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Abstract. Continuous monitoring of software systems under production 
workload provides valuable data about application runtime behavior and 
usage. An adaptive monitoring infrastructure allows controlling, for 
instance, the overhead as well as the granularity and quality of collected 
data at runtime. Focusing on application-level monitoring, this paper 
presents the DProf approach which allows changing the instrumentation 
of software operations in monitored distributed applications at runtime. It 
simulates the process human testers employ–monitoring only such parts 
of an application that cause problems. DProf uses performance 
objectives specified in service level agreements (SLAs), along with call 
tree information, to detect and localize problems in application 
performance. As a proof-of-concept, DProf was used for adaptive 
monitoring of a sample distributed application. 

Keywords: continuous monitoring, adaptive monitoring, aspect-oriented 
programming, service level agreements. 

1. Introduction 

Modern enterprise applications constantly grow in size and complexity which 
makes them extremely demanding both from functional and non-functional 
aspects. Along with functional requirements, applications have to fulfill its non-
functional requirements. Common non-functional requirements are availability, 
responsiveness, robustness, portability, etc. Non-functional requirements are 
defined in an agreement between software providers and consumers, called 
service level agreement (SLA) [1]. Before software is put into operation 
phase, in order to check software for bugs, it must be thoroughly tested. 
However, the testing phase of is often shortened, usually because of pressure 
to put the application in operation as soon as possible. Furthermore, the 
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standard testing, e.g., using debuggers and profilers, hardly allows detecting 
all errors and unpredicted events that occur in production or during operation. 
Also, it is a common phenomenon that software performance and quality of 
service (QoS) degrade over time [2]–which calls for continuous monitoring of 
applications in order to determine whether QoS is kept on a satisfactory level. 
Continuous monitoring of software is a technique that provides a picture of 
dynamic software behavior under real exploitation circumstances. The data 
obtained through the monitoring process can, for instance, be used as a basis 
for architecture-based software optimization, visualization, and reconstruction 
[3]. 

An important issue of software monitoring is imposed performance 
overhead, since the monitoring system shares common resources with the 
monitored system. Therefore, the monitoring system has to perform using a 
minimal amount of resources. In a testing phase, software developers 
commonly use tools such as profilers and debuggers. These tools induce 
significant performance overhead, and therefore, they are not suitable for 
monitoring during the operation phase. Monitoring code can only be optimized 
up to a certain extent. In order to achieve an even higher reduction of 
monitoring overhead, it would be beneficial to automatically adapt monitoring 
to only monitor selected parts of the system. 

The DProf system proposed in this paper has been developed for adaptive 
monitoring of distributed enterprise applications with a low overhead. In order 
to do that, the Kieker [3] framework, which yields low overhead, is used for 
collecting the monitoring data. Additional components support changing of 
monitoring parameters at application runtime. These additional components 
have been developed using Java Management Extensions (JMX) [4]. The 
system analyzes call trees (as described in the following paragraph) 
reconstructed from the gathered data and automatically creates a new 
monitoring configuration if needed. 

A call tree represents calling relationships between software methods [5]. It 
contains the control-flow of method executions invoked by a client request. 
The first method is called the "root". For example, consider the simplified call 
tree in Fig. 1. This call tree represents a situation where a client invokes 
methodA() from ClassA. This method in turn, invokes two methods from 
ClassB: first methodB1() and then methodB2(). SRVX and SRVY are the 
names of servers on which the methods are being executed. 

DProf configuration parameters specify which of the application's call trees 
are going to be monitored and, furthermore, they can specify nesting levels 
within the call tree that are to be monitored. DProf stores data in a central 
database, regardless of on how many computers the monitored application is 
executed. Using mechanism integrated into the Kieker framework, during data 
gathering, each method execution within a trace is uniquely identified and 
assigned a number which represents the order of execution (numbers on 
branches in Fig. 1). This allows call trees to be spread on different computers. 
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SRV::
@2:..ClassA
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@2:..ClassB
.methodB2()

SRV::
@2:..ClassB
.methodB1()  

Fig. 1. An example call tree 

DProf can be configured to work in different modes, e.g., for the following 
purposes:  1) locating software components causing deviations between 
obtained results and values required by service level agreements (SLAs), 2) 
detecting bottlenecks, or 3) collecting performance data for post-mortem 
analysis. The first two modes are usually used for problem detection and 
localization, while the third mode is used when software performance ought to 
be evaluated in general. DProf uses SLAs that are defined in an XML 
document, for which we propose an XML schema, called DProfSLA. The 
schema is compliant to existing SLA standards in the field. 

