Computer Science and Information Systems 13(3):809-826 DOI: 10.2298/CSI1S160123025P

Gamification of Learning Activities with the Odin service

José Carlos Paiva®, José Paulo Leal?, and Ricardo Queirds®
1 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal up201200272 @alunos.dcc.fc.up.pt
2 CRACS & INESC-Porto LA, Faculty of Sciences,
University of Porto, Porto, Portugal zp@dcc.fc.up.pt
3 CRACS & INESC-Porto LA & DI/ESEIG/IPP,
Porto, Portugal ricardoqueiros @eseig.ipp.pt

Abstract. Existing gamification services have features that preclude their use by
e-learning tools. Odin is a gamification service that mimics the API of state-of-the-
art services without these limitations. This paper presents Odin as a gamification
service for learning activities, describes its role in an e-learning system architec-
ture requiring gamification, and details its implementation. The validation of Odin
involved the creation of a small e-learning game, integrated in a Learning Manage-
ment System (LMS) using the Learning Tools Interoperability (LTI) specification.
Odin was also integrated in an e-learning tool that provides formative assessment in
online and hybrid courses in an adaptive and engaging way.

Keywords: Gamification, E-Learning, Game services, Interoperability.

1. Introduction

The use of game concepts and mechanics in non-game contexts is an effective way to en-
gage users. Gamification is currently a word of order in different domains, from marketing
to e-learning [2]. The massive use of this approach led to the concept of gamification as
a service, provided by major players such as Google* and Microsoft>. These services
leverage on their large user base to provide support for game progress mechanics such
as points, leaderboards and badges, without requiring a specific authentication from the
client application.

Gamification services are a great advantage to small web and tablet based applications,
in particular to games. The game progress mechanics features provided by these services
are also relevant in e-learning. However, e-learning systems are typically deployed in
environments with a single sign-on managed by an academic institution. For practical but
also ethical reasons, it would be unacceptable to require students to have an account with
a third party such as Google, for instance.

In this paper we present Odin as a gamification service for learning activities. This
is an extended version of a paper [6] first presented at the Symposium on Languages,
Applications and Technologies — SLATE 2015. Odin is a gamification service similar to
the state of the art, without requiring registration of the end users. Its API is inspired in the
Google Play Game Service (GPGS) with minor adjustments regarding user identification.

4 https://developers.google.com/games/services
5 http://azure.microsoft.com/en-us/documentation/services/mobile-services/



810 José Carlos Paiva et al.

Odin

Tool providers

Fig. 1. Architecture of e-learning systems using Odin

Odin exposes its services to educational games used in an ecosystem of e-learning
systems based on a Learning Management System (LMS), and was designed to have a
pivotal role in these systems, as depicted in Figure 1. The systems implementing these
games can be seen as tool providers for another layer of e-learning systems, typically
Learning Management Systems (LMS) that provide user authentication. The communi-
cation between these layers uses different APIs: tool providers interact with Odin using a
variant of the GPGS API, and consumers interact with tool providers using the Learning
Tool Interoperability (LTT) API [11].

The remainder of this paper is organized as follows. Section 2 reviews the state of the
art in game services. Section 3 introduces the Odin service, its design and implementa-
tion. Section 4 describes its evaluation using a small serious game as case study. Finally,
Section 5 summarizes the contributions of this research and identifies opportunities for
future work in this project.

2. Game Services

The video game industry is one of the fastest growing sectors in the worldwide economy
[14]. According to the research company Gartner, global video game sales may have
reached $111.1 billion in 2015, due in part to the growth in mobile game play and the
recent release of the new generation of game consoles. In order to increase engagement
and player retention, video games include several common features such as leaderboards
and achievements. The massive use of this approach and the impressive growth of the
number of players led to the concept of gamification as a service, later materialized in
Game Backend as a Service (GBaaS). The approach is simple. Instead of replicating the
implementation of the game features in each version of the game for various platforms,
GBaaS adhere to a service oriented architecture providing cross-platform game services
that enable the integration of popular gaming features such as achievements, leaderboards,
remote storage and real-time multiplayer in mobile games.

While the concept of ”winners and losers” can hinder the motivation of students [13],
gamification is currently being applied with relative success in e-learning [1, 12]. The in-
tegration of game concepts in learning environments helps students to remain focused and
to fulfill their course goals. However, the implementation of gamification in these domains
is often trapped in ad-hoc solutions or supported by specific platforms (for instance, the
badges in Moodle), instead of using approaches such as those provided by GBaaS.

In the following subsections, we briefly summarize the main common game features
that can be applied to the teaching-learning process. Then, we compare eight GBaaS
regarding social and technical features. This study is part of an effort to select a GBaaS



Gamification of Learning Activities with the Odin service 811

implementation on which to base the development of a service for gamification of learning
activities.

