DOI: 10.2298/CSIS111029039A

A Scalable Multiagent Platform for Large Systems

Juan M. Alberola, Jose M. Such, Vicent Botti,
Agustin Espinosa and Ana Garcia-Fornes

Departament de Sistemes Informatics i Computacié
Universitat Politécnica de Valencia Cami de Vera s/n. 46022, Valéncia (Spain)
{jalberola,jsuch,vbotti,aespinos,agarcia}@dsic.upv.es

Abstract. A new generation of open and dynamic systems requires exe-
cution frameworks that are capable of being efficient and scalable when
large populations of agents are launched. These frameworks must pro-
vide efficient support for systems of this kind, by means of an efficient
messaging service, agent group management, security issues, etc. To
cope with these requirements, in this paper, we present a novel Multi-
agent Platform that has been developed at the Operating System level.
This feature provides high efficiency rates and scalability compared to
other high-performance middleware-based Multiagent Platforms.

Keywords: Multiagent Platforms, Multiagent Systems, Evaluation.

1. Introduction

In the last decade, due to the rapid growth of the Internet, the speed of change,
and an ever greater amount of easily accessible information, the next genera-
tion of Multiagent Systems (MAS)s and information technology, will target open
and large systems. In these dynamic and heterogeneous environments, it is
essential that features such as security, high performance, scalability, and inter-
operability are provided by application development frameworks.

Even though current Multiagent Platforms (MAP)s support the development
and execution of MASs, very few real applications have been developed to focus
on open and dynamic systems. These applications change quickly and require
features such as reliability, scalability, and performance, which not many MAPs
are designed to offer. According to [25], agent researchers should design and
implement large software systems consisting of hundreds of agents and not
only systems composed of a few agents. In order to develop these systems,
researchers require efficient and scalable MAPs.

Some current MAPs are not suitable for executing complex systems be-
cause their designs are not oriented to improving efficiency and scalability is-
sues. Previous studies have demonstrated a degradation in the performance
of current MAPs as the system grows [51, 22]; some MAPs even fail [49]. Our
main objective for this paper is to propose a MAP that is focused on being scal-
able and efficient. One of our main design decisions is to use the operating

Juan M. Alberola et al.

system (OS) services to develop this MAP instead of using middlewares be-
tween the OS and the MAP. In [14] we proved that this can noticeably improve
the performance and scalability of the system.

Functionality is another important issue when executing large systems. Works
by other researchers such as [20] are helpful in determining the main require-
ments for designing a MAP. By using theoretical proposals and methodologies
[27], a MAP that supports agent organizations helps to simplify, structure, co-
ordinate, and easily develop large applications, which are composed of thou-
sands of agents. Standard language communication is another key requirement
for allowing the interaction between heterogeneous entities. Support to coordi-
nate communication is another requirement for these systems [42]. Definition
of standard speech acts that agents can use, a common ontology to describe
and access services, policies associated to agent conversations, and standard
communication language are some features that should be provided. Finally,
security concerns become important in large systems must be addressed if
these systems are open in order to ensure the communications and the identi-
ties of each entity. As stated by other authors in [45], these features should be
provided by agent execution frameworks.

Towards these goals, in this paper, we present a MAP that is oriented to ful-
filling the requirements for this new kind of systems. This MAP is mainly focused
on scalability and efficiency for executing large MASs. It provides mechanisms
to support agent organizations, security concerns (authentication, authoriza-
tion, and integrity), a standard language of communication for information rep-
resentation, conversation-oriented interactions, and so on.

The rest of the article is organized as follows. Section 2 presents the moti-
vation and the previous work that allowed us to design and develop an efficient
and scalable MAP. Section 3 gives an in-depth description of the MAP architec-
ture. Section 4 details the services offered by the MAP. Section 5 describes how
agents in this MAP are represented. Section 6 describes a tourism service ap-
plication that is built on this MAP. Section 7 presents a performance evaluation
of the MAP. And finally, in Section 8, we present some concluding remarks.

2. Motivation and previous work

In the last few years, many researchers have focused on testing the perfor-
mance of existing MAPs. One of the main properties tested in these works is
the performance of the MAPs for sending messages. Vrba [51] presents an
evaluation of the messaging service performance of four MAPs. From the tests
presented in that paper, the author concludes that Jade [19] provides the most
efficient messaging service compared to FIPA-OS [1], Jack [3], and ZEUS [12].
However, the design features that produce this performance are not given and
the implementations of the messaging service for each MAP are not detailed.
Therefore, these conclusions can only be valid to choose the MAP that performs
better than the other three MAPs tested. Burbeck et al. [22] tested the messag-
ing service performance of three MAPs. They claim that Jade performs better

52 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

than Tryllian [11] and SAP [9] because it is built on Java RMI', but they give
no proofs confirm this claim. As these works state, Jade is more scalable than
other MAPs and can be considered to be a stable MAP for large systems [40].
However, these conclusions do not provide any clue to MAP developers about
how to improve MAP designs since these experiments only scale up to 100
pairs of agents and a few hosts. A more thorough study is required to be able
to assess MAP performance and to determine to what extent design decisions
influence MAP performance.

Some other works have tested the performance of other services but only
for a single MAP. Most of these works test Jade, which seems to be the most
widely used MAP. In [25], the authors tested Jade messaging, agent creation,
and migration services. The tests that they performed related to the messaging
service only scale up to eight agent pairs. In [17], an evaluation of a MAS for
adapting application’s behaviour was carried out on Jade MAP. The work pre-
sented in [26] tested the scalability and performance of the Jade messaging
service. Similar to the works cited above, their conclusions do not provide any
design decision. Even though these conclusions can allow MAS developers to
check whether or not Jade fulfills their requirements when designing a MAS,
they do not suggest any design decision for MAP developers.

There are also other works that focus on testing the performance of a spe-
cific MAS that is running on top of a MAP. In [23] the performance of MAPs
is measured when a MAS composed of several web agents is launched. This
MAS provides documents requested by a user agent. The authors measured
the number of documents requested per unit of time. Therefore, their conclu-
sions are only valid for this MAS. Lee et al. [37] present a MAS in which agents
coordinate with each other to carry out tasks. They evaluate how the topological
relations between agents affect the number of CPU cycles needed to accom-
plish these tasks. In [28], the authors compare the response time and the CPU
cycles of SACI [13] and Jade.

Finally, other studies focus on detailing the functional properties of MAP.
In [20], four MAPs are compared according to several criteria: implementa-
tion languages, tools provided, agent deliberation capabilities, etc. Shakshuki
[46] presents a methodology to evaluate MAPs based on several criteria such
as availability, environment, development, etc. Similar work is carried out by
Nguyen [33], and Omicini [43] gives a brief evolution of MAPs. In other works
such as [34, 44], different MAPs that are intended to be scalable are proposed;
however, no empirical evaluation is carried out. These works provide ratings of
properties provided by MAPs in order to help users choose the MAP according
to their needs. Our work goes a step further since it is not only intended to be
useful for MAP users but also for MAP developers.

