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Abstract. The development of automotive cyber-physical systems 
(CPS) software needs to consider not only functional requirements, but 
also non-functional requirements and the interaction with physical 
environment. In this paper, a model-based software development 
method for automotive CPS (MoBDAC) is presented. The main 
contributions of this paper are threefold. First, MoBDAC covers the 
whole development workflow of automotive CPS software from 
modeling and simulation to code generation. Automatic tools are used 
to improve the development efficiency. Second, MoBDAC extracts non-
functional requirements and deals with them in the implementation 
model level and source code level, which helps to correctly manage 
and meet non-functional requirements. Third, MoBDAC defines three 
kinds of relations between uncertain physical environment events and 
software internal actions in automotive CPS, and uses Model Modifier 
to integrate the interaction with physical environment. Moreover, we 
illustrate the development workflow of MoBDAC by an example of a 
power window development. 

Keywords: Automotive cyber-physical systems, non-functional 
requirements, physical environment, model-based methods, model 
transformation, code generation. 

1. Introduction 

From smart power grids to intelligent homes and from environmental 
monitoring to transportation systems [1-3], CPS are increasingly permeated 
into every aspect of our society. Unlike traditional computer systems which 
mainly focus on computing and information processing, CPS need to 
consider computing, communication, physical environment, and their 
interaction [4]. Therefore, CPS software is hard to develop because 
developers need to consider functional properties, non-functional properties, 
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such as timeliness, energy, memory, safety and reliability, and the interaction 
with physical environment. 

In the recent two decades, both academia and industry have made efforts 
to explore approaches which are more applicable to the development of 
embedded software, such as the real-time object-oriented modeling (ROOM) 
[5], the UML-RT (implemented by IBM Rational Rose) [6], the Specification 
and Description Language (SDL), a language widely used in 
telecommunications domain [7], and Model-integrated Computing [8]. Among 
them, the model-based development of embedded software has become one 
of the most promising methods. 

The current research on model-based development of embedded software 
basically focuses on high-level modeling and simulations (e.g. Ptolemy [9]), 
or integration methodologies of tools (e.g. MoBIES [10]) for embedded 
software, but seldom involves a suite of complete implementation for a 
specific domain and considers both the non-functional requirements and 
environment requirements. Although there are a few of model-based CPS 
development methods [11-12], these methods only stay on high-level design 
model or require well-defined components. In this paper, we propose 
MoBDAC, which supports the implementation under the OSEK/VDX (Open 
Systems and the Corresponding Interfaces for Automotive Electronics (in 
German)/Vehicle Distributed eXecutive (in French)) specification [13]. 
MoBDAC covers the whole development workflow of automotive CPS 
applications from modeling and simulation to code generation. MoBDAC 
helps to increase development efficiency and improve software quality, and it 
is easy to integrate the interaction with physical environment. 

The rest of this paper is organized as follows. Section 2 summarizes the 
related work. Section 3 presents the architecture of MoBDAC. The 
implementation process is presented in section 4. In section 5 we illustrate 
the implementation of a power window control system as a case study and 
discuss the characteristics of MoBDAC. We conclude this paper in section 6. 

2. Related Work 

Ptolemy is one of the first research projects in the model-based development 
of embedded software. Ptolemy II [9], the current modeling tool of Ptolemy, is 
a hierarchical heterogeneous modeling environment for modeling, simulation, 
and design of concurrent, real-time, embedded systems. The purpose of 
Ptolemy II is to provide a trial platform for heterogeneous models of 
computation (MOC). Ptolemy II supports many kinds of MOC, such as 
synchronous dataflow (SDF), process networks (PN), finite-state machines 
(FSM), etc. Different components can be hierarchically integrated into a 
complex system under the government of different MOC. GME (The Generic 
Modeling Environment) [14] is a domain-specific meta-modeling 
environment, which provides different views to model the objects, relations 
and constraints. Because GME only provides meta-meta models, a whole 
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modeling process includes third phases: meta-modeling, modeling, and 
system-modeling. MoBIES (Model-Based Integration of Embedded Software) 
[10] is a tool chain for the integration of reusable embedded software. 
MoBIES integrates several kinds of existing commercial and academic tools 
to cover the modeling, model analysis, code generation, and runtime analysis 
in the development of embedded software, and uses standard XML file 
formats to exchange information among different tools. Currently, many 
commercial model-based development tools, such as Matlab/Simulink [15], 
MetaEdit+ [16], DOME [17], Rhapsody [18], etc., have been used to the 
development of embedded software, such as automotive electronic or avionic 
controlling software. 

In recent years, CPS software development has been attracting more and 
more attention. Woo et al. [19] present a formal software development 
method with a suite of feedback control laws and efficient resource 
monitoring mechanism to deal with system failure effectively. Lin et al. [20] 
present an integrated simulation method in order to accurately reflect the 
operation and interaction between the cyber aspects and the physical aspects 
of CPS. Ma et al. [21] present a high-confidence cyber-physical alarm system 
(CPAS) and discuss its requirements, system models and implementation.  

