
DOI:10.2298/CSIS1109260370

SLA-Driven Adaptive Monitoring of Distributed

Applications for Performance Problem Localization

Dušan Okanović1, André van Hoorn2, Zora Konjović1,
and Milan Vidaković1

1 Faculty of Technical Sciences, University of Novi Sad,
Trg D. Obradovića 6,

21000 Novi Sad, Serbia
{oki, ftn_zora, minja}@uns.ac.rs

2 Software Engineering Group, University of Kiel,
Christian-Albrechts-Platz 4,

24098 Kiel, Germany
avh@informatik.uni-kiel.de

Abstract. Continuous monitoring of software systems under production
workload provides valuable data about application runtime behavior and
usage. An adaptive monitoring infrastructure allows controlling, for
instance, the overhead as well as the granularity and quality of collected
data at runtime. Focusing on application-level monitoring, this paper
presents the DProf approach which allows changing the instrumentation
of software operations in monitored distributed applications at runtime. It
simulates the process human testers employ–monitoring only such parts
of an application that cause problems. DProf uses performance
objectives specified in service level agreements (SLAs), along with call
tree information, to detect and localize problems in application
performance. As a proof-of-concept, DProf was used for adaptive
monitoring of a sample distributed application.

Keywords: continuous monitoring, adaptive monitoring, aspect-oriented
programming, service level agreements.

1. Introduction

Modern enterprise applications constantly grow in size and complexity which
makes them extremely demanding both from functional and non-functional
aspects. Along with functional requirements, applications have to fulfill its non-
functional requirements. Common non-functional requirements are availability,
responsiveness, robustness, portability, etc. Non-functional requirements are
defined in an agreement between software providers and consumers, called
service level agreement (SLA) [1]. Before software is put into operation
phase, in order to check software for bugs, it must be thoroughly tested.
However, the testing phase of is often shortened, usually because of pressure
to put the application in operation as soon as possible. Furthermore, the

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 26

standard testing, e.g., using debuggers and profilers, hardly allows detecting
all errors and unpredicted events that occur in production or during operation.
Also, it is a common phenomenon that software performance and quality of
service (QoS) degrade over time [2]–which calls for continuous monitoring of
applications in order to determine whether QoS is kept on a satisfactory level.
Continuous monitoring of software is a technique that provides a picture of
dynamic software behavior under real exploitation circumstances. The data
obtained through the monitoring process can, for instance, be used as a basis
for architecture-based software optimization, visualization, and reconstruction
[3].

An important issue of software monitoring is imposed performance
overhead, since the monitoring system shares common resources with the
monitored system. Therefore, the monitoring system has to perform using a
minimal amount of resources. In a testing phase, software developers
commonly use tools such as profilers and debuggers. These tools induce
significant performance overhead, and therefore, they are not suitable for
monitoring during the operation phase. Monitoring code can only be optimized
up to a certain extent. In order to achieve an even higher reduction of
monitoring overhead, it would be beneficial to automatically adapt monitoring
to only monitor selected parts of the system.

The DProf system proposed in this paper has been developed for adaptive
monitoring of distributed enterprise applications with a low overhead. In order
to do that, the Kieker [3] framework, which yields low overhead, is used for
collecting the monitoring data. Additional components support changing of
monitoring parameters at application runtime. These additional components
have been developed using Java Management Extensions (JMX) [4]. The
system analyzes call trees (as described in the following paragraph)
reconstructed from the gathered data and automatically creates a new
monitoring configuration if needed.

A call tree represents calling relationships between software methods [5]. It
contains the control-flow of method executions invoked by a client request.
The first method is called the "root". For example, consider the simplified call
tree in Fig. 1. This call tree represents a situation where a client invokes
methodA() from ClassA. This method in turn, invokes two methods from
ClassB: first methodB1() and then methodB2(). SRVX and SRVY are the
names of servers on which the methods are being executed.

DProf configuration parameters specify which of the application's call trees
are going to be monitored and, furthermore, they can specify nesting levels
within the call tree that are to be monitored. DProf stores data in a central
database, regardless of on how many computers the monitored application is
executed. Using mechanism integrated into the Kieker framework, during data
gathering, each method execution within a trace is uniquely identified and
assigned a number which represents the order of execution (numbers on
branches in Fig. 1). This allows call trees to be spread on different computers.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

27 ComSIS Vol. 10, No. 1, January 2013

$

3.2.

1.

SRV::
@2:..ClassA

.methodA()

SRV::
@2:..ClassB
.methodB2()

SRV::
@2:..ClassB
.methodB1()

Fig. 1. An example call tree

DProf can be configured to work in different modes, e.g., for the following
purposes: 1) locating software components causing deviations between
obtained results and values required by service level agreements (SLAs), 2)
detecting bottlenecks, or 3) collecting performance data for post-mortem
analysis. The first two modes are usually used for problem detection and
localization, while the third mode is used when software performance ought to
be evaluated in general. DProf uses SLAs that are defined in an XML
document, for which we propose an XML schema, called DProfSLA. The
schema is compliant to existing SLA standards in the field.

The idea behind our approach is to reduce monitoring overhead by only
monitoring parts of software suspected of containing problems or deviating
from expected behavior. In the problem localization process, the system starts
by monitoring methods that are at the root of call trees. If the deviation from
expected results in one of the trees is detected, the DProf incrementally turns
on monitoring in lower levels of that particular tree. This is repeated
successively, until the method that is causing the problem is determined.
DProf adapts without human intervention to find the cause of the problem.

This simulates the manual procedure typically employed for localizing the
root cause of performance problems. Other systems perform monitor the
whole software, regardless of the fact that other parts (other call trees) are
working fine. Since DProf’s additional monitoring components are
implemented using JMX technology, reconfiguration of the DProf monitoring
parameters can still be performed manually by system administrators using
any JMX console.

Software administrator intervention is only needed at the beginning of the
monitoring process, when the monitoring goals are configured. It usually takes
some time before clients start reporting a performance problem and even
more until the service provider reacts, locates the problem, and finds a
solution. Automation of localizing performance problems and faults reduces
this time. DProf can detect even the slightest deviations proactively. This can
provide enough time to react before clients start complaining, leaving software
performance at desired levels.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 28

In our earlier work we presented some parts of the monitoring subsystem of
the DProf system [6, 7]. In this paper, we further extend those results with
automatic adaptation of the monitoring process. We presented the DProfSLA
XML schema in [8]. This paper presents an enhanced version of the schema,
which contains support for the latest DProf features. A more detailed
evaluation of the system is also presented.