A general conclusion of works that focus on MAP evaluation is that MAP
performance decreases as the system grows. Furthermore, as we showed in a
previous work [49], when large-scale MAS are taken into account, the perfor-
mance of many MAPs is considerably degraded when the size of the system

! http://java.sun.com/docs/books/tutorial/rmi/index.html

ComSIS Vol. 10, No. 1, January 2013 53

Juan M. Alberola et al.

executed increases, causing some MAPs to even fail. Therefore, current MAPs
are not suitable for executing large population systems because their designs
are not aimed at improving efficiency and scalability issues.

In order to develop a design in accordance with our goals, we detail other
previous works that we carried out that focus on finding design decisions that
influence MAP performance. In [41], we presented experiments to link perfor-
mance with internal MAP designs, that is, to identify the key design decisions
that lead to better performance. We extracted some conclusions from these ex-
periments, such as the fact that centralizing services in a single host of the MAP
degrades the performance causing this host to become a bottleneck in the case
of very popular services. It is more suitable to design a distributed approach with
efficient information replication mechanisms. In [16], we tested several issues of
the MAPs, such as the performance of the directory service proposed by FIPA
[2], the memory consumed by the agents and the MAP, the network occupancy
rate, the CPU cycles, etc. According to these studies, the most influential point
in the MAP performance that could become a bottleneck is the messaging ser-
vice. This service is crucial in the performance of the MAP since agents need to
exchange messages with other agents and access MAP services. Furthermore,
some MAPs (such as Jade) base other MAP services (such as the Agent Direc-
tory or Service Directory proposed by FIPA) on the messaging service. In [14],
we specifically analyzed technologies for implementing the Message Transport
System (MTS), which is the component of the MAP that manages the message
exchanges among the agents running on the MAP. This work showed that in or-
der to design a messaging service that can handle large agent populations, the
design that performs better should be based on direct communication between
each pair of agents so that the messaging service scales better and performs
more efficiently, especially in these sorts of scenarios.

In the following sections, we present a MAP focused in being scalable and
efficient in more detail. It has been developed using the services offered by the
OS to support MAS efficiently. By bringing MAP design closer to the OS level we
can define a long-term objective, i.e., to incorporate the agent concept into the
OS itself in order to offer a greater abstraction level than current approaches.

3. Magentix Multiagent Platform architecture

Magentix? MAP aims to be scalable and efficient, mainly when it is executing
large-scale MAS. To achieve a response time closer to the achievable time lower
bound, this MAP has been developed using the services provided by the OS.
Thus, one of the design decisions is that this MAP is written in C over the Linux
OS. Current approaches for developing MAPs are based on interpreted lan-
guages like Java or Python. These MAP designs are built over middlewares like
the Java Virtual Machine (JVM) [21]. Although these middlewares offer some
advantages like portability and easy development, MAPs developed over them

2 Magentix can be downloaded from http://gti-ia.dsic.upv.es/sma/tools/Magentix/index.php

54 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

do not perform as well as one might expect, especially when they are running
large systems. In [14] we presented a performance evaluation related to this
issue. We proved in that using the Operating System (OS) services to develop
a MAP instead of using middlewares between the OS and the MAP noticeably
improves the performance and scalability of the MAP. Thus, we can see the
MAP functionality as an extension of the functionality offered by the OS.

The Magentix communication service has been developed to offer high per-
formance. This service is quite crucial to the performance of the MAP as we
stated in Section 2 and some other services may be implemented using it.
Magentix also provides advanced communication mechanisms such as agent
groups, a manager to execute interaction protocols, and a security mechanism
to provide authentication, integrity, confidentiality, and access control. This de-
sign has been developed in order to provide the functionality required by MAS
and perform efficiently.

Magentix is a distributed MAP composed of a set of computers executing
Linux OS (figure 1). Magentix uses replicated information on each MAP host to
achieve better efficiency. Each one of these computers presents a process tree
structure. The initial design of this structure is presented in [15]. The advantage
of process tree management offered by Linux, and using some services like
signals, shared memory, execution threads, sockets, etc. provides a suitable
scenario for developing a robust, efficient, and scalable MAP.

The structure of each Magentix host is a three-level process tree. On the
higher level we see the main process. This process is the first one launched
on any host when this host is added to the MAP. Below this level we can see
the services level. Magentix provides some services to support agent execu-
tion: Agent Management System (AMS), Directory Facilitator (DF), and Orga-
nizational Unit Manager (OUM). Services are represented by means of service
agents replicated in every MAP host. Agents representing the same service
manage replicated information and communicate with each other in order to
keep this information updated. Finally, in the third level, user agents are placed.
Using this process tree structure, main process manages service agents com-
pletely, i.e., it can kill any service agent to achieve a controlled shutdown of the
MAP, and also detects at once whether any service agent dies. In the same
way, ams agent has a broad control of the user agents of its own host.

Each user agent is represented by a different Linux child process of the
ams agent running on the same host. This design decision was taken after
efficiency tests as we stated in Section 2. Mapping one-to-one agents and Linux
processes provides us with a complete execution control (as we will see in the
next section) and a fast message exchanging mechanism. It could be argued
that using a single virtual machine for executing agents represented as Java
threads could be lighter. Nevertheless, this virtual machine could be overloaded
when running three or four thousand agents, by the limitations of the virtual
machine. In our proposal, mapping agents as Linux processes restricts us to
the limitations of the OS, and allows us to run more than seven thousand agents
in a single host. Developing a MAP by using the OS services directly allow us to

ComSIS Vol. 10, No. 1, January 2013 55

Juan M. Alberola et al.

§iHOST A HOST B

MAIN MAIN

PROCESS < ™ : PROCESS

Fig. 1. Platform structure: Agent Management System (AMS), Directory Facilitator (DF),
Organizational Unit Manager (OUM)

improve the efficiency of the system. Current Magentix version offer support to
different Linux distributions (such as Ubuntu, Fedora, CentOs or OpenSuse) as
well as to Mac OS. Interoperability between heterogeneous agents is reached
by means of standard communication language representation and ontologies
for service interactions.

3.1. Communication and Message Transport System

Magentix provides a message-based communication mechanism in order to
allow interactions between agents and services. This communication mecha-
nism aims to obtain both good efficiency level and MAP scalability. As Magentix
MAP is integrated into Linux, we have checked different alternatives available
for communicating processes in an OS context [14]. In this study we have an-
alyzed different communication services among processes provided by POSIX
[10] compliant OS, in particular, the Linux OS, in order to select which of these
services allows robust, efficient and scalable MAPs to be built. As a result of
the evaluation, a lower bound of the time needed to communicate process cou-
ples (located in the same or different hosts) was obtained. In these studies, we
showed to what extent the performance of a Message Transport System (MTS)
degrades when its services are based on middlewares between the OS and
the MAP (like the JVM) rather than directly by the underlying OS. Thus, the
Magentix MTS design was tested to be as close as possible to this time lower
bound.