2.1. Game concepts

Games are more interesting when players are able to achieve goals and compete against
other players. These features foster retention and competitiveness, and are applicable also
in the gamification of e-learning activities. The following list enumerates the most com-
mon game concepts:

Leaderboards are databases that keep scores. They allow users to post their scores in a
game and compare themselves with other players’ scores. They measure the success
of a player in a game.

Achievements are goals/challenges set in a game that players managed to accomplish.
Achievements give players a motivation to keep playing, to earn as many points as
possible, and a are way to compare themselves with other players. The fulfilment
of a goal may enhance the status of the player or unlock access to other levels, for
instance.

Multiplayer is a play mode that allows several players to simultaneously cooperate or
compete in a game. This feature supports a range of other sub-features, such as
challenges, where players compete with each other on either a score challenge or
an achievement challenge, and matchmaking games in real-time, turn-based, or self-
hosted matches.

Saved games allow the remote storage (in the cloud) of game data, for instance, the state
and the players’ progress in the game.

Quests are periodic game challenges that players can complete to earn rewards. This
way, developers can launch periodic challenges to their gaming communities.

Gifts allow players to send/request game resources or items to/from friends (for instance,
in their Google+ circles).

Matchmaking automatically sets up game matches and finds opponents based on pa-
rameters set by the game developer. Usually only a specific number of players can be
matched at the same time.

2.2. Game Backend Services

A Backend-as-a-Service (BaaS) is a cloud computing service model acting as a middle-
ware component that allows developers to connect their Web and mobile applications to
cloud services via application programming interfaces (API) and software development
kits (SDK). BaaS features include cloud storage, push notifications, server code, user and
file management, social networking integration, location services, and user management
as well as many other backend services. These services have their own API, allowing
them to be integrated into applications in fairly simple way [3].

A Game-Backend-as-a-Service (GBaaS) is a subset of a BaaS that includes cross-
platform solutions for the typical game concepts identified in the previous subsection.
During the development process of a game (or a generic application) developers must
choose between building their own backend services or using an available game back-
end platform. This last option is usually preferred since GBaaS include several services



812 José Carlos Paiva et al.

specifically tailored for game development. These services allow developers to focus on
the game logic by freeing them from implementing boilerplate features.

The following subsections compare several GBaaS implementations according to their
social and technical features. Given the number of GBaaS implementations found (32)
it would be impracticable to study them all. Therefore, eight GBaaS implementations
were chosen: Google Play Game Services, Yahoo Backend Game Service, GameUp, Flox,
GameSparks, Fresvii, Kumakore and Photon. These features are summarized in Table 1
and Table 2.

Social game features The studied GBaaS implementations provide developers with so-
cial game services through a cross-platform API. These features make the gameplay more
competitive and collaborative, and improve social engagement.

Table 1. Social game features

Google  Yahoo  GameUp  Flox GameSparks Fresvii Kumakore Photon

Leaderboards yes no yes yes yes yes yes yes
Achievements yes yes yes no yes no yes no
Multiplayer yes yes no no yes yes yes yes
Save Data yes yes yes no yes yes yes yes
Quests yes no no no yes no no yes
Gifts yes yes no no yes no yes yes
Matchmaking no no yes no no yes no yes

Analysing Table 1 one concludes that almost all GBaaS implementations support
leaderboards, multiplayer game mode and cloud storage. Other features such as quests
and matchmaking are not yet widely supported, probably due to their novelty.

Technical game features The studied GBaaS offer cloud services through API and SDK
to various platforms. Table 2 compares the eight GBaaS regarding the authentication
method, web service flavours, resource format and platforms supported.

Regarding authentication almost all GBaaS implementations use the same strategy.
Before making any calls to the game services, the game must first establish an asyn-
chronous connection with the backend servers and authenticate itself within the game ser-
vices. Some GBaaS require the players to have an account on specific backends (GPGS
requires users to have a Google account). Others, such as GameSparks, provide a sim-
ple mechanism that allows games to implement social login without any additional code,
allowing gamers, for instance, to sign in using a Facebook or Twitter account, and start
playing.

The majority of the GBaaS implementations provides an HTTP RESTful API. The
format of the data in all HTTP store operations (PUT and POST) is required to be valid
JSON. All response data from the GBaaS comes back also in JSON format. In fact, JSON
is becoming the data exchange format of choice [10] due to its simplicity and terseness,
particularly when compared with XML. Regarding the REST API reference, the authors’
opinion is that GPGS is the most complete and best documented API.



Gamification of Learning Activities with the Odin service 813

Table 2. Technical game features

Users authentication Web Service Resource format Platforms
Google Google+ REST JSON Android /i0S / C++
ActionScript /i0S /
Yahoo Yahoo/Facebook - - Android / C# / Unity
Android / iOS / FirefoxOS /
GameUp Facebook REST JSON Unity
Google+ ActionSeript / 08 /
Flox GameCenter REST JSON JavaScript
Facebook
Facebook Unity / Marmalade /
GameSparks :;"f:it?e (; REST JSON Cocos2D / JavaScript /
ActionScript / C++
Freshvii Facebook - - Android /108 / Unity
Kumakore Facebook REST JSON Android /i0S / Unity / .NET
Photon Facebook REST JSON Android / .NET / Unity

In addition to the REST API, most GBaaS implementations support also mobiles.
There are examples of SDKs for Android, iOS, and even FirefoxOS (GameUp) mobile
native apps. Game engines are also supported and most GBaaS implementations offer
SDKSs for major game engines such as Unity, and also for cross-platform game develop-
ment tools such as Marmalade and Cocos2D.