The remainder of the paper is organized as follows. In Section 2 we
present the DProf monitoring system, including its components, architecture
and functions provided. Section 3 presents an evaluation of the DProf
monitoring system. Section 4 discusses related work. It contains an example
of the continuous and adaptive monitoring of a real application and presents a
discussion of the obtained monitoring results. Finally, Section 5 draws
concluding remarks and outlines directions for future work.

2. DProf System

The DProf system enables adaptive monitoring of distributed enterprise
applications with a low overhead. It performs automatic analysis of obtained
data based on call tree analysis and automatically reconfigures the monitoring
instrumentation in order to reduce performance overhead or to provide more
detailed data. The system configuration specifies which parts of the
application are going to be monitored by selecting an application's call trees
and levels within these call trees.

DProf is based on the Kieker framework and the JMX technology. It can be
used for adaptive and reconfigurable continuous monitoring of Java EE
applications, as presented in this paper. Use of Kieker grants low overhead.
Separation of monitoring code from application code and source code
instrumentation is performed by using aspect-oriented programming (AOP)
[9]. We have developed additional components in order to allow an adaptive
reconfiguration of monitoring parameters at runtime, i.e., while the application
is running. JMX is used for controlling the monitoring process at runtime.
Together with the DProfSLA schema, DProf can be used to monitor SLAs
compliance and to localize the root cause of problems.

Details of our approach are presented in Section 2.1. In Section 2.2 we
describe the DProfSLA XML schema. An overview of the underlying Kieker
framework is given in Section 2.3. Section 2.4 presents architecture and some
implementation details of the DProf system.

2.1. The DProf Approach

The activity diagram in Fig. 2 illustrates the DProf monitoring process. Before
the application is started, an initial monitoring configuration is specified using
include and exclude clauses in the aop.xml file, which configures the AOP-
based instrumentation.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

29 ComSIS Vol. 10, No. 1, January 2013

User Analyzer AnalyzerThread Kieker+DProf

[no]

[yes]

[no]

[yes]

Application

start

Analyzer

configuration

and start

Call tree

creation

Call tree

analysis
call tree

anomaly

number to large

results in

accordance with

SLA

New parameters

creation and sending

Analyzer thread

creation and

configuration

Data

gathering

monitoring records

Monitoring with old

 parameters

Monitoring with

new parameters

monitoring parameters

Fig. 2. Activity diagram of the DProf monitoring system

On application startup, with the initial monitoring parameters specified in
the aop.xml, the DProf system is started simultaneously. It gathers monitoring
data during application execution. Periodically, obtained performance data is
being sent for analysis. The Analyzer reconstructs call trees based on
monitoring data. These trees are analyzed by the AnalyzerThreads, each
thread analyzing one tree in parallel to speed up analysis. A call tree
represents methods that are invoked after one client call to the application.
Each method invocation in the stack trace is represented with one node of the
tree.

For the analysis we use the R [10] programming language and environment
for statistical computing. We use the extremevalues [11] package to detect
and remove outliers that we consider temporary effects caused by various
external factors: class loading, starting of some resource-consuming process
in the background while the monitored application is running, hardware
glitches, etc. After outlier removal, the remaining values are processed using
the specified statistical function and compared to the required value as
defined in the SLA. Depending on the result of the comparison, new
monitoring parameters are generated. If the number of outliers exceeds the
value defined in DProfSLA, monitoring is repeated with old parameters.

If results deviate from values defined in the SLAs, the AnalyzerThread
creates new monitoring parameters. The creation of new parameters depends
on monitoring configurations defined in the SLA document. The system can
be configured to monitor all or only selected parts of the application for the
following purposes:

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 30

1. Recording normal results – this is used to determine nominal
values for SLAs. No changes in monitoring parameters are
assumed in this case.

2. Finding which software component does not conform to the SLAs –
in the SLAs we provide nominal values for nodes in call trees we
want to be monitored.

3. Finding which software component consumes the largest amount
of resources.

Using the DProf system, developers cannot only find which method causes
problems, but also in which context the problems occur. Since the
communication between the Analyzer and the components that are gathering
the data is implemented using web services, this component can be used for
receiving and analyzing monitoring records from applications developed for
platforms other than Java/Java EE. In order to use this system with some
other platform, such as .NET, adapters for the monitoring subsystem and the
management interface are required.

SLA Compliance Monitoring and Problem Localization
In order to provide desired values for SLA, the application is monitored using
the first configuration from the previous section (recording of normal results).
Branches omitted from the SLAs are not monitored.

DProf starts with monitoring the top levels specified. If a problem is
detected in one of the call trees, DProf triggers a reconfiguration to include
monitoring of the next level of that tree. It will proceed down the tree as long
as there is a discord with SLAs. The last node with values higher than those in
SLA is declared the source of the problem.

Localization of Increased Resource Consumption
In the DProfSLA document we specify which call trees are to be monitored.
For each call tree, the Analyzer configures the monitoring system to gather
data only from the top level. In the next iteration, it finds the tree with the
highest observed value (that is a root element of that tree). In the next
iteration, the monitoring system is reconfigured to monitor only that call tree's
first two levels. This process is repeated further down the tree (if those levels
exist). Through the process, DProf selects the branches with the highest
observed values. The process ends as soon as the instrumentation reaches
the bottom of the call-tree, or when observed values for the node on the
higher level are greater than the values for its child nodes.

2.2. DProfSLA Schema

DProfSLA documents are used to define SLA parameters based on our
DProfSLA XML schema. The relevant part of this schema with the root
element and its sub elements of this schema is shown in Fig. 3. (In this paper
we use the XMLSpy [12] notation for the XML schema representation.) The
root element (DProfSLA) has three sub elements: Parties (parties in the

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

31 ComSIS Vol. 10, No. 1, January 2013

agreement), CallTreeNode (call-traces to be monitored) and Timing (time
constraints of this agreement).

The Parties element represents the parties involved in the agreement. This
element has two sub elements: service provider (Provider) and service
consumer (Consumer). Both of these sub elements contain contact data
regarding the service provider and service consumer respectively. Each sub
element is represented using the OrganizationType complex type (not
detailed here).

Fig. 3. A part of the DProfSLA schema with the root element

Selection of Call Trees to be Monitored
Each CallTreeNode element represents performance information for a single
node in the call tree to be monitored. It is of the CallTreeNodeType complex
type shown in Fig. 4.