As we pointed out in section 2, the messaging service design that should
perform better would be one based on direct communication between each
pair of agents. Therefore, the communication mechanism implemented in mes-
sage exchanging interactions is carried out by means of point to point connec-

56 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

tions based on TCP sockets, between a pair of processes. This mechanism
enables high scalability in agent communication. Each Magentix agent has a
server socket for receiving connections from other agents by means of client
sockets. To carry out a new connection an agent creates a client socket that
communicates with the remote agent server socket. Thus, Magentix agents are
client/server at the same time.

At a lower level, Java-RMI technology (used for development communication
in most of MAPs based on Java) uses TCP sockets. After evaluating different
alternatives, we finally define the communication mechanism implemented in
Magentix as point to point connections based on TCP sockets, between a pair
of processes. The use of C language to develop the MAP, allows us to use this
technology closer to the OS level, and avoid the overhead resulting from the use
of Java-RMI, because the agent abstraction provided by a MAP is independent
of the underlying communication mechanism implementation.

In our previous studies, we have also checked that opening a P2P connec-
tion between a pair of agents the first time they interact and leaving this connec-
tion open for future interactions is much more efficient than opening a new TCP
connection each time they want to interact. Therefore two agents could have an
indefinitely open connection for exchanging messages each time they require
it. Nevertheless, the number of simultaneous open connections is limited by the
OS. Therefore, each agent and service stores its open connections in a con-
nection table. The first time an agent contacts another one, a TCP connection
is established and remains open to exchange messages in the future. These
connections are automatically closed when the conversation is not active, that
is, some time has passed since the last message was sent, according to a LRU
(Last Recently Used) policy (this mechanism is described in more depth in [50]).
This connection table improves communication times since an agent does not
need to create a new TCP connection each time it wants to communicate with
another agent.

4. Services

In this section we describe the services that are implemented in Magentix ori-
ented to agents, services, and group management: AMS service, DF service
and OUM service.

4.1. Agent Management System

Agent Management System (AMS) service is defined by FIPA [29] and offers
the white pages functionality. This service stores the information regarding the
agents that are running on the MAP. AMS service is distributed among every
MAP host. Therefore, information regarding the agents of the MAP is replicated
in each host. This service is represented as ams agents running in each host
of the MAP.

ComSIS Vol. 10, No. 1, January 2013 57

Juan M. Alberola et al.

As we stated in section 3, all of the agents launched in a specific host are
represented by means of child processes of the ams agent. Just as the main
process behaves, the ams agent has a broad control of the agents in its corre-
sponding host. The management of starting and finalizing agents is automati-
cally carried out by means of sending signals

The AMS service stores the information regarding every agent running on
the MAP. This service allows us to obtain the physical address (IP address and
port), providing the agent name to communicate with. Due to the fact that the
AMS service is distributed among every MAP host, each ams agent running on
each host contains the information needed to contact every agent of the MAP.
Hence, the operation of searching agent addresses is not a bottleneck as each
agent looks this information up in its own host, without needing to make any re-
quests to centralizing components. Every time an agent is started or finalized in
a host, this update is replicated on each host of the MAP. Nevertheless, there is
another information regarding agents that does not need to be replicated when
it is updated. For this reason, the ams agents manage two tables of information:
the Global Agent Table (GAT) and the Local Agent Table (LAT).

— GAT: Stored in this table is the name of each agent in the MAP and its
physical address, that is, its IP address and its associated port.

— LAT: In this table additional information is stored such as the agent’s owner,
the process PID which represents each agent and its life cycle state.

The GAT is mapped on shared memory. Every agent has read only access
to the information stored in the GAT of its own host. Each time an agent needs
to obtain the address of another agent in order to communicate, it accesses
the GAT without making any request to the ams agent. Thus, we avoid the
bottleneck of requesting centralizing components each time one agent wants
to communicate with another. The information contained in the GAT needs to
be replicated in each host to achieve better performance. Although replication
mechanisms imply an overhead in the system, this overhead is reduced as only
the updated information is replicated, and these updates occur when agents
are started or dead in the MAP, operations that generally occur in low frequency
rates. Thus, the overhead resulting from replication is worthwhile in order to dis-
tribute the information and make it available in each host of the MAP. Moreover,
the spacial overhead (memory) for having the same information replicated in
each host is also low, due to the fact that only the physical addresses of the
agents are distributed (few bytes of memory).

The information from the LAT is not replicated. Some information stored in
the LAT regarding a specific agent is only needed by the ams agent of the same
host (for instance, the process PID). Therefore, this information does not need
to be replicated. Some other information could be useful for the agents but is not
usually requested (such as the life cycle state). In order to reduce the overhead
resulting from replication, we divide the information regarding agents into two
tables. Each ams stores in their LAT the information regarding the agents under
its management, that is, the agents that are running on the same host. If some
information available to agents is needed (such as the life cycle state), the agent

58 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

has to make a request to the AMS service using the AMS service ontology. In
a transparent way, these requests addressed to the AMS service are delivered
to the specific ams running on the same host as the agent requested.

4.2. Directory Facilitator

The Directory Facilitator (DF) service offers the yellow pages functionality de-
fined by FIPA. This service stores the information regarding the services offered
by agents. The DF service allows agents to register the services they provide,
deregister these services, and look up a specifically required service. Much
like the AMS service, the DF service is implemented in a distributed scenario
by means of agents running on each MAP host, called df agents. Information
regarding services is also replicated in every host of the MAP.

Information that needs to be replicated is stored in a unique table called GST
(Global Service Table). This table is a list of pairs: services offered by agents
of the MAP and the agent that offers this service. In contrast to the GAT, the
GST is not implemented as shared memory, therefore only the df can acces
this information directly.

Agents are able to register, deregister, and look up services offered by other
agents. To do these tasks, agents need to communicate with the DF service
using the DF service ontology. Current functionality of the DF service is the
one proposed by FIPA. Nevertheless, we consider the possibility of improving
this service in order to provide new functionalities such as the management of
semantic information, service composition, services offered by agent organiza-
tions, etc. and also extending the operations proposed by FIPA for registering,
deregistering, and searching for services.

4.3. Organizational Unit Manager

The Organizational Units Manager (OUM) service provides support oriented
to agent-group communication as a pre-support for agent organizations. Sev-
eral research groups define theoretical proposals and methodologies to design
MASSs, oriented to organizational aspects of the agent society [27]. In order to
develop applications which use these organization oriented methodologies, we
require MAPs that support them. Among there are few MAPs which offer any
kind of support related to agent organizations. Among these MAPs are Jack [3],
MadKit [4], or Zeus.

An agent group in Magentix is called organizational unit (from now on, unit)
and can be seen as a blackbox from the point of view of external agents. Units
can also be composed of nested units. Agents can interact with an agent unit
in a transparent way, i. e. from the point of view of an agent outside the unit,
there is no difference between interacting with a unit or with an individual agent.
Interaction between an agent and a unit is carried out by the MAP through
properties specified by the user. Each unit has some properties associated to
it. As each agent of the MAP has a unique name, each unit is identified in the
MAP by its name. In order to interact with any unit, user must specify one or

ComSIS Vol. 10, No. 1, January 2013 59

Juan M. Alberola et al.

more agents to receive the messages addressed to the unit: these agents are
called contact agents. User can also specify the way in which these messages
have to be delivered to the contact agents. This property is called the routing
type and messages addressed to the unit will be delivered to the contact agents
defined according to one of these routing types:

— Unicast: The messages addressed to the unit are delivered to a single agent
which is responsible for receiving messages. This type is useful when we
want a single message entrance to the group. It could be useful if the group
has for example, a hierarchical structure, where the supervisor receives
every message and distributes them to its subordinates.