The idea behind our approach is to reduce monitoring overhead by only 
monitoring parts of software suspected of containing problems or deviating 
from expected behavior. In the problem localization process, the system starts 
by monitoring methods that are at the root of call trees. If the deviation from 
expected results in one of the trees is detected, the DProf incrementally turns 
on monitoring in lower levels of that particular tree. This is repeated 
successively, until the method that is causing the problem is determined. 
DProf adapts without human intervention to find the cause of the problem. 

This simulates the manual procedure typically employed for localizing the 
root cause of performance problems. Other systems perform monitor the 
whole software, regardless of the fact that other parts (other call trees) are 
working fine. Since DProf’s additional monitoring components are 
implemented using JMX technology, reconfiguration of the DProf monitoring 
parameters can still be performed manually by system administrators using 
any JMX console. 

Software administrator intervention is only needed at the beginning of the 
monitoring process, when the monitoring goals are configured. It usually takes 
some time before clients start reporting a performance problem and even 
more until the service provider reacts, locates the problem, and finds a 
solution. Automation of localizing performance problems and faults reduces 
this time. DProf can detect even the slightest deviations proactively. This can 
provide enough time to react before clients start complaining, leaving software 
performance at desired levels. 
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In our earlier work we presented some parts of the monitoring subsystem of 
the DProf system [6, 7]. In this paper, we further extend those results with 
automatic adaptation of the monitoring process. We presented the DProfSLA 
XML schema in [8]. This paper presents an enhanced version of the schema, 
which contains support for the latest DProf features. A more detailed 
evaluation of the system is also presented. 

The remainder of the paper is organized as follows. In Section 2 we 
present the DProf monitoring system, including its components, architecture 
and functions provided. Section 3 presents an evaluation of the DProf 
monitoring system. Section 4 discusses related work. It contains an example 
of the continuous and adaptive monitoring of a real application and presents a 
discussion of the obtained monitoring results. Finally, Section 5 draws 
concluding remarks and outlines directions for future work. 

2. DProf System 

The DProf system enables adaptive monitoring of distributed enterprise 
applications with a low overhead. It performs automatic analysis of obtained 
data based on call tree analysis and automatically reconfigures the monitoring 
instrumentation in order to reduce performance overhead or to provide more 
detailed data. The system configuration specifies which parts of the 
application are going to be monitored by selecting an application's call trees 
and levels within these call trees. 

DProf is based on the Kieker framework and the JMX technology. It can be 
used for adaptive and reconfigurable continuous monitoring of Java EE 
applications, as presented in this paper. Use of Kieker grants low overhead. 
Separation of monitoring code from application code and source code 
instrumentation is performed by using aspect-oriented programming (AOP) 
[9]. We have developed additional components in order to allow an adaptive 
reconfiguration of monitoring parameters at runtime, i.e., while the application 
is running. JMX is used for controlling the monitoring process at runtime. 
Together with the DProfSLA schema, DProf can be used to monitor SLAs 
compliance and to localize the root cause of problems. 

Details of our approach are presented in Section 2.1. In Section 2.2 we 
describe the DProfSLA XML schema. An overview of the underlying Kieker 
framework is given in Section 2.3. Section 2.4 presents architecture and some 
implementation details of the DProf system. 

2.1. The DProf Approach  

The activity diagram in Fig. 2 illustrates the DProf monitoring process. Before 
the application is started, an initial monitoring configuration is specified using 
include and exclude clauses in the aop.xml file, which configures the AOP-
based instrumentation. 
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Fig. 2. Activity diagram of the DProf monitoring system 

On application startup, with the initial monitoring parameters specified in 
the aop.xml, the DProf system is started simultaneously. It gathers monitoring 
data during application execution. Periodically, obtained performance data is 
being sent for analysis. The Analyzer reconstructs call trees based on 
monitoring data. These trees are analyzed by the AnalyzerThreads, each 
thread analyzing one tree in parallel to speed up analysis. A call tree 
represents methods that are invoked after one client call to the application. 
Each method invocation in the stack trace is represented with one node of the 
tree. 

For the analysis we use the R [10] programming language and environment 
for statistical computing. We use the extremevalues [11] package to detect 
and remove outliers that we consider temporary effects caused by various 
external factors: class loading, starting of some resource-consuming process 
in the background while the monitored application is running, hardware 
glitches, etc. After outlier removal, the remaining values are processed using 
the specified statistical function and compared to the required value as 
defined in the SLA. Depending on the result of the comparison, new 
monitoring parameters are generated. If the number of outliers exceeds the 
value defined in DProfSLA, monitoring is repeated with old parameters. 

If results deviate from values defined in the SLAs, the AnalyzerThread 
creates new monitoring parameters. The creation of new parameters depends 
on monitoring configurations defined in the SLA document. The system can 
be configured to monitor all or only selected parts of the application for the 
following purposes: 
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1. Recording normal results – this is used to determine nominal 
values for SLAs. No changes in monitoring parameters are 
assumed in this case.  