CallTreeNodeType elements have two mandatory attributes, a name and a
metric. The name attribute is used to specify a part of the application to be
monitored. The string representation of a call tree is used for this purpose.
The metric attribute specifies the performance metric to be used, i.e., which
aspect of application performance is going to be monitored (e.g., response
time, memory consumption). Sub elements of this element are other sub call
trees, e.g., sub traces that are invoked from the parent CallTreeNode
element.

Furthermore, optional attributes for specifying expected performance
values in terms of the designated metric can be configured. The
aggregateFunction represents the function to be used in data analysis. The
nominalValue represents the expected value (for the given aggregate
function), while the upperThreshold and the lowerTreshold are maximal and
minimal values of the designated metric, respectively. The outlierPct is used
to define the allowed fraction of outliers (Section 2.1) in the set of obtained
results.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 32

Fig. 4. CallTreeNodeType complex type defined in the DProfSLA schema

Fig. 5. Timing sub element in the DProfSLA schema

Specification of Timing Constraints
The Timing element (Fig. 5) is used to specify time constraints for this
agreement. The sub elements StartTime and EndTime define the period this
document applies to. The SamplingPeriod element denotes the time period (in
milliseconds) between two analyses runs, possibly resulting in a
reconfiguration of monitoring parameters.

Example DProfSLA Document
An example DProfSLA document, which describes monitoring of the call tree
from Fig. 1, is shown in Listing 1.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

33 ComSIS Vol. 10, No. 1, January 2013

1 <DProfSLA>

2 <Parties><Provider name="Org1" />

3 <Consumer name="Org2" /></Parties>

4 <CallTreeNode metric="avgExecutionTime"

5 name="ClassA.methodA,[{ ClassB.methodB1,[]} ,

6 {ClassB.methodB2,[]}]" upperThreshold="350">

7 <CallTreeNode metric="avgExecutionTime" name="[{

8 ClassB.methodB1,[]}]" upperThreshold="150"/>

9 <CallTreeNode metric="avgExecutionTime" name="[{

10 ClassB.methodB2,[]}]" upperThreshold="150"/>

11 </CallTreeNode>

12 <Timing><SamplingPeriod>600000</SamplingPeriod></Timing>

13 </DProfSLA>

Listing 1. DProfSLA document for this example

It represents an agreement between the parties Org1 and Org2. Response
times are monitored to detect values exceeding the specified upperThreshold
attribute. Every 10 minutes (600,000 ms), an analysis of the obtained results
is performed.

In the first iteration the system only monitors monitorA(). If the obtained
results show that the response times of methodA() exceed the upper
threshold, monitoring of methodB1() and methodB2() is turned on. After the
next 10 minutes, if results show that either methodB1() or methodB2() takes
too long, it will have to be analyzed manually. Otherwise, the program code in
methodA() is assumed to be the cause of the problem.

2.3. Kieker Framework

The Kieker framework is structured into the Kieker.Monitoring and the
Kieker.Analysis components [3]. The Kieker.Monitoring component collects
and stores monitoring data. The Kieker.Analysis component performs analysis
and visualization of the monitoring data. The core components of the Kieker
framework are depicted in Fig. 6, and described in the remainder of this
section.

The Kieker.Monitoring component is executed on the same computer the
monitored application executes on. This component collects application-level
measurement data during the execution of the monitored applications.
Monitoring Probes are software sensors that are inserted into the monitored
application in order to gather various measurements. For example, Kieker
includes probes to monitor control-flow and timing information of method
executions. Probes are most commonly implemented using AOP technology;
additional probes can be added to support different measurements, e.g., for
adding support for new metrics. Monitoring Writers pass the collected data (as
Monitoring Records), to a Monitoring Log or Stream. The framework is
distributed with Monitoring Writers that can store Monitoring Records in, for
example, file systems, databases, or Java Message Service (JMS) queues

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 34

[13]. Additionally, users can implement and use their own writers, as we did
for DProf. The Monitoring Controller component controls the work of this part
of the framework.

The data in the Monitoring Log/Stream is analyzed by the Kieker.Analysis
component. A Monitoring Reader reads records from the Monitoring
Log/Stream and forwards them to a pipe-and-filter configuration of Analysis
Filters. Filters may, for example, analyze and visualize gathered data. Control
of all components in this part of the Kieker framework is performed by the
Analysis Controller component.

Fig. 6. Component diagram of the Kieker monitoring framework

2.4. DProf System Architecture

We have implemented our approach using Java technology. The DProf
system uses Kieker's infrastructure for data acquisition, extended by some
additional components. The architecture of DProf system and its integration
with Kieker are shown in Fig. 7.

The DProf components are divided into two groups: i) components that
participate in recording monitoring data; and ii) components that analyze the
obtained data and control the reconfiguration of monitoring parameters.

The DProfWriter is the new Monitoring Writer used. It sends Monitoring
Records to the ResultBuffer component. The ResultBuffer periodically sends
data to the RecordReceiver component, which, in turn, stores data into the
relational database. The combination of ResultBuffer, RecordReceiver, and
database plays the role of the Monitoring Log/Stream (Section 2.3).

Received data is periodically analyzed by the Analyzer component. The
Analyzer is responsible for controlling the monitoring configuration.
Configuration parameters are sent to the DProfManager component, which
passes these parameters to the AspectController and to the ResultBuffer (to
clear, if it contains result created with previous configuration parameters). The
AspectController accesses the application’s aop.xml file and performs
changes, causing the application to restart. Upon the restart the new
monitoring parameters are applied.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

35 ComSIS Vol. 10, No. 1, January 2013

Serv er or cluster of serv ers

app. serv er (e.g. in cluster configuration)

Monitored application

Database and analysis serv er

Database

Record Receiv erAnalyzer

JMX Timer Serv ice

aop.xml

Monitoring Probe

DProfManager

AspectController MonitoringController

DProfWriter

ResultBuffer

Fig. 7. Deployment diagram of the DProf system

Kieker includes the monitoring record type OperationExecutionRecord that
is used to store timing and trace information for method executions. We have
developed the new Monitoring Record type DProfMonitoringRecord, which
extends Kieker's original OperationExecutionRecord and additionally provides
the otherData attribute. This attribute is used to store additional information,
e.g. CPU utilization and memory consumption. When the record is created in
the probe, the attribute is filled with comma-separated key-value pairs,
depending on what the given monitoring aspect measures. Keys in this list
correspond to metrics defined in the SLA document. This allows us to use this
single Monitoring Record class for monitoring different metrics.

The RecordReceiver receives the data from the ResultBuffer. It is
implemented as a web-service, and it stores records into a database table.