3. Odin

This section describes Odin, a gamification RESTful Web Service intended to be used
by educational institutions. It provides (1) score submissions, (2) leaderboards listing, (3)
quests for players, (4) awards to players for in-game accomplishments as well as some
minor services to manage institutions, players, leaderboards, quests and achievements.

Odin is based on a standard gamification API but has a different approach regarding
authentication. Institutions, rather than end-users, are the ones that require authentication.
Once an institution is authenticated, Odin grants it permission to manage scores, quests
and achievements on behalf of its users.

The next subsections present the architecture of Odin and its main components, and
describe its data model and service API.

3.1. Architecture

Odin is a RESTful Web Service that allows institutions to consume gamification resources
from their web applications. The web applications initialize sessions in Odin through au-
thentication built on top of OAuth2 authorization protocol®. Then they request particular
actions to the server identified by a specific URI and an HTTP method such as POST,
GET, PUT or DELETE.

® http://oauth.net/2/



814 José Carlos Paiva et al.

Authorization Redis

HTTP Request

Starts Authorization Proccess
< Redirects to Authorization Server
1,

Authenticate and approve release of token

¢ Send Tokkn >I“I

New HTTP Request with Token

Validate authorization

Ll
Response (valid or not) j|

REST Request to retrieve or modify data

REST Rebponse >I"|
JSON Response ‘ .

Fig. 2. Sequence diagram representing a common request to Odin

Figure 2 presents a sequence diagram that summarizes the interactions of Odin with
other systems when a request is made by the client. Firstly, the HTTP request made by the
client is subject to a security filter that checks if the institution is authenticated. If the in-
stitution is not authenticated or authorized to access Odin resources, it is redirected to the
authorization server where it will authenticate and approve the release of an authorization
token. The generated token (with expiration time) is sent to the client that presents it to
Odin.

When the client is authenticated and authorized, it is passed to the JAX-RS REST
interface implemented using Jersey (described in the next subsection) and forwarded to
the mapped resource. From the resource layer it is forwarded to the service layer, passing
through a security layer which intercepts it to check authorization and roles, ensuring that
only authorized institutions have access to the services.

The service layer responds to the request with the data persisted on Redis (described
in the next subsection) through the Jedis client (using REdis Serialization Protocol) and
a Ohm library implementation for Java. The response sent to the client is a JSON object
representing the resource type modified or requested by it (each resource type may have
one or more data representations, as detailed in subsection 3.4). Whenever a fresh token
is needed, the client can request it from the Authorization Server.

3.2. Frameworks and Tools

Odin uses Jersey’, an open-source framework that is the reference implementation of the
Java API for RESTful Web Services, extending it with additional features and utilities to
further simplify RESTful service. Among other features, Jersey provides a Core Server
to build RESTful services based on annotations, support for JSON and to the Java Ar-
chitecture for XML Binding, as well as a Core Client to easily create a client that can
communicate with REST services.

Data storage relies upon the Redis NoSQL database® that provides an open-source and
advanced key-value storage and cache solution. It is an high performance alternative to the

7 https://jersey.java.net/
8 http://redis.io/



Gamification of Learning Activities with the Odin service 815

traditional Relational Database Management Systems (RDBMS) [9] to store and access
a large amount of data. Redis is sometimes described as a data structure server since
keys can contain strings, hashes, lists, sets and sorted sets. As a NoSQL database it focus
on performance and scalability rather than in guaranteeing the atomicity, consistency,
isolation and durability (ACID) properties. Redis was selected for backend due to its
ability to store large amounts of non critical data very efficiently.

In order to integrate Redis in Odin the data layer resorts to the Jedis client’, as well as
of an object-hash mapping library, named JOhm'?, to store and retrieve objects from Redis
with an higher level of abstraction and thus simplicity. JOhm is the Java implementation of
the well-known Ohm library!! and aims to be minimally-invasive, relying only on hooks
for persistence. These hooks are specified by Java annotations and implemented using
reflection.

3.3. Data Model

The data model of Odin consists of seven main entities: institution, player, leaderboard,
score, quest, achievement and session. The relationships among these entities are shown
by the UML class diagram of Figure 3.

