In recent years, CPS software development has been attracting more and
more attention. Woo et al. [19] present a formal software development
method with a suite of feedback control laws and efficient resource
monitoring mechanism to deal with system failure effectively. Lin et al. [20]
present an integrated simulation method in order to accurately reflect the
operation and interaction between the cyber aspects and the physical aspects
of CPS. Ma et al. [21] present a high-confidence cyber-physical alarm system
(CPAS) and discuss its requirements, system models and implementation.

A few of research efforts have been made to develop CPS software with
model-based methods. Magureanu et al. [11] present a model-based CPS
development method for gas distribution. Their method mainly focuses on
building the high-level models using UML. Bhatia et al. [12] present a model-
based framework called SysWeaver to model, integrate, analyze, verify, and
implement AUTOSAR-compliant automotive systems, which extends
AUTOSAR (Automotive Open System Architecture) in order to meet the real-
word requirements of automotive CPS, such as timeness, fault tolerance,
feedback, etc. In the development of automotive systems, SysWeaver
requires the components are available and have well-defined parameters.

3. The Architecture of MoBDAC

The architecture of MoBDAC is shown in Figure 1. The main workflow of
development includes four steps. First, extract software specifications from
system specifications. Second, use modeling tools to build the models in
problem domains (MPD), and then perform simulation in order to verify the
correctness of models. Third, transform MPD into the models in
implementation domains (MID). Finally, MID are used to generate code. Note
that both non-functional requirements and the interaction with physical
environment are extracted from system specifications besides software
specifications, the non-functional requirements are used by analysis tools to
verify whether the non-functional requirements of the software are met, and
the information of the interaction with physical environment is used by Model
Modifier to modify MID in order to generate correct code.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1280

Code

Models in implementation domains

System
specifications

Software specifications
Physical Environment

Concern Table

Models in problem domains

Model
transformation

Non-Functional
Concern Table

Model
Modifier

Code
generation

Analysis tools

Function
extraction

Modeling

Non-function
extraction

Physical
environment

extraction

Fig. 1. Architecture of MoBDAC

3.1. Function Extraction

The purpose of function extraction is to extract software specifications from
system specifications of automotive CPS. For automotive CPS, their system
specifications include the following three aspects.
 Functional requirements. Functional requirements define the behavior

of a system and what the system does [22]. In automotive CPS,
functional requirements define what functions they include, the
operating process when completing a function, and the relations
among different operations, etc. Developers can specify the functional
requirements of automotive CPS according to what functions their
subsystems (such as the body subsystem, the safety subsystem, etc)
include, and how to carry out these functions.

 Non-functional requirements. Non-functional requirements define the
quality of a system and how well the system should work [22]. Non-
functional requirements specify global constraints [23], such as
timeliness, safety, fault-tolerance, energy, etc [24-26]. Developers can
specify the non-functional requirements of automotive CPS according
to the global constraints from systems specifications.

 Physical environment requirements. For automotive CPS, different
subsystems may work in different physical environment, and have
different interaction modes and requirements. Physical environment

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1281

requirements define the interaction modes and requirements between
automotive CPS software and their physical environment. For
example, for an in-vehicle air-conditioning system, it detects the
temperature and humidity in the vehicle, and decides its working
status; for a backup radar, it detects the distance between the vehicle
and obstacles, and decides its alarm status.

When performing function extraction, it only extracts the function
requirements and put them into software specifications. The non-functional
requirements and the interaction with physical environment are extracted by
non-function extraction and physical environment extraction, and put them
into Non-Functional Concern Table and Physical Environment Concern Table
respectively.

3.2. Modeling

System specifications and software specifications are all text which is mainly
used to communicate among designers. During modeling, we build MPD
which denote the structures and functions of software from software
specifications, and verify their correctness by simulation. MPD describe the
structures of software, the relations among different parts, and the transition
relations among different states.

Because they do not consider the characteristics of deployment platforms,
MPD belong to Platform Independent Models (PIM), MPD are more suitable
for designers to concentrate themselves on high-level function design and
can enhance the portability of software. Moreover, there is a Model Modifier
in the right of Figure 1. Model Modifier can build the relations between
external physical environment events and software internal actions according
to some rules, and then modify MID in order to make the modeling and
simulation in MPD independent of physical environment. In automotive CPS,
some physical environment events are certain. For example, in-vehicle
temperature need be detected at a specific period. For certain interaction with
physical environment, it is enough to model its behavior in functional
requirements. For uncertain physical environment events, MoBDAC defines
three kinds of relations between physical environment events and software
internal actions.
 Correlative relation. When a physical environment event occurs, a

corresponding software internal action must happen. For example, it is
a correlative relation between a physical event of turning on an in-
vehicle light and a software action that the state of the in-vehicle light
turns from off to on. Developers can model the state of the in-vehicle
light in problem domains to denote the effects caused by the
corresponding physical event.

 Exclusive relation. The occurrence of a physical environment event
means that a software internal action will not happen. For example, a
power window will not move up when an obstacle is detected. There is
an exclusive relation between the power window moving up and the

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1282

obstacle event occurring. Developers can model the software action in
problem domains and process the results caused by the physical
event in the reverse logic.

 Complementary relation. A physical environment event maybe
happens when a software internal action occurs. For example, a wheel
slip maybe occurs when a brake action is executing. Developers can
model the software action in problem domains and detect the physical
event in the software action.