2. Finding which software component does not conform to the SLAs – 
in the SLAs we provide nominal values for nodes in call trees we 
want to be monitored. 

3. Finding which software component consumes the largest amount 
of resources. 

Using the DProf system, developers cannot only find which method causes 
problems, but also in which context the problems occur. Since the 
communication between the Analyzer and the components that are gathering 
the data is implemented using web services, this component can be used for 
receiving and analyzing monitoring records from applications developed for 
platforms other than Java/Java EE. In order to use this system with some 
other platform, such as .NET, adapters for the monitoring subsystem and the 
management interface are required.  

SLA Compliance Monitoring and Problem Localization 
In order to provide desired values for SLA, the application is monitored using 
the first configuration from the previous section (recording of normal results). 
Branches omitted from the SLAs are not monitored. 

DProf starts with monitoring the top levels specified. If a problem is 
detected in one of the call trees, DProf triggers a reconfiguration to include 
monitoring of the next level of that tree. It will proceed down the tree as long 
as there is a discord with SLAs. The last node with values higher than those in 
SLA is declared the source of the problem. 

Localization of Increased Resource Consumption 
In the DProfSLA document we specify which call trees are to be monitored. 
For each call tree, the Analyzer configures the monitoring system to gather 
data only from the top level. In the next iteration, it finds the tree with the 
highest observed value (that is a root element of that tree). In the next 
iteration, the monitoring system is reconfigured to monitor only that call tree's 
first two levels. This process is repeated further down the tree (if those levels 
exist). Through the process, DProf selects the branches with the highest 
observed values. The process ends as soon as the instrumentation reaches 
the bottom of the call-tree, or when observed values for the node on the 
higher level are greater than the values for its child nodes. 

2.2. DProfSLA Schema 

DProfSLA documents are used to define SLA parameters based on our 
DProfSLA XML schema. The relevant part of this schema with the root 
element and its sub elements of this schema is shown in Fig. 3. (In this paper 
we use the XMLSpy [12] notation for the XML schema representation.)  The 
root element (DProfSLA) has three sub elements: Parties (parties in the 
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agreement), CallTreeNode (call-traces to be monitored) and Timing (time 
constraints of this agreement). 

The Parties element represents the parties involved in the agreement. This 
element has two sub elements: service provider (Provider) and service 
consumer (Consumer). Both of these sub elements contain contact data 
regarding the service provider and service consumer respectively. Each sub 
element is represented using the OrganizationType complex type (not 
detailed here). 

 

Fig. 3. A part of the DProfSLA schema with the root element 

Selection of Call Trees to be Monitored 
Each CallTreeNode element represents performance information for a single 
node in the call tree to be monitored. It is of the CallTreeNodeType complex 
type shown in Fig. 4. 

CallTreeNodeType elements have two mandatory attributes, a name and a 
metric. The name attribute is used to specify a part of the application to be 
monitored. The string representation of a call tree is used for this purpose. 
The metric attribute specifies the performance metric to be used, i.e., which 
aspect of application performance is going to be monitored (e.g., response 
time, memory consumption). Sub elements of this element are other sub call 
trees, e.g., sub traces that are invoked from the parent CallTreeNode 
element. 

Furthermore, optional attributes for specifying expected performance 
values in terms of the designated metric can be configured. The 
aggregateFunction represents the function to be used in data analysis. The 
nominalValue represents the expected value (for the given aggregate 
function), while the upperThreshold and the lowerTreshold are maximal and 
minimal values of the designated metric, respectively. The outlierPct is used 
to define the allowed fraction of outliers (Section 2.1) in the set of obtained 
results. 
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Fig. 4. CallTreeNodeType complex type defined in the DProfSLA schema 

 

Fig. 5. Timing sub element in the DProfSLA schema 

Specification of Timing Constraints 
The Timing element (Fig. 5) is used to specify time constraints for this 
agreement. The sub elements StartTime and EndTime define the period this 
document applies to. The SamplingPeriod element denotes the time period (in 
milliseconds) between two analyses runs, possibly resulting in a 
reconfiguration of monitoring parameters. 

Example DProfSLA Document 
An example DProfSLA document, which describes monitoring of the call tree 
from Fig. 1, is shown in Listing 1. 
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1 <DProfSLA> 

2 <Parties><Provider name="Org1" /> 

3   <Consumer name="Org2" /></Parties> 

4 <CallTreeNode metric="avgExecutionTime" 

5       name="ClassA.methodA,[{ ClassB.methodB1,[]} , 

6         {ClassB.methodB2,[]}]" upperThreshold="350"> 

7   <CallTreeNode metric="avgExecutionTime" name="[{ 

8      ClassB.methodB1,[]}]"  upperThreshold="150"/> 

9   <CallTreeNode metric="avgExecutionTime" name="[{ 

10      ClassB.methodB2,[]}]"  upperThreshold="150"/> 

11 </CallTreeNode> 

12 <Timing><SamplingPeriod>600000</SamplingPeriod></Timing> 

13 </DProfSLA> 

Listing 1. DProfSLA document for this example 

It represents an agreement between the parties Org1 and Org2.  Response 
times are monitored to detect values exceeding the specified upperThreshold 
attribute. Every 10 minutes (600,000 ms), an analysis of the obtained results 
is performed. 

