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Abstract. This paper presents scope of parallelization in large 
displacement stability analysis of orthotropic prismatic shells with simply 
supported boundary conditions along the diaphragm-supported edges. A 
semi-analytical harmonic coupled finite strip method (HCFSM) is used to 
solve the large deflection and the post-buckling problems. In the 
HCFSM formulation the coupling of all series terms highly increases 
computation time when a large number of series terms is used. 
Fortunately such computation time increase can be compensated by 
application of MPI, OpenMP and CUDA approaches to parallelization. 
This paper shows how these approaches can be applied to HCFSM 
formulation, and what results can be expected. 

Keywords: Prismatic Shells, Stability analysis, HCFSM, MPI, OpenMP, 
CUDA. 

1. Introduction 

Typical flat plate structures under consideration here are simply supported by 
diaphragms and may have arbitrary longitudinal edge conditions. It may be 
subjected to a transverse loading between its ends (the large-deflection 
problem) or to an in-plane progressive destabilizing, buckling load (the post-
buckling problem) or conceivably to both actions simultaneously. For these 
structures, the design process should lead to define the optimal morphology 
of the transversal cross-section, which means its geometry, size, shape and 
topology. 

If a structure undergoes large deformation, the second order terms 
regarding the strains cannot be ignored. The strain-displacement relations, 
within the context of a Green-Lagrange strain tensor, represent a sum of 
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linear and non-linear part. Analysis of plates in the post-buckling range is 
generally performed on the basis of von Karman equations or by employing 
an energy approach. Only approximate solutions can be obtained, taking into 
account the in-plane (membrane) and out-of-plane (bending) boundary 
conditions. 

In this work we present the semi-analytical harmonic coupled finite strip 
method (HCFSM) for geometric non-linear analysis of thin plate structures 
under multiple loading conditions. This method takes into account the 
important influence of the interaction between the buckling modes. In contrast, 
the finite strip method (FSM), in its usual form, ignores this interaction and 
therefore cannot be used in analysis of these structures [1]. 

However, already high computational complexity of FSM becomes even 
higher in the HCFSM formulation that couples all series terms. The result is a 
very long calculation time of the existing sequential HCFSM software in cases 
of a large number of series terms [2]. In order to speed up the lengthy 
calculations various parallelization techniques can be used. Previous research 
[3] has considered FSM parallelization based on the “networked workstations” 
and to our knowledge this is the only publicly available result on this subject. 
Our research treats a new method (HCFSM) and different computer 
architectures. We show that not only the multicomputer architecture based on 
message passing scheme (MPI [4]) is suitable for HCFSM parallelization, but 
also the multiprocessor architecture based on shared memory (OpenMP [5] 
and CUDA [6]) offers a good potential for HCFSM parallelization [7, 8, 9]. The 
main intention of this paper is to present scope of HCFSM parallelization by 
separate application of each of three different available parallelization 
techniques. 

In the second chapter we describe the HCFSM formulation. The third 
chapter contains a discussion of our hybrid approach to HCFSM 
parallelization based on application of MPI, OpenMP, and CUDA 
programming models. This approach results in a noticeable reduction of the 
execution time and represents a new contribution to the (HCFSM) 
parallelization. The last two chapters contain acknowledgements and 
conclusions. 

2. Harmonic coupled finite strip method for the stability 
analysis of thin-walled structures 

2.1. Introduction to HCFSM 

The contemporary alternatives to perform the stability analysis of thin-walled 
members are generalized beam theory (GBT) [10], finite element method 
(FEM) and the FSM [11]. The FSM is derived from the FEM and represents 
specialization of the FEM to the analysis of engineering structures [2]. The 
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only difference between FEM and FSM consist of the different discretization of 
the members, as seen in Fig. 1. The FEM uses a mesh that uses 
discretization of the member transversally and longitudinally, while the FSM 
needs only transversal discretization, using currently either harmonic or spline 
functions in the longitudinal direction of the member. 

 

 

Fig. 1. FSM discretization versus FEM discretization 

The FSM was originally developed by Cheung [1] and was widely used by 
other authors for understanding and predicting the behavior of cold-formed 
steel members and for bridge decks. There is a reliable harmonic FSM 
program – CUFSM – for the determination of the critical load parameter of 
thin-walled prismatic members under a general longitudinal normal stress 
loading at the extreme cross sections [12]. 