In automotive CPS, developer can use correlative relation and exclusive
relation to describe the interaction between passive reaction systems (e.g.,
Power Window System, Supplemental Restraint System, etc.) and physical
environment, and complementary relation to describe the interaction between
active reaction systems (e.g., Anti-lock Brake System, Anti Slip Regulation,
etc.) and physical environment. Using these three relations, developers can
model and simulate software functions in MPD without considering the
influence of the uncertain physical environment events, Model Modifier adds
the interaction with physical environment to MID after model transformation.

3.3. Model Transformation

MPD are independent of platforms and implementation. After they are built
and verified, MPD need to be transformed into the models for specific
hardware and software platforms, i.e., Platform Specific Models (PSM). The
model transformation is composed of two steps:
 Model Analysis. Model analysis extracts all kinds of elements in MPD,

the functions of elements, and the relations among elements
according to the characteristics of the modeling tools. By model
analysis, we know what elements are useful for MID, what elements
are useless for MID (i.e. they will be filtered during model
transformation), what elements server for the same functions, what
elements share the same resource, the dependence relations among
elements, etc, in order to provide support for generating MID.

 MID Generation. Because tasks are widely used software models in
current software implementation, we use tasks as MID. We need
organize the elements in MPD into tasks during model transformation
according to their functions in automotive CPS. Because there may
be hierarchical relations among the elements in MPD, it needs a
suitable granularity to transform the elements in MPD into the
elements in MID. Moreover, we need decide the relations among
tasks, such as precedence order, the message passing, etc. Note that
it is an important problem to assign task properties, such as periods,
deadlines, execution voltage, processor temperature, etc. Some task
properties may be decided according to the results of model analysis
(for example, periods), some from Non-Functional Concern Table (for
example, deadlines), and others according to specific rules or
algorithms (for example, priorities and execution voltage). Because

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1283

the information of deployment platform is available, we use analysis
tool to verify whether MID meet the non-functional requirements.

3.4. Code Generation

After building MID, we can generate the code for OSEK-compatible OS
according to the relations among tasks and the properties of tasks. Some
properties of tasks highly depend on their implementation code. For example,
the WCET (Worst-Case Execution Time) of tasks are usually evaluated on
source code level or assemble code level. In automotive cyber-physical
system development, MoBDAC supports two methods to improve the
flexibility when evaluating code-dependent task properties, i.e., from the task
model level or the source code level. We can use analysis tools to verify
whether the software implementation meets its non-functional requirements.
If the software implementation does not meet its non-functional requirements,
we can modify the system design and repeat the above process until non-
functional requirements are met.

After generating source code, we can use development tools which are
usually available from chip manufacturers (e.g. CodeWarrior from Freescale
Semiconductor [27]) to generate the machine code for special hardware
platforms, e.g. DSP, MCS51, MPC555, and HCS12.

4. The Implementation of MoBDAC

Currently, we have implemented the development workflow of MoBDAC by
an Automotive Electronic CPS (AECPS) tool chain which combines Ptolemy
II with the development tools designed by ourselves, and the results have
proved the effectiveness of MoBDAC. The following is the implementation of
MoBDAC.

4.1. Function Extraction

Because system specifications and software specifications are designer-
oriented documents, they mainly make designers understand the system and
software requirements more easily and exactly. We perform function
abstraction by hand. From system specifications, we find the functions and
relations for software parts and put them into software specifications. After all
specifications relevant with software have been abstracted, we get software
specifications.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1284

4.2. Modeling and Simulation in Problem Domains

In Ptolemy II, designers build MPD according to software specifications, and
then verify their correctness by simulation. Modeling includes two steps. First,
choose suitable MOC (Models of Computation). The choices of MOC are
made mainly according to the continuity or discreteness of time, and the
synchrony or asynchrony of events, etc. For example, the model of a power
window control system is a hybrid model, where the states of the windows
can be described by FSM, and the position of the window is a value that is
suitable to be described by CT (Continuous Time) model. Second, construct
MPD. Once the model is built, developers can observe the running results of
the models in simulation windows. If the results of the simulation are not
consistent with the requirements of software specifications, designers can
check the models and debug the errors during modeling.

4.3. Model Transformation

Models built in Ptolemy II are independent of platforms and implementation.
They need to be transformed into the ones under OSEK-compatible OS.

Major modeling elements in Ptolemy II [28] include:
 Entity is a text segment with specific functions, e.g. directors, actors

(including the ports, relations, and links that belong to
directors/actors).

 Port is an input or output interface of an entity.

 Relation is the route of data or messages transmitted between
different entities or just inside one entity.

 Link is a connection between input/output interfaces of entities and
relations.

 Property is a characteristic of an entity element, such as its position,
parameter, and name, etc.

In Ptolemy II, entities are the highest-level elements. Other elements are
attached to entities. In the model built by AECPSDesigner, a modeling tool
designed by us for MID, there are also elements as listed above, but they do
not have the same meaning. Transforming MPD to MID becomes the key
problem of the design process. We present the method of stepwise refining to
transform MPD to MID. The transformation process is shown in Figure 2.