In the first iteration the system only monitors monitorA(). If the obtained 
results show that the response times of methodA() exceed the upper 
threshold, monitoring of methodB1() and methodB2() is turned on. After the 
next 10 minutes, if results show that either methodB1() or methodB2() takes 
too long, it will have to be analyzed manually. Otherwise, the program code in 
methodA() is assumed to be the cause of the problem. 

2.3. Kieker Framework 

The Kieker framework is structured into the Kieker.Monitoring and the 
Kieker.Analysis components [3]. The Kieker.Monitoring component collects 
and stores monitoring data. The Kieker.Analysis component performs analysis 
and visualization of the monitoring data. The core components of the Kieker 
framework are depicted in Fig. 6, and described in the remainder of this 
section. 

The Kieker.Monitoring component is executed on the same computer the 
monitored application executes on. This component collects application-level 
measurement data during the execution of the monitored applications. 
Monitoring Probes are software sensors that are inserted into the monitored 
application in order to gather various measurements. For example, Kieker 
includes probes to monitor control-flow and timing information of method 
executions. Probes are most commonly implemented using AOP technology; 
additional probes can be added to support different measurements, e.g., for 
adding support for new metrics. Monitoring Writers pass the collected data (as 
Monitoring Records), to a Monitoring Log or Stream. The framework is 
distributed with Monitoring Writers that can store Monitoring Records in, for 
example, file systems, databases, or Java Message Service (JMS) queues 
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[13]. Additionally, users can implement and use their own writers, as we did 
for DProf. The Monitoring Controller component controls the work of this part 
of the framework. 

The data in the Monitoring Log/Stream is analyzed by the Kieker.Analysis 
component. A Monitoring Reader reads records from the Monitoring 
Log/Stream and forwards them to a pipe-and-filter configuration of Analysis 
Filters. Filters may, for example, analyze and visualize gathered data. Control 
of all components in this part of the Kieker framework is performed by the 
Analysis Controller component. 

 

Fig. 6. Component diagram of the Kieker monitoring framework 

2.4. DProf System Architecture 

We have implemented our approach using Java technology. The DProf 
system uses Kieker's infrastructure for data acquisition, extended by some 
additional components. The architecture of DProf system and its integration 
with Kieker are shown in Fig. 7. 

The DProf components are divided into two groups: i) components that 
participate in recording monitoring data; and ii) components that analyze the 
obtained data and control the reconfiguration of monitoring parameters. 

The DProfWriter is the new Monitoring Writer used. It sends Monitoring 
Records to the ResultBuffer component. The ResultBuffer periodically sends 
data to the RecordReceiver component, which, in turn, stores data into the 
relational database. The combination of ResultBuffer, RecordReceiver, and 
database plays the role of the Monitoring Log/Stream (Section 2.3). 

Received data is periodically analyzed by the Analyzer component. The 
Analyzer is responsible for controlling the monitoring configuration. 
Configuration parameters are sent to the DProfManager component, which 
passes these parameters to the AspectController and to the ResultBuffer (to 
clear, if it contains result created with previous configuration parameters). The 
AspectController accesses the application’s aop.xml file and performs 
changes, causing the application to restart. Upon the restart the new 
monitoring parameters are applied. 
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Fig. 7. Deployment diagram of the DProf system 

Kieker includes the monitoring record type OperationExecutionRecord that 
is used to store timing and trace information for method executions. We have 
developed the new Monitoring Record type DProfMonitoringRecord, which 
extends Kieker's original OperationExecutionRecord and additionally provides 
the otherData attribute. This attribute is used to store additional information, 
e.g. CPU utilization and memory consumption. When the record is created in 
the probe, the attribute is filled with comma-separated key-value pairs, 
depending on what the given monitoring aspect measures. Keys in this list 
correspond to metrics defined in the SLA document. This allows us to use this 
single Monitoring Record class for monitoring different metrics.  

The RecordReceiver receives the data from the ResultBuffer. It is 
implemented as a web-service, and it stores records into a database table. 