A few of research efforts have been made to develop CPS software with 
model-based methods. Magureanu et al. [11] present a model-based CPS 
development method for gas distribution. Their method mainly focuses on 
building the high-level models using UML. Bhatia et al. [12] present a model-
based framework called SysWeaver to model, integrate, analyze, verify, and 
implement AUTOSAR-compliant automotive systems, which extends 
AUTOSAR (Automotive Open System Architecture) in order to meet the real-
word requirements of automotive CPS, such as timeness, fault tolerance, 
feedback, etc. In the development of automotive systems, SysWeaver 
requires the components are available and have well-defined parameters. 

3. The Architecture of MoBDAC 

The architecture of MoBDAC is shown in Figure 1. The main workflow of 
development includes four steps. First, extract software specifications from 
system specifications. Second, use modeling tools to build the models in 
problem domains (MPD), and then perform simulation in order to verify the 
correctness of models. Third, transform MPD into the models in 
implementation domains (MID). Finally, MID are used to generate code. Note 
that both non-functional requirements and the interaction with physical 
environment are extracted from system specifications besides software 
specifications, the non-functional requirements are used by analysis tools to 
verify whether the non-functional requirements of the software are met, and 
the information of the interaction with physical environment is used by Model 
Modifier to modify MID in order to generate correct code. 
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Fig. 1. Architecture of MoBDAC 

3.1. Function Extraction 

The purpose of function extraction is to extract software specifications from 
system specifications of automotive CPS. For automotive CPS, their system 
specifications include the following three aspects. 
 Functional requirements. Functional requirements define the behavior 

of a system and what the system does [22]. In automotive CPS, 
functional requirements define what functions they include, the 
operating process when completing a function, and the relations 
among different operations, etc. Developers can specify the functional 
requirements of automotive CPS according to what functions their 
subsystems (such as the body subsystem, the safety subsystem, etc) 
include, and how to carry out these functions. 

 Non-functional requirements. Non-functional requirements define the 
quality of a system and how well the system should work [22]. Non-
functional requirements specify global constraints [23], such as 
timeliness, safety, fault-tolerance, energy, etc [24-26]. Developers can 
specify the non-functional requirements of automotive CPS according 
to the global constraints from systems specifications. 

 Physical environment requirements. For automotive CPS, different 
subsystems may work in different physical environment, and have 
different interaction modes and requirements. Physical environment 
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requirements define the interaction modes and requirements between 
automotive CPS software and their physical environment. For 
example, for an in-vehicle air-conditioning system, it detects the 
temperature and humidity in the vehicle, and decides its working 
status; for a backup radar, it detects the distance between the vehicle 
and obstacles, and decides its alarm status. 

When performing function extraction, it only extracts the function 
requirements and put them into software specifications. The non-functional 
requirements and the interaction with physical environment are extracted by 
non-function extraction and physical environment extraction, and put them 
into Non-Functional Concern Table and Physical Environment Concern Table 
respectively. 

3.2. Modeling 

System specifications and software specifications are all text which is mainly 
used to communicate among designers. During modeling, we build MPD 
which denote the structures and functions of software from software 
specifications, and verify their correctness by simulation. MPD describe the 
structures of software, the relations among different parts, and the transition 
relations among different states. 

Because they do not consider the characteristics of deployment platforms, 
MPD belong to Platform Independent Models (PIM), MPD are more suitable 
for designers to concentrate themselves on high-level function design and 
can enhance the portability of software. Moreover, there is a Model Modifier 
in the right of Figure 1. Model Modifier can build the relations between 
external physical environment events and software internal actions according 
to some rules, and then modify MID in order to make the modeling and 
simulation in MPD independent of physical environment. In automotive CPS, 
some physical environment events are certain. For example, in-vehicle 
temperature need be detected at a specific period. For certain interaction with 
physical environment, it is enough to model its behavior in functional 
requirements. For uncertain physical environment events, MoBDAC defines 
three kinds of relations between physical environment events and software 
internal actions. 
 Correlative relation. When a physical environment event occurs, a 

corresponding software internal action must happen. For example, it is 
a correlative relation between a physical event of turning on an in-
vehicle light and a software action that the state of the in-vehicle light 
turns from off to on. Developers can model the state of the in-vehicle 
light in problem domains to denote the effects caused by the 
corresponding physical event. 

 Exclusive relation. The occurrence of a physical environment event 
means that a software internal action will not happen. For example, a 
power window will not move up when an obstacle is detected. There is 
an exclusive relation between the power window moving up and the 
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obstacle event occurring. Developers can model the software action in 
problem domains and process the results caused by the physical 
event in the reverse logic. 

 Complementary relation. A physical environment event maybe 
happens when a software internal action occurs. For example, a wheel 
slip maybe occurs when a brake action is executing. Developers can 
model the software action in problem domains and detect the physical 
event in the software action. 

In automotive CPS, developer can use correlative relation and exclusive 
relation to describe the interaction between passive reaction systems (e.g., 
Power Window System, Supplemental Restraint System, etc.) and physical 
environment, and complementary relation to describe the interaction between 
active reaction systems (e.g., Anti-lock Brake System, Anti Slip Regulation, 
etc.) and physical environment. Using these three relations, developers can 
model and simulate software functions in MPD without considering the 
influence of the uncertain physical environment events, Model Modifier adds 
the interaction with physical environment to MID after model transformation. 