— Multicast: Several agents can be appointed to receive messages. When a
message is addressed to the unit, this message is delivered to any contact
agent in the unit. This could be useful if we want to represent an anarchic
scenario, where every message needs to be known by every agent without
any kind of filter.

— Round Robin: There can be several agents appointed to receive messages.
But each message addressed to the unit is delivered to a different contact
agent, defined according to a circular policy. This type of routing messages
is useful when several agents offer the same service but we want to dis-
tribute the incoming requests to avoid the bottlenecks.

— Random: Several agents can be defined as contact agents. But the mes-
sage is delivered to a single one, according to a random policy. As with the
previous type, this is useful for distributing the incoming requests, but no
kind of order for attending these requests is specified.

— Sourcehash: Several agents can be the contact agents. But any given mes-
sage is delivered to one of the agents responsible for receiving messages,
according to the host where the message sender is situated. This is a load-
balancing technique.

Units have a defined set of agents which make up the unit, called members.
These agents can interact and coordinate with each other and each one plays
a certain role. Finally, each unit has a manager associated to it. This agent is
responsible for adding, deleting or modifying the members and contact agents.
By default it is the agent which creates the unit and is the only one allowed to
delete it.

All of this information regarding units in Magentix, is managed by the OUM
service, which stores it in the GUT (Global Unit Table). Similar to the previous
services, OUM is a distributed service composed by oum agents running on
each MAP host. The GUT table is replicated and synchronized on each host
of the MAP every time an update is made. Interaction between agents and
OUM service is carried out by the sending of messages using the OUM service
ontology.

4.4. RDF as framework for representing information

To develop large systems, standard language communication is a key require-
ment for allowing the interaction between heterogeneous entities. FIPA pro-

60 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

poses some Agent Communication specifications regarding the language used
for message exchanging in a MAP [30]. They standarize the structure of an
Agent Communication Language (ACL) message to ensure interoperability and
also Content Language (CL) specifications for representing the content of the
ACL messages. The use of standard specifications is vital in order to allow in-
teroperability between heterogeneous agents which could compose an open
system, as well as to define standard ontologies for accessing the MAP ser-
vices.

Resource Description Framework (RDF) is a language for representing infor-
mation about resources on the World Wide Web. By generalizing the concept of
a "Web resource”, RDF can also be used to represent information about things
even when they cannot be directly retrieved from the Web [6]. RDF is based
on the idea of identifying things using Web identifiers (called Uniform Resource
Identifiers, or URIs), and describing resources in terms of simple properties
and property values. The underlying structure of any expression in RDF is a
collection of triples, each consisting of a subject, a predicate and an object. The
subject can be any resource, the predicate is a named property of the subject
and the object denotes the value of this property. A set of such triples is called
an RDF graph. RDF also provides an XML-based syntax (called RDF/XML [7])
for recording and exchanging these graphs. RDF is intended for situations in
which this information needs to be processed by applications, rather than only
being displayed to people. RDF provides a common framework for expressing
this information so it can be exchanged between applications without loss of
meaning.

Due to the features of RDF and its widespread use in MAS [18, 24, 35, 36],
an RDF-based framework for managing information has been designed for Ma-
gentix and has been integrated into it. It allows a Magentix agent to manage all
of its information as RDF models (RDF graphs). Moreover, Magentix itself uses
the framework for the messages exchanged, for representing the information
that Magentix services manage, for interacting with the Magentix services and
for storing MAP events.

The framework is based on offering an API to deal with RDF management.
Of course, we did not implement an RDF support from scratch, the framework
is designed as a wrapper for existing RDF management libraries and is aimed
at simplifying the use of RDF inside a Magentix agent. There are some libraries
that deal with RDF models. However, because of the Magentix features, i. e.,
the fact that it is implemented in C language and is focused on achieving high
levels of efficiency, we have chosen the Redland libraries [8].

Redland is a set of free software C libraries that provide support for RDF.
The authors of Redland claim that it is portable, fast and with no known mem-
ory leaks. It allows the manipulation of the RDF graph, triples, URIs and Liter-
als. It can be implemented efficiently in C, providing memory storage with many
databases (Berkeley DB, MySQL, etc.). We use the RDF/XML syntax to serial-
ize the RDF graphs, but Redland also support other syntaxes, such as N-Triples

ComSIS Vol. 10, No. 1, January 2013 61

Juan M. Alberola et al.

or Turtle Terse RDF Triple Language. Queries can be carried out with SPARQL
or RDQL.

One of the functionalities of Magentix where the RDF has been used in it is
to represent messages. Agents and services use message sending to commu-
nicate with each other as we said in section 3.1. FIPA defines the structure of
an Agent Communication Language (ACL) and also defines the use of RDF to
represent the message content [31]. Message header and message content in
Magentix are represented as RDF models serialized as XML. Some MAPs use
this kind of serialization to represent the message content only (such as Jade),
just as FIPA proposes. We provide Magentix with RDF to represent the whole
message. Therefore, only one parser is needed and this simplifies the parsing
and serializing process of a message.

As far as we are concerned, representing the FIPA-ACL using RDF should
be standard, but currently it is not, so interoperability with other FIPA-compliant
MAPs is compromised. A simple gateway that directly translates both repre-
sentations can be added to solve this problem. Figure 2 shows an example
of a Magentix message. It is an RDF graph in which resources are drawn as
ellipses and literals are drawn as squares. As can be observed, all of the FIPA-
ACL fields are mapped as RDF properties describing a message resource. The
content of the message can also be seen as an RDF sub-graph inside the main
RDF graph representing the message. Therefore, any information that a Ma-
gentix agent has as an RDF graph, can be added or retrieved directly from a
message.

Regarding the representation of information about Magentix services, an
ontology for interacting with them has been defined using Web Ontology Lan-
guage (OWL) [5]. The ontology mainly focuses on describing the resources that
the services manage (hosts, agents, services, organizational units, etc.). There-
fore, all of the information is treated, without taking into account implementation
concerns, so that a change in the implementation does not have any effect on
the way the services treat the information. What is more, they can store all of
its information in a direct and simper fashion on a database.

In order to achieve rich and flexible interactions between agents and Ma-
gentix services, the ontology also includes actions that can be requested by a
Magentix service (creation of a new agent to the AMS, registering a service to
the DF, creation of a new organizational unit to the OUM, etc.). Therefore, any
Magentix agent that knows the ontology can interact with Magentix services
and also manage all of the related knowledge using the framework provided.