By using the DProfManager and these additional components we can
change monitoring parameters at runtime. This allows us to reduce the impact
on the system, including monitoring overhead, by disabling monitoring in
certain parts of the application, and to obtain more accurate results. Setting
the new parameters can be performed either manually, by a person in charge
or automatically by the Analyzer component. The Analyzer component,
provided with a DProfSLA schema document, can check if service levels
observed in gathered data deviate from those defined in the SLA and,
according to the algorithm described in Section 2.1, to determine which part of
the software causes this deviation.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 36

Code instrumentation can be performed by hard-coding instrumentation
routines into program code, but a more elegant way is AOP . AOP provides
developers with separation of concerns: monitoring aspects are developed
separately from application code.

Using AOP, we can choose to weave aspects with code upon compilation
or to let the aspect runtime weave aspects into classes upon class loading.
These processes are known as compile-time-weaving and load-time-weaving.
When using DProf, we usually want to change monitoring parameters at
runtime, so we use load-time-weaving. If we monitor, without having to
change monitoring parameters at runtime, we can use compile-time weaving.
The advantage of using compile-time-weaving is only a faster application
start; afterwards both compile- and load-time-weaved applications behave the
same.

The DProf system uses the AspectJ AOP implementation for Java [14], for
instrumentation. Initially, the AspectJ configuration file (aop.xml) specifies
which parts of the application are to be included/excluded from monitoring,
and which aspect to use as monitoring probes. During monitoring with the
DProf system, additional clauses will be placed in this configuration file for the
purpose of monitoring adaptation.

In the Java environment, time is usually measured using either
System.currentTimeMillis() or System.nanoTime() calls [15]. Measuring of
system-level metrics (such as memory consumption and CPU utilization), can
be performed using platform MXBeans [4] or some third-party tools such
asSIGAR [16].

3. Evaluation of the DProf System

The application of the DProf system will be demonstrated using the software
configuration management (SCM) application described in our previous work
[17]. SCM is a Java EE application responsible for tracking of applications and
application versions in a company.

The goal is to monitor method response times and to localize the root
cause of performance problems. Initially, DProf is configured to monitor only
methods at the root of call trees. If an increase in method response times is
detected, DProf will, potentially successively, reconfigure the instrumentation
to monitor other levels, until it localizes the method that causes the problem.

This evaluation serves to demonstrate that monitoring overhead can be
reduced by monitoring only root level if no performance problem is present.
Also we perform a basic analysis of the overhead generated when using
DProf, comparing it to the overhead generated by writers distributed with the
Kieker framework.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

37 ComSIS Vol. 10, No. 1, January 2013

3.1. Setting

The application is implemented using Enterprise JavaBeans (EJB) [18]
technology. Entity EJBs are used for communication with databases, i.e., for
object/relational (O/R) mapping [19]. They are accessed through stateless
session EJBs (SLSB), modeled according to the façade design pattern [20].
SLSBs are annotated to work as JAX-WS [21] web services as well. We
deployed SCM on a cluster of servers. The application client is a Java Swing
[22] application.

Figure 8. shows a part of the application's architecture.

Fig. 8. A part of the monitored SCM application's architecture

Methods that are to be monitored are annotated with Kieker's
@OperationExecutionMonitoringProbe. As a monitoring probe we used a
Kieker's original OperationExecutionAspectAnnotation probe. It intercepts
executions of annotated methods.

In this case study we will focus on the call tree shown in Fig. 9.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 38

$

3.2.

4. 5.

1.

SRV::
@3:..OrganizationFacade

.createOrganization()

SRV::
@2:..OrganizationFacade

.checkOrgName()

SRV::
@2:..City
.getId()

SRV::
@1:..Organization

.getId()

SRV::
@1:..Organization

.getAddress()

Fig. 9. The call tree monitored in this example

The testing was performed by repeatedly invoking the
OrganizationFacade.createOrganization() method from 100 concurrent
threads, with equally distributed think times between 0 and 10 seconds.

The analysis of the obtained data is performed every hour. Initially, only the
createOrganization(..) method is monitored. After a deviation from values
specified in the DProfSLA (last row in Table 1.) is detected, the methods
invoked from this one are monitored additionally. If these methods do not
violate the SLAs, the problem is assumed to be in the createOrganization(..)
method. If the results for the checkOrgName(..) show deviations, monitoring is
reconfigured to include the Organization.getId() and
Organization.getAddress() methods, and to exclude the method City.getId().
The most likely cause of the problem is the method whose results do show
deviation from expected response times, while methods invoked from it do
not.

Within the checkOrgName() method, we purposly inserted a delay of 1 ms,
to simulate a problem. In order to determine the impact of DProf on the
monitored application, we measured response times on the client computer.

3.2. Analysis of Results

The obtained results were analyzed by the Analyzer after one hour, showing
increased response of the createOrganization(..) method.To find the source of
the problem, the Analyzer component changed monitoring parameters and
added monitoring instrumentation to the methods in the next level of the call
tree.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

39 ComSIS Vol. 10, No. 1, January 2013

The analysis of the gathered data, one hour after the previous analysis,
showed that an response time of the checkOrgName(..) method rose over
designated values. The Analyzer then included the monitoring in the third
level, i.e., the methods Organization.getId() and Organization.getAddress().
The obtained results are shown in Table 1.

Table 1. The average response times of monitored methods in milliseconds

Method

Levels
monitored

Organization-
Facade.
create-

Organization

City.
getId

Organization-
Facade.

checkName

Organization.
getId

Organization.
getAddress

1
2.888

Not
monitored

Not monitored Not monitored Not monitored

1 and 2 3.05 0.307 1.502 Not monitored Not monitored

1, 2 and 3 3.339
Not

monitored
2.290 0.429 0.71

Response
times required
by the SLA

2.250 0.750 1.300 0.750 0.850

Organization.createOrganization(..) has increased response time because
of the OrganizationFacade.checkOrgName(..). In turn, increased results of
OrganizationFacade.checkOrgName(..) are not caused by the executions of
the Organization.getId(...) and Organization.getAddress(...) methods.

Based on these results, it can be concluded that the checkOrgName(...)
method requires further inspection in order to be made compliant in
accordance to the SLA. This means that our system has been able to localize
the method which causes the problem.

Overhead analysis
In order to estimate overhead we measured response times on the client side.
A comparison of these times is shown in Fig. 10. The median response time
of the monitored method, when monitoring is disabled, was 3.078 ms. By
enabling monitoring of the call tree's first level, it increased to 3.535 ms.
Monitoring of the second level generated additional 0.344 ms (it increased to
3.879 ms). Inclusion of monitoring of the third level led to average response
time of 4.133 ms.