3.3. Model Transformation 

MPD are independent of platforms and implementation. After they are built 
and verified, MPD need to be transformed into the models for specific 
hardware and software platforms, i.e., Platform Specific Models (PSM). The 
model transformation is composed of two steps: 
 Model Analysis. Model analysis extracts all kinds of elements in MPD, 

the functions of elements, and the relations among elements 
according to the characteristics of the modeling tools. By model 
analysis, we know what elements are useful for MID, what elements 
are useless for MID (i.e. they will be filtered during model 
transformation), what elements server for the same functions, what 
elements share the same resource, the dependence relations among 
elements, etc, in order to provide support for generating MID. 

 MID Generation. Because tasks are widely used software models in 
current software implementation, we use tasks as MID. We need 
organize the elements in MPD into tasks during model transformation 
according to their functions in automotive CPS. Because there may 
be hierarchical relations among the elements in MPD, it needs a 
suitable granularity to transform the elements in MPD into the 
elements in MID. Moreover, we need decide the relations among 
tasks, such as precedence order, the message passing, etc. Note that 
it is an important problem to assign task properties, such as periods, 
deadlines, execution voltage, processor temperature, etc. Some task 
properties may be decided according to the results of model analysis 
(for example, periods), some from Non-Functional Concern Table (for 
example, deadlines), and others according to specific rules or 
algorithms (for example, priorities and execution voltage). Because 
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the information of deployment platform is available, we use analysis 
tool to verify whether MID meet the non-functional requirements. 

3.4. Code Generation 

After building MID, we can generate the code for OSEK-compatible OS 
according to the relations among tasks and the properties of tasks. Some 
properties of tasks highly depend on their implementation code. For example, 
the WCET (Worst-Case Execution Time) of tasks are usually evaluated on 
source code level or assemble code level. In automotive cyber-physical 
system development, MoBDAC supports two methods to improve the 
flexibility when evaluating code-dependent task properties, i.e., from the task 
model level or the source code level. We can use analysis tools to verify 
whether the software implementation meets its non-functional requirements. 
If the software implementation does not meet its non-functional requirements, 
we can modify the system design and repeat the above process until non-
functional requirements are met. 

After generating source code, we can use development tools which are 
usually available from chip manufacturers (e.g. CodeWarrior from Freescale 
Semiconductor [27]) to generate the machine code for special hardware 
platforms, e.g. DSP, MCS51, MPC555, and HCS12. 

4. The Implementation of MoBDAC 

Currently, we have implemented the development workflow of MoBDAC by 
an Automotive Electronic CPS (AECPS) tool chain which combines Ptolemy 
II with the development tools designed by ourselves, and the results have 
proved the effectiveness of MoBDAC. The following is the implementation of 
MoBDAC. 

4.1. Function Extraction 

Because system specifications and software specifications are designer-
oriented documents, they mainly make designers understand the system and 
software requirements more easily and exactly. We perform function 
abstraction by hand. From system specifications, we find the functions and 
relations for software parts and put them into software specifications. After all 
specifications relevant with software have been abstracted, we get software 
specifications. 
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4.2. Modeling and Simulation in Problem Domains 

In Ptolemy II, designers build MPD according to software specifications, and 
then verify their correctness by simulation. Modeling includes two steps. First, 
choose suitable MOC (Models of Computation). The choices of MOC are 
made mainly according to the continuity or discreteness of time, and the 
synchrony or asynchrony of events, etc. For example, the model of a power 
window control system is a hybrid model, where the states of the windows 
can be described by FSM, and the position of the window is a value that is 
suitable to be described by CT (Continuous Time) model. Second, construct 
MPD. Once the model is built, developers can observe the running results of 
the models in simulation windows. If the results of the simulation are not 
consistent with the requirements of software specifications, designers can 
check the models and debug the errors during modeling. 

4.3. Model Transformation 

Models built in Ptolemy II are independent of platforms and implementation. 
They need to be transformed into the ones under OSEK-compatible OS. 

Major modeling elements in Ptolemy II [28] include: 
 Entity is a text segment with specific functions, e.g. directors, actors 

(including the ports, relations, and links that belong to 
directors/actors). 

 Port is an input or output interface of an entity. 

 Relation is the route of data or messages transmitted between 
different entities or just inside one entity. 

 Link is a connection between input/output interfaces of entities and 
relations. 

 Property is a characteristic of an entity element, such as its position, 
parameter, and name, etc. 

In Ptolemy II, entities are the highest-level elements. Other elements are 
attached to entities. In the model built by AECPSDesigner, a modeling tool 
designed by us for MID, there are also elements as listed above, but they do 
not have the same meaning. Transforming MPD to MID becomes the key 
problem of the design process. We present the method of stepwise refining to 
transform MPD to MID. The transformation process is shown in Figure 2. 