4.5. Security Model

The Magentix MAP has a security model [48, 47], which is based on both the
Kerberos protocol and the Linux OS access control. This model provides Ma-
gentix with authentication, integrity and confidentiality. By means of this model
each agent has an identity which it can prove to the rest of the agents and
services in a running Magentix MAP.

Magentix agents can have three identity types:

62 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

~ ~
4 \ http://gti-ia.dsic.upv.es/magentix#sender
I message | agentl

_ -
~

- http://gti-ia.dsic.upv.es/magentix#fipa_request \/
-~

~ >

http://gti-ia.dsic.upy.es/tourism/name
Murphy's Adam
Pub Slater

Fig. 2. Magentix Message represented in RDF

— Agent identity. Its identity as an agent. This identity is created by the AMS
when the agent is created.

— User identity. The identity of its owner, i.e, the identity of the user that cre-
ated the agent.

— Unit identity. The identity of each unit that the agent is in.

An agent always has at least its Agent identity and its owner’s User identity.
Therefore, a Magentix agent is provided with more than one identity, so a way of
letting the Magentix communication module know which Kerberos credentials it
has to use when sending a message is needed. This is done with a new field in
the message header. If this field is in the message header of a message to be
sent, the communication module tries to use the identity chosen; otherwise the
corresponding agent identity is used. If the Kerberos credentials associated to
the identity that the agent is requesting are not available, and the agent is trying
to use an identity that it does not own for instance, the sending of the message
fails.

Magentix services are based on information replication in each host. In order
to check the integrity of this information and protect it from being accessible to
non-authorized users, service communication needs to be secured. In order to
do so, the administrator creates a principal (the principal is the unique name of
a user or service allowed to authenticate using Kerberos) for each service with
a random key that is saved by default in /etc/krb5.keytab. This file is secured

ComSIS Vol. 10, No. 1, January 2013 63

Juan M. Alberola et al.

using Linux OS access control and can only be accessed by the root user, so
Magentix services have to run as root privileges.

When a service requires communication with another service, a security
context is established as a client with the principal of the MAP administrator
and as a server with the principal of the destination service. Using this security
context the information sent is encrypted and a message integrity code is cal-
culated. Therefore, the client is sure that the destination service is the service
expected. Moreover, the destination service knows that it is being contacted by
a service with the administrator’s identity, so the destination service will serve all
of the requests it receives. Thus, only MAP services can exchange information
with each other.

Securing agent communication is similar to securing service communica-
tion, but agents use the identity that the ams agent has created for them when
creating a security context to allow a secure interaction with each other.

In order to make efficient use of security contexts, a context cache has been
added to each agent. This cache contains the corresponding security context
associated with a destination agent. This cache is not related to the connec-
tions cache, so that, when a connection with an agent is closed, the associated
security context is not lost.

5. User Agents

Agents in Magentix are represented as Linux processes. Internally, every agent
is composed of Linux threads: a single thread for executing the agent tasks
(main thread), a thread for sending messages (sender thread) and a thread for
receiving messages (receiver thread). The ams agent manages the creation
and deletion of the user agents launched on the same host. The GAT is shared
between the ams agent and these user agents, so accessing the physical ad-
dresses of any agent of the MAP is fast and does not become a bottleneck.
Agents have free read access to the GAT, thus, searching for the address of
any agent registered in the MAP is efficient.

Magentix provides a template for developing agents written in C++. We pro-
vide different methods to manage the agent execution life cycle as well as the
message sending and reception. Furthermore, agent developers can extend
this model to include other requirements. Interaction with services is easily car-
ried out by means of a specific API. Interactions among agents are focused on
conversations. An agent can be interacting with several agents or services at
any time. Each interaction between two agents can be represented as a pattern
of communication where some messages are exchanged between the partici-
pants. These patterns can be predefined or not, but there is an initial message
and a final message. The entire amount of messages exchanged between two
participants represents a conversation. Magentix provides two functionalities for
managing conversations: mailboxes and conversation managers.

64 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

5.1. Mailboxes

Mailboxes are used to improve the management of incoming messages from
any agent. An agent is able to interact simultaneously with several agents. In
these scenarios the possibility of distributing the incoming messages in different
message queues, depending on the conversation that belongs each message,
becomes interesting. By default every agent has a unique Mailbox called DE-
FAULT_MAILBOX, which receives every message addressed to the agent.

Magentix allows agent developer to create new Mailboxes and later, asso-
ciate a conversation identifier to them. Then, when a message with this con-
versation identifier (represented as the conversation_id field of the message) is
received, this message is routed to the corresponding Mailbox. This functional-
ity allows messages to be filtered and split according to this field, so that, agent
developers can easily distribute the different conversations which an agent is in-
volved in among different Mailboxes. A Mailbox is not restricted to receive only
the messages of a specific conversation identifier since we consider the possi-
bility of associating several identifiers to the same Mailbox. The basic function-
ality an agent developer needs to bear in mind when working with Mailboxes is
creating new Mailboxes and then, associating them to conversation identifiers.
When an agent checks the message incoming queue, it specifies which Mailbox
it wants to check. We can see in figure 3 an image of the internal structure of a
Magentix agent.

SENDER THREAD RECEIVER THREAD

MAIN_MAILBOX
MAILBOX1

CONNECTION TABLE

Fig. 3. Magentix Agent

ComSIS Vol. 10, No. 1, January 2013 65

Juan M. Alberola et al.

5.2. Conversation Manager

Interactions between Magentix agents are focused on conversations. Thus, it
is important for us not only to the searching and sending of messages to other
agents but also to easily reproduce typical conversation patterns that can ap-
pear in a big variety of scenarios. An agent is able to simultaneously communi-
cate with several agents. Every interaction between a pair of agents very often
requires the exchanging of more than one message. Moreover, message ex-
change patterns are usually repeated in several interactions between agents,
i.e. to access some service, to request information, to send proposals to differ-
ent agents, etc. Thus, defining communication patterns to specify which mes-
sages exchanges are allowed for a specific interaction proves to be an interest-
ing and useful feature for agent developers.

FIPA defines standard interaction protocol specifications that agents can use
in their conversation with other agents ([32]). These specifications deal with
pre-agreed message exchange protocols for ACL messages. Magentix pro-
vides support for executing these protocols defined by FIPA, therefore, agent
developers can easily reproduce these interaction scenarios without needing
to consider the sequence of exchanged messages, the possible failures in the
execution of the protocol and so on. Agent developer only has to specify what
to do when some of the deterministic events of the protocol take place and the
protocol will automatically be checked and executed by Magentix.

Interaction protocols are defined by FIPA using UML-diagrams. In figure 4
we can see the protocol FIPA-request as an example. In these protocols there
are two roles, initiator and participant, which exchange some possible message
sequences. We translate this representation to Magentix as finite state ma-
chines. Each interaction protocol has a finite state machine associated to each
possible role of the protocol. In figure 5 we can see the FIPA-request protocol
for the initiator role. Each finite state machine has these properties:

— A not create initial state. This state is the first of every protocol.