As expected, DProf yields an overhead, which rises if we increase the
number of monitored methods. Also, a slight increase of the standard
deviation in results from 0.954 ms to 1.194 ms shows that reponsiveness
becomes more unstable when the number of monitored call tree levels is
increased. Hence, in case no problem is detected, the overhead would be
minimal and responsiveness more stable, since only the first level would be
monitored.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 40

Fig. 10. Comparison of response times of the Organisation.createOrganisation(…)
method in different scenarios

Fig. 11. Overhead comparison for different writers

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

41 ComSIS Vol. 10, No. 1, January 2013

The obtained results are also in accordance to Kieker overhead analysis
shown in [3]. Further comparison with Kieker's writers is shown in Fig. 11. We
compared response times of the monitored application in different monitoring
configurations: with no monitoring, when using DProf with and without sending
data to the ResultBuffer, and when Kieker's original SyncFSWriter and
SyncDBWriter are used.

The DProf system has lower overhead than Kieker's original SyncFSWriter
and SyncDBWriter, which write records into file system and database,
respectively. This is because in DProf, communication between the writer
and the buffer is performed within one JVM.

Based on these results, it can be concluded that this system is suitable for
continuous monitoring of all kinds Java applications. It provides valuable data
on application execution with very small impact on application performance.

4. Related Work

For the research presented in this paper two fields are of particular
importance: monitoring tools (which are presented in Section 4.1) and existing
standards for SLA documents definition (Section 4.2).

4.1. Application Monitoring and Profiling Tools

Monitoring and profiling tools have been in use since the early 1970s. The
UNIX operating system includes the prof tool [23] since 1979. It can record
execution times for each program function. ATOM [24] was one of the first to
use source code instrumentation and it appeared in the 1990s. Before
application deployment, ATOM combines the instrumentation and the
application code. The application executes normally, with additional output
containing monitoring data.

A recent study by Snatzke [25] shows that, although service levels and
performance of applications are of critical importance in practice, application
level monitoring tools are rarely used. Java application monitoring tools are
usually developed using either JVMTI/JVMPI [26, 27] or aspect-oriented
programming (AOP) [8] technology. JVMTI and JVMPI APIs require
knowledge of C/C++ in addition to Java, and also impose significant overhead
[3]. Examples of JVMTI/JVMPI-based profilers are JBoss Profiler [28] and
JFluid [29]. JBoss Profiler is the profiler used with the JBoss application
server [30]. JFluid is used within the NetBeans IDE [31]. COMPASS JEEM
[32] can be used to monitor JEE applications, but every application layer
needs a different set of probes. The Kieker framework [3], used in this work, is
a Java-based framework for continuous application performance monitoring
and dynamic software analysis. It includes aspects which implement
monitoring probes.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 42

A number of commercial application monitoring tools exist, but
implementation details of these tools are scarce at best, if available at all.
DynaTrace [33] uses its own PurePath technology which captures timing and
context information for transactions across all application tiers. It has support
for both Java and .NET environments. JXInsight [34] is designed for
monitoring applications in JEE environments. It offers automatic performance
analysis and problem detection. IBM's Tivoli Management Framework [35] is
a system management platform. It is CORBA-based and allows remote
management of software. IBM Tivoli Monitoring, which uses the Tivoli
framework, is a set of tools which can be used for problem detection in
various environments. Tivoli supports monitoring of JavaEE (WebSphere
server), .NET, network (DNS, DHCP) and others. Both agent and agentless
monitoring are supported. AppDynamics provides solutions for monitoring on
different platforms, with low overhead [36]. It supports the automatic
localization of problem root causes. Monitoring tools for other purposes exist
as well, e.g., Nagios [37] for infrastructure monitoring, CA Unicenter [38] for
infrastructure and application performance monitoring and management, or
HP's Insight [39] for monitoring and problem localization on some specific
platforms.

Newman et al. present the MonALISA system [40] which constitutes a
distributed monitoring service. It is implemented using Java and WSDL/SOAP
technologies. MonALISA allows for monitoring of heterogeneous systems
using autonomous agent based sub-systems. A graphical user interface
visualizes complex gathered data. MonALISA includes a library of APIs that
can be used to send data to MonALISA services. Using these APIs, other
systems, such as DProf can be included in the monitoring process.

AOP can be used for instrumentation of code. Separation of concerns
allows for monitoring code to be separated from application code. There are
several monitoring tools based on AOP.

The concept of manageable aspects–a combination of aspects and JMX
MBeans–is proposed by Liu et al. [41]. It can be used as monitoring probes,
for instrumentation and collecting runtime data during software execution.
They can be accessed and controlled using any JMX console. Although this
approach would present an excellent platform for adaptive monitoring, no
implementation of this concept has been provided, yet.

The HotWave framework [42], which is still in development phase, allows
run-time reweaving of aspects and the creation of adaptive monitoring
scenarios. It allows for a development of adaptable monitoring solutions, as
presented by the authors. Users can choose parts of the application to be
monitored, and later reconfigure the system to monitor other parts, without
having to restart the system. Unfortunately, no implementation of this
framework is currently available.

Ehlers et al. present an approach for anomaly diagnosis [43] also based on
call tree analysis and self-adaptive monitoring with Kieker. For each call tree
node, representing the execution of a software method in a certain context,
anomaly scores for response times are computed by comparing observed
values with values predicted based on historic observations. OCL [44] is used

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

43 ComSIS Vol. 10, No. 1, January 2013

to specify rules for adapting the instrumentation based on the anomaly scores
and the current instrumentation. In our earlier work [45], we presented an
approach for automatic problem localization based on a correlation of
anomaly scores with architectural calling dependencies. Kieker was also used
in this approach. However, the monitoring was not adaptive.

Yu et al. [46] present the RaceTrack tool for race detection in .NET
applications. This tool monitors program activity and looks for suspicious
patterns in program execution. It has great accuracy because it monitors
memory access at both object and field level. It starts by monitoring at object
level, and only if unusual patterns are detected, it switches to field level. This
way, performance overhead is reduced. The RaceTrack is implemented by
modifying .NET’s virtual machine CLR (common language runtime). Such
modification requires great understanding of how CLR works. If some
changes are made in the future, it would probably require modifications on
this tool. Also, the modified CLR has to be distributed with the application that
is to be monitored, instead of, for example, just starting a tool within existing
CLR.

