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Abstract. Ideally, we would separate concerns by designing a program so that 

each concern is contained in a module. Unfortunately, we often have to deal with 

concerns that cannot be modularized, but instead cross-cut modules of our primary 

decomposition. Some of the cross-cutting concerns can be separated using 

compositional techniques such as Aspect-Oriented Programming (AOP) that 

weave code into modules at specified program points. Here, we focus on cross-

cutting concerns that would not be easily separable with code weaving 

compositional techniques due to their frequent and complex interactions with the 

modules of primary decomposition. Separation of Concerns (SoC) and genericity 

are two important Software Engineering principles to better control software 

complexity during development, maintenance, and reuse. In this paper, we study 

the interplay between these two principles, showing that there is an overlapping 

area where the goals of SoC and genericity, as well as means to achieve these 

goals, are the same. We make a case that by integrating the principles of SoC and 

genericity we can achieve non-redundancy, and at the same time enhance the 

visibility of inseparable concerns, offering a weaker, but still useful form of SoC. 

We illustrate the points we make with examples of program representations built 

with the Adaptive Reuse Technique (ART) that supports both SoC and generic 

mechanisms. 

Keywords: generic design, separation of concerns, software reuse, maintenance, 

component-based development, generative programming, meta-programming 

1. Introduction 

1.1. Background 

Recurring patterns in software requirements and design spaces, standardization of 

design solutions, as well as ad hoc copy-paste-modify practice lead to software 

similarity patterns of varying size and type, spreading within or across programs [1]. 

Genericity is a common way to avoid these redundancies. It is a central theme in 

software reuse, component-based, pattern-driven development (e.g., facilitated by 
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.NET™ or JEE™), and architecture-centric Software Product Line (SPL) 

approaches [2][3][4]. The Standard Template Library (STL) [5] is a premier example of 

engineering benefits of generic program representations. 

Genericity, as understood in this paper, aims at achieving non-redundancy, by 

unifying software similarity patterns with generic program representations to achieve 

program simplification, reusability, or maintainability. 

In this paper, we do not make any specific assumptions about the type, granularity of 

software similarity patterns, or the nature of differences among them. The importance of 

genericity in managing software complexity has been recognized for long. Macros were 

an early attempt to make programs more generic. Goguen popularized the idea of 

parameterized programming [6]. Among programming language features, type 

parameterization [7] (called generics in Ada, Eiffel, Java and C#, and templates in C++), 

higher-order functions [8], and inheritance can help avoid repetitions in certain 

situations. Design techniques such as iterators, design patterns [9], table-driven design 

(e.g., in compiler-compilers), and modularization with information hiding [10] can help 

building generic programs. Generative programming techniques, such as XML-based 

Variant Configuration Language (XVCL) [11], build a generic program representation at 

the meta-level, and derive concrete programs, with possible redundancies, from the 

generic meta-level representation. 

We can conceive a “generic program representation” as a parameterized structure that 

can be turned into a concrete, custom program solution by instantiating the parameters. 

The nature of parameters, the mechanism for instantiating parameters, and the overall 

process that leads to instantiating a concrete program solution from its generic 

counterpart depend on the techniques used for generic design. Parameterized structures 

can be as simple as generics or templates, or as complex as an Object-Oriented (OO) 

framework or a generic parser. In an OO framework, parameters are abstract classes and 

design patterns. Parameters for a generic parser are encoded in BNF (Backus Normal 

Form) definition of a programming language syntax.  

A concern is any area of interest in a program solution, pertinent to functional 

features, quality requirements, software architecture, detail design, or 

implementation. The idea of separation of concerns (SoC) is to break a program into 

distinct concerns in order to deal with them separately. The aim is to limit interactions 

between concerns as much as it is possible. 

The term “separation of concerns” in software engineering was introduced by 

Dijkstra in 1974 as a conceptual tool to tackle software complexity [12]. SoC principle 

can be applied at the levels of program analysis, design, and implementation [13]. 

1.2. Problem Statement 

Ideally, we would like to separate concerns by designing a program so that each concern 

is contained in a module. Indeed, some of the concerns can be nicely aligned with 

modular decomposition. Unfortunately, we also have to deal with concerns that cannot 

be modularized, but spread through the modules of our primary decomposition instead. 

Delocalized concerns that cannot be modularized within a given primary modular 
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decomposition structure are called cross-cutting concerns [14]. It should be noted that 

cross-cutting need not be an inherent property of a concern: A concern that is cross-

cutting in one modular decomposition, might not be cross-cutting in another 

decomposition. 

Still, some of the cross-cutting concerns can be defined separately and then weaved 

into the code of the primary decomposition modules at specified program points (e.g., 

before or after a program function is called) using meta-program-level compositional 

approaches such as Aspect-Oriented Programming (AOP) [14]. A number of other 

compositional approaches for handling cross-cutting concerns have been proposed in 

academic research (Algebraic Hierarchical Equations for Application Design (AHEAD) 

[15], Multi-Dimensional Separation of Concerns (MDSOC) [13], or XVCL [11]), and in 

industrial practice ([16][17][18][19]). Compositional approaches provide a useful way 

to separating concerns when interaction between a concern and primary decomposition 

code are infrequent and occur at well-defined program points. However, they soon reach 

their limits when concerns become tightly coupled with modules of primary 

decomposition, that is, interactions between concern and primary decomposition code 

are many and occur at arbitrary program points. As it has been convincingly 

demonstrated in a study by Kästner et al. [20], an attempt to separate such tightly 

coupled concerns with code weaving in AOP style leads to overly complex, unworkable 

program representations. In their study, authors used AspectJ to separate application 

functional concerns (features) in a way that they could be composed together in various 

combinations to fit application reuse contexts. 

1.3. Hypothesis 

In this paper, we focus on tightly coupled cross-cutting concerns that are not easily 

separable with compositional weaving techniques due to their frequent and complex 

interactions with modules of primary decomposition. We propose to look at the problem 

from a perspective that integrates SoC and genericty principles into a unified framework 

that helps understand interactions among tightly coupled concerns. In addition to 

dealing with the problem by weaving the concern code that can be conveniently 

separated, we propose generic mechanisms that keep inseparable concerns together with 

primary decomposition modules, as generalized parameters. 

We hypothesize that there is an overlapping area where the goals of SoC and 

genericity, as well as means to achieve these goals, are the same. Therefore, both 

principles can be neatly integrated to exploit the strength of each principle and avoid its 

pitfalls. By integrating the principles of SoC and genericity we can achieve non-

redundancy, and at the same time enhance the visibility of inseparable concerns, 

offering a weaker, but still useful form of SoC. We hypothesize that genericity is a 

natural extension to the principle of SoC into the areas where SoC tends to show its 

limits. Hence, both principles are intimately interrelated and synergistic. We believe the 

reason why genericity can penetrate software deeper than SoC is because it is based on 

the notion of unifying similar program structures, which is less formal and rigorous than 

SoC. 

We further analyze and argue in support of the above hypothesis in the remaining 

paper illustrating our points with examples from lab studies and industrial projects. We 

consider this analysis the main contribution of our paper. To our best knowledge, our 
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study is the first attempt to investigate the relation between SoC and genericity. We 

communicate our findings in the form of observations (or a hypothesis, at best), not 

claims. 

We also discuss the engineering goals addressed by the two principles, and technical 

means to achieve these goals. We use our own meta-programming technique and tool, 

the Adaptive Reuse Technique (ART) [21][22] to demonstrate the points we make in the 

paper regarding SoC and genericity, and possible ways to handle tightly coupled 

concerns. The ART supports both SoC and generic mechanisms. It is amenable to 

automation—i.e., concerns separated or represented generically—can be selectively 

included into the code of modules of primary decomposition. 

SoC cannot be regarded as a purely theoretical problem, but rather as a practical 

problem whose solution should bring specific engineering benefits in terms of program 

simplification, improved maintainability, or reusability. Therefore, solutions that are 

theoretically possible but do not bring any desirable engineering benefits are not worth 

considering. We evaluated engineering properties of program representations built with 

the ART and its predecessor XVCL [11] in previous papers [4][22][23][24][25][26][27] 

[28], and we refer interested readers to these earlier publications. The essential novelty 

and contribution of this paper is our analysis of SoC and genericity principles. In this 

paper, we use the ART merely to illustrate the interplay between SoC and genericity 

principles. One might use another technique if it allowed to better illustrate the point we 

make about SoC and genericity. 