By using the DProfManager and these additional components we can 
change monitoring parameters at runtime. This allows us to reduce the impact 
on the system, including monitoring overhead, by disabling monitoring in 
certain parts of the application, and to obtain more accurate results. Setting 
the new parameters can be performed either manually, by a person in charge 
or automatically by the Analyzer component. The Analyzer component, 
provided with a DProfSLA schema document, can check if service levels 
observed in gathered data deviate from those defined in the SLA and, 
according to the algorithm described in Section 2.1, to determine which part of 
the software causes this deviation. 
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Code instrumentation can be performed by hard-coding instrumentation 
routines into program code, but a more elegant way is AOP . AOP provides 
developers with separation of concerns: monitoring aspects are developed 
separately from application code. 

Using AOP, we can choose to weave aspects with code upon compilation 
or to let the aspect runtime weave aspects into classes upon class loading. 
These processes are known as compile-time-weaving and load-time-weaving. 
When using DProf, we usually want to change monitoring parameters at 
runtime, so we use load-time-weaving. If we monitor, without having to 
change monitoring parameters at runtime, we can use compile-time weaving. 
The advantage of using compile-time-weaving is only a faster application 
start; afterwards both compile- and load-time-weaved applications behave the 
same. 

The DProf system uses the AspectJ AOP implementation for Java [14], for 
instrumentation. Initially, the AspectJ configuration file (aop.xml) specifies 
which parts of the application are to be included/excluded from monitoring, 
and which aspect to use as monitoring probes. During monitoring with the 
DProf system, additional clauses will be placed in this configuration file for the 
purpose of monitoring adaptation. 

In the Java environment, time is usually measured using either 
System.currentTimeMillis() or System.nanoTime() calls [15]. Measuring of 
system-level metrics (such as memory consumption and CPU utilization), can 
be performed using platform MXBeans [4] or some third-party tools such 
asSIGAR [16]. 

3. Evaluation of the DProf System 

The application of the DProf system will be demonstrated using the software 
configuration management (SCM) application described in our previous work 
[17]. SCM is a Java EE application responsible for tracking of applications and 
application versions in a company. 

The goal is to monitor method response times and to localize the root 
cause of performance problems. Initially, DProf is configured to monitor only 
methods at the root of call trees. If an increase in method response times is 
detected, DProf will, potentially successively, reconfigure the instrumentation 
to monitor other levels, until it localizes the method that causes the problem. 

This evaluation serves to demonstrate that monitoring overhead can be 
reduced by monitoring only root level if no performance problem is present. 
Also we perform a basic analysis of the overhead generated when using 
DProf, comparing it to the overhead generated by writers distributed with the 
Kieker framework. 
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3.1. Setting 

The application is implemented using Enterprise JavaBeans (EJB) [18] 
technology. Entity EJBs are used for communication with databases, i.e., for 
object/relational (O/R) mapping [19]. They are accessed through stateless 
session EJBs (SLSB), modeled according to the façade design pattern [20]. 
SLSBs are annotated to work as JAX-WS [21] web services as well. We 
deployed SCM on a cluster of servers. The application client is a Java Swing 
[22] application. 

Figure 8. shows a part of the application's architecture. 

 

Fig. 8. A part of the monitored SCM application's architecture 

Methods that are to be monitored are annotated with Kieker's 
@OperationExecutionMonitoringProbe. As a monitoring probe we used a 
Kieker's original OperationExecutionAspectAnnotation probe. It intercepts 
executions of annotated methods. 

In this case study we will focus on the call tree shown in Fig. 9. 
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SRV::
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SRV::
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SRV::
@1:..Organization

.getAddress()
 

Fig. 9. The call tree monitored in this example 

The testing was performed by repeatedly invoking the 
OrganizationFacade.createOrganization() method from 100 concurrent 
threads, with equally distributed think times between 0 and 10 seconds. 

The analysis of the obtained data is performed every hour. Initially, only the 
createOrganization(..) method is monitored. After a deviation from values 
specified in the DProfSLA (last row in Table 1.) is detected, the methods 
invoked from this one are monitored additionally. If these methods do not 
violate the SLAs, the problem is assumed to be in the createOrganization(..) 
method. If the results for the checkOrgName(..) show deviations, monitoring is 
reconfigured to include the Organization.getId()  and 
Organization.getAddress() methods, and to exclude the method City.getId(). 
The most likely cause of the problem is the method whose results do show 
deviation from expected response times, while methods invoked from it do 
not. 

Within the checkOrgName() method, we purposly inserted a delay of 1 ms, 
to simulate a problem. In order to determine the impact of DProf on the 
monitored application, we measured response times on the client computer. 

3.2. Analysis of Results 

The obtained results were analyzed by the Analyzer after one hour, showing 
increased response of the createOrganization(..) method.To find the source of 
the problem, the Analyzer component changed monitoring parameters and 
added monitoring instrumentation to the methods in the next level of the call 
tree. 
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The analysis of the gathered data, one hour after the previous analysis, 
showed that an response time of the checkOrgName(..) method rose over 
designated values. The Analyzer then included the monitoring in the third 
level, i.e., the methods Organization.getId() and Organization.getAddress(). 
The obtained results are shown in Table 1. 