A Model-Based Software Development Method for Automotive Cyber-Physical 
Systems 

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1285 

Syntax parsing

Task generation

Task interaction 
analysis

Task optimization

XML output

Transformation Process

MoML

XML

BodyEnvironment

AmusementCommunication

Motor 
Automated 

Transmission
Safety

Link

Property

Extend Entity

Relation

Port

Symbol Base

Link Port

Property

Event

Task

Alarm

Message Resource

Task 
Base

Automobile Knowledge 
Base

 

Fig. 2. The process of model transformation 

In Figure 2, the transformation workflow of models is composed of five 
steps, i.e., syntax parsing, task generation, task interaction analysis, task 
optimization, and XML output. There are three databases, i.e., Symbol Base, 
Task Base, and Automobile Knowledge Base, and multiple tables in each 
database. Besides the entity name field, records of Extend Entity table in 
Symbols Base include the directors that entities belong to, together with the 
functions of entities. Records of Task table in Task Base include the functions 
of tasks as well as the entities it includes. Automobile Knowledge Base 
includes the subsystems of the automotive CPS, their functions, and the 
importance level of their functions according to real-time and safety-critical 
degree. For example, the body subsystem consists of the power window 
control function, the power skylight control function, the power rear-view 
mirror control function, and the seat adjusting function, and so on. 
Automobile Knowledge Base helps to partition tasks in model transformation 
according to their functions, and merge different tasks according to their 
importance levels. 

1) Syntax Parsing: In order to obtain the information of the models built in 
Ptolemy II, we analyze the output the MoML (Modeling Markup Language) 
file. We first extract the entities and put them into Extend Entity table as a 
new record. Then we take out other parts of entities, e.g. the directors it 
belongs, and put them into the records of relevant entities as new fields. After 
that, we search Automobile Knowledge Base to find out the functions of the 
entities and put them into Extend Entity table as a field. The properties, 
relations, ports and links that we get from the MoML file should also be put 
into the relevant tables. 
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2) Task Generation: We classify the entities in Symbol Base and then create 
tasks, as well as find the properties and functions of each entity and output 
them to Task Base. We use the algorithm shown in Figure 3 to classify the 
entities. In Figure 3, if the MOC of F is relevant to events, Classify algorithm 
finds all entities depending on these events and marks the same task tag 
(Line 4-Line 13). Otherwise, Classify algorithm finds all entities with the same 
function and marks them the same task tag (Line 15-Line 22). Note that all 
unmarked entities and ungrouped entities are marked the same task tag (Line 
12, Line 21). 

 
1 Algorithm Classify(FN)
2    Begin
3       F = The collection of all entities having function FN in Extend Entity table;
4       If (The MOC of F is relevant to events) then
5         Begin
6            ai = The first entity in F;
7            While (ai <> null and the task tag of ai are unmarked)
8                Begin
9                   Find out the entities depending on the same one or more events, merge them to a group, 
                     and mark a new task tag;
10                 ai = the next entity in F;
11              End
12              Classify all the unmarked entities in F into a group, and mark a new task tag;
13       End
14     Else
15      For (each entity ai) in F
16         If (ai completes the same function with some entities which belong to task ti ) then
17           Set the task tag of ai to be ti, and merge them to a group;
18         Else
19           Allocate a new task tag ti;
20         Endif
21     Classify all the ungrouped entities in F into a group, and mark a new task tag;
22    Endif
23  End  

Fig. 3. Entities classifying algorithm 

After classifying the entities, all entities with the same task tag are grouped 
into one task and saved into Task table in Symbol Base. From Property table 
in Symbol Base, a corresponding property table can be created for the 
entities in Task Base by performing the following operation: 

a) If an entity is only relevant with other entities in the same task, eliminate 
its properties.  

b) If an entity is relevant with the entities of other tasks, combine all 
properties of the entity as the task’s global properties and then put them into 
Property table in Task Base. 

According to the functions of each entity in Automotive Knowledge Base, 
put its importance level property into Task table in Task Base. 

3) Task Interaction Analysis: In order to find the relations between tasks, 
we employ the algorithm defined in Figure 4. In Figure 4, for every task in 
Task table, Interaction algorithm finds its links, ports, and properties and 
outputs them to corresponding tables in Symbol Base (Line 3-Line 18). After 
that, Interaction algorithm finds the corresponding messages, events, alarms, 
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and resources for every task in Task table and output them to corresponding 
tables in Symbol Base (Line 20-Line 38). 
 

1 Algorithm Interaction()
2   Begin
3      ti = The first task in Task table;
4      While (ti <>null) 
5          Begin
6             R = All relations in Relation table contained by entities pertaining to ti;
7             ri = The first relation in R;
8            While (ri<> null) 
9               Begin
10                 If (ri links with entities belonging to other tasks in Task table) then
11                    Add a new link to Connection table in Task Base, and add the linking ports 
                        between tasks to Port table;
12                  Else
13                    Add a corresponding property to Property table;
14                  Endif
15                  ri = The next relation in R;
16             End
17           ti = The next task in Task table;
18       End
19   ti = The first task in Task table;
20   While (ti <> null) 
21       Begin
22         ci = the first link associated with ti in Relation table;
23         While (ci <>null) 
24             Begin
25                If (The port connected with ci transmits data) then
26                   Add a message to Message table;
27                Else
28                   If (The port connected with ci transmits sporadic events) then
29                      Add an event to Event table;
30                   Elseif (The port connected with ci transmits periodic events) 
31                       Add an alarm to Alarm table;
32                   Endif
33               Endif
34             Search other tasks having the same property. If it succeeds, convert the property to 
                 resource and add it to Resource table;
35             ci = The next link associated with ti in Relation table ;
36           End
37           ti = The next task in Task table;
38       End
39   End   

Fig.4. Task Interaction analysis algorithm 

4) Task Optimization: The tasks generated are analyzed to decide whether 
they should be merged in order to reduce task number. The following factors 
should be taken into account: 

a) The dependence relationship between tasks. 
b) The importance level of each task. 
We employ the merging algorithm shown in Figure 5 to perform task 

optimization. In Figure 5, TaskOptimizing algorithm finds the tasks whose 
importance level of its function is no more than a threshold Pthreshold (which 
is set by developers) (Line 6), and merged them into a task in order to reduce 
the task number in the system (Line 11-Line 12). 