Institution
— ’ + institutionld : String
+ institutionld : String : g:’szb%mgnn
+ sessionld : String + token - Stri 0
+ createTime : Date - =iing
+ lastAccessedTime : Date
+ active : boolean
Player Leaderboard
+ playerld : String + leaderboardld : String
+ displayName : String + name : String
+ ava(arlnézgeL:n : String + order :Ismn_g (
+name : Objec <> + currentVersion : in
+ experiencelnfo : Object + playerLevels : Object]]
+ title : String
Achievement Quest Score
+ achievementld : String + questld : String + player : Player
+ currentSteps : int + name : String + leaderboard : Leaderboard
+ achievementState : String + description : String < + scoreValue : float
+ lastUpdatedTimestamp : long + state : String + rank - Object
+ experiencePoints : long + start : Date + timeSpan : timeSpan
+end : Date + writeTimestamp : long
+ scoreTag : String

Fig. 3. Class diagram of the data model of Odin

? https://github.com/xetorthio/jedis
19 https://github.com/agrison/johm a fork from https://github.com/xetorthio/johm
! http://ohm keyvalue.org/



816 José Carlos Paiva et al.

An institution is the entity that manages games and all related data, and so it is the
one which needs authentication and/or authorization. Thus, it needs to store an id and
password to authenticate, and also a token to check the validity of the session. Whenever
an institution authenticates a session is created and linked to it (through the institutionld).
This session contains the creation time, last access time and a state (active or inactive).

The institution needs to represent its students. As this is a gamification model they
are abstracted to players, and so they will have a playerld that identifies them to the
institution, a displayName that is the name to show on the leaderboard, a full name and
a representation of his experience info with level, points acquired and points needed to
move up to the next level.

As the player progresses in the game, (s)he will eventually earn achievements. An
achievement has a number of required steps and a state (hidden, revealed or unlocked).
When a player reveals one, he receives the associated number of experience points.

A player can also accept and fulfil quests. A quest is characterized by a name, a de-
scription, a state (upcoming, open, accepted, completed, failed, expired or deleted), a start
and an end date.

One of the most important parts of this model is the leaderboard. It contains more than
a list of sorted scores, it contains data related to a game, such as a list of info on the levels
available in the game/leaderboard. These entities are connected since a single leaderboard
is required to each game, and they depend on the existence of each other.

Scores related to a leaderboard and a player, are also stored. Each score has a floating
point value, a timespan (daily, weekly or all time score), a timestamp and a rank (its
position on the leaderboard).

3.4. Service API

The integration of Odin with other systems relies on REST calls to set and retrieve data.
It follows the Google Play Games Services API Reference!? for achievements, leader-
boards, players, quests and scores resources. The only differences are that all these re-
sources’ URI paths are relative to gamify/institutions/institutionId. Also when an au-
thenticated player is referenced in a method, it is replaced by a sub-path of the form
/players/playerld right after institutionld in the resource path URIL.

The institution resource is added to the set of resources. It contains the functions
shown in table 3.

Table 3. Institutions resource API reference. URIs are relative to /gamify

Function HTTP request
insert ~ POST /institutions
get GET /institutions/institutionld

The insert function inserts the institution given in the request body. The get function
retrieves the institution resource given its id. Tables 4 to 8 describe part of the reference
API of Odin, organized by resource type (each resource type can have many data repre-
sentations and methods).

12 https://developers.google.com/games/services/web/api/index



Gamification of Learning Activities with the Odin service 817

Table 4. Score resource API reference. URIs are relative to /gamify/institutions/institutionld/

Function HTTP request
get GET /players/playerld/leaderboards/leaderboardId/scores/timeSpan
list GET /leaderboards/leaderboardld/scores

Required query parameters: timeSpan
listWindow GET /leaderboards/leaderboardld/window

Required query parameters: timeSpan, playerld
submit POST /leaderboards/leaderboardld/scores

Required query parameters: score
submitMultiple POST /leaderboards/scores

Table 4 presents the reference API of the score resource. The get function retrieves
high scores, and optionally ranks, for the given player (for a specific timespan the path
parameter timespan must be set to the required timespan, otherwise it must be set to
ALL). The list function lists the scores in the leaderboard for a given timespan. The
listWindow function lists the scores in a leaderboard near to the given player’s score.
The submit function submits a score to the specified leaderboard. The submitMultiple
function submits multiple scores to leaderboards.

Table 5. Leaderboard resource API reference. URIs are relative to /gamify/institution/institutionld

Function HTTP request

get GET /leaderboards/leaderboardld
insert ~ POST /leaderboards

list GET /leaderboards

The reference API of the leaderboard resource is presented in Table 5. The get func-
tion retrieves the metadata of the leaderboard with the given id. The insert function inserts
the leaderboard passed as POST parameter. The list function lists all leaderboards of the
institution.

Table 6. Players resource API reference. URIs are relative to /gamify/institutions/institutionld

Function HTTP request

insert ~ POST /players

get GET /players/playerld
list GET /players

Table 6 summarises the reference API of the player resource. The insert function
inserts the player given in the request body. The get function retrieves the player resource
with the given id. The list function retrieves all the players of the given institution.