This paper is an extended version of our work originally presented in the PTI KKIO 

Software Engineering Conference held at Miedzyzdroje, Poland in 2015 [29]. Based on 

comments from reviewers of the first round of revisions, we changed the way we 

positioned the paper, clearly identifying the class of tightly coupled concerns in the 

context of other concerns. We extended discussion of related work on cross-cutting 

concerns, including academic research as well as industrial solutions to the problem. 

The paper is organized as follows: Section 2 discusses various forms of SoC and their 

links to genericity. In Section 3, we show examples of concerns that are difficult to 

separate. After providing brief overview of the ART in Section 4, we show unified 

program representations for one of such examples. Section 5 discusses yet another 

example, from application software. We analyze observations in Section 6. Related 

work is presented in Section 7. Section 8 concludes the paper. 

2. Relation between SoC and Genericity 

In this section, we illustrate different forms of SoC and discuss their relation with the 

principle of genericity. We show how the both principles are intimately interrelated. 

Principle of SoC aims at dealing with each concern separately from other concerns. 

Separating concerns at the concept level is useful, but the benefits amplify if we can 

also separate a concern at the software design and implementation levels. 

Modularization is one of the most natural conventional ways to achieve SoC [10]. 

Some concerns can be nicely aligned with modular decomposition. In such cases, the 

concern is localized to a single module (a component, class, or function, for example) or 

a group of modules (e.g., a component layer), and an Abstract Program Interface (API) 

is exposed to its clients. The implementation details of the concern become hidden 
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behind that API. But, this is an ideal situation from the engineering point of view. To 

provide full localization of a concern, management of any variability within the concern 

should be either a hidden part of the concerned module, or should be supported by 

suitable API operations. A modularized and localized concern can be easily added to or 

taken out from programs. It makes the programs more generic. 

Modularization is also a simple form of generic design. Here, a similarity pattern is 

reflected by an API. Design decisions hidden in the module (e.g., data representation) 

play a role of parameters that make a module generic. Instantiation of such a “generic 

module” is done by choosing specific design decisions (e.g., data structures), and 

implementing API operations in terms of this particular choice. By localizing concerns 

within modules, we achieve SoC and genericity at the same time. 

Concerns that cannot be localized in the above sense have a crosscutting effect on 

other concerns. Some of the crosscutting concerns can be modularized at the extra meta-

level plane using various techniques such as AOP [14], AHEAD [15], or MDSOC [13]. 

In AOP, ‘introductions’ and ‘advices’ play the role of parameters for modular 

decomposition. We can easily inject or take out some of the aspect’s code from modules. 

This makes modules more generic. The more module’s code can we place in aspects, the 

more combinations of aspects can we legally and meaningfully weave into a module, 

the more generic a module. A similarity pattern that we unify with AOP is a functional 

module that can appear in multiple contexts, with or without aspects. This interpretation 

of AOP is in tune with goals of genericity, and we can view AOP as a kind-of generic 

design mechanism. In fact, AOP has been considered as a technique for building SPL 

architectures [1][3], which justifies the above interpretation. 

MDSOC [13] and AHEAD [15] aim at building programs by composing 

independently defined concerns. In MDSOC, there is no primary decomposition. It 

means that all the concerns are treated equally. AHEAD promotes feature-oriented 

programming in which features are modeled as mathematical functions, and then 

programs are built and evolved by refining those functions. In both cases, an 

architecture of concerns from which we can build specific programs by composing 

concerns is a generic program representation. 

Component platforms hide implementation details of some of the potentially 

crosscutting concerns and provide transparent access to them via APIs. In JEE™, 

containers provide a general mechanism to access, via APIs, services whose 

implementation crosscuts code in the containers. Depending on the container used, such 

services include transaction management, persistence, authentication/authorization, 

security, and session management [30][31]. While not completely eliminating, the 

JEE™ infrastructure makes crosscutting effect more visible and reduced to calls to the 

container’s API operations. 

Another example situation [16] considers a case of separating concerns in User 

Interfaces (UIs). Consider a situation when designer wants to builds a UI page. One of 

the designer philosophies is that the designer wants to see all page-specific information, 

such as field presentation, security, and layout, at one place as it centralizes the 

perspective. Another designer philosophy may focus on concern centralizations. In that 

case, the designer may be interested in seeing all the field presentation at one place and 

similarly for other concerns. While the first designer philosophy may match to Ruby on 

Rails or Django design, the second brings development and maintenance benefits. This 

example suggests that there exist situations where design philosophy violates the SoC. 

The above examples illustrate that whether a given concern has a crosscutting effect or 
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not may depend on many factors such as the technology, design philosophy, language 

instruments, and other major mechanisms used in the design of a particular program. 

3. Examples of “Difficult” Concerns 

Discussion in Section 2 suggests that principle of SoC contributes to the goals of 

genericity. Some of the concerns are easy to separate “physically” at the levels of 

program design and code. However, some concerns are so tightly coupled with one 

another or modules of primary decomposition that their physical separation becomes 

difficult. These couplings may not be fully perceived at the concept level, but as 

analysis of the exception handling concern shows “the devil is in the details” [32]. 

Exception handling is an example of a “difficult” concern. “The main problem is that 

realistic software systems exhibit very intricate relationships involving the normal-

processing code and error recovery concerns” [32]. Experiments with EHAB (Exception 

Handling Application Block) on .NET™ [33] also revealed difficulties to separate 

exception handling from the rest of the code. 

Performance in real-time systems is another example of a “difficult” concern. It has 

pervasive impact on many design decisions. While we can conceive and express 

performance concern conceptually (e.g., by documenting design decisions that have to 

do with performance), “physical” separation of performance concern from functional 

modules or yet other concerns that interact with performance may not be feasible. In 

other systems, where performance strategies are simpler, it may be possible to localize 

the performance concern in certain modules, or separate it by means of AOP. 

In our experience, many concerns in application domain-specific areas, often called 

features [15][34], are difficult to separable just as performance concern is difficult to 

separable in time-critical systems. 

Our next example is from the Java Buffer library. The Java Buffer library is a part of 

java.nio.* packages in JDK since version 1.4.1. It implements containers for data in a 

linear sequence for reading and writing. It consists of buffer classes that differ from 

each other based on possible values of the involved features (buffer element type, for 

example). Fig. 1 shows a feature diagram [34] for the Java Buffer library with such five 

feature dimensions. Specific variant features are listed below the corresponding feature 

dimension box. Each legal combination of variant features yields a unique buffer class. 

We end up having many buffer classes with much similarity among them [25]. 

Each class name reflects combination of specific features implemented into the given 

class. Class names are derived from a template: [MS][T]Buffer[AM][BO], where MS—

Memory Allocation Scheme: Heap or Direct; T—Element Type: Int, Double, Float, 

Long, Short, Byte, or Char; AM—Access Mode: W (Writable, default) or R (Read-

Only); BO—Byte Ordering: S (non-native) or U (native), B (Big-Endian) or L (Little-

Endian). For simplicity, we can ignore VB—View Buffer, which is, in fact, yet another 

concern that allows us to interpret byte buffer as Char, Int, Double, Float, Long, or 

Short. For example, class name “DirectCharBufferRS” refers to a Read-Only buffer of 

characters, implemented with Native byte ordering using Direct memory allocation 

scheme. Classes whose names do not include ‘R’, by default are ‘W’—Writable. 

Feature dimensions are some of the “concerns” in the Java Buffer library domain. A 

developer or maintainer of the library may be interested to know: “how does an element 
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type (or memory allocation scheme, for example) affect implementation of buffer 

classes?”, “can I separate certain concerns so that specific features can be incorporated 

into buffer classes, and relevant code maintained, in separation from the other 

concerns?”. 

Buffer

Element Type 
(T)

View Buffer 
(VB)

Byte Order 
(BO)

Access Mode 
(AM)

Memory Allocation 
Scheme (MS)

Double

Char

Float

Byte

Long

Short

Int

Non-direct Direct

Read-Only Writable Little-Endian Big-Endian Native Non-Native

Alternative features Mandatory features Optional features  

Fig. 1. Features in the Java Buffer library. [Buffer class names are derived from a template: 

[MS][T]Buffer[AM][BO], where MS – memory allocation scheme: Heap or Direct; T – element 

type: Double, Char, Float, Byte, Long, Short, or Int; AM – access mode: W - Writable (default) or 

R - Read Only; BO – byte ordering: S - non native or U - native, B - Big Endian or L - Little 

Endian; VB – view buffer: Char, Int, Double, Float, Long, or Short]. 