Table 1. The average response times of monitored methods in milliseconds 

Method 
 
Levels 
monitored 

Organization-
Facade. 
create-

Organization 

City. 
getId 

Organization-
Facade. 

checkName 

Organization. 
getId 

Organization. 
getAddress 

1 
2.888 

Not 
monitored 

Not monitored Not monitored Not monitored 

1 and 2 3.05 0.307 1.502 Not monitored Not monitored 

1, 2 and 3 3.339 
Not 

monitored 
2.290 0.429 0.71 

Response 
times required 
by the SLA 

2.250 0.750 1.300 0.750 0.850 

 

Organization.createOrganization(..) has increased response time because 
of the OrganizationFacade.checkOrgName(..). In turn, increased results of 
OrganizationFacade.checkOrgName(..) are not caused by the executions of 
the Organization.getId(...) and Organization.getAddress(...) methods. 

Based on these results, it can be concluded that the checkOrgName(...) 
method requires further inspection in order to be made compliant in 
accordance to the SLA. This means that our system has been able to localize 
the method which causes the problem. 

Overhead analysis 
In order to estimate overhead we measured response times on the client side. 
A comparison of these times is shown in Fig. 10. The median response time 
of the monitored method, when monitoring is disabled, was 3.078 ms. By 
enabling monitoring of the call tree's first level, it increased to 3.535 ms. 
Monitoring of the second level generated additional 0.344 ms (it increased to 
3.879 ms). Inclusion of monitoring of the third level led to average response 
time of 4.133 ms. 

As expected, DProf yields an overhead, which rises if we increase the 
number of monitored methods. Also,  a  slight increase  of the  standard 
deviation in results from 0.954 ms to 1.194 ms shows that reponsiveness 
becomes more unstable when the number of monitored call tree levels is 
increased. Hence, in case no problem is detected, the overhead would be 
minimal and responsiveness more stable, since only the first level would be 
monitored. 

 



SLA-Driven Adaptive Monitoring of Distributed Applications for Performance Problem 
Localization 

ComSIS Vol. 10, No. 1, January 2013 40 

 

Fig. 10. Comparison of response times of the Organisation.createOrganisation(…) 
method in different scenarios 

 

Fig. 11. Overhead comparison for different writers 
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The obtained results are also in accordance to Kieker overhead analysis 
shown in [3]. Further comparison with Kieker's writers is shown in Fig. 11.  We 
compared response times of the monitored application in different monitoring 
configurations: with no monitoring, when using DProf with and without sending 
data to the ResultBuffer, and when Kieker's original SyncFSWriter and 
SyncDBWriter are used. 

The DProf system has lower overhead than Kieker's original SyncFSWriter 
and SyncDBWriter, which write records into file system and database, 
respectively. This is because in DProf, communication between the writer 
and the buffer is performed within one JVM. 

Based on these results, it can be concluded that this system is suitable for 
continuous monitoring of all kinds Java applications. It provides valuable data 
on application execution with very small impact on application performance. 

4. Related Work 

For the research presented in this paper two fields are of particular 
importance: monitoring tools (which are presented in Section 4.1) and existing 
standards for SLA documents definition (Section 4.2). 

4.1. Application Monitoring and Profiling Tools 

Monitoring and profiling tools have been in use since the early 1970s. The 
UNIX operating system includes the prof tool [23] since 1979. It can record 
execution times for each program function. ATOM [24] was one of the first to 
use source code instrumentation and it appeared in the 1990s. Before 
application deployment, ATOM combines the instrumentation and the 
application code. The application executes normally, with additional output 
containing monitoring data.  