Table 7 introduces a few functions of the achievement resource. The increment func-
tion increments the steps of the achievement for the requested player and leaderboard. All
achievements’ progress of a player can be listed with the list function. The reveal func-



818 José Carlos Paiva et al.

Table 7. Achievements resource API reference. URIs are relative to /gam-
ify/institution/institutionld/players/playerld

Function HTTP request
increment POST /achievements/achievementld/increment
Required query parameters: stepsTolncrement, leaderboardld
list GET /achievements
Required query parameters: leaderboardId
reveal POST /achievements/achievementld/reveal

Required query parameters: leaderboardld
setStepsAtLeast POST /achievements/achievementld/setStepsAtLeast

Required query parameters: steps, leaderboardld
unlock POST /achievements/achievementld/unlock

Required query parameters: leaderboardId
updateMultiple POST /achievements/updateMultiple

Required query parameters: leaderboardld

tion reveals an achievement, given its id and the id of the player. The setStepsAtLeast
function sets the steps of the given player towards unlocking an achievement (if the steps
parameter is less than the already stored steps, the achievement remains unchanged). The
unlock function unlocks the achievement with the given id in the given player. It is also
possible to update multiple achievements at once through the updateMultiple function
that receives an object with a list of achievements to be updated as a value of the key
updatedAchievements.

Table 8. Quests resource APl reference. URIs are relative to /gam-
ify/institutions/institutionld/leaderboards/leaderboardld

Function HTTP request
accept POST /players/playerld/quests/questld/accept
list GET /players/playerld/quests

Finally, Table 8 presents part of the reference API of the quest resource. The accept
function indicates that the player with given id will participate in the quest. The list func-
tion enumerates the quests for a given player and leaderboard.

The data exchange format of Odin is JSON. All data passed in HTTP store operations
(PUT and POST) is required to be valid JSON. Also, all data in the response body of any
HTTP request is in JSON format.

Each resource type can have different data representations, depending on the method
and/or direction of the message (request or response). As an example, the scores resource
has a distinct data representation in the request body of the method to submit multiple
scores (presented in Figure 4), when compared to the data representation in the method to
list all scores in a leaderboard (presented in Figure 5).



Gamification of Learning Activities with the Odin service 819

"kind": "gamify#scoreSubmission",
"leaderboardId": string,
"playerId": string,

"score": float,

"scoreTag": string

Fig. 4. Data representation of a score resource - request body of Submit Multiple Scores

{
"kind": "gamify#leaderboardEntry",
"player": players Resource,
"scoreRank": long,
"formattedScoreRank": string,
"scoreValue": float,
"formattedScore": string,
"timeSpan": string,
"writeTimestampMillis": long,
"scoreTag": string

Fig. 5. Data representation of a score resource - response body of List Scores

A Reference API documentation'? of Odin is already available, although not yet com-
plete. It contains use case examples, for each of its functions, for two types of consumers,
Jersey Client and curl command via Unix shell.

4. Evaluation

The evaluation of Odin was twofold. First, we created a simple game to validate the con-
cept. Then, we have integrated it in an e-learning tool for learning programming lan-
guages. This integration served as an evaluation of the user experience. In the next sub-
sections we describe these two validations.

4.1. Proof of Concept

For validation of the concept of the gamification service described in the previous section,
a simple multiplication game was created. This game — MathGamify — can be used by pri-
mary school children to learn multiplication tables. MathGamify generates two random
numbers. The first number between 1 and the current game level and the second number
between 1 and 10. Then the student/player has the opportunity to answer the multiplica-
tion value of the two numbers. The score is accumulated in the ratio of the player’s level
until player misses, in which case the score is reset to zero.

13 http://odin.dcc.fc.up.pt:8080/odin-web-api



820 José Carlos Paiva et al.

LTI (IMS)

LTIWrapper {l < B MathGaminy COD: (Mlt-alzlgle) E

REST APl
O

|
odin = |

Fig. 6. MathGamify component diagram

Figure 6 presents the component diagram of MathGamify. MathGamify acts as a tool
provider to a Learning Management System (LMS). The integration of MathGamify with
the LMS relies on the Learning Tools Interoperability (LTT) specification. When the LMS
launches MathGamify the LTI parameters are sent as part of the HTTP POST request. On
request reception MathGamify uses the LTI Wrapper [7] package to process LTI commu-
nication and extract user id, name and level. The last is a custom parameter defined on the
external tool configuration of the LMS.

MathGamify uses two functions of Odin: score submission and listing of scores. Once
the player answers a question, MathGamify communicates the score to Odin, using Jersey
Client to issue the REST call, and the grade to the LMS using LTI. This grade is a value be-
tween 0 and 1, calculated as follows: if there is a custom parameter custom_-max_score
then it is the score divided by custom_max_score, otherwise it is the number of correct
answers divided by the total number of tries. When MathGamify initializes its GUI, and
every time a score is submitted, the score listing is updated with the data returned from
Odin.