If successful, separation of these five concerns, as shown as in Fig. 1, would result in 

some “core structures” and five separately defined concerns. By composing specific 

features from each of these concerns into the “core structures”, we would obtain a 

specific buffer class implementing these features. 

To make SoC worthwhile, the number of “core structures” should be considerably 

smaller than the number of specific buffer classes (around 100). Also, we would expect 

that the complexity of buffer classes represented by “core structures” plus separated five 

concerns would have some attractive engineering qualities, such as reduced conceptual 

complexity or reduced maintenance effort, over the original buffer classes in which the 

concerns remain intermingled. 

The above view of a solution that achieves SoC again reminds generic design 

solution, with “core structures” playing the role of parameterized representation, 

comprising design and code of the buffer classes, and concerns playing the role of 

parameters that instantiate the “core structures”. 

The nature of “core structures”, concerns, and composition mechanism depends on 

the SoC technique used. For example, in AOP, “core structures” correspond to some 

classes of a primary decomposition, and concerns are ‘introductions’ and ‘advises’ to be 

weaved into the primary classes. In MDSOC, “core structures” would be treated as just 

yet another concern. In AHEAD, concerns are groups of features just as we described 

above, and “core structures” correspond to classes that are subjected to refinements. 

Let us now look into the issues involved in trying to separate concerns in the Java 

Buffer library. To separate a concern, we must first see how a given concern affects the 

structure of the library and implementation of the classes that have to do with a given 

concern. Class naming conventions, described above, make the task of finding classes 

relevant to different concerns easy. 

We focus on the concern “buffer element type” T and observe its impact on the buffer 

classes. There is no problem to do so in five classes [T]Buffer, where T is restricted to 
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five numeric types: Int, Double, Float, Long, and Short. These classes are almost same 

except with the respective names affected by element type, highlighted in bold in Fig. 2. 

public abstract class LongBuffer

… 

{ 

final long[] hb; // Non-null only for heap buffers 

LongBuffer(int mark, int pos, int lim, int cap, // package-private

long[] hb, int offset) 

{  …

} 

LongBuffer(int mark, int pos, int lim, int cap) { // package-private

this(mark, pos, lim, cap, null, 0); 

} 

public static LongBuffer allocate(int capacity) {

return new HeapLongBuffer(capacity, capacity); 

} 

…

public static LongBuffer wrap(long[] array, int offset, int length) 

…

 

Fig. 2. Code Snippet for buffer class LongBuffer.java 

In the scope of these five numeric types, the “buffer element type” concern can be 

separated by means of type parameter with Java generics [25]. However, there are 

certain limitations with Java generics that make type parameterization difficult even in 

this simple case. But, here we don’t aim to worry about language-specific limitations of 

Java generics. Interested readers can find more details in [25]. 

Could we make “buffer element type” T an aspect, in the sense of AOP? If we require 

that classes of primary decomposition are complete and must be executable on their 

own, then the answer is no. “Buffer element type” is an integral part of any possible 

primary decomposition in the above sense, and we wouldn’t have buffer classes without 

mentioning “buffer element type”, in either specific (such as Int or Short) or generic 

form. However, if we relax the requirement that modules of primary decomposition 

must be executable on their own, then we could consider “buffer element type” as an 

aspect, provided that we can weave code related to the type at specified join points in 

classes of primary decomposition. But, points of variations among the buffer classes as 

highlighted in bold in Fig. 2 do not correspond to what is considered a join point in 

AOP. While we could place all the declarations affected by type name into 

‘introductions’, and extend AOP to weave also method headers, but it seems that such a 

solution would not be in sync with the spirit of AOP. We rather conclude that the 

discussed situation is not aspect-friendly. Current form of AOP is not meant to deal with 

concerns that affect code in ad hoc way, at arbitrary program points. We try to 

strengthen this point in our further discussion. 

We now extend our analysis to the two remaining features, namely ‘Char’ and ‘Byte’, 

in the concern “buffer element type”. We found that class CharBuffer.java has different 

implementation for the method toString() than any of the numeric buffer classes. 

Method toString() converts a buffer element to a character string. In CharBuffer.java, 

method toString() is trivial and just returns the buffer element. While in numeric buffer 

classes, this method performs a proper conversion. In addition, CharBuffer.java has a 

number of extra methods that are not needed in numeric buffer classes. Situation in 

ByteBuffer.java is also analogical to CharBuffer.java. There are a few extra methods in 

ByteBuffer.java that do not appear in numeric buffer classes or CharBuffer.java. 
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Now, we can recap what it takes to separate concern “buffer element type” in seven 

classes [T]Buffer, where T is Int, Double, Float, Long, Short, Byte, or Char: 

1. We must deal with varying type names and method names (e.g., ‘Int’ is part of 

method names in IntBuffer.java, while ‘Long’ is part of method names in 

LongBuffer.java). 

2. We must selectively insert extra methods into certain buffer classes. 

Extra methods can be easily separated (also aspectized) and weaved into relevant 

classes, therefore addressing the remaining two buffer element types ‘Char’ and ‘Byte’ 

does not raise further complications for SoC. However, it creates a challenge for 

generics as extra methods cannot be represented by generic types. 

With regard to the concern “buffer element type” T, the groups of buffer classes 

Heap[T]Buffer and Heap[T]BufferR have the same situation as the group [T]Buffer has. 

But, separation of “buffer element type” concern becomes more problematic when we 

look beyond the 21 classes in these three groups (i.e., [T]Buffer, Heap[T]Buffer, and 

Heap[T]BufferR). In other buffer classes, we found more subtle code dependencies on 

“buffer element type” concern. For example, in method slice(), “buffer element type” 

causes changes of algorithmic details. As shown in Fig. 3, a constant in bold is equal to 

the length of the buffer element minus one, so the constant is 0 for Byte. 

/*Creates a new byte buffer containing a shared 

subsequence of this buffer's content. */

public ByteBuffer slice() {

int pos = this.position();

int lim = this.limit();

assert (pos <= lim);

int rem = (pos <= lim ? lim - pos : 0);

int off = (pos << 0);

return new DirectByteBuffer(this, -1, 0, rem, rem, off);
}  

Fig. 3. Method slice() in DirectByteBuffer.java 

We further analyze the impact of concerns other than “buffer element type” on 

implementations of the buffer classes. We found that classes implementing ‘Direct’ 

memory allocations scheme differ a lot from analogical classes implementing ‘Heap’ 

memory allocation scheme. Similarly, ‘Writable’ classes differ from analogical ‘Read-

Only’ classes significantly. With that, the visibility of concerns becomes blurred. Hence, 

trying to look for exact impact of “buffer element type” concern on class 

implementation becomes most difficult task, not mention separating the concern. 

Still, the “buffer element type” concern seems to be the simplest case. Other concerns 

are even more difficult to trace and separate. Interactions between concerns are not 

clearly visible in class implementation. Class implementation seems to reflect the net 

result of concern interactions in the form that makes SoC difficult. 

4. Switching Perspectives 

Section 3 concludes that separation of “buffer element type” concern (and similarly 

other concerns) becomes “difficult” due to: 
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1. Much variation in the impact of different “buffer element types” on class 

implementation, and 

2. Subtle, ad hoc interactions between “buffer element type” and other concerns. 

When dealing with “difficult” concerns, a change of the perspective from SoC to 

generic design is quite refreshing. Rather than looking for ways to separate concerns, we 

look for software similarity patterns in program structures that result in interactions 

among combinations of concerns implemented into classes. Instead, we are still doing a 

fair amount of SoC, but in an approximate way, only as far as it is practically 

achievable. We have the following seven groups of similar classes in the Java Buffer 

library [25]: 

1. [T]Buffer: seven classes that differ in buffer element type, T: Byte, Char, Int, Double, 

Float, Long, Short 

2. Heap[T]Buffer: seven classes, with memory allocation scheme ‘Heap’, that differ in 

buffer element type, T 

3. Heap[T]BufferR: seven ‘Read-Only’ classes, with memory allocation scheme ‘Heap’, 

that differ in buffer element type, T 

4. Direct[T]Buffer[S|U]: 13 ‘Direct’ classes for combinations of buffer element type, T, 

with byte orderings: S—Non-native or U—Native (note that byte ordering is not 

relevant to buffer element type ‘Byte’) 

5. Direct[T]BufferR[S|U]: 13 ‘Read-Only’ and ‘Direct’ classes for combinations of 

parameters T, S and U (byte ordering is not relevant to buffer element type ‘Byte’) 

6. ByteBufferAs[T]Buffer[B|L]: 12 classes for combinations of buffer element type, T, 

with byte orderings: B—Big-Endian or L—Little-Endian. T here denotes all seven 

buffer element types except ‘Byte’ (i.e., equivalent to VB—View Buffer) 

7. ByteBufferAs[T]BufferR[B|L]: 12 ‘Read-Only’ classes for combinations of 

parameters T (except ‘Byte’), B and L. 