— Transitions which allow the execution of the protocol depending on the mes-
sages received (represented as performatives such as refuse or agree) or
A-transitions, which take the protocol execution forward to the next state.

— Intermediate states for representing the intermediate steps of the protocol
execution.

— A delete state. This is the last one of every protocol.

In order to process these interaction protocols we define a conversation
manager. A conversation manager is an internal entity within Magentix agents,
which has one or more interaction protocols associated to it. When an agent is
using one of these protocols in its conversations with other agents, its conversa-
tion manager is in charge of automatically managing it and ensuring the correct
execution of the protocol, executing each step and transition of the protocol.
Several conversation managers can be assigned to a single agent, each one in
charge of the management of different interaction protocols. This decision de-
pends on the agent developer, which can run more conversation managers or

66 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

not
created
e

Initiator, Participant, !
request, refuse*, not- | S>> request
understood®, agree, failure”, |
inform-done : inferm®,
(~ FIPA-Request-Protocol inform-ref : inform*

| Initiator ‘ ‘ Participant

i
request q

not-understood

Ag“uu“:u

refuse

agree

;

- failure

inform-done
< nlorm-done A, _|
[agreed]

1

Q

~
~.

-
N\
N

[2

\
\
L
~
N
~

! inform-ret H
< i \
\ ' J ™
- : : - delete
i i

Fig. 4. FIPA-request Interaction Protocol Fig.5. Finite State Machine for FIPA-
request in Magentix

stop them according to its needs. The conversation manager is an abstraction
that hides the basic concepts of the conversations (makes sure the message
is exchanged, mailbox management, etc.) from the agent developer, which only
has to specify what to do in each step of the protocol, easily allowing the concur-
rent execution and management of several conversations. We are now working
to extend the conversation management funcionalities. We especially want to
facilitate the specification of any protocol interaction that agent developer could
require, apart from that predefined by FIPA.

6. The Tourism Service Application

In this section, we present a real application developed in Magentix which uses
some of the features provided. In order to test the performance of a MAP fo-
cused on large systems, we require examples aimed to be large-scale which
are so real as possible. The Tourism Service application [39] is a MAS that al-
lows users to find information about places of interest in a city according to their
preferences (restaurants, movie theaters, museums, theaters, and other places
of general interest such as monuments, churches, beaches, parks, etc.), by us-
ing their mobile phone or PDA. Once a specific place has been selected, the
tourist can make a reservation at a restaurant, buy tickets for a film, etc. Our

ComSIS Vol. 10, No. 1, January 2013 67

Juan M. Alberola et al.

research group has been working with a partnership developing MAS-based
recommender systems for tourists.

There are four different agent types in the application. A SightAgent man-
ages all of the information related to the features and activities for a specific
place of interest in the city. A UserAgent allows tourists to interact with the
system by means of a GUI on their mobile devices. A BrokerAgent mediates
between UserAgents and SightAgents. It also manages updated information
about the SightAgents registered on it. Finally, a PlanAgent manages all of the
planning processes in the system. The application offers search, reservation,
planning, and registration services. The Search service is offered by the Bro-
kerAgent and can be requested by a UserAgent. The result of the invocation of
this service is a list of descriptions of places that match user preferences. The
Reserve service is offered by a SightAgent and can be requested by a UserA-
gent. The result of this service is the confirmation of a successful reservation or
an error message. The "Plan a Specific Day” service is provided by the PlanA-
gent and can be requested by a UserAgent. The result of this service is a plan
consisting of a list of places or activities.

We have implemented this application using the Magentix MAP with RDF
support. The implemented ontology is represented in RDF and gives detailed
descriptions of tourist places, information about scheduling, etc; For example,
information about restaurants, represent issues related to menus, cuisine, in-
gredients, etc.

UserAgents can be implemented as Magentix agents in the MAP or by
means of an interface that is implemented using the J2ME (Java 2 Micro Edi-
tion) specification. In the latter case, UserAgents have to make HTTP requests
to a GatewayAgent, which acts as a gateway between UserAgents and the rest
of the system. This GatewayAgent is implemented as a Magentix agent, which
includes a micro-http server. This mechanism allows the interaction between
Magentix agents and external agents.

7. Large Scale Evaluation of the Messaging Service

In this section, we present different experiments in order to evaluate the mes-
saging service of Magentix, based on the application presented in Section 6.
As we stated in Section 2, this service is crucial when developing systems
with large agent populations with high message traffic. In [16], we presented
a testbed for MAP performance evaluation. These tests focused on evaluating
different parameters of the MAP in one and two hosts: the message traffic, the
message size, the registered services, the searched services, the CPU con-
sumption of the threads, the memory consumption, the network traffic, etc. Ac-
cording to these tests, the main bottleneck of a MAP performance is related to
the messaging service. These conclusions have also been confirmed by other
authors, who claim that other parameters such as the CPU cycles do not reach
saturations in large-scale environments [28]. Based on these conclusions, in
[49] we presented a set of large-scale benchmarks to test the messaging ser-

68 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

vice. The experiments shown here are based on these benchmarks and are
adapted to the Tourism Service Application presented in Section 6.

We compare Magentix against the performance of Jade, which is a well-
known MAP and is more scalable than other MAPs as we stated in Section
2. Since the initial implementation of the Tourism Service Application was in
Jade [38], we can determine the performance of the messaging service of both
MAPs simulating different scenarios in this domain. We used 20 PCs Intel(R)
Core(TM) 2 Duo CPU @ 2.60GHz, 2GB RAM, Ubuntu 10.10 and Linux Kernel
2.6.35. The computers were connected to each other via a 100Mb Ethernet
hub.

The first experiment is aimed at testing the MAPs performance when both
the number of agents and the message traffic increase. This experiment mea-
sures the capability of the MAP when messages are sent to different agents.
As an example, this situation can occur when a BrokerAgent requests different
SightAgents. We simulate this scenario by launching several groups of Broker-
Agents and SightAgents. The objective of each BrokerAgent is to send a mes-
sage to the first SightAgent on its list, which sends back the same message.
After that, each BrokerAgent sends a message to its corresponding SightAgent
placed in the next host and waits for the response. This experiment measures
the time elapsed between when the first message is sent by the first BrokerA-
gent and when the last message is received by the last BrokerAgent. The exper-
iment started with 100 agents in the system, increasing to 1000. The number of
messages sent by each BrokerAgent was specified at 1000.

1000

Jade —w—
Magentix ===4-=--
900 - k

800 1

Time (s)

100 200 300 400 500 600 700 800 900 1000
Agents

Fig. 6. Experiment 1: population and traffic increase

ComSIS Vol. 10, No. 1, January 2013 69

Juan M. Alberola et al.

Figure 6 shows the time required for the two MAPs. The figure shows that
there is a performance degradation as the number of agents and the message
traffic increase. However, Magentix performance degrades less than Jade per-
formance. As an example, it can be observed that the elapsed time in Magentix
when the system is composed of 1000 agents is less than the elapsed time in
Jade when the system is composed of 200 agents.