One of the key components to the implementation of MathGamify is the LTI Wrap-
per [8], a Java package developed for integrating another tool with an LMS but that can
be used by any Java application requiring LTI communication. It implements both sides
of the LTI communication, by receiving LTI requests from LMS and issuing LTI requests
to LMS.

The GUI component of MathGamify was developed using Google Web Toolkit (GWT),
an open source Java software development framework that allows a fast development of
AJAX applications in Java. The GWT code is organized in two main packages, the server
and the client. The server package includes all the service implementations triggered by
the user interface. These implementations are responsible of (1) the logic of the game, (2)
communication with Odin and (3) communication with LMS through LTI wrapper. The
selected LMS was Moodle 2.8 4.

The implementation of MathGamify demonstrates the efficacy of the proposed ap-
proach in coping with the extra requirements of a serious game integrated in a typical
e-learning ecosystem, where authentication is provided by an LMS. To complement its
validation, Odin was also tested regarding its efficiency.

The latency of the Odin service was tested in three of its functions: (1) insert a player
at an institution, (2) submit a single score and (3) list an ordered page of scores of the

14 https://moodle.org/



Gamification of Learning Activities with the Odin service 821

leaderboard with either, 25 records and 1000 records. Each test consisted of 1000 samples
of calls to the same function. In test (1) and (2) random usernames and a random score
value were generated per sample.

Initially the tests were run locally on the same machine as the Odin server, using
Grizzly Test Container provided by Jersey, so they had no network latency. The same
tests were repeated on an external server, running Apache Tomcat 8.0.24. During these
tests an average network latency of 26.47 ms and a maximum of 112.2 was observed. The
time statistics, in milliseconds, for each test and for each test container are presented in
Table 9.

Table 9. Results of efficiency test to Odin

Test Container  Function/Task Maximum (ms) Average (ms) Median (ms)
Insert player 274 3.79 3

Grizzly (local) Add score 77 3.44 3
Y List scores (1000 scores’ page) 814 412.09 415

List scores (25 scores’ page) 532 182.78 184

Insert player 349 54.15 52

B 1 Add score 1057 55.62 53
xterna List scores (1000 scores’ page) 1324 758.29 721
List scores (25 scores’ page) 1434 381.1 383

The tool used to measure time spent was ContiPerf!3, a lightweight testing utility that
allows the user to easily turn JUnit 4 test cases into performance tests. It is based on
annotations as the JUnit 4°s test configuration.

4.2. User Experience Evaluation

The main goal of Odin was to be integrated in an e-learning system. This goal was already
accomplished, since Odin was integrated in Enki (not yet described in the literature), a
web-based IDE for learning programming languages. This IDE blends assessment and
learning, presenting content, from hypertext to video, as well as exercises, in an adaptive
and engaging way.

Enki uses gamification to engage students in the learning process. It interacts with
Odin to support the creation of leaderboards, reward students for their achievements,
among others. Besides its integration with Odin, Enki also integrates with several other
services and tools, namely, a service for sequencing educational resources to provide dif-
ferent learning paces according to students’ capabilities, a learning management system,
an evaluator engine which marks and grades exercises, an exercise creator to ease the cre-
ation of exercises and a learning objects repository to store educational resources. These
last three tools are already part of Mooshak 2.0 (the new version of Mooshak [4]), the
system which hosts Enki.

15 http://databene.org/contiperf



822 José Carlos Paiva et al.

Figure 7 presents the diagram of the network of Enki, where Odin plays an important
role, by providing the gamification features to this e-learning system, through a REST
APL

Mooshak 2.0 E
Exercise E
Creator LTI (M)
Learning
REST API —O)— Management
> E System
Enki
Educational L—O)
Resources REST API
Sequeqcing Learning
Service Objects
Repository
Evaluator E
Engine

Fig. 7. Network of Enki with Odin highlighted

Odin is also an important part of the Enki’s interface (which we present in Figure 8
with focus on Odin). The top-right region windows are mostly built based on Odin’s data.
This region aggregates several windows to engage students, such as a leaderboard, a list
of achievements and statistics of a problem.

Enki Tutorial | PT EN | Administrator Logout
Resources. Statement: HelloWorld  Editor Ak a Question | Statists _~ Ceaderboard | My Data {>v
- 2\
v niroduction to C¥ Programming Escolner ficheiro | Nenhum ficheiro selecionado -~ "skdietonl s e N
Program file name program.cs Vexandra Rodrigues 36.0 \
+ Data Types and Variables
s s Leaderboard  MyData S|l loonaMendes o0 \
’ 3 ustng Systen.Ling; | [— 360
Console Ciass i using Systen.Text;
Player Score César Menezes 0