We see that similarities among buffer classes manifest themselves as methods and 

attribute declarations that appear in different classes in similar form. However, some 

classes contain extra methods that do not appear in other still similar classes. 

We noticed that seven groups of similar classes are organized around concerns: each 

group is characterized by concerns that vary across classes in a group, and yet other 

concerns that are fixed. 

We now proceed to the part where we apply generic design to unify similarity 

patterns with the help of a generative technique of the ART. As we define generic 

solutions using conventional programming technologies (languages and platforms) 

together with the ART, we call the approach mixed-strategy. We first present brief 

overview of the ART which is followed by our mixed-strategy solution of the Java 

Buffer library. 

4.1. An Overview of the ART 

The ART is a meta-programming technique and tool that works on the principle of 

representing each group of similar program structures found in the software in forms of 

non-redundant, adaptable, and reusable meta-components, we called ART templates. An 

ART template is a file with original program code (i.e., native language of the software, 

for example Java in the Buffer Library) instrumented with ART commands for ease of 

customization. Table 1 gives summary of the selected ART commands. 
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Table 1. Summary of Selected ART Commands 

Syntax Command Definition 

#adapt template_name 
 

or: 
 

#adapt: template_name 

     <customizations> 

#endadapt 

#adapt command instructs the ART processor to adapt the named 

template and its descendants. 
 

#adapt may also allows to specify customizations that should be 

applied to the adapted template. Customizations may include any ART 

commands. 

#output pathname #output command specifies the path of the output file where the source 

code should be placed. The pathname can be absolute or relative path. 

If the output file is not specified, then the ART Processor emits the 

code to an automatically generated default file named defaultOutput.txt 

in the main folder of the installed ART processor. 

#set var_name = 

val1[,val2,val3, …] 

#set command declares an ART variable “var_name” and sets its value 

to a single or multi-values. 

?@var_name? A direct reference to the value of variable “var_name”. Each extra ‘@’ 

symbol in the front of a variable name indicates an extra level of 

indirection. 

#break breakX 
 

or: 
 

#break: breakX 

     default content 

#endbreak 

#break marks a breakpoint at which changes can be made by ancestor 

template via #insert, #insert_before, #insert_after commands. 

The content under #break is the default content. If no #insert matches a 

#break, then the break's default content is processed. 

#insert breakX 

     content_body 

#endinsert 
 

#insert-before breakX 

     content_body 

#endinsert 
 

#insert-after breakX 

    content_body 

#endinsert 

#insert command replaces all matching #breaks with its content. 

Matching is done by a name (breakX in the example). 

 

#insert-before and #insert-after add their content before or after the 

matching #breaks, without deleting their content. 

 

 

A single #break may be simultaneously extended by #insert, #insert-

before and #insert-after commands. 

#while var1[,…,varN] 

    content_body 

#endwhile 

#while is a generation loop that iterates over its body and generates 

custom text at each iteration. 

#select control_var 

     #option option 

          option_body 

#endselect 

#select allows us to choose one of the many customization options. 

% comment 

%> comments <% 

Single line comment 

Multiple lines comments 

 

Despite a large fraction of code common to the group (e.g., exact code fragments or 

methods in the corresponding similar program structures), there can be mainly three 

types of differences among corresponding program structures: parametric differences 

(code with parametric changes), alternatives (code modifications), and extras (code 

insertions and deletions). For each group of similar program structures, we distill the 

common code into ART templates and mark the locations of variation points using ART 
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commands. ART commands can be used systematically to mark these variation points 

as discussed below: 

• Handling exact code fragments/methods: Identical code fragments or methods can 

be used directly as-it-is in the corresponding ART templates. 

• Handling parametric differences: Parametric differences such as variations in 

user-defined identifiers, literals, layout, types, etc. can be dealt with systematically 

using ART multi-value variables. Such multi-value variables can be declared 

using #set command. The value of an ART variable say varName can be referred 

by using expression “?@varName?”. 

• Handling alternatives: ART command #select allows choosing one among 

alternatives. Each of the alternatives is represented by a #option clause under 

#select command. 

• Handing extras: ART’s insert-break mechanism allows handling additions and 

deletions of extra code. ART command #break marks the location in the ART 

template where the extra code needs to be inserted. That extra code can be then 

injected at the marked variation point using #insert, #insert-before, and/or #insert-

after commands. 

The ART is supported by a tool, we-called the ART Processor, which interprets the 

ART and provides a semi-automated support for the customizations. The ART 

Processor is implemented in Java. It is open-source and is available in a ready-to-use 

form (available at https://sourceforge.net/projects/vclang). The ART Processor can be 

run from command-line mode as well as in using graphical user interface mode. It is 

also supported by editor plug-ins for Notepad++. 

In the remaining section, we show how we can apply generative technique of the 

ART to unify similarity patterns by continuing our Java Buffer library example. 

4.2. Unified Program Representation using the ART 

In order to have a unified program representation for a program, we start with the 

concrete program, or at least with some idea of a program’s component/class 

architecture, and its partial implementation. In case of our example, we start with 

existing Java buffer classes. We represent each group of similar program structures 

(methods or classes), with unique, generic customizable structure built with the ART 

applied on top of Java. 

We can imagine that the ART decomposes a conventional program in its own way, 

wrapping structures of a subject program (of any granularity and type) within ART 

templates to make them generic. In case of the Java Buffer library, we build a generic 

program representation in combination of Java and the ART. Therefore, we call our 

overall solution a mixed-strategy Java/ART-template solution.  

Fig. 4 outlines the solution, which consists of an ART-template hierarchy in which 

ART templates at the lower-level serve as building blocks for the higher-level ART 

templates. As shown by arrows in the figure, the ART templates in the hierarchy are 

linked by #adapt commands. An arrow from an ART template A to another ART 

template B indicates that template B is used, after possible adaptations, to build A. 

Using the ART Processor, we can derive all the buffer classes in each of the seven 

similarity groups mentioned above from the ART-template solution shown in the left-

hand-side of Fig. 4. 
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The process of generating specific buffer classes from the ART-template solution is 

governed by ART templates defined at Level 1 and Level 2. The top-most template 

(Level 1) called SPC sets up global parameters, and exercises the overall control over 

the generation process. ART templates at Level 2 specify controls for each of the seven 

groups of similar classes.  

Each of the ART templates at Level 3 plays the role of a template defining a common 

part for all the buffer classes in the respective group. For example, seven buffer classes 

in the group [T]Buffer are derived using ART template [T]Buffer.art. ART template 

[T]Buffer.spc contains specifications instructing the ART Processor how to adapt 

[T]Buffer.art and other ART templates at levels below it to derive classes in the 

[T]Buffer group. We have analogical solutions in parts of the buffer ART-template 

solution for other six groups of similar classes. Smaller granularity building blocks for 

buffer classes are defined at Level 4 (methods) and Level 5 (fragments of method 

implementation or attribute declaration sections). 

Java/ART-template solution for buffer classes

attribute declarations

Level 3: generic classes

Level 2: class specifications

Level 4: generic methods

Level 1: Buffer specifications

method fragmentLevel 5: generic fragments

ART Processor

IntBuffer

ByteBuffer

CharBuffer

Java buffer classes

SPC

Heap[T]Buffer.spc[T]Buffer.spc …

[T]Buffer.art Heap[T]Buffer.art

hasArray() slice()

…

Keys:

#adapt command

ART template
 

Fig. 4. A Java/ART mixed-strategy solution for the Java Buffer library 

The essence of an ART template is that it can be adapted to produce its instances 

(e.g., specific classes in a group). Therefore, small-granularity generic solutions 

(represented by the lower-level ART templates) are composed, after possible 

adaptations, to construct required instances of higher-level generic solutions 

(represented by higher-level ART templates).  