A recent study by Snatzke [25] shows that, although service levels and 
performance of applications are of critical importance in practice, application 
level monitoring tools are rarely used. Java application monitoring tools are 
usually developed using either JVMTI/JVMPI [26, 27] or aspect-oriented 
programming (AOP) [8] technology. JVMTI and JVMPI APIs require 
knowledge of C/C++ in addition to Java, and also impose significant overhead 
[3]. Examples of JVMTI/JVMPI-based profilers are JBoss Profiler [28] and 
JFluid [29]. JBoss Profiler is the profiler used with the JBoss application 
server [30]. JFluid is used within the NetBeans IDE [31]. COMPASS JEEM 
[32] can be used to monitor JEE applications, but every application layer 
needs a different set of probes. The Kieker framework [3], used in this work, is 
a Java-based framework for continuous application performance monitoring 
and dynamic software analysis. It includes aspects which implement 
monitoring probes. 
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A number of commercial application monitoring tools exist, but 
implementation details of these tools are scarce at best, if available at all. 
DynaTrace [33] uses its own PurePath technology which captures timing and 
context information for transactions across all application tiers. It has support 
for both Java and .NET environments. JXInsight [34] is designed for 
monitoring applications in JEE environments. It offers automatic performance 
analysis and problem detection. IBM's Tivoli Management Framework [35] is 
a system management platform. It is CORBA-based and allows remote 
management of software. IBM Tivoli Monitoring, which uses the Tivoli 
framework, is a set of tools which can be used for problem detection in 
various environments. Tivoli supports monitoring of JavaEE (WebSphere 
server), .NET, network (DNS, DHCP) and others. Both agent and agentless 
monitoring are supported. AppDynamics provides solutions for monitoring on 
different platforms, with low overhead [36]. It supports the automatic 
localization of problem root causes. Monitoring tools for other purposes exist 
as well, e.g., Nagios [37] for infrastructure monitoring, CA Unicenter [38] for 
infrastructure and application performance monitoring and management, or 
HP's Insight [39] for monitoring and problem localization on some specific 
platforms. 

Newman et al. present the MonALISA system [40] which constitutes a 
distributed monitoring service. It is implemented using Java and WSDL/SOAP 
technologies. MonALISA allows for monitoring of heterogeneous systems 
using autonomous agent based sub-systems. A graphical user interface 
visualizes complex gathered data. MonALISA includes a library of APIs that 
can be used to send data to MonALISA services. Using these APIs, other 
systems, such as DProf can be included in the monitoring process. 

AOP can be used for instrumentation of code. Separation of concerns 
allows for monitoring code to be separated from application code. There are 
several monitoring tools based on AOP. 

The concept of manageable aspects–a combination of aspects and JMX 
MBeans–is proposed by Liu et al. [41]. It can be used as monitoring probes, 
for instrumentation and collecting runtime data during software execution. 
They can be accessed and controlled using any JMX console. Although this 
approach would present an excellent platform for adaptive monitoring, no 
implementation of this concept has been provided, yet. 

The HotWave framework [42], which is still in development phase, allows 
run-time reweaving of aspects and the creation of adaptive monitoring 
scenarios. It allows for a development of adaptable monitoring solutions, as 
presented by the authors. Users can choose parts of the application to be 
monitored, and later reconfigure the system to monitor other parts, without 
having to restart the system. Unfortunately, no implementation of this 
framework is currently available. 

Ehlers et al. present an approach for anomaly diagnosis [43] also based on 
call tree analysis and self-adaptive monitoring with Kieker. For each call tree 
node, representing the execution of a software method in a certain context, 
anomaly scores for response times are computed by comparing observed 
values with values predicted based on historic observations. OCL [44] is used 
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to specify rules for adapting the instrumentation based on the anomaly scores 
and the current instrumentation. In our earlier work [45], we presented an 
approach for automatic problem localization based on a correlation of 
anomaly scores with architectural calling dependencies. Kieker was also used 
in this approach. However, the monitoring was not adaptive. 

Yu et al. [46] present the RaceTrack tool for race detection in .NET 
applications. This tool monitors program activity and looks for suspicious 
patterns in program execution. It has great accuracy because it monitors 
memory access at both object and field level. It starts by monitoring at object 
level, and only if unusual patterns are detected, it switches to field level. This 
way, performance overhead is reduced. The RaceTrack is implemented by 
modifying .NET’s virtual machine CLR (common language runtime). Such 
modification requires great understanding of how CLR works. If some 
changes are made in the future, it would probably require modifications on 
this tool. Also, the modified CLR has to be distributed with the application that 
is to be monitored, instead of, for example, just starting a tool within existing 
CLR. 

Chen et al. [47] propose the Pinpoint system that locates components most 
likely to cause a fault. The approach is based on finding correlations between 
low-level faults and high-level problems. Data is gathered by collecting client 
traces using a modified Java EE platform. Unlike our approach, this approach 
focuses more on problem localization and less on performance problems. 

A black box approach to problem localization is applied by some of the 
authors.  This approach usually finds a component that is causing problems, 
but does not locate the problem within component. Aguilera et al. [48] use an 
approach that monitors message communication between components and 
tries to find causal paths between messages and performance problems. The 
PeerPressure tool presented by Wang et al. [49] compares "healthy" and 
"suspicious" machines using statistical methods to locate problems. 