using System.Cons

Alexandra Rodrigues 360 Diogo Aimeida 30

Data Types namespace PO1 Jodo Santos 220 |
- e Joana Mendes 360 Cliudia Damas o
Variables €lass Prof - |uis Ferreirinha 360 \ /
stati  César Menezes 340 \ /
stings g { ¢ DiogoAmeida 330 N 173 > oW
4 -~ -
. ) } co Jodo Santos 220 Py S—
4 3 Col.  Claudia Damas 210 =

contiy Input -~ Output
Pl Observations Error const - Hello World!
Circumference

ctor
Area and Perimeter of stackalloc 17039 » M
Cireumference using Variables

.
Bt

Fig. 8. Interface of Enki with focus on Odin

The global system of Enki was subject to an acceptability evaluation, which also
served as a user experience evaluation of Odin. This evaluation consisted of an experi-
ment with undergraduate students of Escola Superior de Estudos Industriais e de Gesto
(ESEIG) - a school of the Polytechnic Institute of Porto.

The experiment was carried out from the 4th to the 15th of January of 2016 and took
the form of an Open Online Course under the subject of “Introduction to C# Program-



Gamification of Learning Activities with the Odin service 823

ming”. It was free of charge and without registration limits. A total of 70 students were
enrolled in the course, of which 28 were females. The course contains expository and
evaluative resources.

The expository resources are mainly videos presenting solutions to example prob-
lems and some course topics. These videos were created with a software which records
screen activity and voice — Camtasia'® —, and deployed on YouTube. These videos had
some requirements upon their creation. They should cover all the curricula (coverage),
have several difficulty levels (diversity), have at most 5 minutes (fragmentation), and be
composed of pictures, sound, and subtitles (completeness).

The evaluative resources are programming exercises that allow students to apply and
test their knowledge. They comply with the Mooshak programming problem package
specification. This package is an archive containing a problem description (typically an
HTML file), a file with the solution, an XML file with the structure of the package, a
folder with tests and their output, and optionally a folder with images and a folder with
skeletons of the solution.

The majority of the students that, effectively, entered in Enki has tried to solve all the
evaluative resources. They have also submitted many questions to the authors. These facts
show that Odin fosters competitiveness between the students and/or the course is able to
engage students.

After the experiment, the students were invited to fill-in an online questionnaire, using
Google Forms, based on the Nielsen’s model [5]. This survey includes questions on the
utility and usability of the complete system of Enki. Nielsen has defined the utility as
the capacity of the system to achieve the desired goal and the usability as a qualitative
attribute that estimates how easy is to use an user interface. A total of 25 students has
completed the questionnaire, of which 9 were females.

Figure 9 summarizes the results of the survey in a bar chart, grouped by Nielsen’s
heuristics and then, sorted in descending order of user satisfaction. These results showed
that the heuristics with higher user satisfaction were the consistence, recognition and aes-
thetic. However, they also highlighted problems in three areas: speed and reliability, error
prevention and users help and documentation.

The last question of the survey consists of an overall classification of Enki. There are
5 options from which the student should choose one: very good, good, adequate, bad,
very bad. Most of the students (56%) classified Enki as an adequate tool and a great
part of them (40%) stated Enki as a good or a very good tool. Only a few students (4%)
considered it either bad or very bad.

Although students complained about some deficiencies in this system, such as the
delay to validate or submit their programs and the lack of documentation, none of these
negative sides are related to Odin itself. Furthermore, many of the students classified Enki
as a good or a very good tool largely due to its gamification features.

5. Conclusions

Game concepts and mechanics are an useful way to engage students in e-learning activi-
ties. These kind of features are already provided by game backend services that leverage

16 https://www.techsmith.com/camtasia.html



824 José Carlos Paiva et al.

mNever/Almost never  ERegular O Always/Almost ahways

4 consistence B 73%

6. Recognition |G [ 67%

8. Aesthetic

3. Freedom

2 Compatibility

1. Visibility

.
" ]
E
w
&
a

11. Ease of use

10. Documentation

.
4
*
bl

R

FAlexibi

Y
] *
=]
&
£
*®

2
e
2
=
2
a
2
®
2
2
2

9. Users help

5. Error prevention

13. Reliability

Fig. 9. Summary of the acceptability of Enki

on their authentication services and massive user base. However, gamification services
that rely on external authentication are not adequate for e-learning systems that already
operate on a single sign-on ecosystem.

QOdin is a gamification service developed for the requirements of e-learning systems.
It was designed to authenticate clients rather than end-users and thus can be integrated
with the e-learning systems typically found in educational institutions.

The MathGamify system is a proof of concept, that illustrates how educational games
acting as tool providers for an LMS interact with the services of Odin. The authors have
also integrated Odin in an actual e-learning tool. This tool, called Enki, interfaces with
Odin to support the creation of leaderboards, reward students for their achievements,
among others.

Enki is an e-learning tool for formative assessment in online and hybrid courses. It
is a web IDE that blends assessment and learning, presenting content, from hypertext
to video, as well as exercises in an adaptive and engaging way. It uses gamification to
engage students in the learning process. It also integrates with a service for sequencing
educational resources to provide different learning rhythms according to students’ needs.
The exercises and assessment of Enki are, typically, computer programs.