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1285

Syntax parsing

Task generation

Task interaction
analysis

Task optimization

XML output

Transformation Process

MoML

XML

BodyEnvironment

AmusementCommunication

Motor
Automated

Transmission
Safety

Link

Property

Extend Entity

Relation

Port

Symbol Base

Link Port

Property

Event

Task

Alarm

Message Resource

Task
Base

Automobile Knowledge
Base

Fig. 2. The process of model transformation

In Figure 2, the transformation workflow of models is composed of five
steps, i.e., syntax parsing, task generation, task interaction analysis, task
optimization, and XML output. There are three databases, i.e., Symbol Base,
Task Base, and Automobile Knowledge Base, and multiple tables in each
database. Besides the entity name field, records of Extend Entity table in
Symbols Base include the directors that entities belong to, together with the
functions of entities. Records of Task table in Task Base include the functions
of tasks as well as the entities it includes. Automobile Knowledge Base
includes the subsystems of the automotive CPS, their functions, and the
importance level of their functions according to real-time and safety-critical
degree. For example, the body subsystem consists of the power window
control function, the power skylight control function, the power rear-view
mirror control function, and the seat adjusting function, and so on.
Automobile Knowledge Base helps to partition tasks in model transformation
according to their functions, and merge different tasks according to their
importance levels.

1) Syntax Parsing: In order to obtain the information of the models built in
Ptolemy II, we analyze the output the MoML (Modeling Markup Language)
file. We first extract the entities and put them into Extend Entity table as a
new record. Then we take out other parts of entities, e.g. the directors it
belongs, and put them into the records of relevant entities as new fields. After
that, we search Automobile Knowledge Base to find out the functions of the
entities and put them into Extend Entity table as a field. The properties,
relations, ports and links that we get from the MoML file should also be put
into the relevant tables.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1286

2) Task Generation: We classify the entities in Symbol Base and then create
tasks, as well as find the properties and functions of each entity and output
them to Task Base. We use the algorithm shown in Figure 3 to classify the
entities. In Figure 3, if the MOC of F is relevant to events, Classify algorithm
finds all entities depending on these events and marks the same task tag
(Line 4-Line 13). Otherwise, Classify algorithm finds all entities with the same
function and marks them the same task tag (Line 15-Line 22). Note that all
unmarked entities and ungrouped entities are marked the same task tag (Line
12, Line 21).

1 Algorithm Classify(FN)
2 Begin
3 F = The collection of all entities having function FN in Extend Entity table;
4 If (The MOC of F is relevant to events) then
5 Begin
6 ai = The first entity in F;
7 While (ai <> null and the task tag of ai are unmarked)
8 Begin
9 Find out the entities depending on the same one or more events, merge them to a group,
 and mark a new task tag;
10 ai = the next entity in F;
11 End
12 Classify all the unmarked entities in F into a group, and mark a new task tag;
13 End
14 Else
15 For (each entity ai) in F
16 If (ai completes the same function with some entities which belong to task ti) then
17 Set the task tag of ai to be ti, and merge them to a group;
18 Else
19 Allocate a new task tag ti;
20 Endif
21 Classify all the ungrouped entities in F into a group, and mark a new task tag;
22 Endif
23 End

Fig. 3. Entities classifying algorithm

After classifying the entities, all entities with the same task tag are grouped
into one task and saved into Task table in Symbol Base. From Property table
in Symbol Base, a corresponding property table can be created for the
entities in Task Base by performing the following operation:

a) If an entity is only relevant with other entities in the same task, eliminate
its properties.

b) If an entity is relevant with the entities of other tasks, combine all
properties of the entity as the task’s global properties and then put them into
Property table in Task Base.

According to the functions of each entity in Automotive Knowledge Base,
put its importance level property into Task table in Task Base.

3) Task Interaction Analysis: In order to find the relations between tasks,
we employ the algorithm defined in Figure 4. In Figure 4, for every task in
Task table, Interaction algorithm finds its links, ports, and properties and
outputs them to corresponding tables in Symbol Base (Line 3-Line 18). After
that, Interaction algorithm finds the corresponding messages, events, alarms,

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1287

and resources for every task in Task table and output them to corresponding
tables in Symbol Base (Line 20-Line 38).

1 Algorithm Interaction()
2 Begin
3 ti = The first task in Task table;
4 While (ti <>null)
5 Begin
6 R = All relations in Relation table contained by entities pertaining to ti;
7 ri = The first relation in R;
8 While (ri<> null)
9 Begin
10 If (ri links with entities belonging to other tasks in Task table) then
11 Add a new link to Connection table in Task Base, and add the linking ports
 between tasks to Port table;
12 Else
13 Add a corresponding property to Property table;
14 Endif
15 ri = The next relation in R;
16 End
17 ti = The next task in Task table;
18 End
19 ti = The first task in Task table;
20 While (ti <> null)
21 Begin
22 ci = the first link associated with ti in Relation table;
23 While (ci <>null)
24 Begin
25 If (The port connected with ci transmits data) then
26 Add a message to Message table;
27 Else
28 If (The port connected with ci transmits sporadic events) then
29 Add an event to Event table;
30 Elseif (The port connected with ci transmits periodic events)
31 Add an alarm to Alarm table;
32 Endif
33 Endif
34 Search other tasks having the same property. If it succeeds, convert the property to
 resource and add it to Resource table;
35 ci = The next link associated with ti in Relation table ;
36 End
37 ti = The next task in Task table;
38 End
39 End

Fig.4. Task Interaction analysis algorithm

4) Task Optimization: The tasks generated are analyzed to decide whether
they should be merged in order to reduce task number. The following factors
should be taken into account:

a) The dependence relationship between tasks.
b) The importance level of each task.
We employ the merging algorithm shown in Figure 5 to perform task

optimization. In Figure 5, TaskOptimizing algorithm finds the tasks whose
importance level of its function is no more than a threshold Pthreshold (which
is set by developers) (Line 6), and merged them into a task in order to reduce
the task number in the system (Line 11-Line 12).