The well known uncoupled FSM formulation, represents a semi-analytical 
finite element process. As far as linear analysis is concerned, it takes 
advantage of the orthogonality properties of harmonic functions in the 
stiffness matrix formulation. However in the case of the geometric nonlinear 
analysis, and the geometric stiffness matrix calculation, the integral 
expressions contain the product of trigonometric functions with higher-order 
exponents, and here the orthogonality characteristics are no longer valid. All 
harmonics are coupled, and the stiffness matrix order and bandwidth are 
proportional to the number of harmonics used. This kind of FSM analysis is 
named the HCFSM [2, 13]. 

The nonlinear strain-displacement relations in the finite strip can be 
predicted by the combination of the plane elasticity and the Kirchhoff plate 
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theory. Using this assumption in the Green-Lagrange strain tensor (1) for in-
plane nonlinear strains gives Green-Lagrange HCFSM formulation. Also that, 
neglecting lower-order terms in a manner consistent with the usual von 
Karman assumptions gives HCFSM von Karman formulation. 

 , , , ,1 2ij i j j i k i k ju u u u    . (1) 

The essential feature of geometric nonlinearity is that equilibrium equations 
must be written with respect to the deformed geometry – which is not known 
in advance. 

 

Fig. 2. Simply supported flat shell strip 

In the FSM, which combines elements of the classical Ritz method and the 
FEM, the general form of the displacement function can be written as a 
product of polynomials and trigonometric functions: 

1 1

( ) ( )
r c

m k km

m k

f Y y x
 

 N q  
(2) 

where Ym(y) are functions from the Ritz method and Nk(x) are interpolation 
functions from the FEM. We define the local Degrees Of Freedom (DOFs) as 
the displacements and rotation of a nodal line (DOFs=4), as shown in Fig. 2. 
The DOFs are also called generalized coordinates. 

The following approximate functions are used for the simply supported flat 
shell strip with edges restrained against in-plane movement: 
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(3) 

2.2. HCFSM formulation for stability analysis 

Total potential energy 

As a preliminary to tracing the equilibrium paths, it is necessary to determine 
the total potential energy of the structure as a function of the global DOFs. 
The steps in the computation are detailed discussed in [2]. 

The total potential energy of a strip is designated Π and is expressed with 
respect to the local DOFs by the HCFSM. 
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(4) 

The multiplication results of the membrane and bending actions in the first 
bracket of Eq. (4) are uniquely defined and uncoupled, whilst those in second 
[von Karman assumptions] and third bracket {Green-Lagrange approach} are 
functions of the displacements u0, v0 and w. Consequently, the membrane 
and bending actions are coupled in many ways. 

The conventional and the geometric stiffness matrices are, respectively: 
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(5) 

 
where 
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(6) 

The geometric stiffness matrix of structure is built by summing overlapping 
terms of the component strip matrices; in the same way that conventional 
stiffness matrix of structure is built by summing terms of the conventional strip 
matrices using the transformation matrices between the local and global 
displacements [2]. 

Stability equations 

Stability equations are derived from the virtual work principle and the strain 
energy methods. In order to obtain the stability equations from the variational 
relations, the principle of the stationary potential energy will be invoked. Since 
the principle of the stationary potential energy states that the necessary 
condition of the equilibrium of any given state is that the variation of the total 
potential energy of the considered structure is equal to zero, we have the 
following relation: 

0   . (7) 

We conclude from Eq. (7) that, if the structure is given the small virtual 
displacements, the equilibrium still persists if an increment of the total 
potential energy of the structure   is equal to zero. Eq. (7) is the basis to 

derive the variational equation of equilibrium of a structure, and it is correct for 
both the pre- and post-critical deformation states. Eq. (7) is satisfied for an 

arbitrary value of the variations of parameters T
mq . Thus we have the 

following conditions, which must be satisfied for any harmonic m: 

T
m





0

q
 . 