In our example, for the sake of comparison, we designed ART-template solution so 

that classes produced by the ART Processor are no different from the original classes in 

the Java Buffer library. The ART Processor interprets an ART-template solution starting 

from the SPC, traverses ART templates below, adapting visited ART templates, and 

emitting the custom program. By varying specifications, we can instantiate the same 

ART-template solution in different ways, deriving different, but similar, program 

components from it. In that sense, an ART-template solution forms a generic program 

representation that enables reuse within a single program or across programs. In the 

latter case, an ART-template solution implements a concept of the SPL architecture [3]. 

In that way, the proposed mixed-strategy approach provides a two-fold view of the 

software system: One is an ART-enabled generic program solution that consists of 

software code instrumented with the ART commands in the form an ART-template 

hierarchy. Another is the software system that can be generated automatically from the 

template-hierarchy using the ART Processor. To better see the nature of an ART-enabled 

generic solution and its relation to SoC, we now explain the parameterization and 
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adaptation mechanism, which is the “heart and soul” of how the ART achieves 

genericity. 

4.3. Relation between ART-enabled Generic Solution and SoC 

Fig. 5 shows the details of a fragment of the Java/ART-template solution shown on 

the left-hand-side of Fig. 4. 

ART variables and expressions in the ART templates correspond to parametric 

differences. Typically, names of program elements manipulated by the ART, such as 

components, source files, classes, methods, data types, operators, or algorithmic 

fragments, are represented by ART expressions. Using such parameters, rather than 

concrete names, makes ART templates more generic, adaptable to fit into multiple 

contexts. For example, names and other parameters of the seven similar classes 

[T]Buffer are represented by ART expressions in the ART template [T]Buffer.art (Fig. 

5). An ART expressions can appear anywhere in ART templates. An ART expression is 

enclosed between question mark “?” symbols. Expressions can be used to refer the 

value of corresponding ART variable. For example, expression “?@elmtType?” (line 2 

in [T]Buffer.art] refers to the value of the ART variable elmtType (further details to 

follow). 

1   % specifies how to generate all the buffer classes
2 #set elmtType = "Byte", "Char", "Double", "Float", "Int", "Long", "Short"
3   #set type = "byte", "char", "double", "float", "int", "long", "short"
4   #set elmtSize = "0", "1", "3", "2", "2", "3", "1"
5   #adapt [T]Buffer.spc
6   #adapt Heap[T]Buffer.spc
7   …
8   #adapt ByteBufferAs[T]BufferR[B|L].spc1 % specifies how to generate seven [T]Buffer classes

2 #while elmtType
3 #select elmtType
4 #option Byte
5 #adapt [T]Buffer.art
6 #insert moreMethods
7 #adapt methodsForByteBuffer.art
8 #endoption
9 #option Char
10 #adapt [T]Buffer.art
11 #insert toString
12 Public String toString()
13 { return toString( position(), limit()); }
14 #endoption
15 #otherwise
16 #adapt [T]Buffer.art
17 #endotherwise
18 #endselect
19 #endwhile

1 % a generic [T]Buffer class that output file @elmtTypeBuffer.java
2    #output ?@elmtType?"Buffer.java"
3 package ?@packageName?;
4    public abstract class ?@elmtType?Buffer

extends Buffer implements Comparable 
5    #adapt commonAttributes.art
6    #break moreAttributes
7    #adapt commonMethods.art
8    #break moreMethods
9    #break: toString
10      % default content
11      public String toString() {
12      StringBuffer sb = new StringBuffer();
13      sb.append(getClass().getName()); 
14      …etc…
15      return sb.toString();   } }
16  #endbreak

1 % generic representation of methods common 
2 % to [T]Buffer and may be yet other classes, e.g.,
3   public static ?@elmtType?Buffer wrap(?@type?[] array) {
4        return wrap(array, 0, array.length);  }

1 % methods specific to ByteBuffer only
2   public static ByteBuffer allocateDirect(int capacity) 
3        { return new DirectByteBuffer(capacity);  }

SPC

[T]Buffer.spc

[T]Buffer.art

methodsForByteBuffer.art
commonMethods.art

 

Fig. 5. A Java/ART-template solution for seven [T]Buffer classes (partial) 
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ART parameters play an important role of control elements that mark traces of 

customization changes related to a single source, that span across multiple ART 

templates. This “source” often represents a concern or a specific feature within a 

concern. For example, ‘elmtType’ is one of the ART variables that marks customizations 

related to “buffer element type” concern. 

The ART Processor propagates variable values from an ART template where the 

value of a variable is set, down to the adapted ART templates. While each ART template 

usually sets default values for its variables, values assigned to variables in higher-level 

templates take precedence over the locally assigned default values. Thanks to this 

overriding rule, ART templates become generic and adaptable, with potential for reuse 

in unifying similarity patterns in many contexts. 

Other ART commands, such as #select, #insert into #break, and #while, collectively 

help us design generic solutions. At the same time, they also contribute to enhancing the 

visibility of concerns. Using #select command, depending on the value of a control 

variable, we can select one of many options. Options are selected based on the value of 

the control variable specified as attribute in #option clause. #insert command allows us 

to modify ART templates at designated #break points in arbitrary ways. 

#while command iterates over ART template(s), with each iteration generating 

similar, but with minuscule differences, program structures. A #while loop can be 

controlled by using one or more multi-valued ART variables. #select command nested in 

the #while loop allows us to derive specific classes in each of the seven similarity 

groups discussed above. This is a key element of the ART strategy that allows us to 

unify similarity patterns at the level of mixed-strategy representation (i.e., in an ART-

template solution), and still have repetitions in a program that ART Processor derives 

from an ART-template solution. 

Now, we comment on the above mechanisms in more details, referring to Fig. 5 that 

shows a partial Java/ART-template solution for the Buffer classes. 

ART commands and references to ART variables are shown in bold. #set command 

assigns values to a variable. For example, #set command in line 2 of the SPC assigns 

values listed on the right-hand-side to a variable named elmtType. References to ART 

variables (highlighted in bold) can be embedded in the code. For example, a reference to 

ART variable elmtType is written by an ART expression ?@elmtType? (line 4 in 

[T]Buffer.art), which is replaced by the variable’s value during processing. Having set 

values for the ART variables, the SPC initiates generation of classes in each of the seven 

groups of similar classes via suitable #adapt commands (lines 5–8). The #while loop in 

[T]Buffer.spc (lines 2–19) is controlled by a multi-value variable, namely elmtType. The 

i’th iteration of the loop uses i’th value of the variable. In each iteration, the #select 

command uses the current value of elmtType to choose a proper #option for processing. 

#select command nested in the #while loop (lines 3–18) allows us to specify control for 

the seven buffer classes in the [T]Buffer similarity group. 

#output command in [T]Buffer.art (line 2) defines the name of a file where the ART 

Processor will emit the code for a given buffer class. ART template [T]Buffer.art further 

defines common elements found in all seven buffer classes in the group. Five of those 

buffer classes, namely DoubleBuffer, IntBuffer, FloatBuffer, ShortBuffer, and 

LongBuffer differ only in type parameters (as in the sample method wrap() shown in 

ART template commonMethods.art). These differences are unified by ART variables, 

and no further customizations are required to generate these five buffer classes from 

[T]Buffer.art. These five buffer classes are catered for in #otherwise clause under 
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#select (lines 15–17 in [T]Buffer.spc). However, buffer classes ByteBuffer.java and 

CharBuffer.java have some extra methods and/or attribute declarations. In addition, 

method toString() has different implementation in CharBuffer.java than in the remaining 

six classes. Customizations specific to classes ByteBuffer.java and CharBuffer.java are 

listed in the #adapt commands, under #option Byte and #option Char, respectively. 

Further, Fig. 6 shows generic method slice() from Direct[T]Buffer[S|U] classes (a 

specific instance of method slice() is shown in Fig. 3). Values of variables set in SPC 

reach all their references in adapted ART templates. The value of variable byteOrder is 

set to an empty string, “S” or “U”, in a respective #set command placed in one of the 

ART templates that #adapts ART template slice.art (not shown in our figures). 