Another typical scenario is the massive amount of message-sending to a
specific agent. The second experiment measures the ability of the MAPs when
a lot of agents send messages to a single one. This specific agent could be-
come a bottleneck in the system when multiple messages are addressed to
it. This scenario appears, for example, when UserAgents are requesting the
same BrokerAgent to retrieve information. The BrokerAgent has to serve every
received request. As the number of incoming requests increases, the time for
processing these requests may also increase. In order to simulate this, a single
BrokerAgent agent and several UserAgents were launched. The goal of each
UserAgent was to send messages to the BrokerAgent. The elapsed time be-
tween when the BrokerAgent received the first message and when it answered
all the messages is shown in Figure 7. In this experiment, we increased the
number of UserAgents up to 100, distributed among all the hosts. Each UserA-
gent sent 10000 messages.

120

Jade —x—
Magentix ---+---
110 b

Time (s)

20 I I I I I I I I I

10 20 30 40 50 60 70 80 90 100
Agents

Fig. 7. Experiment 2: massive sending to an agent

It can be observed that the elapsed time increases in both MAPs as the
number of requests increases. However, as in the first experiment, the perfor-
mance degradation is less in Magentix. The time difference between the two

70 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

MAPs gradually increases as the number of agents increases. Therefore, Ma-
gentix is also more scalable and efficient than Jade in this scenario. Note that
in this scenario the receiver agent is not changed during the entire experiment.

The third experiment complements the second one. The distribution of agents
in this experiment was similar. However, there were the same number of Broker-
Agents as UserAgents. In this experiment, several BrokerAgents were placed in
the same host and each UserAgent communicated with its corresponding Bro-
kerAgent. The results obtained are shown in Figure 8. It can be observed that
the results for Jade are similar to the results for the second experiment. This is
due to the way that Jade implements communication among all the MAP hosts.
Therefore, the bottleneck is caused by the message transport system and not
by the way the message queue is managed by the agent itself. In contrast, the
performance in Magentix in the third experiment is slightly better than in the
second one.

120

jade —
Magentix ---+---

110

Time (s)

20 L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Agents

Fig. 8. Experiment 3: host massive sending

The fourth experiment checks the limits of the MAPs. This experiment pro-
vides a different perspective from the previous experiments in which the re-
ceiver agents are predefined. This may give rise to different bottlenecks, show-
ing another typical scenario in real systems, in which some agents may be
more requested than others. In order to simulate this, several BrokerAgents
were placed in 10 hosts of the MAP and several UserAgents were placed in
the other 10 hosts. Each UserAgent had to send 1000 messages to a non-
predefined BrokerAgent. Thus, the specific BrokerAgent was randomly selected
before sending each message. This caused some BrokerAgents to be more

ComSIS Vol. 10, No. 1, January 2013 71

Juan M. Alberola et al.

overloaded than others. Furthermore, in this experiment, the number of agents
was increased to 2000, in order to overload the MAPs.

2000

Jade —w—
Magentix ---+---
1800 1

1600 1
1400 4
1200 1

1000 1

Time (s)

800 1

600 1

400 1

200 . . 7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Agents

Fig.9. Experiment 4: random requests

It can be observed in Figure 9 that Magentix offers better performance than
Jade, and the differences increase according to the increase in the traffic. The
figure also shows that the two MAPs present higher response times with respect
to the first experiment, in which the traffic was equally distributed among all the
BrokerAgents. This is due to the fact that, in this forth experiment, message load
is not spread over all of the receiver agents launched. Since the BrokerAgent in
each message sending is selected randomly, there may be BrokerAgents that
have to serve a lot of messages while others are idle. Therefore, as the second
experiment indicates, Jade performs quite badly when there is an agent that is
receiving a lot of messages. As a result, performance differences with respect
to the first experiment are much higher in Jade than in Magentix.

From the results provided in these tests, we can conclude that Magentix
improves the efficiency and scalability of the messaging service provided by
Jade, which is the most commonly used MAP and that it is more scalable than
other MAPs. In these tests, we have simulated four typical scenarios in order
to determine the efficiency and scalability in the Magentix and the Jade MAPs.
These tests represent critical situations so that we can see the degree of perfor-
mance improvement achieved more clearly. Although we scale up to 20 hosts in
these tests, the conclusions obtained can be extended to at least to 100 hosts
according to the results shown in [49].

72 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

8. Conclusions

The next generation of technologies aims to provide features such as distri-
bution, interoperability, scalability, organizations, service-oriented, open, geo-
graphically dispersed, and so on. MASs can contribute to these environments
by evolving new applications that will become more autonomous and social
from the point of view of the MAS field.

MAPs have traditionally been used as a support framework to facilitate the
development of these kinds of systems. A lot of MAPs have been developed
in the last few years; however, unfortunately, very few real MAS-based appli-
cations have appeared, probably due to the lack of suitability of the support
frameworks which did not fulfill all of the requirements. In order to support the
new generation of systems (in line with the latest trends in rapidly expanding
technologies), new MAP designs should focus on being interoperable, scalable,
and large-scale as just some of their key features.

In this paper, we have presented the Magentix MAP. Since its design is
closer to the OS level, it ensures that the MAP is efficient, especially when
running large systems. Basic services such as an agent directory service, a
service directory service, and a messaging service are provided by Magentix.
We have implemented and tested the performance of this MAP. Magentix also
provides a group-oriented communication mechanism. This mechanism allows
communication between individual agents as well as interaction among groups
of agents. When considering large systems, security concerns become an im-
portant issue and a necessary feature when these systems become open. Ma-
gentix has a security model that is based on the Kerberos protocol and Linux
OS access control which provides authentication, integrity, and confidentiality.
In order to achieve interoperable systems, we represented the information us-
ing RDF. This framework has been widely used in MAS for different purposes.
Magentix represents messages to be exchanged in RDF so that agents can
easily manage the information that is sent and received. Ontologies defined in
OWL have also used to interact with services.

Using a tourism service application, we have shown how Magentix can be
used as a support framework to develop MAS-based applications. The mes-
saging service evaluation shown in this paper demonstrates that a MAP design
that uses the OS services provides greater efficiency and scalability than other
high-performance middleware-based MAPs such as Jade.

With the features provided by Magentix we can establish the next objective
of the project: to provide Magentix with support for open MAS. We are working
on the development of an http-based gateway at MAP level, in order to allow
the interaction between Magentix agents and agents developed in other MAPs.
Virtual organizations where agents dynamically enter and exit the system and
form groups could also be created in Magentix.

Acknowledgments. This work has been partially supported by CONSOLIDER-INGENIO
2010 under grant CSD2007-00022, and projects TIN2011-27652-C03-01 and TIN2008-

ComSIS Vol. 10, No. 1, January 2013 73

Juan M. Alberola et al.