Chen et al. [47] propose the Pinpoint system that locates components most
likely to cause a fault. The approach is based on finding correlations between
low-level faults and high-level problems. Data is gathered by collecting client
traces using a modified Java EE platform. Unlike our approach, this approach
focuses more on problem localization and less on performance problems.

A black box approach to problem localization is applied by some of the
authors. This approach usually finds a component that is causing problems,
but does not locate the problem within component. Aguilera et al. [48] use an
approach that monitors message communication between components and
tries to find causal paths between messages and performance problems. The
PeerPressure tool presented by Wang et al. [49] compares "healthy" and
"suspicious" machines using statistical methods to locate problems.

Very few papers provide actual numbers regarding overhead. Dimitriev [29]
tested JFluid’s performance with SPECjvm98 tool [50]. Results show that
overhead ranges from 1% for time consuming tasks like database access, to
5000% for compress tasks. JFluid allows users to reduce overhead by
selecting the parts of an application to monitor. Govindraj et al. [51] discuss a
possibility of using AOP for monitoring and they show the overhead ranges
from 1-10%. For DynaTrace the monitoring overhead is reported to be less
than 5%. However, these percentages are hardly comparable because they
heavily depend on hardware and software used in the benchmarks, and
especially they depend on the granularity of instrumentation and the usage
profile.

4.2. SLA Standards

In order to automate service level management, SLAs must be defined in
machine-readable format. As shown by Tebbani et al. [52], only few formal
SLA specification languages exist. In practice, SLAs are often written in some

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 44

informal language. Tebbani et al. propose the GSLA (Generalized Service
Level Agreement) language. A GSLA document constitutes a contract signed
between two or more parties designed to create a measurable common
understanding of each party’s role. The role is nothing but the set of rules
which defines the minimal service level expectations and obligations the party
has. GXLA is the XML schema which implements the GSLA information
model. GXLA documents are composed of the following sections: schedule
(temporal parameters of the contract), party (models involved parties), service
package (an abstraction used to describe services) and role (as described).
The use of GXLA supports an automation of the service management
process.

WSLA [53] is a language to specify service levels for web services. XML-
based WSLA documents define the involved parties, metrics, measuring
techniques, responsibilities, and courses of action. The authors state that
every SLA language, such as WSLA, should support contain 1) information
regarding the agreeing parties and their roles, 2) SLA parameters and a
measurement specification as well as 3) obligations for each party.

SLAng [54] is a language for specifying SLAs based on the Meta Object
Facility [55]. It can use different languages for describing constraints, e.g.,
utilizing OCL [44] or HUTN [56].

The WS-Agreement specification language [57] has been approved by the
Open Grid Forum. It defines a language for service providers to offer
capabilities and resources, and clients to create an agreement with that
provider.

Paschke et al. [58] propose a categorization scheme for SLA metrics with
the goal to support the design and implementation of SLAs that can be
monitored and enforced automatically. Standard elements of each SLA are
categorized as: technical (service descriptions, service objects, metrics, and
actions), organizational (roles, monitoring parameters, reporting, and change
management), and legal (legal obligations, payment, additional rights, etc.).
Paschke et al. categorized service metrics in accordance with standard IT
objects: hardware, software, network, storage, and help desk. SLAs are
grouped according to their intended purpose, scope of application, or
versatility.

According to this categorization, DProfSLA documents (described in
Section 2.2) are operation-level documents intended to be used in-house. By
versatility categorization, they belong to standard agreements. We chose to
design our own XML schema as an intermediate format, because we do not
need all of the features of the described schemas. It is specifically designed to
be used with the DProf system. Our schema provides a subset of the
elements defined by GXLA or WSLA. A transformation of SLA documents
between DProfSLA and the mentioned schemas could, for example, be
performed using XSLT.

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

45 ComSIS Vol. 10, No. 1, January 2013

5. Conclusion

This paper presented the DProf approach for continuous and adaptive
monitoring of distributed software systems and automatic evaluation of
software performance against expected values defined in service level
agreements (SLAs). The DProf system gathers data from application
execution, compares these measurements with the SLAs and, based on call
tree analysis, aims it localizes application components causing possible SLA
violations. Expected values are defined in a document based on the described
DProfSLA XML schema. The schema is designed with existing SLA
schemas, such as GXLA and WSLA, and their categorizations of contained
information in mind. DProfSLA’s intended use is for standard intra-
organizational agreements, but it may be used for inter-organizational
agreements, too. The schema supports various metrics and additional metrics
can be added as needed.

The DProf monitoring system is mainly designed for continuous monitoring
of JEE applications, but with minor modifications it can be used to monitor
applications developed for other platforms. We described the architecture of
our DProf prototype, whose implementation is based on the Kieker framework
with additional JMX-based components.

As a proof-of-concept, the DProf system was used for adaptive monitoring
of a sample Java EE application. The analysis of obtained results shows low
monitoring overhead, and reduced overhead by enabling monitoring on-
demand.

Our system is not able to differentiate between call trees with the same root
element, that can have different lower nodes. In this case the system could
report incorrect results. In order to confront this issue, developers should
choose to monitor only one of these trees, and exclude the other using an
appropriate aop.xml configuration file.

Our future work regarding DProf will focus on the implementation of the
DProf Analyzer as a Kieker plugin and an integration of the DProf component
into the Kieker distribution. We also plan to further extend the system by
additional monitoring probes for different and more complex measures.
Furthermore, we will work on more advanced algorithms for the Analyzer
component, enabling it to change monitoring parameters on different
computers in distributed environments.

References

1. Benyon, R.: Service Agreements: A Management Guide. Van Haren Publishing,
Netherlands. (2006)

2. Grottke, M., Matias Jr., R., Trivedi, K. S.: The Fundamentals of Software Aging. In
Proceedings of the 1st International Workshop of Software Aging and
Rejuvenation/19th International Symposium on Software Reliability Engineering
(WoSAR/ISSRE). Seattle, USA, 1-6. (2008).