Note that the merging operation of two tasks is allowed if it does not result 
in an annular dependence relation, and the merged tasks are stored in Task 
Base. The critical tasks will not be merged. For example, for safety-critical 
tasks, the real-time property is highly demanded, and they will not be 
merged. 
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1 Algorithm TaskOptimizing()
2 Begin
3     ti=The first task in Task table;
4     While (ti <> null) 
5         Begin
6            If (ti <> null and the importance level of ti's function <= Pthreshold) then
7              tj=The first task in Task table;
8              While (tj <> null) 
9                  Begin
10                    If (the importance level of tj's function <= Pthreshold  and no cyclic dependences of
                            resources and events among all tasks after tj composited with ti) then
11                         Add the properties, events, relations, ports, connections, resources and
                             messages to corresponding tables associating with ti;
12                         Delete ti and its property, events, relations, ports, connections, resources and messages;
13                    Endif
14                  tj=The next task in Task table;
15              End
16         Endif
17          ti= The next task in Task table;
18      End
19 End   

Fig. 5. Task optimizing algorithm 

4.4. XML Output and Code Generation 

We take out the tasks from Task Base and parse their functions, properties 
and relations with other tasks. As a result, An XML file is created. 

Because the MID are based on OSEK-compatible OS, AECPSDesigner 
can show the implementation domain model by parsing the transformed XML 
file. In AECPSDesigner, developers can modify model properties, e.g. task 
names and priorities. Using AECPSDesigner, implementation code of models 
for OSEK-compatible OS can also be generated automatically through 
analyzing the relationship between tasks and other objects (such as alarms, 
events, and resources which is defined in OSEK-compatible OS). Developers 
can also modify/add implementation code by hand as widely supported in 
other model-based development tools such as Simulink and Rhapsody 
because fully model-based design is almost impossible currently. Currently, 
we have implemented the non-functional analysis for tasks in time and 
energy-savings by using the methods in [29-31]. In non-functional property 
analysis, measurement of the WCET of a program is a fundamental problem. 
There are many methods to estimate the WCET of a program [32], such as 
static program analysis, measurement, simulation, etc. In our current 
implementation, we use measurement-based method because it has been 
widely supported by current development tools for automotive electronics. 
For example, after defining the parameters of worst-case execution path, we 
can measure the worst-case execution time of a program by using 
CodeWarrior Debugger to simulate the microcontroller’s running and obtain 
the number of the processor’s clock cycles elapsed since the beginning of the 
simulation. After measuring the WCET of a program, we can mark the WCET 
of tasks in MID and analyze whether its deadline is met. Combining the 
characteristics of processors and OS, timing analysis and energy-saving 
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algorithm can be used to analyze whether the deadlines of tasks meet and 
improve the energy-saving effect of software. 

5. Case Study and Analysis 

We have applied MoBDAC to the development of automotive CPS software, 
and achieved good effect. In this section, we demonstrate the design process 
presented in section 3 through a power window control system. Figure 6 
shows the network topology structure of a power window control system. In 
Figure 6, P1 is the processor which controls the power windows, and P2 is the 
processor which is responsible for information display. A passenger can press 
Button1 to control the up or down of the power window, and a driver can also 
press Button2 to send messages to P1 to control the up or down of the power 
window. Once it changes, the position of the power window can be sent to P2 
and shown in LCD. 

 

CAN bus

P2

LCD

Pi

Button2

P1

Button1
Window

 

Fig. 6. The network topology structure of the power window 

The power window control system is a relatively complex system with the 
following functions: a) manual up; b) manual down; c) automatic up; d) 
automatic down; and e) obstacle-detecting. Because the up and down 
messages from CAN bus is equivalent to these from Button1, we only 
consider the up and down messages regardless of their sources. For 
simplicity, we only consider the functions of manual up, manual down, and 
obstacle-detecting. Note that obstacle-detecting is a safety measure which 
prevents arms from being clamped when the power window is moving up. We 
assume the software specifications can be described as follows: 

a) When a passenger pushes the up button once, the window move up for 
4cm if the position of the power window is less than 40cm and there is no 
obstacle. 

b) When a passenger pushes the down button once, the window move 
down for 4cm if the position of the power window is more than 0cm. 

c) If an obstacle is detected during moving up, the window moves down for 
4cm. 
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During its movement, the states of the power window are controlled by the 
event of up or down. We choose FSM as its MOC and classify the states of 
the power window into fully_opened, fully_closed and semi_opened. 

The model of the power window built in Ptolemy II consists of three levels. 
The first-level model is shown in Figure 7. 

 

 

Fig. 7. The first-level model of the power window 

In Figure 7, there are two discrete periodical event sources (UpEvent and 
DownEvent), a power window model and a Timedplotter. The two discrete 
periodical event sources are used to generate up events, and down events 
respectively. Their configuration is shown in Table 1. The offsets denote the 
time span from the occurrences of events to the period of the events. The 
position of the window is output to TimedPlotter in order to observe its value. 