(8) 

Next, we calculate derivatives of the total potential energy of a strip and 
finally, we get a non-homogeneous and nonlinear set of algebraic equations 
(9), which are the searched stability equations. 
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(9) 

We can visualize the construction of a strip stiffness matrix, which is 
composed of twelve block matrices. Assembling block matrices into 
conventional/geometric stiffness matrix of each strip is performed according to 
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the scheme presented in Fig. 3, where: ST1= uuK̂ , ST2= wwK̂ , ST3= wwK , 

ST4= wuK , ST5= uwK , ST6= uu
uuK , ST7= uu*

uuK , ST8= uu**
uuK , ST9= vu

uuK , 

ST10= uv
uuK , ST11= u

wuK  and ST12= u
uwK  (ST5=ST4

T
, ST8=ST7

T
, ST10=ST9

T
, 

ST12=ST11
T
). 

 

Fig. 3. Strip stiffness matrix assembling 

Solution of nonlinear equations 

For equilibrium, the principle of stationary potential energy requires that: 

ˆT          
 

R q K K q Q Kq Q 0  . 
(10) 

where Π is a function of the displacements q, and R represent the gradient or 
residual force vector, which is generally nonzero for some approximate 
displacement vector q0 (the subscript 0 denotes an old value). It is assumed 
that a better approximation is given by: 

0 0n  q q δ  . (11) 

where subscript n denotes a new value. 
Taylor's expansion of Eq. (10) yields: 

0 0 0 0 0 0 0 0( ) ( ) ... ...n        R R q δ R q K δ R K δ  . (12) 

where 0   K R q  is the matrix of second partial derivatives of Π calculated 

at q0 (i.e. the tangent stiffness matrix or Hessian matrix). Setting Eq. (12) to 
zero and considering only linear terms in δ0 gives the standard expression for 
Newton-Raphson iteration: 

1
0 0 0

 δ K R  . (13) 
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Using this approach, a further iteration yields: 

1
n n n

δ K R  (14) 

where n   K R q  at qn. 

In addition, the blocks of the conventional and geometric tangent stiffness 
matrix of each strip are: 
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(16) 

Comparing these expressions with Eq. (9), it is apparent that the 
conventional stiffness matrix remains unchanged, while the geometric tangent 
matrix becomes symmetrical.  

Static buckling 

The loss of stability of static equilibrium states of structures subjected to 
conservative loads is in general known as static buckling of the structure. For 
conservative systems, the principle of minimum of the total potential energy 
can be used to test the stability of a structure (static equilibriums are extremes 
of the total potential energy). The Hessian with respect to the local DOFs is 
denoted as the tangent stiffness matrix, of each strip i.e.: 

ˆ
+ 

  
K K K  . 

(17) 

The (local) stability of equilibrium states of conservative systems by 
HCFSM can be assessed by looking at the eigenvalues of the tangent 

stiffness matrix of structure 
     1 1DOFs r n DOFs r n      

K  with (n+1) nodal lines, 

which are all real, since tangent stiffness matrix of the strip is a symmetric 
matrix. 

Fig. 4 shows a rectangular plate divided into (n) finite strips with (n+1) 
nodal lines, where the plate is assumed to be simply supported on edges y=0 
and y=a. 
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Fig. 4. Discretized plate with a pair of simply supported edges 

Let λi denote the ith eigenvalue of 

     1 1DOFs r n DOFs r n      
K  . (18) 

Based on theorems of Lagrange-Dirichlet and Lyapunov [14] it can be 
concluded that an equilibrium state is stable if all λi>0, while an equilibrium 
state is unstable if one or more λi<0. If along a load-path (IINCS=1, NINCS), 
at some equilibrium state one or more λi=0, this equilibrium state is denoted 
as a critical state. Static buckling refers in general to case where, starting from 
some stable state, a critical state is reached along the load-path. 

In general, static buckling is solved by solving Eq. (9) for a varying load P 
with for example some sort of numerical path-following routine [2], while 
simultaneously tracking the eigenvalues of the tangent stiffness matrix of 
structure given by Eq. (18). Buckling occurs where the matrix becomes 
singular. 

3. HCFSM Software Parallelization 

3.1. HCFSM Software 

The HCFSM software enables large displacement stability analysis of 
orthotropic prismatic shells with simply supported boundary conditions along 
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the diaphragm-supported edges. It consists of four modules as shown in Fig. 
5. 