Very few papers provide actual numbers regarding overhead. Dimitriev [29] 
tested JFluid’s performance with SPECjvm98 tool [50]. Results show that 
overhead ranges from 1% for time consuming tasks like database access, to 
5000% for compress tasks. JFluid allows users to reduce overhead by 
selecting the parts of an application to monitor. Govindraj et al. [51] discuss a 
possibility of using AOP for monitoring and they show the overhead ranges 
from 1-10%. For DynaTrace the monitoring overhead is reported to be less 
than 5%. However, these percentages are hardly comparable because they 
heavily depend on hardware and software used in the benchmarks, and 
especially they depend on the granularity of instrumentation and the usage 
profile. 

4.2. SLA Standards 

In order to automate service level management, SLAs must be defined in 
machine-readable format. As shown by Tebbani et al. [52], only few formal 
SLA specification languages exist. In practice, SLAs are often written in some 
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informal language. Tebbani et al. propose the GSLA (Generalized Service 
Level Agreement) language. A GSLA document constitutes a contract signed 
between two or more parties designed to create a measurable common 
understanding of each party’s role.  The role is nothing but the set of rules 
which defines the minimal service level expectations and obligations the party 
has. GXLA is the XML schema which implements the GSLA information 
model. GXLA documents are composed of the following sections: schedule 
(temporal parameters of the contract), party (models involved parties), service 
package (an abstraction used to describe services) and role (as described). 
The use of GXLA supports an automation of the service management 
process. 

WSLA [53] is a language to specify service levels for web services. XML-
based WSLA documents define the involved parties, metrics, measuring 
techniques, responsibilities, and courses of action. The authors state that 
every SLA language, such as WSLA, should support contain 1) information 
regarding the agreeing parties and their roles, 2) SLA parameters and a 
measurement specification as well as 3) obligations for each party. 

SLAng [54] is a language for specifying SLAs based on the Meta Object 
Facility [55]. It can use different languages for describing constraints, e.g., 
utilizing OCL [44] or HUTN [56]. 

The WS-Agreement specification language [57] has been approved by the 
Open Grid Forum. It defines a language for service providers to offer 
capabilities and resources, and clients to create an agreement with that 
provider. 

Paschke et al. [58] propose a categorization scheme for SLA metrics with 
the goal to support the design and implementation of SLAs that can be 
monitored and enforced automatically. Standard elements of each SLA are 
categorized as: technical (service descriptions, service objects, metrics, and 
actions), organizational (roles, monitoring parameters, reporting, and change 
management), and legal (legal obligations, payment, additional rights, etc.). 
Paschke et al. categorized service metrics in accordance with standard IT 
objects: hardware, software, network, storage, and help desk. SLAs are 
grouped according to their intended purpose, scope of application, or 
versatility. 

According to this categorization, DProfSLA documents (described in 
Section 2.2) are operation-level documents intended to be used in-house. By 
versatility categorization, they belong to standard agreements. We chose to 
design our own XML schema as an intermediate format, because we do not 
need all of the features of the described schemas. It is specifically designed to 
be used with the DProf system. Our schema provides a subset of the 
elements defined by GXLA or WSLA. A transformation of SLA documents 
between DProfSLA and the mentioned schemas could, for example, be 
performed using XSLT. 
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5. Conclusion 

This paper presented the DProf approach for continuous and adaptive 
monitoring of distributed software systems and automatic evaluation of 
software performance against expected values defined in service level 
agreements (SLAs). The DProf system gathers data from application 
execution, compares these measurements with the SLAs and, based on call 
tree analysis, aims it localizes application components causing possible SLA 
violations. Expected values are defined in a document based on the described 
DProfSLA XML schema. The schema is designed with existing  SLA 
schemas, such as GXLA and WSLA, and their categorizations of contained 
information in mind. DProfSLA’s intended use is for standard intra-
organizational agreements, but it may be used for inter-organizational 
agreements, too. The schema supports various metrics and additional metrics 
can be added as needed. 

The DProf monitoring system is mainly designed for continuous monitoring 
of JEE applications, but with minor modifications it can be used to monitor 
applications developed for other platforms. We described the architecture of 
our DProf prototype, whose implementation is based on the Kieker framework 
with additional JMX-based components. 

As a proof-of-concept, the DProf system was used for adaptive monitoring 
of a sample Java EE application. The analysis of obtained results shows low 
monitoring overhead, and reduced overhead by enabling monitoring on-
demand. 

Our system is not able to differentiate between call trees with the same root 
element, that can have different lower nodes. In this case the system could 
report incorrect results. In order to confront this issue, developers should 
choose to monitor only one of these trees, and exclude the other using an 
appropriate aop.xml configuration file. 

Our future work regarding DProf will focus on the implementation of the 
DProf Analyzer as a Kieker plugin and an integration of the DProf component 
into the Kieker distribution. We also plan to further extend the system by 
additional monitoring probes for different and more complex measures. 
Furthermore, we will work on more advanced algorithms for the Analyzer 
component, enabling it to change monitoring parameters on different 
computers in distributed environments. 
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