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 46

3. Hoorn, A. v., Hasselbring, W., Waller, J.: Kieker: A Framework for Application
Performance Monitoring and Dynamic Software Analysis. Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Boston, Massachusetts, USA. To appear. (2012)

4. Ammons, G., Ball, T., Larus, J. R.: Exploiting Hardware Performance Counters
With Flow and Context Sensitive Profiling. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI '97).
ACM, Las Vegas, Nevada, USA. 85-96. (1997)

5. Sullins, B. G., Whipple, M. B.: JMX in Action. Manning Publications, USA. (2002)
6. Okanović, D., van Hoorn, A., Konjović, Z., Vidaković, M..: Towards Adaptive

Monitoring of Java EE Applications. In Proceedings of the 5th International
Conference on Information Technology (ICIT 2011). Al-Zaytoonah University of
Jordan, Amman, Jordan. CD. (2011)

7. Okanović, D., Vidaković, M. : Performance Profiling of Java Enterprise
Applications. In Proceedings of the International Conference on Internet Society
Technology and Management (ICIST 2011). Information Society of Serbia,
Kopaonik, Serbia. CD. (2011)

8. Okanović, D., Konjović, Z., Vidaković, M.: Continuous Monitoring System For
Software Quality Assurance. In Proceedings of XV International Conference on
Industrial Systems (IS'11). University of Novi Sad, Novi Sad, Serbia, 193-198.
(2011)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J-M.,
Irwin, J., Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming. Springer, Jyväskylä, Finland. 220–
242. (1997)

10. R Development Core Team. R: A language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria. (2010)

11. extremevalues: Univariate Outlier Detection. Mark van der Loo. (2011) [Online]
Available: http://cran.r-project.org/web/packages/extremevalues/ (current
September 2011)

12. XMLSpy. Altova. [Online] Available: www.altova.com/xmlspy.html (current April
2012)

13. JSR-000914 JavaTM Message Service (JMS) API. Java Community Process.
[Online] http://jcp.org/aboutJava/communityprocess/final/jsr914/index.html (current
March 2012)

14. The AspectJ Project. Eclipse Foundation. [Online] http://www.eclipse.org/aspectj/
(current April 2012)

15. Lambert, J. M., Power, J. F.: Platform Independent Timing of Java Virtual Machine
Bytecode Instructions. Electronic Notes in Theoretical Computer Science, Vol.
220. Elsevier Science Publishers, Amsterdam, Netherlands, 97-113.(2008)

16. Hyperic SIGAR API. Hyperic. [Online] http://www.hyperic.com/products/sigar
(current April 2012)

17. Okanović, D., Vidaković, M.: One Implementation of the System for Application
Version Tracking and Automatic Updating. In Proceedings of the IASTED
International Conference on Software Engineering 2008. ACTA Press, Innsbruck,
Austria. 62–67. (2008)

18. EJB 3.0. [Online] Available: http://java.sun.com/products/ejb/ (current April 2012)
19. Barry, D., Stanienda, T.: Solving the Java Object Storage Problem. Computer, Vol.

31, No.11, 33-40. (1998)
20. Gamma, E., Helm, R., Johnson, R., Vlissides, J. M: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Proffesional, Boston, USA.
(1994)

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Benjamin%20G%20Sullins
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Mark%20B%20Whipple

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

47 ComSIS Vol. 10, No. 1, January 2013

21. Kalin, M.: Java Web Services: Up and Running. O'Reilly Media, Sebastopol,
California, USA. (2009)

22. Java Swing. Oracle. [Online] Available: http://java.sun.com/javase/
6/docs/technotes/guides/swing (current April 2012)

23. Unix Programmer's Manual. Section 1, Bell Laboratories, Murray Hill, NJ. (1979)
24. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program

Analysis Tools. In Proceedings of the ACM SIGPLAN 1994 Conference on
Programming Language Design and Implementation. ACM, Orlando, Florida,USA.
196-205. (1994)

25. Snatzke, R. G.: Performance survey 2008. (2008). [Online]. Available:
http://www.codecentric.de/export/sites/homepage/__resources/pdf/studien/perform
ance-studie.pdf (current April 2012)

26. Java Virtual Machine Tool Interface (JVMTI). Oracle. [Online] Available:
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/ (current April
2012)

27. Java Virtual Machine Profiler Interface (JVMPI). Oracle. [Online] Available:
http://download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html (current April
2012)

28. JBoss Profiler. JBoss Community team. [Online] Available:
www.jboss.org/jbossprofiler (current April 2012)

29. Dimitriev, M.: Design of JFluid. Technical Report SERIES13103, Sun
Microsystems Inc., USA. (2003)

30. JBoss Application Server. JBoss Community team. [Online]
http://www.jboss.org/jbossas (current April 2012)

31. NetBeans. [Online] Available: http://netbeans.org/index.html (current September
2011)

32. Parsons, T., Mos, A., Murphy, J.: Non-Intrusive End-to-End Runtime Path Tracing
for J2EE Systems. IEEE Proceedings – Software, Vol. 153, No. 4, 149–161.
(2006)

33. dynaTrace – Continuous application performance management. dynaTrace
software Inc. [Online] Available: http://www.dynatrace.com/ (current April 2012)

34. JXInsight. JInspired. [Online] Available: http://www.jinspired.com/
products/jxinsight/ (current April 2012)

35. IBM - Monitoring Software - Tivoli Monitoring. IBM. [Online] http://www-
01.ibm.com/software/tivoli/products/monitor/ (current April 2012)

36. AppDynamics. [Online] Available: http://www.appdynamics.com (current March
2012)

37. Nagios. [Online] Available: http://www.nagios.org (current March 2012)
38. Application Performance Management. CA Technologies. [Online] Available:

http://www.ca.com/us/application-performance-management.aspx (current April
2012)

39. HP Systems Insight Manager. Hewlett-Packard. [Online] Available:
http://h18013.www1.hp.com/products/servers/management/hpsim/index.html?jum
pid=go/hpsim (current April 2012)

40. Newman, H. B., Legrand, I. C., Galvez, P., Voicu, R., Cirstoiu, C.: MonALISA : A
Distributed Monitoring Service Architecture. In Proceedings of the Conference for
Computing in High-Energy and Nuclear Physics. La Jolla, California, USA. 8pp.
(2003)

41. Liu, R., Gibbs, C., Coady, Y.: MADAPT: Managed Aspects for Dynamic Adaptation
Based on Profiling Techniques. In Proceedings of the 3rd Workshop on Adaptive
and Reflective Middleware. ACM, Toronto, Ontario, Canada. 214 – 219. (2004)

http://netbeans.org/index.html

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 48

42. Villazón, A., Binder, W., Ansaloni, D., Moret, P.: HotWave: Creating Adaptive
Tools With Dynamic Aspect-Oriented Programming in Java. In Proceedings of the
8th International Conference on Generative Programming and Component
Engineering (GPCE ’09). ACM, Denver, Colorado, USA. 95–98. (2009)

43. Ehlers, J., van Hoorn, A., Waller, J., Hasselbring, W.: Self-Adaptive Software
System Monitoring for Performance Anomaly Localization. In Proceedings of the
8th IEEE/ACM International Conference on Autonomic Computing (ICAC 2011).
ACM, Karlsruhe, Germany. 197-200. (2011)