 

Fig. 5. Overview of HCFSM software 

The first module, called FSMN1 program, calculates the values of the 
integrals using Romberg integration, and stores them in the memory for later 
computations. The second module, called FSMNE program, calculates 
displacements and inner forces for each load-part by solving the stability 
equation (9). The stored integrals are used for the computation of each strip 
tangent stiffness matrix in FSMNE. The corresponding tangent stiffness 
matrices of the structure (TSMS) are prepared for the solution of the stability 
equation and also saved in a file to be analyzed by the third module, called 
Stability analysis program. The Visualization module provides comparative 
graphic presentation of the results. 

3.2. Scope of FSMN1 program parallelization 

The number of integral values is proportional to the power of four of the 
number of harmonics . For a large number of harmonics computation of the 
integral values can take a substantial amount of time, even with modern 
hardware resources. However, calculations of the integral values are 
independent and can be done in parallel. 

To avoid repeating computations the integral values are stored in a file 
once they are calculated. In this way, every time these integral values are 
needed for the stiffness matrices calculations, they are not calculated but read 
from the file. 

To avoid numerous readings of the file, the integral values can be read 
from the file just once and placed in the memory (RAM). This approach 
significantly reduces the execution time (compared to the previous one) 
because all integral values are used for every strip stiffness matrix calculation 
in the every iteration and for every load. The drawback of this approach is that 
it is not generally applicable as the number of integral values outgrows the 
capacity of available RAM for higher number of harmonics. 

The general solution should provide (reasonably fast) stiffness calculation 
for any (reasonable) number of harmonics. In our vision this can be achieved 
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by enabling heterogeneous computation where applications utilize the power 
of both CPU and GPU. These units are treated as separate devices with their 
own memory spaces allowing for simultaneous computation on both CPU and 
GPU without contention for memory resources. In particular, using CUDA 
programming model we are in position to divide independent computations of 
integral values into different functions (kernels) executed in parallel on general 
purpose GPUs. Such generated values are used to feed up FSMNE program 
running on the host processors (CPUs). The globally shared memory located 
on a GPU device is used to transfer data between the host and device for 
kernel input and output [6].  

For high performance of the system the memory bandwidth between CPU 
and GPGPU is of crucial importance. To achieve faster communication 
pipelining we use double buffering technique for the calculation of integral 
values. Integral values are calculated and placed in two buffers that are used 
one after the other. At the beginning both buffers are empty. The kernel 
programs (executing on GPGPU) starts filling the first buffer. When the first 
buffer is full, FSMNE program (executing on CPU) starts reading integrals 
from it. At the same time the kernel programs write the next block of integral 
values to the second buffer. When the first buffer is exhausted, FSMNE 
program continues to read integrals from the second buffer if it is filled in the 
mean time. Otherwise, FSMNE program waits for it to be filled. Eventually the 
kernel programs write the next block of integral values to the second buffer 
and FSMNE program continues reading them.  

The main advantage of using CUDA programming model described above 
is that it does not require any disk space or memory for storing calculated 
integral values [8]. Also, it can generate integral values up to 40 times faster 
than the corresponding sequential approach. However, for efficient 
implementation of this model we must assure wait-free communication 
between CPU and the globally shared memory and that represents a major 
research challenge. 

3.3. Scope of FSMNE program parallelization  

The essence of FSMNE program can be described as solution of the stability 
equation (9). The program takes as input parameters the definition of the 
structure along with the planned load distribution. As a result the program 
produces the displacement vectors and the vectors of inner forces. The 
solution for each load-part is obtained using an iterative approach as 
described in chapter 2.2. Each iteration includes solving the system of the 
stability equations (SSE) having in mind that TSMS element values depend 
on the displacements calculated in the previous iteration.  

The computational complexity of the problem depend on the number of 
strips (NELEM) and the number of harmonics (NTERM). Analysis of the 
program execution reveals that the most time consuming part represents the 
computation of TSMS, whereas much shorter time is spent on finding the 
solution of SSE by the method of Gaussian elimination [9]. As the number of 
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strips grows the time necessary for finding the solution of SSE becomes 
longer. However, the stiffness matrices computation of separate strips stays 
dominant. 