Note that the merging operation of two tasks is allowed if it does not result
in an annular dependence relation, and the merged tasks are stored in Task
Base. The critical tasks will not be merged. For example, for safety-critical
tasks, the real-time property is highly demanded, and they will not be
merged.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1288

1 Algorithm TaskOptimizing()
2 Begin
3 ti=The first task in Task table;
4 While (ti <> null)
5 Begin
6 If (ti <> null and the importance level of ti's function <= Pthreshold) then
7 tj=The first task in Task table;
8 While (tj <> null)
9 Begin
10 If (the importance level of tj's function <= Pthreshold and no cyclic dependences of
 resources and events among all tasks after tj composited with ti) then
11 Add the properties, events, relations, ports, connections, resources and
 messages to corresponding tables associating with ti;
12 Delete ti and its property, events, relations, ports, connections, resources and messages;
13 Endif
14 tj=The next task in Task table;
15 End
16 Endif
17 ti= The next task in Task table;
18 End
19 End

Fig. 5. Task optimizing algorithm

4.4. XML Output and Code Generation

We take out the tasks from Task Base and parse their functions, properties
and relations with other tasks. As a result, An XML file is created.

Because the MID are based on OSEK-compatible OS, AECPSDesigner
can show the implementation domain model by parsing the transformed XML
file. In AECPSDesigner, developers can modify model properties, e.g. task
names and priorities. Using AECPSDesigner, implementation code of models
for OSEK-compatible OS can also be generated automatically through
analyzing the relationship between tasks and other objects (such as alarms,
events, and resources which is defined in OSEK-compatible OS). Developers
can also modify/add implementation code by hand as widely supported in
other model-based development tools such as Simulink and Rhapsody
because fully model-based design is almost impossible currently. Currently,
we have implemented the non-functional analysis for tasks in time and
energy-savings by using the methods in [29-31]. In non-functional property
analysis, measurement of the WCET of a program is a fundamental problem.
There are many methods to estimate the WCET of a program [32], such as
static program analysis, measurement, simulation, etc. In our current
implementation, we use measurement-based method because it has been
widely supported by current development tools for automotive electronics.
For example, after defining the parameters of worst-case execution path, we
can measure the worst-case execution time of a program by using
CodeWarrior Debugger to simulate the microcontroller’s running and obtain
the number of the processor’s clock cycles elapsed since the beginning of the
simulation. After measuring the WCET of a program, we can mark the WCET
of tasks in MID and analyze whether its deadline is met. Combining the
characteristics of processors and OS, timing analysis and energy-saving

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1289

algorithm can be used to analyze whether the deadlines of tasks meet and
improve the energy-saving effect of software.

5. Case Study and Analysis

We have applied MoBDAC to the development of automotive CPS software,
and achieved good effect. In this section, we demonstrate the design process
presented in section 3 through a power window control system. Figure 6
shows the network topology structure of a power window control system. In
Figure 6, P1 is the processor which controls the power windows, and P2 is the
processor which is responsible for information display. A passenger can press
Button1 to control the up or down of the power window, and a driver can also
press Button2 to send messages to P1 to control the up or down of the power
window. Once it changes, the position of the power window can be sent to P2
and shown in LCD.

CAN bus

P2

LCD

Pi

Button2

P1

Button1
Window

Fig. 6. The network topology structure of the power window

The power window control system is a relatively complex system with the
following functions: a) manual up; b) manual down; c) automatic up; d)
automatic down; and e) obstacle-detecting. Because the up and down
messages from CAN bus is equivalent to these from Button1, we only
consider the up and down messages regardless of their sources. For
simplicity, we only consider the functions of manual up, manual down, and
obstacle-detecting. Note that obstacle-detecting is a safety measure which
prevents arms from being clamped when the power window is moving up. We
assume the software specifications can be described as follows:

a) When a passenger pushes the up button once, the window move up for
4cm if the position of the power window is less than 40cm and there is no
obstacle.

b) When a passenger pushes the down button once, the window move
down for 4cm if the position of the power window is more than 0cm.

c) If an obstacle is detected during moving up, the window moves down for
4cm.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1290

During its movement, the states of the power window are controlled by the
event of up or down. We choose FSM as its MOC and classify the states of
the power window into fully_opened, fully_closed and semi_opened.

The model of the power window built in Ptolemy II consists of three levels.
The first-level model is shown in Figure 7.

Fig. 7. The first-level model of the power window

In Figure 7, there are two discrete periodical event sources (UpEvent and
DownEvent), a power window model and a Timedplotter. The two discrete
periodical event sources are used to generate up events, and down events
respectively. Their configuration is shown in Table 1. The offsets denote the
time span from the occurrences of events to the period of the events. The
position of the window is output to TimedPlotter in order to observe its value.

Table 1. The configuration of event sources

Event source
Period
(second)

offsets values

UpEvent 25
{1.0, 2.0, 3.0, 4.0, 5.0,
6.0, 7.0, 8.0, 9.0, 10.0}

{1, 1,1,1, 1,1,1,
1,1,1}

DownEvent 25
{11.0, 12.0, 13.0, 14.0,
15.0, 16.0, 17.0, 18.0,
19.0, 20.0}

{1, 1,1,1, 1,1,1,
1,1,1}

The second-level model is the power window model. Note that the function

model we actually need is the power-window model. The first-level model is
used to simulate the controlling effects.