Odin itself will be subject to improvements. The current version provides web services
for exposing the gamification service to clients. The next version will provide also a web
interface to register institutions and allow them to manage their resources.

Acknowledgments. This work is financed by the ERDF — European Regional Develop-
ment Fund through the Operational Programme for Competitiveness and Internationalisa-
tion — COMPETE 2020 Programme, and by National Funds through the FCT — Fundagao
para a Ciéncia e a Tecnologia (Portuguese Foundation for Science and Technology) within
project POCI-01-0145-FEDER-006961.



Gamification of Learning Activities with the Odin service 825

References

10.
11.

13.

14.

. Burguillo, J.C.: Using game theory and competition-based learning to stimulate

student motivation and performance. Comput. Educ. 55(2), 566-575 (Sep 2010),
http://dx.doi.org/10.1016/j.compedu.2010.02.018

. Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?-a literature review of empirical

studies on gamification. In: System Sciences (HICSS), 2014 47th Hawaii International Confer-
ence on. pp. 3025-3034. IEEE (2014)

. Janssen, C.: Backend-as-a-service (baas)”. Tech. rep., Techopedia,

http://www.techopedia.com/definition/29428/backend-as-a-service-baas (2014)

. Leal, J.P., Silva, F.: Mooshak: a web-based multi-site programming contest system. Software:

Practice and Experience 33(6), 567-581 (2003), http://dx.doi.org/10.1002/spe.522

. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability prob-

lems. In: Proceedings of the INTERACT °93 and CHI ’93 Conference on Human Fac-
tors in Computing Systems. pp. 206-213. CHI '93, ACM, New York, NY, USA (1993),
http://doi.acm.org/10.1145/169059.169166

. Paiva, J.C., Leal, J.P.,, Queirds, R.: Odin: A service for gamification of learning activities. In:

Languages, Applications and Technologies, pp. 194-204. Springer (2015)

. Queirds, R., Leal, J.P., Campos, J.: Sequencing educational resources with seqins. Computer

Science and Information Systems 11(4), 1479-1497 (2014)

. Queirds, R., Leal, J.P,, Paiva, J.C.: Integrating rich learning applications in lms. In: State-of-

the-Art and Future Directions of Smart Learning, pp. 381-386. Springer (2016)

. Seeger, M., Ultra-Large-Sites, S.: Key-value stores: a practical overview. Computer Science

and Media, Stuttgart (2009)

Severance, C.: Discovering javascript object notation. Computer 45(4), 6-8 (2012)

Severance, C., Hanss, T., Hardin, J.: Ims learning tools interoperability: Enabling a mash-up
approach to teaching and learning tools. Technology, Instruction, Cognition and Learning 7(3-
4), 245-262 (2010)

. Siddiqui, A., Khan, M., Akhtar, S.: Supply chain simulator: A scenario-based educa-

tional tool to enhance student learning. Comput. Educ. 51(1), 252-261 (Aug 2008),
http://dx.doi.org/10.1016/j.compedu.2007.05.008

Vansteenkiste, M., Deci, E.L.: Competitively contingent rewards and intrinsic moti-
vation: Can losers remain motivated? Motivation and Emotion 27, 273-299 (2003),
http://dx.doi.org/10.1023/A:1026259005264, 10.1023/A:1026259005264

Zackariasson, P., Wilson, T.: The Video Game Industry: Formation, Present State, and Future.
Taylor & Francis (2012), http://books.google.pt/books?id=1giQNdc-DOwC

José Carlos Paiva is a student at the department of Computer Science of the Faculty of
Sciences of the University of Porto (FCUP) and holder of a research grant of the Center for
Research in Advanced Computing Systems (CRACS). He has interest in the development
of eLearning systems and gamification.

José Paulo Leal is an assistant professor at the department of Computer Science of the
Faculty of Sciences of the University of Porto (FCUP) and associate researcher of the
Center for Research in Advanced Computing Systems (CRACS). His main research in-
terests are eLL.earning system implementation, semantic web and software engineering. He
has a special interest on automatic exercise evaluation, in particular on the evaluation of
programming exercises, and on web adaptability. He has participated in several research



826 José Carlos Paiva et al.

projects in his main research areas, including technology transfer projects with industrial
partners.

Ricardo Queirés is an assistant professor at the Department of Informatics of the School
of Management and Industrial Studies (Polytechnic Institute of Porto). He is also a re-
searcher in the field of e-learning standardization and interoperability, XML Languages
and e-learning systems architectural integration at the Center for Research in Advanced
Computing Systems (CRACS) research group of INESC TEC Porto and at the Knowl-
edge Management, Interactive and Learning Technologies (KMILT) research group. He
has participated in several research projects in his main research areas, including technol-
ogy transfer projects with industrial partners.

Received: January 23, 2016, Accepted: July 31, 2016.