1   public ?@elmtType?Buffer slice() {
2       int pos = this.position();
3       int lim = this.limit();
4       assert (pos <= lim);
5       int rem = (pos <= lim \? lim - pos : 0);
6       int off = (pos << ?@elmtSize?);
7       return new Direct?@elmtType?Buffer?@ByteOrder?(this, -1, 0, rem, rem, off);
8   }

slice.art

 

Fig. 6. Generic method slice() recurring in 13 Direct[T]Buffer[S|U] classes 

The above described ART-template solution is meant to illustrate our points about 

relationship between genericity and SoC. The original Java Buffer Library consists of 74 

buffer classes with 16,299 lines of code (LOC). However, the corresponding Java/ART-

template solution consists of just 3,771 LOC with 74 ART template files and three 

buffer classes which are used intact in the constructed Java/ART-template solution. A 

brief discussion on engineering benefits of the ART-template solution is provided in 

Section 6. Detailed evaluation of engineering qualities of ART-template solution is not 

in the scope of this paper. We refer the reader to the papers and website for the 

discussion of trade-offs involved in applying the ART. 

5. Another Example of a “Difficult” Concern 

The Java Buffer library example discussed in the previous section is a very special type 

of a program. In this section, we show how a problem observed in the Java Buffer 

library occurs in an application software. 

A Domain Entity Management System (DEMS) is contributed by ST Electronics Pte 

Ltd (STEE), an industrial partner in our projects. DEMS was implemented in C#, with 

18,823 LOC that contained in 117 classes covering GUI, service, and database layers. 

DEMS involved 13 domain entities (such as User or Task) with up to 10 operations per 

entity (such as Create, Delete, Update, or Copy). Each combination of entity-operation 

is implemented by a pattern of collaborating components, two of which are shown in 

Fig. 7. Each such pattern involves classes from four system layers as shown in Fig. 7. 

Each box in Fig. 7 contains a number of classes pertaining to user interface, business 

logic, database communication, or database table definition layer. 

Some of the concerns in DEMS are domain entities, operations, and the four system 

layers shown in Fig. 7. 
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Separating “domain entity” concern would mean that any entity-specific code would 

have to be isolated in a form that could be injected into the rest of DEMS using some 

composition mechanism. “Operation” concern is symmetric to “domain entity” concern, 

and its separation would require a similar solution. However, SoC along the “domain 

entity” or “operation” dimension is difficult. This is because of much differences in the 

requirements for specific domain entities (such as User or Task) operations that apply to 

different entities (such as CreateUser or CreateTask). The essence of difficulties is the 

same as in the case of Java Buffer library, namely: 

1. Much variation in the impact of different domain entities on operations, and 

2. Subtle, ad hoc interactions between concerns. 

«GUI classes»
Create UserForm

«GUI classes»
Create TaskForm GUI

«service classes»
Logic for User

«service classes»
Logic for Task

Services

«entity class»
User

«entity class»
Task

Entity

«DB class»
UserTable

«DB class»
TaskTable

Database

executes

visualizes visualizes

executes

accesses accesses

stores stores

 

Fig. 7. A recurring pattern of components in Domain Entity Management System 

Now we look at the problem from the genericity perspective. We found that there is 

much similarity among patterns of components implementing the same operation for 

different entities. Also, there are differences among the patterns caused by different 

meaning of domain entities: For example, operation Create for a Task requirs different 

types of data entry and data validation than Create for a User. 

Ad hoc, induced by real-world DEMS requirements, nature of difference among 

patterns makes it difficult to design “generic pattern” using conventional techniques, but 

such a solution can be built with the ART. In the next subsection, we show the ART-

enabled generic solution for DEMS. 

5.1. ART-enabled Generic Solution for Domain Entity Management System 

Fig. 8 shows an outline of DEMS as a generic C#/ART-template solution. The top-most 

template SPC (Level 1) contains global controls and parameter settings that specify the 

overall process of constructing DEMS from the ART templates defined below it. ART 

templates at Level 2 (such as Create.spc, Update.spc) specify control for different 

operations applied to different domain entities. ART template DEMS_template.art at 

Level 3 defines the structure of the DEMS architecture, that is the organization of 

component patterns implementing various operations plus any other functions supported 

by DEMS, not discussed in example of Fig. 7. 
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At Level 4, each group of operations such as CreateUser, CreateTask, … has been 

represented by one generic operation parameterized by the respective domain entity 

(i.e., Create[E].art). Similarities among different operations for the same entity (e.g., 

CreateUser, UpdateUser, …) are unified at Level 5. ART templates at Level 5 represent 

generic classes, building blocks for DEMS operations, as indicated by ART templates 

referenced from more than one operation (e.g., generic classes labeled with CU are 

reused in construction of Create and Update for various entities). 

C CU

CreateUser

CreateTask

CreateResource

… Create for other entities

UpdateUser

UpdateTask

UpdateResource

… Update for other entities

other operations

ART
Processor

Level 3:

Level 4:

Level 5:

DEMS in C#/ART  mixed-strategy  representation

DEMS in C#U UV

SPC

Create.spc Update.spc View.spc Delete.spc Find.spc

Level 1:

othersLevel 2:

DEMS_template.art

Create[E].art View[E].art

Update[E].art Delete[E].art

Find[E].art

 

Fig. 8. A C#/ART mixed-strategy solution for Domain Entity Management System 

Fig. 9 provides some of the details of the C#/ART-template solution for DEMS 

shown on the left-hand-side of Fig. 8. ART variables ‘operation’ (set in line 2 in SPC) 

and ‘entity’ (set in line 2 in DEMS_template.art) are generic names for the DEMS 

operations and domain entities, respectively. As mentioned previously in Section 4.3, 

these ART variables also play an important role in controlling traces of customization 

changes related to a single source—representing a concern or a specific feature within a 

concern—that span across multiple ART templates. For example, ART variable 

‘operation’ marks customizations related to “operation” concern. On the other side, 

customizations related to “domain entity” concerns are marked using variable ‘entity’. 

The #while loop in SPC (lines 3–14) is controlled by an multi-valued ART variable, 

‘operation’. In each iteration of the #while loop, the SPC allows specifying control for 

initiating patterns of components implementing Create, Update, View, and others 

operations. Unique specifications related to specific operations are listed under a 

suitable option of the #select command (lines 4–13) nested inside the #while command. 

Similar to the SPC, ART template DEMS_template.art provides a similar solution that 

specifies unique customizations required for specific domain entities.  

ART templates Create.spc and Update.spc specify control for Create and Update 

operations, respectively, applied to different domain entities via adapt mechanism (line 

2 in Create.spc and Update.spc). Code specific to Create operation is defined in ART 

template C.art. Similarly ART template UV.art specifies code reused in Update and View 

operations for different entities. For example, with #insert command in Create.spc (lines 

5–7), we insert code specific to Create operation at designated variation pointed using 

#break command as in Create[E].art (line 2). This example shows how we deal with ad 

hoc variations related to a specific operation in DEMS without actually affecting the 

other operations that should not be affected by these variations. Similar mechanisms 

will be followed for the other operations in DEMS. 
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1   % Specifies how to generate DEMS components
2 #set operation = "Create","Update","View","Delete","Find",….
3   #while operation
4       #select operation
5           #option Create
6               #adapt Create.spc
7           #endoption
8           #option Update
9               #adapt Update.spc
10         #endoption
11         …
12         % Specifications for the remaining operations
13     #endselect
14  #endwhile

SPC

1 % Level 2 ART template that specifies control for 
Create operation applied to different domain 
entities

2 #adapt: DEMS_template.art
3       % Customizations specific to Create operation
4       …
5       #insert CreateOpOnly
6           #adapt C.art
7       #endinsert
8       …
9   #endadapt

Create.spc

1 % Level 2 ART template that specifies control for 
Update operation applied to different domain 
entities

2 #adapt DEMS_template.art
3       % Customizations specific to Update operation
4       …
5       #insert UpdateOpOnly
6           #adapt U.art
7       #endinsert
8       …
9 #endadapt

Update.spc

1   % ART template to create DEMS components parameterized 
by references to ART variables operation, entity, and other 
ART commands.

2 #set entity = "User","Task","Resource",….
3   % The value of ART variable operation used in this template 

depends on the value propagated down the template-
hierarchy from the upper-levels ART templates.  