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1291

Fig. 8. The second-level model of the power window

The second-level model is a FSM denoting the state transition of the power
window, as shown in Figure 8. The FSM consists of four states: init,
fully_opened, fully_closed, and semi_opened. We assume the initial state of
the FSM is init. In fact, the init state is an additive state for the convenience
of controling. The FSM will immediately transfers into fully_opened state from
the init state when it begins to work. The end states of the FSM are
fully_opened, fully_closed, or semi_opened. The obstacle-detecting function
should be implemented when an UpEvent occurs. However, whether there is
an obstacle depends on physical environment is uncertain. It is difficult to
simulate this uncertainty. We know obstacles need to be detected when
UpEvent events occur and obstacle-detecting has the exclusive relation with
UpEvent events. The Model Modifier records the following rules:

Name: Obstacle-detecting.
Relevalent Event: UpEvent.
Relationship: Exclusive.
Expression: if (it is semi_open) power-window: position = power-window:

position -4; if (it is fully_opened) NO ACTION.
In the above expression, it reduces the position of the power window by

4cm when its state is semi_open; and takes no action when its state is
fully_opened.

After Model Modifier records the above rules, we need not consider the
obstacle-detecting function in the MPD. The relations among different states,
triggering conditions (guardExpression in Ptolemy II) and triggering actions
(setActions in Ptolemy II) are shown in Table 2.

In Table 2, down_isPresent denotes the occurrence of a down event;
up_isPresent denotes the occurrence of an up event; position denotes the
current position of the power window. semi_opened, fully_opened, and
fully_closed are refined into the third-level models with the same name, i.e.
the window position model. *.position denotes the position of a power window
in the third-level models.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1292

Table 2. State transition of the power window

State transition guardExpression setActions

Init->fully_opened True fully_opened.position=0

semi_opened

-> semi_opened

down_isPresent

&& position>4

semi_opened.position

=position-4

up_isPresent

&& position<36

semi_opened.position

=position+4

semi_opened

-> fully_opened

down_isPresent

&& position<=4
fully_opened.position =0

semi opened

->fully closed

up_isPresent

&& position≥36
fully_closed.position =40

fully_opened

-> fully_opened
down_isPresent fully_opened.position =0

fully_opened

-> semi_opened
up_isPresent semi_opened.position =4

fully closed

->fully closed
up_isPresent fully_closed.position =40

fully closed

-> semi_opened
down_isPresent semi_opened.position =36

The third-level model is a model of CT denoting the position of the power

window. There are three third-level models which are corresponding to the
refined states of semi_opened, fully_opened, and fully_closed respectively.
The three third-level models have the same structure, as shown in Figure 9.

Fig. 9. The third-level model of the power window

In Figure 10, the position at the top right is a parameter denoting the
position of the power window. The Window_Position is an expression actor. It
uses the position parameter as its input and directly outputs it to the position

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1293

port. The position port is connected to TimedPlotter in order to display the
position of the power window.

From the events source characteristics, we can know that the power
window should move up and down in turn. The simulation result in Ptolemy II
is shown in Figure 10.

Fig. 10. The simulation result of the power window

In this paper, we don’t describe all the details of the MoML file for the
power window model due to space constraints, and only explain the essential
parts for the model transformation.

1 <?xml version="1.0" standalone="no"?>
2 <!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN" "http://ptolemy.eecs.berkeley.edu/xml/

dtd/MoML_1.dtd">
3 <entity name="windowcontrol" class="ptolemy.actor.TypedCompositeActor">
4 <property name="_createdBy" class="ptolemy.kernel.attributes.VersionAttribute" value="5.0.1">
5 </property>
6 <property name="CT of Power Window" class="ptolemy.domains.ct.kernel.CTMixedSignalDi-rector">
7 <property name="startTime"

…
8 </property>
9 </property>
10 <entity name="Power-Window Model" class="ptolemy.domains.fsm.modal.ModalModel">
11 ...
12 </entity>
13 <entity name="UpEvent" class="ptolemy.domains.ct.lib.EventSource">
14 <property name="period" class="ptolemy.data.expr.Parameter" value="25">
15 </property>
16 <property name="offsets" class="ptolemy.data.expr.Parameter" value="{1.0,2.0,3.0,4.0,5.0,
 6.0,7.0,8.0,9.0,10.0}">
17 </property>
18 <property name="values" class="ptolemy.data.expr.Parameter" value="{1, 1,1,1, 1,1,1, 1,1,1}">
19 </property>
20 …
21 </entity>
22 ...
23 <relation name="relation3" class="ptolemy.actor.TypedIORelation">
24 </relation>
25 ...
26 <link port="UpEvent.output" relation="relation"/>
27 ...
28 </entity>

Fig. 11. The first-level model stored in MoML file

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1294

The MoML file of the first-level model is shown in Figure 11. Note that
some unimportant details have been omitted by suspension points for easy to
understand.
 Line 1-2: They define the version and Document Type Definitions

(DTD) used in this MoML file.
 Line 3-5: The file name of the MoML file is windowcontrol; the model

is a composite model (including different MOCs); the version of
Ptolemy II is 5.0.1. The range of this entity is from line 3 to line 28.

 Line 6-9: The name of the first-level model is ―CT of Power Window‖.
It is a CT model.

 Line 10-12: They define the second-level model to descibe the state
transition of the power window. Note that the second-level model uses
the FSM model and its detail is omitted in line 11.

 Line 13-22: They define the UpEvent entity with its periods, offsets,
and values from line 13 to line 21. The DownEvent entity and the
TimedPlotter entity are omitted in line 22.