TSMS is composed of the stiffness matrices for each strip. Computation of 
these stiffness matrices can be based on the von Karman or the Green-
Lagrange prediction. The higher complexity of the Green-Lagrange 
formulation [9] comes from the fact that each stiffness matrix is formed from 
the 12 block matrices according to the scheme from Fig. 3. The von Karman 
prediction requires only the first five block matrices. The block matrices are 
named by the acronyms STi (i=1, ... , 12).  

Computations of the stiffness matrices of separate strips, as well as 
computations of their parts (different STi block matrices), are mutually 
independent. Therefore, due to its dominant part in the execution time of 
FSMNE program, they offer natural bases for FSMNE program parallelization. 
Computation of the separate strip stiffness matrices is suitable for application 
of multicomputer – MPI approach [7, 9], while computations of the separate 
STi block matrices are suitable for application of multiprocessor – OpenMP 
approach [9]. 

MPI parallelization 

The multicomputer based computation of the stiffness matrices of separate 
strips implies engagement of different node computers to calculate the 
stiffness matrices of different strips. By default, one of the nodes takes the 
role of “master” while others become “slaves”. Each slave node does the 
same. It computes the elements of the stiffness matrices for a particular range 
of strips. The master node initiates these computations, collects the results 
from the slave nodes, composes TSMS and performs other non-parallelized 
tasks (e.g. solving the SSE). 

Parallel execution of FSMNE program requires communication between the 
master and the slave nodes. Therefore, the total parallel FSMNE program 
execution time (TPtotal) includes the communication time (TPc), the stiffness 
matrices computation time (TPs) and the rest tasks execution time (TPr), while 
the total sequential FSMNE program execution time (TStotal) includes only the 
stiffness matrices computation time (TSs) and the rest tasks execution time 
(TSr): 

TPtotal = TPc + TPs + TPr . (19) 

TStotal = TSs + TSr . (20) 

 
The effects of FSMNE program parallelization are under influence of 

various factors: the numbers of strips and harmonics on one side and the 
number of engaged nodes on the other. It is important to analyze the impact 
of these factors on the different execution times – TPtotal, TPc, TPs and TPr. 
The increase of the strips number is followed by the increase of TPs and TPr 
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due to higher dimensions of the total stiffness matrix and the longer time 
needed to find the solution of SSE. The same trend connects increase of the 
harmonics number and increase of TPs. Increase of the number of nodes 
causes increase of TPc and decrease of TPs. The impact of nodes number 
increase on TPtotal depends on the dominant factor: either TPc increase or TPs 
decrease. 

From the standpoint of the Amdahl’s law [15], the maximum speedup of 
FSMNE program is limited by the following formulas: 

)1(1  nf

n
 ,  

s

s

TP

TS
n  , 

total

r

TS

TS
f   . 

(21) 

 
where f (0 < f < 1) is the fraction of time spent in the serial part (before the 
improvement) and n represents the speedup of the parallel part of FSMNE 
program. 

From the standpoint of the parallelization effects it is important to distribute 
load evenly on multicomputer nodes. The maximum degree of parallelization 
is achieved when the strip number is divisible by the node number. In 
contrary, when the node load is not even, the (theoretic) speedup depends on 
the heaviest loaded node due to the effect of barrier synchronization. For 
example, in the case with ten strips, the speedup for two nodes is 2, the 
speedup for three nodes is 2.5, the speedup for four nodes is 3.3, the 
speedup for five nodes is 5, and the speedup for six to nine nodes is again 5, 
while the speedup for ten nodes is 10. 

Effects of MPI parallelization of FSMNE program for the von Karman and 
the Green-Lagrange prediction are presented on Fig. 6. The presented results 
are related to the example of prismatic shell in the form of folded plate cross-
section [9]. This shell is divided into 20 strips, and the computation is done for 
31 harmonic. 

From Fig. 6 follows that in the case of the von Karman prediction TPtotal 
decreases when the node number increases due to the fact that TPs 
represents the significant part of TPtotal, so the effects of parallelization of 
stiffness matrices computation are noticeable. These effects are not canceled 
by the increase of TPc that follows the node number increase. Therefore MPI 
parallelization of von Karman prediction is valid in the discussed example. 