4 #while entity
5       #select entity
6           #option User
7               #adapt ?@operation?.art
8                   % Customizations for User only
9           #endoption
10         #option Task
11             #adapt ?@operation?.art
12                 % Customizations for Task only
13         #endoption
14         …
15         % Customizations for the remaining entities
16     #endselect
17 #endwhile

DEMS_template.art

1   % ART template to 
represent Create 
operation parameterized 
by the respective 
domain entities

2   #break CreateOpOnly
3   …

Create[E].art

1   % ART template to 
represent Update
operation parameterized 
by the respective 
domain entities

2   #break UpdateOpOnly
3   …

Update[E].art

% ART template to 
represent View
operation 
parameterized by the 
respective domain 
entities

View[E].art
% ART template to 
represent Find
operation 
parameterized by the 
respective domain 
entities

Find[E].art

% Code used for  
Create operation 
only

C.art

% Code reused in 
Create and Update
operations for 
various entities

CU.art

% Code used for  
Update operation 
only

U.art

% Code reused in 
Update and View 
operations for 
various entities

UV.art

% Code used for  
View operation 
only

V.art

Via Inserted #adapt

 

Fig. 9. Code snippet of C#/ART-template solution for Domain Entity Management System 



750           Jarzabek and Kumar 

 

The C#/ART-template solution consists of complete C# code required to generate all 

the DEMS operations, and also information helpful in maintenance/reuse, such as the 

record of similarities and differences among operations for different domain entities. 

Statistically, the C#/ART-template solution consists of 5,921 LOC (approximate 68% 

less compared to original C# code) and is conceptually simpler than its C# counterpart. 

In the next section, we provide summary and analysis of observations based on the 

discussion followed in Sections 2–5. 

6. Summary and Analysis of Observations 

We discussed some examples that highlight some difficulties in archiving clean SoC. We 

showed, how generic design, by looking at the problem from a different angle, achieves 

a weaker form of separating concerns. In this subsection, we summarize observations, 

trying to distil observations that carry some more general message from those that are 

specific to our examples or to the use of the ART. 

Both SoC and generic design are realized by a mixture of top-down and bottom-up 

activities. 

In SoC, first intentions are conceived at the concept level, and then we try to separate 

concerns at the design and implementation levels. Moving from the concept level down 

to the design and implementation, we observe the nature of concern 

design/implementation, and identify yet other “lower-level” concerns. 

In generic design, first we identify similarity patterns inherent in application domain 

concepts. In case of platforms such as JEE™ or .NET™, we also consider recurring 

patterns of program organization induced by a platform, as we can expect to see them in 

any program developed on a given platform. Then, as we design and implement a 

program (or work with an existing program as in our example), we observe similarities 

in the actual program structures. For significant groups of such similar program 

structures, we design generic, adaptable representation. 

At times, SoC cannot be achieved at the actual program level, using features of 

conventional programming languages. The same is true for generic design. When 

conventional techniques fail to deliver a workable solution, AOP and the ART try to 

overcome the problem at an extra meta-level plane. 

SoC at the design and implementation levels increases genericity of program 

structures. We can view program structures as being “parameterized” by concerns. By 

composing concerns, we instantiate program structures in variant forms. In that sense, 

program structures gain genericity and reusability due to SoC. We observe this in the 

case of concerns that can be separated using conventional programming techniques 

(such as modularization or generics), as well as concerns that can be separated by 

supporting techniques such as AOP, MDSOC, AHEAD, JEE containers, XVCL, or the 

ART. 

In case of separable concerns, there may be still a room for generic design, as 

program structures parameterized by concerns may still exhibit similarity due to yet 

other reasons not related to given concerns. For example, we can apply AOP to separate 

certain aspects, but modules of primary decomposition may still contain similarities 

induced by similar user-level requirements. These similarities create opportunities for 

generic design to further simplify software solution. 
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We believe the above observations are general. We observe that our discussion of 

“difficult” concerns, becomes necessarily dependent on many factors such as the 

technology used, the design philosophy followed, language instruments, and other major 

mechanisms used in the design of a particular program. 

In the examples discussed in Sections 4 and 5, we can see an element of SoC, 

however we give priority to one concern at the expense of others. In the Java Buffer 

library, we bet on “buffer element type” concern. ART variables set in the top-most SPC 

are all related to this concern and they navigate the process of adapting ART templates 

below. These variables and ART constructs controlled by them enhance the visibility of 

the “buffer element type” concern. We can see the impact of buffer element types on the 

ART templates below the SPC and other ART templates adapted from there. In the 

DEMS example, we give priority to separating “operation” concern over “domain 

entity” concern. A criterion in making this decision is the extent of similarity in 

operations across domain entities as opposed to domain entities across operation.  

Further, ART-enabled generic representation improves the visibility of other 

concerns, due to groupings of similar classes into groups, but here the SoC is less 

systematic. 

We believe the reason why genericity can penetrate software areas deeper than SoC is 

that genericity, based on the notion of unifying similar program structures, is less formal 

and rigorous than SoC: Arbitrary software structures that exhibit enough similarity can 

be unified with generic program representations, using unconventional techniques such 

as the ART. This makes genericity technically easier to achieve than SoC.  

Our technology-dependent experiences seem to point to observations of a general 

nature: The concept of similarity is less formal than the concept of cleanly separated 

concerns. We can identify similar program structures by top-down domain analysis, 

combined with bottom-up analysis of design and code (possibly supported by clone 

detector [35][36][37][38]). We can zoom into similarity areas that are significant. 

Having identified a group of similar program structures, we can always analyze the 

exact differences among them. 

While it is relatively easy to find similarities, spotting the exact impact of “difficult” 

concerns is more difficult. Focusing on similarities, we do not even have to fully 

understand the exact nature of a given concern or complex interactions among the 

concerns. Instead, we stay at the level of observing the symptoms of net effect of 

concern interactions. 

It is important to mention that unification of similarity patterns occurs only at the 

level of an ART-template representation (left-hand-side of Fig. 4 and Fig. 8). An 

executable program derived from the ART representation may still contain repetitions, if 

that’s required or unavoidable. Sometime repetitions are required for performance or 

reliability reasons. Yet other may be unavoidable given a programming technology used 

(e.g., on JEE™ or .NET™ platforms [39], see also [40]), and/or taking into account 

possibly yet other design goals a program must meet [25].  

The ART-enabled mixed-strategy representation offers semi-automated solution: The 

process of generation of native code from the templates is automated. Whereas, the 

actual construction of ART templates is a manual process that can be performed 

systematically using the ART commands. It is because, just like program design, ART 

template design requires expert judgment that cannot be easily replaced by automated 

decision making process. There is a choice of ART mechanisms such as 

parameterization, selection, or insertions of program structures (discussed in Section 
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4.1) at designated points in templates that can be used to tackle various redundancy 

situations. These ART template design choices have various desirable and undesirable 

outcomes just like a decision to use a certain design pattern during conventional 

program design may have positive and negative implications. However, the ART offers 

a very simple and systematic mechanism that consists of only few constructs (such as 

#adapt, #while, #selcet, or insert-break mechanism). In addition, the process of 

generation of code from the ART templates has been automated using the ART 

Processor.  

The proposed ART-enabled mixed-strategy approach incurs cost of building ART 

templates and have additional layer of generating source files. The examples of ART 

templates shown in the paper may also look complex. We agree that at the first glance 

they do. But, the fact is that the ART is governed by only five important constructs (i.e., 

#adapt, #output, #insert-break mechanism, #while, and #select) that are neatly 

integrated to form a method that can be learned easily. Further, the ART is an enhanced 

and improved version of the XVCL. The ART and XVCL has already been applied in 

many case studies including industrial projects ([1][4][22][23][25][26][27][28]). In 

these industrial projects, productivity impact of applying the ART and XVCL was 

measured and evaluated. There are sufficient evidences from these projects that the 

overhead incurred by the application of the ART and XVCL is smaller than benefits 

incurred by these techniques. 

A discussion of and comparison of the ART-enabled mixed-strategy solution with 

related techniques is elaborated in Section 7. 

7. Related Work 

Modular decomposition with information hiding [10], macros, generics in Ada or 

Java [7], templates in C++, other forms of parameterization such as higher order 

functions [8], inheritance with dynamic binding, and design patterns [9] are some of the 

conventional design techniques to achieve genericity. The ART-enabled mixed-strategy 

solution uses templates and code generation to achieve genericity. ART templates can 

represent any groups of similarity patterns (e.g., files, directories, or patterns of 

collaborating components) with arbitrary differences among them (as opposed to only 

type-parametric differences in C++ templates or Java generics). From the ART template 

solution of a similarity pattern, the ART Processor generates code for all the instances 

based on the specifications of deltas, i.e., the differences between the template and each 

of the instances in the similarity pattern. 

AOP [14] and MDSOC [13] support genericity by separating cross-cutting concerns. 

In AOP, various computational aspects are programmed separately and weaved at 

specified join points into the base program. AOP can separate a range of programming 

aspects, such as persistence, synchronization, or authentication/authorization. Separated 

aspects can be easily modified, added, or deleted to/from the program modules. 