44. Object Constraint Language (OCL) 2.0. OMG. [Online] Available:
http://www.omg.org/spec/MOF/2.0 (September 2011)

45. Marwede, N., Rohr, M., van Hoorn, A., Hasselbring, W.: Automatic Failure
Diagnosis Support in Distributed Large-Scale Software Systems Based on Timing
Behavior Anomaly Correlation. In Proceedings of the 2009 European Conference
on Software Maintenance and Reengineering (CSMR '09). IEEE Computer
Society, Kaiserslautern, Germany. 47-58. (2009)

46. Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient Detection of Data Race
Conditions via Adaptive Tracking. In Proceedings of the ACM Symposium on
Operating Systems Principles. ACM, Brighton, UK. 221-234. (2005)

47. Chen, M., Kiciman, E., Fratkin, E.., Fox, A., Brewer, E.: Pinpoint: Problem
Determination in Large Dynamic Systems. In Proceedings of 2002. International
Conference on Dependable Systems and Networks. IEEE Computer Society,
Washington DC, USA. 595-604. (2002)

48. Aguilera, Mogul, J., Wiener, J., Reynolds, P., Muthitacharoen, A.: Performance
Debugging for Distributed Systems of Black Boxes. In Proceedings of the 19th
ACM symposium on Operating systems principles. ACM, Bolton Landing, New
York, USA. 74-89. 2003.

49. Wang, H., Platt, J., Chen, Y., Zhang, R., Wang, Y.: PeerPressure for Automatic
Troubleshooting. In Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems. ACM, New York, New York,
USA. 398-399. (2004)

50. SPECjvm98. Standard Performance Evaluation Corporation. (1998) [Online]
Available: http://www.spec.org/jvm98/ (current 12 September 2011)

51. Govindraj, K., Narayanan, S., Thomas, B., Nair, P., Peeru, S.: On using AOP for
Application Performance Management. In Industry Track Proceedings of the 5th
International Conference on Aspect-Oriented Software Development. ACM, Bonn,
Germany. (2006)

52. Tebbani, B., Aib, I.: GXLA a Language for the Specification of Service Level
Agreements. Lecture Notes in Computer Science, Vol. 4195. Springer-Verlag,
Berlin Heidelberg New York, 201-214. (2006)

53. Keller, A., Ludwig, H.:The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems
Management, Vol. 11, No. 1, 57-81. (2003)

54. Lamanna, D., Skene, J., Emmerich, W.: SLAng: A Language for Defining Service
Level Agreements. In Proceedings of the 9th IEEE Workshop on Future Trends of
Distributed Computer Systems (FTDCS '03). IEEE Computer Society, San Juan,
Puerto Rico. 100-107. (2003)

55. Meta Object Facility (MOF) 2.0 Core Specification. OMG. [Online] Available:
http://www.omg.org/spec/MOF/2.0 (current September 2011)

56. Human Usable Textual Notation (HUTN) Specification. OMG. [Online] Available:
http://www.omg.org/spec/HUTN/index.htm (current September 2011)

http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://portal.acm.org/citation.cfm?id=635442&CFID=11324330&CFTOKEN=70566684
http://www.omg.org/spec/HUTN/index.htm

Dušan Okanović, André van Hoorn, Zora Konjović, and Milan Vidaković

49 ComSIS Vol. 10, No. 1, January 2013

57. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic WS-agreement
partner selection. In Proceedings of the 15th International Conference on World
Wide Web. ACM, Edinburgh, Scotland, UK. 697-706. (2006)

58. Paschke, A., Schnappinger-Gerull, E.: A Categorization Scheme for SLA Metrics.
In Proceedings of Multi-Conference Information Systems. Passau, Germany.
(2006)

Dušan Okanović is a teaching assistant and PhD student atthe Faculty of
Technical Sciences, Novi Sad, Serbia. He received his Bachelor degree
(2002) and Masters degree (2006), both in Computer Science from the
University of Novi Sad, Faculty of Technical Sciences. His research interests
include application management, performance management and distributed
applications development. Since 2003 he has been with Faculty of Technical
Sciences where he was teaching where he participated in several science
projects and published 25 scientific papers. His research interests are web
and internet programming, distributed applications, application management,
and performance management. He can be contacted at: oki@uns.ac.rs.

André van Hoorn is a research assistant and PhD student with the Software
Engineering Group at the University of Kiel, Germany. He received his
Diploma (Master equivalent) degree in Computer Science from the University
of Oldenburg, Germany (2007). From 2008 to 2010, André was member of
the Graduate School on Trustworthy Software Systems (TrustSoft) at the
University of Oldenburg, where he was holding a PhD scholarship from the
German Research Foundation (DFG). Since 2011, he works in the
collaborative research project DynaMod on dynamic analysis for model-driven
software modernization. His research interests include architecture-based and
model-driven software performance engineering, self-adaptation, and
reengineering. He published more than 20 scientific papers. André can be
contacted at: avh@informatik.uni-kiel.de.

Zora Konjović has been holding the full professor position at the Faculty of
Technical Sciences, Novi Sad, Serbia since 2003. Mrs. Konjović received her
Bachelor degree in Mathematics from the University of Novi Sad, Faculty
Science in 1973, Master degree in Robotics from the University of Novi Sad,
Faculty of Technical Sciences in 1985, and Ph. D. degree in Robotics from
the University of Novi Sad, Faculty of Technical Sciences in 1992. From 1973
till 1980 she was with the Faculty of Science in Novi Sad, and since 1980 she
has been with the Faculty of Technical Sciences, University of Novi Sad. Mrs.
Konjović participated in 5 scientific and more than 30 professional projects; in
5 she was the project leader. She published more than 150 scientific and
professional papers. She is the corresponding author and can be contacted
at: ftn_zora@uns.ac.rs.

SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem
Localization

ComSIS Vol. 10, No. 1, January 2013 50

Milan Vidakovic received the BSc, MSc and PhD degrees in electrical
engineering from the Faculty of Technical Sciences, University of Novi Sad, in
1995, 1998 and 2003 respectively. He is a professor at Computing and
Control Department, University of Novi Sad. He participated in several
science projects and published more than 60 scientific and professional
papers. His research interest covers web and internet programming,
distributed computing, software agents, embedded systems, and language
internationalization and localization. He can be contacted
at: minja@uns.ac.rs.

Received: September 26, 2011; Accepted: June 14, 2012