 Line 23-25: Relations are defined in order to represent the links
among UpEvent, DownEvent, Power-Window Model, and
TimedPlotter. Note that only one is shown, and the others are omitted.

 Line 26-27: The links among UpEvent, DownEvent, Power-Window
Model, and the TimedPlotter are defined. Note that only one is shown,
and the others are omitted.

The second-level model denotes the state transition of the power window,
as shown in Figure 12.

1 <entity name="Power-Window Model" class="ptolemy.domains.fsm.modal.ModalModel">
2 <port name="up" class="ptolemy.domains.fsm.modal.ModalPort">
3 <property name="input"/>
4 </port>
5 ...
6 <entity name="fully_opened" class="ptolemy.domains.fsm.kernel.State">
7 ...
8 </entity>
9 ...
10 <relation name="relation6" class="ptolemy.domains.fsm.kernel.Transition">
11 <property name="guardExpression" class="ptolemy.kernel.util.StringAttribute"

value="up_isPresent && position>=36">
12 </property>
13 <property name="setActions" class="ptolemy.domains.fsm.kernel.CommitActionsAttribute"

value="fully_closed.position=40">
14 </property>
15 ...
16 </relation>
17 ...
18 <link port="fully_opened.incomingPort" relation="relation8"/>
19 ...
20 <entity name="fully_opened" class="ptolemy.domains.fsm.modal.Refinement">
21 ...
22 </entity>
23 ...
24 </entity>

Fig. 12. The second-level model stored in MoML file

 Line 1: The name of the model is Power-Window Model. It is a FSM
model.

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1295

 Line 2-5: They define an input port, i.e. up port, from line 2 to line 4.
Other ports and their properties are omitted in Line 5.

 Line 6-9: They define an entity named fully_opened from line 6 to line
8 to denote a state of the FSM in the second-level model. Other
entities and their properties are omitted in line 9.

 Line 10-17: They define a state transition with its triggering condition
(guardExpression) and corresponding actions (setActions) from line
10 to line 16. Other state transition, triggering condition and
corresponding actions are omitted in line 17.

 Line 18-19: They define all the links used in the second-level model.
 Line 20-23: they denote a third-level model refined from the

fully_opened states from line 20 to line 22. Other third-level models
from the refinement of fully_closed and semi_opened are omitted in
line 23.

The third-level model denotes the position of the power window, as shown
in Figure 13.

1 <entity name="fully_opened" class="ptolemy.domains.fsm.modal.Refinement">
2 <property name="CT for Position"

class="ptolemy.domains.ct.kernel.CTEmbeddedDirector">
3 ...
4 </property>
5 <port name="up" class="ptolemy.domains.fsm.modal.RefinementPort">
6 <property name="input"/>
7 ...
8 </port>
9 ...
10 <entity name="Window_Position" class="ptolemy.actor.lib.Expression">
11 <property name="expression" class="ptolemy.kernel.util.StringAttribute"

value="position">
12 </property>
13 ...
14 </entity>
15 <relation name="relation" class="ptolemy.actor.TypedIORelation">
16 </relation>
17 <link port="position" relation="relation"/>
18 <link port="Window_Position.output" relation="relation"/>
19 </entity>

Fig. 13. The third-level model stored in MoML file

 Line 1: The name of the model is fully_opened. It is a refinement of
the FSM model.

 Line 2-4: The third-level model is a CT model.
 Line 5-9: The up port and its properties are defined from line 5 to line

8. The other two ports, the down port and the position port are omitted
in line 9.

 Line 10-14: They define the expression entity in the third level and its
properties, ports, relations and links.

 Line 15-18: They define the relations and links used in the third-level
model.

After building the correct models in Ptolemy II, we transform them into the
model in AECPSDesigner. We have mentioned that the first-level model is
only for the purpose of simulation. We remove the first-level model and keep

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1296

the second-level model (power window model) and the third-level models
(power window position model) before performing model transformation. In
order to recognize the type of the input and output signals, we add signalType
parameters to the up port and the down port with the values of ―DISCRETE‖,
and a signalType parameter to the position port with the value of
―CONTINUOUS‖. The process of model transformation consists of five steps.

First, parse the MoML file of the power window. Although directors are
entities, they are not viewed as common entities because they are only used
to denote MOC. There are four entities in the power window model, init,
semi_opened, fully_opened, and fully_closed. From the Automobile
Knowledge Base, their functions are found and put into Extend Entity table,
as shown in Table 3. The properties, relations, ports and links are also
parsed. Some properties are not needed, such as the size, position, color,
etc. They are not included in Property table.

Table 3. Functions of entities

Entity name MOC Function

init FSM Body_Window

semi_opened FSM Body_Window

fully_opened FSM Body_Window

fully_closed FSM Body_Window

Second, generate tasks. Because entities of semi_opened, fully_opened,

and fully_closed have the same function (Body_Window) and depend on the
up event and down event, they are grouped into a task named task1. The
entity init is also included into task1 because it has the same function with
other entities in task1. The other three entities in the third-level model are
classified into task2.

Third, analyze the interaction among tasks. The state transition information
of task1 is stored in Property table. The position property is stored in Property
table of task2. The up event and down event, including the triggering
condition and state transition, are stored in Event table of task1. The up port
and down port are stored in Port table of task2. The position port is stored in
Port table of task2. Because task2 controls the position of the power window,
a resource, res1, is created and put into Resource table.