However, a study revealed some difficulties in using AspectJ [41] (an AOP extension for 

the Java programming language) to deal with features that have a chaotic impact on the 

base code [20]. While AOP deals with big chunks of functionalities (i.e., aspects) 

reasonably, it lacks a mechanism to handle variations at the lower-levels of granularity. 

The ART-enabled mixed-strategy generic solution, on the other hand, can handle 

variations at any level of the granularity. Also, there is a fixed set of join points defined 
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in AOP. Compared to this, breakpoints in the ART can be defined anywhere in the 

program whenever needed. Using breakpoints, we can explicitly mark the variation 

points where specific code to a variant can be easily inserted. However, there is also a 

disadvantage of the ART as compared to AOP. The ART requires additional cost in 

creating templates for the code before adaptation. Whereas in case of AOP, there is no 

need to modify the existing program before weaving begins. ART expressions, #select 

and #insert into #break are analogous to AOP’s mechanism for weaving ‘advices’ at 

specified join points. The difference is that while AOP specifies joint points in a 

descriptive way, #inserts modify ART templates in arbitrary ways, at any explicitly 

designated #break points. 

MDSOC permits separations of overlapping concerns along multiple dimensions of 

compositions and decompositions. MDSOC introduces hyperslices that encapsulate 

specific concerns, and can be composed in various configurations to form custom 

programs. But, unlike the ART, hyperslices are written in the underlying programming 

language, and can be composed by merging or overriding program units by name, and in 

many other ways. On the other hand, the ART-enabed mixed-strategy solution is 

independent of the underlying programming language. It does not rely on any type of 

the abstract specifications that are associated with the programming language of the 

native code. Actually, the proposed solution offers uniform mechanism to handle 

variability. It means that it can be used to handle variability in a variety of interrelated 

SPL assets such as architecture, code components, domain models, documentations, test 

cases, etc. 

In AHEAD [15] (based on the earlier Batory’s work on GenVoca), genericity is 

supported by feature modularization and composition. Feature modularization helps in 

understanding and maintaining the feature code. Feature composition extends the base 

program with the required features. AHEAD provides a powerful solution for feature 

management in many situations, but may not be geared for features that have complex 

mappings to the code [42]. Therefore, Kästner et al. [42] relaxed the requirement for 

feature modularization, and revisited the idea of keeping feature-related code together 

with the base code. They proposed a tool CIDE that provides a visual means for 

understanding and manipulating the features. CIDE represents a base program as an 

abstract syntax tree, which makes it language-dependent. Compared with these 

techniques, the ART is strictly language-independent. The ART’s adaptations are 

defined in an operational way, and take place at designated variation points marked with 

the ART commands only. 

Recent advancements in modeling and generation techniques led to Model-Driven 

Development (MDD) [43][44]. In MDD, domain specific abstractions can be expressed 

using multiple inter-related models. It considers ‘model’ as a central source of 

information and the rest of the system is generated from the model using transformation 

and template rules specific to a particular platform [17]. Although MDD allows 

combining multiple models together, yet it lacks with a generic, multi-model integration 

mechanism [45]. This restricts MDD to effectively deal with crosscutting concerns that 

can arise at model level [46]. Further, generally MDD allows transformations to be 

performed at compile time [44]. Cerny and Donahoo [17][47] proposed a solution that 

decompose and untangle various elements—they called particles— involved in the user 

interface assembly. Some of these particles may be platform-independent while others 

are not. They provided a solution that allows runtime composition of such particles that 

matches user demands, context, and target platform.  
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Many techniques described under the umbrella of generative techniques [48], notably 

meta-programming with C++ templates, achieve genericity as well as certain forms of 

SoC. Application Generators [49] build domain-specific solutions by formalizing the 

domain knowledge. A Generator encodes domain-specific abstractions in a generic, 

parameterized form. Based on requirements specification in a Domain-Specific 

Language (DSL), a generator instantiates the generic form to produce a custom 

program. Such DSL-based techniques address the SoC, but can introduce information 

replication [46]. In the situations where DSL specifications are compact and are in the 

scope of given domain, generators can have better yield than the ART-enabled mixed-

strategy solution.  

The ART-enabled mixed-strategy solution performs best in domains where frequent 

changes occur at both large and small granularity levels. The problem with model-based 

and DSL-based solution is the likelihood of disconnecting models during evolution, 

especially when multiple independent evolving versions of a program originate from a 

model or generator. This occurs when model-based and DSL-based solution cannot cater 

for unexpected evolutionary changes, and developers modify the generated code. 

Compared to this, the ART-enabled mixed-strategy solution allows programmers to 

modify any details of the program solution and the required code changes are always 

proportional to the changes in the problem domain. The ART is an application domain 

independent technique. However, considering many large-granular similarity patterns 

that represent domain-specific abstractions [35], the ART-enabled mixed-strategy 

solution enables realization of such abstraction in the design/implementation solution 

space. Thus, the ART can be considered as a domain-independent technique that 

captures some of the domain-specific abstractions. 

Domain analysis [50] is essential in identifying high-level, large granularity patterns 

of similarity. Generic solutions unifying such patterns are most beneficial for 

programmer’s productivity as they can significantly reduce the size and complexity of 

the solution. Software architectures [1][3], architectural styles [51], and patterns [3] help 

developers avoid repeatedly designing the same solution by providing component plug-

in plug-out capability. Code inspection and transformation based techniques such as 

MetaWidget [18] and AspectFaces [52] provide possible solution to avoid 

similarity/information duplication in the user interface layer of software applications. 

Component platforms such as JEE™ or .NET™, provide also an infrastructure for reuse 

of pre-defined common services. 

Preprocessors can also be used to separate code for variant features [53]. The ART 

adds a non-redundancy layer on top of separation of concerns achieved by 

preprocessors, without changing the way preprocessors are configured in native code. 

Non-redundant ART-template views of programs lessen variability management, as one 

variation point in an ART template represents ‘n’ variations points in instances of that 

template, where ‘n’ is the number of instances of the template in a program. The 

capability to deal with redundancies is what distinguishes the ART from the techniques 

proposed by others. 

Code cloning has received much attention in research. As clones are closely related to 

the notions of similarity patterns and genericity, we discuss them in this section. Cloning 

has been studied in the context of re-engineering [54][55], refactoring [56] and clone 

detection [54][35][38]. In an empirical study of cloning practices Kim et al. [40] 

observed that “Limitations of particular programming languages produce unavoidable 

duplicates in a code base”. 
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8. Conclusions 

In this paper, we first made observations, in the forms of hypotheses rather than claims, 

about the general interplay between the principle of SoC and genericity. Next, we 

showed that generic design can enhance the visibility of inseparable concerns, offering a 

weaker, but still useful form of SoC.  

With the help of experimentation and industrial case study, we proved that there is an 

overlapping area where the goals of SoC and genericity, as well as means to achieve 

them, are the same. For example, type parameterization or modularization with 

information hiding separates a concern and achieves genericity at the same time. In this 

case, program structures can be viewed as being “parameterized” by concerns. By 

composing concerns, we instantiate program structures in variant forms. In that 

perspective, program structures gain genericity and reusability due to SoC. In case of 

separable concerns, program structures parameterized by concerns may still exhibit 

similarity due to yet other reasons not related to given concerns. It may facilitate a room 

for generic design to further improve engineering qualities of a program solution. For 

example, we can apply AOP to separate certain aspects, but modules of primary 

decomposition may still contain similarities induced by similar user-level requirements. 

Further, we also considered situations where attempts to cleanly separate concerns 

fail. We showed that generic design can enhance the visibility of inseparable concerns 

by offering a weaker but still useful form of SoC. Genericity is based on the notion of 

unifying similar program structures and is less formal and rigorous than SoC. Due to 

this reason, we believe that the genericity can penetrate software areas deeper than SoC. 

To achieve genericity, we also presented the use of ART templates. ART-enabled generic 

program representations have been shown to be useful for unifying arbitrary software 

structures exhibiting enough similarity. It further makes genericity technically easier to 

achieve than SoC. 

In future, we plan to extend our study to cover wide range of concern types. 

Concerns related to different areas of a software system have different properties. For 

example, user requirement-level concerns, reflected in user interface and business logic 

software layers, tend to be less separable than software functions typically addressed by 

aspects [14]. Another interesting enhancement can be to develop a concern ontology. It 

would help in expressing research results on SoC and genericity in more precise terms. 
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