Table 1. The configuration of event sources 

Event source 
Period 
(second) 

offsets values 

UpEvent 25 
{1.0, 2.0, 3.0, 4.0, 5.0, 
6.0, 7.0, 8.0, 9.0, 10.0} 

{1, 1,1,1, 1,1,1, 
1,1,1} 

DownEvent 25 
{11.0, 12.0, 13.0, 14.0, 
15.0, 16.0, 17.0, 18.0, 
19.0, 20.0} 

{1, 1,1,1, 1,1,1, 
1,1,1} 

 
The second-level model is the power window model. Note that the function 

model we actually need is the power-window model. The first-level model is 
used to simulate the controlling effects. 
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Fig. 8. The second-level model of the power window 

The second-level model is a FSM denoting the state transition of the power 
window, as shown in Figure 8. The FSM consists of four states: init, 
fully_opened, fully_closed, and semi_opened. We assume the initial state of 
the FSM is init. In fact, the init state is an additive state for the convenience 
of controling. The FSM will immediately transfers into fully_opened state from 
the init state when it begins to work. The end states of the FSM are 
fully_opened, fully_closed, or semi_opened. The obstacle-detecting function 
should be implemented when an UpEvent occurs. However, whether there is 
an obstacle depends on physical environment is uncertain. It is difficult to 
simulate this uncertainty. We know obstacles need to be detected when 
UpEvent events occur and obstacle-detecting has the exclusive relation with 
UpEvent events. The Model Modifier records the following rules: 

Name: Obstacle-detecting. 
Relevalent Event: UpEvent. 
Relationship: Exclusive. 
Expression: if (it is semi_open) power-window: position = power-window: 

position -4; if (it is fully_opened) NO ACTION. 
In the above expression, it reduces the position of the power window by 

4cm when its state is semi_open; and takes no action when its state is 
fully_opened. 

After Model Modifier records the above rules, we need not consider the 
obstacle-detecting function in the MPD. The relations among different states, 
triggering conditions (guardExpression in Ptolemy II) and triggering actions 
(setActions in Ptolemy II) are shown in Table 2. 

In Table 2, down_isPresent denotes the occurrence of a down event; 
up_isPresent denotes the occurrence of an up event; position denotes the 
current position of the power window. semi_opened, fully_opened, and 
fully_closed are refined into the third-level models with the same name, i.e. 
the window position model. *.position denotes the position of a power window 
in the third-level models. 



Zhigang Gao, Haixia Xia, and Guojun Dai 

ComSIS Vol. 8, No. 4, Special Issue, October 2011 1292 

Table 2. State transition of the power window 

State transition guardExpression setActions 

Init->fully_opened True fully_opened.position=0 

semi_opened 

-> semi_opened 

down_isPresent 

&& position>4 

semi_opened.position 

=position-4 

up_isPresent 

&& position<36 

semi_opened.position 

=position+4 

semi_opened 

-> fully_opened 

down_isPresent 

&& position<=4 
fully_opened.position =0 

semi opened 

->fully closed 

up_isPresent 

&& position≥36 
fully_closed.position =40 

fully_opened 

-> fully_opened 
down_isPresent fully_opened.position =0 

fully_opened 

-> semi_opened 
up_isPresent semi_opened.position =4 

fully closed 

->fully closed 
up_isPresent fully_closed.position =40 

fully closed 

-> semi_opened 
down_isPresent semi_opened.position =36 

 
The third-level model is a model of CT denoting the position of the power 

window. There are three third-level models which are corresponding to the 
refined states of semi_opened, fully_opened, and fully_closed respectively. 
The three third-level models have the same structure, as shown in Figure 9. 

 

 

Fig. 9. The third-level model of the power window 

In Figure 10, the position at the top right is a parameter denoting the 
position of the power window. The Window_Position is an expression actor. It 
uses the position parameter as its input and directly outputs it to the position 
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port. The position port is connected to TimedPlotter in order to display the 
position of the power window. 

From the events source characteristics, we can know that the power 
window should move up and down in turn. The simulation result in Ptolemy II 
is shown in Figure 10. 

 

 

Fig. 10. The simulation result of the power window 

In this paper, we don’t describe all the details of the MoML file for the 
power window model due to space constraints, and only explain the essential 
parts for the model transformation. 

 
1 <?xml version="1.0" standalone="no"?>
2 <!DOCTYPE entity PUBLIC "-//UC Berkeley//DTD MoML 1//EN" "http://ptolemy.eecs.berkeley.edu/xml/

dtd/MoML_1.dtd">
3 <entity name="windowcontrol" class="ptolemy.actor.TypedCompositeActor">
4     <property name="_createdBy" class="ptolemy.kernel.attributes.VersionAttribute" value="5.0.1">
5     </property>
6     <property name="CT of Power Window" class="ptolemy.domains.ct.kernel.CTMixedSignalDi-rector">
7         <property name="startTime" 