In the case of the Green-Lagrange prediction TPtotal significantly decreases 
when the node number increase, due to the fact that TPs is the prevalent part 
of TPtotal. Thus, we can expect that the effects of parallelization of the stiffness 
matrices computation are very high. These effects are not under substantial 
influence of the TPc increase. Therefore MPI parallelization of the Green-
Lagrange prediction is obviously useful in the discussed example.  
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Fig. 6. TPtotal, TPc and TPs for the von Karman and the Green-Lagrange predictions 
(the presented results are obtained on single CPU core per node multicomputer) 

Fig. 6 suggests that in the case of the von Karman, as well as the Green-
Lagrange prediction, increase of the node number, when the strip number is 
high enough, leads to the cancellation of the effect of parallelization of the 
stiffness matrices computation, due to the TPc increase. However, Fig. 7 
indicates that the harmonic number increase delays such event, due to 
increase of the stiffness matrices computation complexity. 
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Fig. 7. The impact of the harmonic number increase on the parallelization potential 
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Fig. 8. The speedups of the von Karman and the Green-Lagrange predictions 

Fig. 8 suggests that the speedup of the Green-Lagrange prediction is 
doubled in comparison to the speedup of the von Karman prediction. This is 
the consequence of the fact that the Green-Lagrange prediction triples the 
computation time of stiffness matrices in comparison to the von Karman 
prediction. 

OpenMP parallelization 

The multiprocessor based computation of STi block matrices in the Green-
Lagrange prediction implies distribution of different STi block matrices 
computation to different cores of a multi-core processor. The complexity of 
these block matrices varies which reflects on their execution times. Table 1 
contains percentages of the total execution time spent in the STi block 
matrices. 

Table 1. Percentage of total execution time spent in the STi block matrices 

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 ST10 ST11 ST12 

0.01 0.01 27.38 0.88 0.83 15.15 0.74 0.74 0.74 0.74 24.03 22.56 

 
Table 1 suggests that there is no sense to devote a separate core to every 

STi block matrices, since the computation times of these block matrices are 
vary disparate and would keep the majority of cores idle. Table 2 presents a 
possible distribution of the STi block matrices computations to four evenly 
loaded cores. 
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Table 2. A distribution of the STi block matrices computations to different cores 

core STi block matrices % 

1 ST3 27.38 

2 ST1, ST2, ST4, ST5, ST6, ST7, ST8 18.36 

3 ST9, ST10, ST12 24.04 

4 ST11 24.03 

 
Table 2. implies that almost 94% of the stiffness matrices computation time  

can be parallelized. The remaining 6% of the time is used for preparation of 
the STi block matrices computations. 

The effects of OpenMP parallelization of FSMNE program for the Green-
Lagrange prediction are presented on Fig. 9. The presented results are 
related to the already mentioned example of prismatic shell. 
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Fig. 9. Results of OpenMP parallelization 

The measured speedup follows the Amdahl maximal speedup. Introduction 
of the third core results in the smaller speedup than expected. The reason is 
that the data are not evenly distributed among cores anymore, and therefore a 
good load balancing is not achieved. 

It is worth mentioning that as the number of strips grows, the time 
necessary for finding the solution of SSE grows too. The fact that SSE are 
solved by master node and our insight to CUDA programming model leads us 
to the idea of exploring the potential of applying CUDA programming model 
on the process of solving SSE as the subject of a future work. But for huge 
number of strips it might be reasonable to explore usage of MPI solver to the 
same problem. 
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4. Conclusions 

This paper presents a parallelization of finite-strip analysis of geometric 
nonlinear folded-plate structures applying the von Karman and Green-
Lagrange strains, which are both characterized by the coupling of all 
harmonics. The coupling of all series terms highly increases calculation time 
in an existing finite-strip sequential program when a large number of series 
terms are used and justify parallelization efforts. 

The HCFSM offers good potential for MPI, OpenMP and CUDA 
parallelization. Therefore it is not surprise that the MPI/OpenMP/CUDA hybrid 
approach shows good results in the parallelization that are illustrated on the 
example folded plate cross-section. The future paper will present cumulative 
effects of contemporary application of all three discussed parallelization 
techniques. The further investigation will analyze the negative effects of 
communication bottlenecks that arise with increase of the number of nodes 
and will try to answer the question how to postpone such negative effects. 
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