Fourth, optimize tasks. In the Automobile Knowledge Base, the functions
that task1 and task2 perform are not safety-critical, and have lower priority.
task1 and task2 are incorporated into one task, task3. Their properties, ports,
and events are incorporated into a new task. task1 and task2 are removed
from Task table. The priority is an important property for a task. We assign
the priority levels of tasks according to the importance level of their functions.

Fifth, generate the XML file. task3 are taken out from Task Base. It waits
for two events. task3’s running information can be generated according to the
triggering condition and state transition. Res1 is the resource it uses. This
model is the one under OSEK-compatible OS. Then the model is output to an
XML file.

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1297

Fig. 14. Models in AECPSDesigner

The pseudo-codes of the generated codes are shown in Figure 15. In
Figure 15, task3 first initializes the position and state of the power window
(Line 2-Line 3), and then waits and processes input event (Line 4-Line 28).
Once receiving an input event, task3 obtains a resource in order to access
the power window (Line 6), and then changes the position and state of the
power window according to the rulers in Table 2 (Line 7-Line 26). Note that
the obstacle-detecting is implemented in Line 9-Line 10 and Line 20-Line 23.
After that, task3 updates the state of the power window, sends its position to
P2 by CAN bus (Line 25), and release the resource (Line 27).

From the development process of the power window, we can know
MoBDAC covers the whole development workflow of software. By separating
function requirements, non-functional requirements, and physical
environment requirements, developer can concentrate their attention on the
function logic of CPS in MPD. The non-functional requirements are analyzed
and verified in MID where the characteristics of deployment platform and the
execution properties of software are available, and the interaction with
physical environment is integrated into implementation models by analyzing
relevant events. MoBDAC improves development efficiency by automatic
model transformation and code generation, improves software quality by
verifying function properties in MPD and non-functional properties in MID,
and is easy to integrate the interaction with physical environment.

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1298

1 TASK(Task){

2 Set initial position of the power window to be zero;

3 Set initial state of the power window to be fully_opened;

4 While (true){

5 Wait for an event;

6 Obtain the resource of the power window;

7 if (The state is fully_opened) {

8 if (The event is an up event)

9 if (No obstacle is detected)

10 Set the position of the power window to be 4.

11 }

12 else if (The state is fully_closed) {

13 if (The event is a down event)

14 Set the position of the power window to be 4.

15 }

16 else {

17 if (The event is a down event)

18 Decrease the position of the power window by 4.

19 else if (The event is a up event)

20 if (No obstacle is detected)

21 Increase the position of the power window by 4.

22 else

23 Decrease the position of the power window by 4.

24 }

25 Send the position of the power window to CAN bus.

26 Update the state of the power window.

27 Release the resource of the power window;

28 }

29 TerminateTask();
 }

Fig. 15. Codes generated by AECPSDesigner

6. Conclusions

Aiming at the development of automotive CPS software, we present a model-
based development method under operating systems compatible with
OSEK/VDX specification. This method increases development efficiency by
automatic tools, and can verify the correctness of function requirements, non-
functional requirements, and integrate the interaction with physical
environment. The future work is to integrate more analysis methods for non-
functional requirements and verify the interaction with physical environment
in MIP.

Acknowledgment. This work has been supported by the Pre-research Scheme of
973 Program of China (Grant No. 2010CB334707), Zhejiang Provincial Key Science
and Technology Program (No. 2009C14013), and the Scientific Research Found (No.
0804623-Y, No. KYS055610046, No. KYS055608107).

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1299

References

1. Sha, L., Gopalakrishnan, S., Liu, X., Wang, Q.: Cyber-Physical Systems: A New
Frontier. In Proceedings of the 2008 IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC 2008), 1–9. (2008)

2. Shih, E., Bahl, P., Sinclair, M. J.: Wake on Wireless: An Event Driven Energy
Saving Strategy for Battery Operated Devices. In Proceedings of the 8th Annual
International Conference on Mobile Computing and Networking (MobiCom 2002),
160–171. (2002)

3. Yoerger, D. R., Jakuba, M., Bradley, A. M., Bingham, B.: Techniques for Deep
Sea Near Bottom Survey Using an Autonomous Underwater Vehicle. Journal of
Robotics Research, Vol. 26, No. 1, 41–54. (2007)

4. Lee, E. A.: Cyber Physical Systems: Design Challenges. International
Symposium on Oriented Real-Time Distributed Computing (ISORC’08), 363-369.
(2008)

5. Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, New York, NY. (1994)

6. Selic, B., Rumbaugh, J.: Using UML for modeling complex real-time systems.
(1998). [Online]. Available: http://www.objectime.com/uml.

7. The SDL Forum website. (2005). [Online]. Available: http://www.sdl-forum.org.
8. Sztipanovits, J., Karsai, G.: Model-integrated Computing. IEEE Computer, Vol.

30, No. 4, 110-112. (1997)
9. Lee, E. A.: Overview of the Ptolemy Project. (2003). [Online]. Available:

http://Ptolemy.eecs.berkeley.edu/publications/papers/03/overview/.
10. MoBIES Automotive Open Experimental Platform. (2003). [Online]. Available:

http://vehicle.me.berkeley.edu/mobies/.
11. Magureanu, G., Gavrilescu, M., Pescaru, D., Doboli, A.: Towards UML Modeling

of Cyber-Physical Systems: A Case Study for Gas Distribution, In Proceedings of
the 8th International Symposium on Intelligent Systems and Informatics (SISY
2010), 471–476. (2010)

12. Bhatia, G., Lakshmanan, K., Rajkumar, R.; An End-to-End Integration
Framework for Automotive Cyber-Physical Systems Using SysWeaver. In
Proceedings of the 1st Analytic Virtual Integration of Cyber-Physical Systems
Workshop (AVICPS 2010). (2010)

13. OSEK/VDX Binding Specification Version 1.4.1. (2003). [Online]. Available:
http://www.osek-vdx.org/mirror/oil241.pdf.