…
8          </property>
9      </property>
10    <entity name="Power-Window Model" class="ptolemy.domains.fsm.modal.ModalModel">   
11      ...
12   </entity>
13     <entity name="UpEvent" class="ptolemy.domains.ct.lib.EventSource">
14           <property name="period" class="ptolemy.data.expr.Parameter" value="25">
15           </property>
16           <property name="offsets" class="ptolemy.data.expr.Parameter" value="{1.0,2.0,3.0,4.0,5.0,
                 6.0,7.0,8.0,9.0,10.0}">
17            </property>
18           <property name="values" class="ptolemy.data.expr.Parameter" value="{1, 1,1,1, 1,1,1, 1,1,1}">
19           </property>
20            …
21      </entity>
22         ...
23     <relation name="relation3" class="ptolemy.actor.TypedIORelation">
24     </relation>
25       ...
26     <link port="UpEvent.output" relation="relation"/>
27       ...
28 </entity>

 

Fig. 11. The first-level model stored in MoML file 
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The MoML file of the first-level model is shown in Figure 11. Note that 
some unimportant details have been omitted by suspension points for easy to 
understand. 
 Line 1-2: They define the version and Document Type Definitions 

(DTD) used in this MoML file. 
 Line 3-5: The file name of the MoML file is windowcontrol; the model 

is a composite model (including different MOCs); the version of 
Ptolemy II is 5.0.1. The range of this entity is from line 3 to line 28. 

 Line 6-9: The name of the first-level model is ―CT of Power Window‖. 
It is a CT model. 

 Line 10-12: They define the second-level model to descibe the state 
transition of the power window. Note that the second-level model uses 
the FSM model and its detail is omitted in line 11. 

 Line 13-22: They define the UpEvent entity with its periods, offsets, 
and values from line 13 to line 21. The DownEvent entity and the 
TimedPlotter entity are omitted in line 22. 

 Line 23-25: Relations are defined in order to represent the links 
among UpEvent, DownEvent, Power-Window Model, and 
TimedPlotter. Note that only one is shown, and the others are omitted. 

 Line 26-27: The links among UpEvent, DownEvent, Power-Window 
Model, and the TimedPlotter are defined. Note that only one is shown, 
and the others are omitted. 

The second-level model denotes the state transition of the power window, 
as shown in Figure 12. 

 
1 <entity name="Power-Window Model" class="ptolemy.domains.fsm.modal.ModalModel">
2     <port name="up" class="ptolemy.domains.fsm.modal.ModalPort">
3        <property name="input"/>
4     </port>
5    ...
6     <entity name="fully_opened" class="ptolemy.domains.fsm.kernel.State">
7      ...
8     </entity>
9      ...
10   <relation name="relation6" class="ptolemy.domains.fsm.kernel.Transition">
11       <property name="guardExpression" class="ptolemy.kernel.util.StringAttribute" 

value="up_isPresent &amp;&amp; position&gt;=36">
12       </property>
13      <property name="setActions" class="ptolemy.domains.fsm.kernel.CommitActionsAttribute" 

value="fully_closed.position=40">
14      </property>
15       ...
16   </relation>
17     ...
18   <link port="fully_opened.incomingPort" relation="relation8"/>
19      ...
20   <entity name="fully_opened" class="ptolemy.domains.fsm.modal.Refinement">
21     ...
22   </entity>
23   ...
24 </entity>  

Fig. 12. The second-level model stored in MoML file 

 Line 1: The name of the model is Power-Window Model. It is a FSM 
model. 
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 Line 2-5: They define an input port, i.e. up port, from line 2 to line 4. 
Other ports and their properties are omitted in Line 5. 

 Line 6-9: They define an entity named fully_opened from line 6 to line 
8 to denote a state of the FSM in the second-level model. Other 
entities and their properties are omitted in line 9. 

 Line 10-17: They define a state transition with its triggering condition 
(guardExpression) and corresponding actions (setActions) from line 
10 to line 16. Other state transition, triggering condition and 
corresponding actions are omitted in line 17. 

 Line 18-19: They define all the links used in the second-level model. 
 Line 20-23: they denote a third-level model refined from the 

fully_opened states from line 20 to line 22. Other third-level models 
from the refinement of fully_closed and semi_opened are omitted in 
line 23. 

The third-level model denotes the position of the power window, as shown 
in Figure 13. 

 
1  <entity name="fully_opened" class="ptolemy.domains.fsm.modal.Refinement">
2     <property name="CT for Position" 

class="ptolemy.domains.ct.kernel.CTEmbeddedDirector">
3         ...
4    </property>  
5    <port name="up" class="ptolemy.domains.fsm.modal.RefinementPort">
6         <property name="input"/>
7     ...
8    </port>
9       ...
10  <entity name="Window_Position" class="ptolemy.actor.lib.Expression">
11    <property name="expression" class="ptolemy.kernel.util.StringAttribute" 

value="position">
12     </property>
13      ...
14  </entity>
15  <relation name="relation" class="ptolemy.actor.TypedIORelation">
16  </relation>
17  <link port="position" relation="relation"/>
18  <link port="Window_Position.output" relation="relation"/>
19 </entity>

 

Fig. 13. The third-level model stored in MoML file 

 Line 1: The name of the model is fully_opened. It is a refinement of 
the FSM model. 

 Line 2-4: The third-level model is a CT model. 
 Line 5-9: The up port and its properties are defined from line 5 to line 

8. The other two ports, the down port and the position port are omitted 
in line 9. 

 Line 10-14: They define the expression entity in the third level and its 
properties, ports, relations and links. 

 Line 15-18: They define the relations and links used in the third-level 
model. 

After building the correct models in Ptolemy II, we transform them into the 
model in AECPSDesigner. We have mentioned that the first-level model is 
only for the purpose of simulation. We remove the first-level model and keep 
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the second-level model (power window model) and the third-level models 
(power window position model) before performing model transformation. In 
order to recognize the type of the input and output signals, we add signalType 
parameters to the up port and the down port with the values of ―DISCRETE‖, 
and a signalType parameter to the position port with the value of 
―CONTINUOUS‖. The process of model transformation consists of five steps. 

First, parse the MoML file of the power window. Although directors are 
entities, they are not viewed as common entities because they are only used 
to denote MOC. There are four entities in the power window model, init, 
semi_opened, fully_opened, and fully_closed. From the Automobile 
Knowledge Base, their functions are found and put into Extend Entity table, 
as shown in Table 3. The properties, relations, ports and links are also 
parsed. Some properties are not needed, such as the size, position, color, 
etc. They are not included in Property table. 

Table 3. Functions of entities 

Entity name MOC Function 

init FSM Body_Window 

semi_opened FSM Body_Window 

fully_opened FSM Body_Window 

fully_closed FSM Body_Window 

 
Second, generate tasks. Because entities of semi_opened, fully_opened, 

and fully_closed have the same function (Body_Window) and depend on the 
up event and down event, they are grouped into a task named task1. The 
entity init is also included into task1 because it has the same function with 
other entities in task1. The other three entities in the third-level model are 
classified into task2. 

Third, analyze the interaction among tasks. The state transition information 
of task1 is stored in Property table. The position property is stored in Property 
table of task2. The up event and down event, including the triggering 
condition and state transition, are stored in Event table of task1. The up port 
and down port are stored in Port table of task2. The position port is stored in 
Port table of task2. Because task2 controls the position of the power window, 
a resource, res1, is created and put into Resource table. 

Fourth, optimize tasks. In the Automobile Knowledge Base, the functions 
that task1 and task2 perform are not safety-critical, and have lower priority. 
task1 and task2 are incorporated into one task, task3. Their properties, ports, 
and events are incorporated into a new task. task1 and task2 are removed 
from Task table. The priority is an important property for a task. We assign 
the priority levels of tasks according to the importance level of their functions. 

Fifth, generate the XML file. task3 are taken out from Task Base. It waits 
for two events. task3’s running information can be generated according to the 
triggering condition and state transition. Res1 is the resource it uses. This 
model is the one under OSEK-compatible OS. Then the model is output to an 
XML file. 
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Fig. 14. Models in AECPSDesigner 

The pseudo-codes of the generated codes are shown in Figure 15. In 
Figure 15, task3 first initializes the position and state of the power window 
(Line 2-Line 3), and then waits and processes input event (Line 4-Line 28). 
Once receiving an input event, task3 obtains a resource in order to access 
the power window (Line 6), and then changes the position and state of the 
power window according to the rulers in Table 2 (Line 7-Line 26). Note that 
the obstacle-detecting is implemented in Line 9-Line 10 and Line 20-Line 23. 
After that, task3 updates the state of the power window, sends its position to 
P2 by CAN bus (Line 25), and release the resource (Line 27).  

From the development process of the power window, we can know 
MoBDAC covers the whole development workflow of software. By separating 
function requirements, non-functional requirements, and physical 
environment requirements, developer can concentrate their attention on the 
function logic of CPS in MPD. The non-functional requirements are analyzed 
and verified in MID where the characteristics of deployment platform and the 
execution properties of software are available, and the interaction with 
physical environment is integrated into implementation models by analyzing 
relevant events. MoBDAC improves development efficiency by automatic 
model transformation and code generation, improves software quality by 
verifying function properties in MPD and non-functional properties in MID, 
and is easy to integrate the interaction with physical environment. 
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1  TASK(Task){

2    Set initial position of the power window  to be zero; 

3    Set initial state of the power window to be fully_opened;

4    While (true){

5       Wait for an event;

6       Obtain the resource of the power window;

7       if (The state is fully_opened) {

8          if (The event is an up event)

9             if (No obstacle is detected)

10              Set the position of the power window  to be 4.

11     }

12     else if (The state is fully_closed)  {

13        if (The event is a down event)

14           Set the position of the power window  to be 4.

15     }

16     else {

17        if (The event is a down event)

18            Decrease the position of the power window by 4.

19        else if (The event is a up event)

20             if (No obstacle is detected)

21                Increase the position of the power window by 4.

22             else

23                Decrease the position of the power window by 4.

24    }

25    Send the position of the power window to CAN bus.

26    Update the state of the power window.

27    Release the resource of the power window;

28  }

29  TerminateTask();
        }  

Fig. 15. Codes generated by AECPSDesigner 

6. Conclusions 

Aiming at the development of automotive CPS software, we present a model-
based development method under operating systems compatible with 
OSEK/VDX specification. This method increases development efficiency by 
automatic tools, and can verify the correctness of function requirements, non-
functional requirements, and integrate the interaction with physical 
environment. The future work is to integrate more analysis methods for non-
functional requirements and verify the interaction with physical environment 
in MIP. 
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