14. Ledeczi, A., Maroti, M., Bakay, A., et al.: The Generic Modeling Environment. In
Proceedings of the IEEE Workshop on Intelligent Signal Processing (WISP
2001). (2001)

15. The MathWorks, Inc. (2011). [Online]. Available: http://www.mathworks.com/.
16. Metacase company. (2011). [Online]. Available: http://www.metacase.com/.
17. DOME Users’ Guide. (2011). [Online]. Available: http://www.htc.honeywell.com

/dome/support.htm#documentation.
18. Telelogic inc. (2011). [Online]. Available: http://modeling.telelogic.com/index.cfm.
19. Woo, H., Yi, J., Browne, J. C., et al.: Design and Development Methodology for

Resilient Cyber-Physical Systems. In Proceedings of the 28th International
Conference on Distributed Computing Systems Workshops (ICDCS Workshops
2008), 525-528. (2008)

20. Lin, J., Sedigh, S., Miller, A.: Towards Integrated Simulation of Cyber-Physical
Systems: A Case Study on Intelligent Water Distribution. In Proceedings of the

Zhigang Gao, Haixia Xia, and Guojun Dai

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1300

8th IEEE International Conference on Dependable, Autonomic and Secure
Computing (DASC 2009), 690-695. (2009)

21. Ma, L., Yuan, T., Xia, F., et al.: A High-confidence Cyber-Physical Alarm System:
Design and Implementation. In Proceedings of 2010 IEEE/ACM International
Conference on Green Computing and Communications (GreenCom) &
International Conference on Cyber, Physical and Social Computing (CPSCom),
516-520. (2010)

22. Tsai, J. J. P., Li, B., Liu, A.: Modeling and Parallel Evaluation of Non-Functional
Requirements Using FRORL Requirements Language. In Proceedings of the 8th
Annual International Computer Software and Applications Conference
(COMPSAC 1994), 11-16. (1994)

23. Chung, L., Nixon, B. A., Yu, E., Mylopoulos J.: Non-functional requirements in
Software Engineering. Kluwer Academic Publishers. (1999)

24. Fidge, C.J., Lister, A. M.: The Challenges of Non-Functional Computing
Requirements. In Proceedings of the 7th Australian Software Engineering
Conference (ASWEC 93). (1993)

25. Lee, E. A.: Embedded Software. Advances in Computers, Vol. 56, 56-97. (2002)
26. Niz, D. de, Rajkumar, R.: Model-based Embedded Real-time Software

Development. (2003). [Online]. Available: http: //www.cse.wust1.edu/~cdgill
/RTASO3/published/TimeWeaverPosition.pdf.

27. CodeWarrior Development Tools. (2011). [Online]. Available:
http://www.freescale. com/webapp/sps/site/homepage.jsp?code=CW_HOME.

28. Brooks, C., Lee, E. A., Liu, X., Neuendorffer, S., Zhao, Y., Zheng, H.:
Heterogeneous Concurrent Modeling and Design in Java (volume 1: Introduction
to Ptolemy II). University of California, Technical Report UCB/ERL M05/21.
(2005)

29. Gao, Z., Wu, Z., Lin, M.: Energy-Efficient Fixed-Priority Scheduling for Periodic
Real-Time Tasks with Multi-Priority Subtasks. In Proceedings of the 2007
International Conference on Embedded Software and System (ICESS 2007),
LNCS, Vol. 4523, 572-583. (2007)

30. Gao, Z., Wu, Z., Li, H.: Implementation Synthesis of Embedded Software under
Operating Systems Supporting the Hybrid Scheduling Model. In Proceedings of
the 2006 IFIP International Conference on Embedded and Ubiquitous Computing
(EUC 2006), LNCS, Vol. 4096, 426-436. (2006)

31. Gao, Z., Wu, Z.: Implementation Synthesis of Embedded Software under the
Group-Based Scheduling Model. In Proceedings of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA 2006), 190-196. (2006)

32. Wilhelm, R., Engblom, J., Ermedahl, A., et.al.: The Worst-Case Execution-Time
Problem—Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems (TECS), Vol. 7, No. 3, 36:1-36:53. (2008)

Zhigang Gao received the Ph.D. degree from the College of Computer
Science, Zhejiang University, Hangzhou, China in 2008. He is a teacher in
the College of Computer Science, Hangzhou Dianzi University, Hangzhou,
China. His current research interests are pervasive computing, Cyber-
Physical Systems, and automotive electronic systems.

A Model-Based Software Development Method for Automotive Cyber-Physical
Systems

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1301

Haixia Xia received the Ph.D. degree from Zhejiang University, Hangzhou,
China in 2007. She is a teacher in the College of Informatics & Electronics,
Zhejiang Sci-Tech University, Hangzhou, China. Her current research
interests are pervasive computing and motor systems.

Guojun Dai received the Ph.D. degree from Zhejiang University, Hangzhou,
China in 1998. He is a professor in the College of Computer Science,
Hangzhou Dianzi University, Hangzhou, China. His current research interests
are pervasive computing and intelligent embedded systems.

Received: March 3, 2011; Accepted: April 26, 2011.