04446. Juan M. Alberola has received a grant from Ministerio de Ciencia e Innovacion
de Espana (AP2007-00289).

References

—
COXNOIRLN~

—_
W=

—
N

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

74

Fipa-os. http:/fipa-os.sourceforge.net

FIPA (The Foundation for Intelligent Physical Agents). http://www.fipa.org/

Jack. http://www.agent-software.com

Madkit. http://www.madkit.org

OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/
RDF. http://www.w3.org/TR/rdf-primer/

RDF/XML Syntax Specification. http://www.w3.org/TR/rdf-syntax-grammar/
Redland RDF Libraries. http:/librdf.org

Safeguard. http://www.ist-safeguard.org/

Standard for information technology - portable operating system interface (POSIX)

. Tryllian agent development kit (adk). http://www.tryllian.com
. Zeus agent toolkit. http://labs.bt.com/projects/agents/zeus/
. SACI - simple agent communication infrastructure. http://www.lti.pcs.usp.br/saci/

(2009)

. Alberola, .M., Mulet, L., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: Op-

erating system aware multiagent platform design. In: Proceedings of the Fifth Euro-
pean Workshop on Multi-Agent Systems (EUMAS-2007). pp. 658—667 (2007)
Alberola, J.M., Such, J.M., Espinosa, A., Botti, V., Garcia-Fornes, A.: Scalable and
efficient multiagent platform closer to the operating system. Atrtificial Intelligence
Research and Development 184, 7—15 (2008)

Alberola, J.M., Such, J.M., Garcia-Fornes, A., Espinosa, A., Botti, V.: A performance
evaluation of three multiagent platforms. In: Artificial Intelligence Review, Volume
34, Number 2. pp. 145—-176 (2010)

Batouma, N., Sourrouille, J.L.: Dynamic adaption of resource aware distributed ap-
plications. In: International journal of grid and distributed computing. vol. 4, pp. 25—
42 (2011)

Bauwens, B.: Xml-based agent communication: Vpn provisioning as a case study.
In: XML Europe’99 (1999)

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade a white paper. EXP 3, 6—19
(2003)

Bitting, E., C.J.G.A.: Multiagent system development kit: An evaluation. In: Proceed-
ings of Communication Networks and Services Research Conference, May 15-16,
pp. 80-92, Moncton, New Brunswick, Canada, 2003

Badica, C., Budimac, Z., Burkhard, H.D., lvanovic, M.: Software Agents: Languages,
Tools, Platforms. Computer Science and Information Systems 8(2), 255-298 (2011)
Burbeck, K., Garpe, D., Nadjm-Tehrani, S.: Scale-up and performance studies of
three agent platforms. In: IPCCC 2004 (2004)

Camacho, D., Aler, R., Castro, C., Molina, J.M.: Performance evaluation of zeus,
jade, and skeletonagent frameworks. In: IEEE International Conference on Systems,
Man and Cybernetics, 2002 (2002)

Cenk, R., Dikenelli, O., Seylan, I., Gurcan, O.: An infrastructure for the semantic
integration of fipa compliant agent platforms. In: AAMAS. pp. 1316—-1317 (2004)
Chmiel, K., T.D.G.M.K.P.: Testing the efficency of jade agent platform. In: Proceed-
ings of the ISPDC/HeteroPar’04, 49-56 (2004)

ComSIS Vol. 10, No. 1, January 2013

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

A Scalable Multiagent Platform for Large Systems

Cortese, E., F.Quarta, Vitaglione, G.: Scalability and performance of jade message
transport system. EXP 3, 52—65 (2003)

E. Argente, A. Gilet, S.V.V.J., Botti, V.: Survey of mas methods and platforms fo-
cusing on organizational concepts. In: Recent advances in Artificial Intelligence Re-
search and Development. vol. 113, pp. 309—-316. IOS Press (2004)

Fernandez, V., Grimaldo, F., Lozano, M., Ordufa, J.M.: Evaluating jason for dis-
tributed crowd simulations. In: ICAART (2). pp. 206—211 (2010)

FIPA: FIPA Abstract Architecture Specification. FIPA (2001),
http://www.fipa.org/specs/fipa00001/

FIPA: FIPA ACL Message Structure Specification. FIPA (2001),
http://www.fipa.org/specs/fipa00061/

FIPA: FIPA RDF Content Language Specification. FIPA (2001),
http://www.fipa.org/specs/fipa00011/

FIPA: FIPA Interaction Protocol Library Specification. FIPA (2003),
http://www.fipa.org/specs/fipa00025/

Giang, N.T., Tung, D.T.: Agent platform evaluation and comparison (2002)

Hirsch, B., Konnerth, T., HeBler, A.: Merging agents and services — the JIAC
agent platform. In: Multi-Agent Programming: Languages, Tools and Applications,
pp. 159-185. Springer (2009)

Huynh, D., Karger, D.R., Quan, D.: Haystack: A platform for creating, organizing and
visualizing information using rdf. In: Eleventh World Wide Web Conference Seman-
tic Web Workshop (2002)

Laclavik, M., Balogh, Z., Gatial, E., Hluchy, L.: Agent architecture based on semantic
knowledge model. In: 5th annual conference. VSB-Technick. pp. 288—291 (2006)
Lee, L.C., Ndumu, D.T., Wilde, P.D.: The stability, scalability and performance of
multi-agent systems. BT Technology Journal 16, 94—103 (1998)

Lopez, J.S., Bustos, F.A., Julian, V., Rebollo, M.: Developing a Multiagent Recom-
mender System: A Case Study in Tourism Industry. International Transactions on
Systems Science and Applications 4(3), 206—212 (2008)

Lopez, J.S., Bustos, F.A., Inglada, V.J.: Tourism services using agent technology: A
multiagent approach. INFOCOMP - Journal of Computer Science - Special Edition
pp. 51-57 (2007)

Lynch, S.: Using meta-agents to build mas platforms and middleware. In: Interna-
tional Conference on Agents and Atrtificial Intelligence (ICAART) (2011)

Mulet, L., Such, J.M., Alberola, J.M.: Performance evaluation of open-source multi-
agent platforms. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMASO06). pp. 1107—1109. Association
for Computing Machinery, Inc. (ACM Press) (2006)

Nodine, M.H., Unruh, A.: Facilitating open communication in agent systems: the
infosleuth infrastructure (1997)

Omicini, A., Rimassa, G.: Towards seamless agent middleware. In: TAPOC 2004
Park, A.H., et al.: A flexible and scalable agent platform for multi-agent systems. In:
Proceedings of WASET Bangkok (2007) (2007)

Pesovic, D., Vidakovic, M., lvanovic, M., Budimac, Z., Vidakovic, J.: Usage of agents
in document management. Computer Science and Information Systems 8(1), 193—
210 (2011)

Shakshuki, E.: A methodology for evaluating agent toolkits. In: ITCC '05: Proceed-
ings of the International Conference on Information Technology: Coding and Com-
puting (ITCC’05) - Volume I. pp. 391-396. IEEE Computer Society, Washington, DC,
USA (2005)

ComSIS Vol. 10, No. 1, January 2013 75

Juan M. Alberola et al.

47. Such, J.M., Alberola, J.M., Espinosa, A., Garca-Fornes, A.: A Group-oriented Se-
cure Multiagent Platform. Software: Practice and Experience 41(11), 1289-1302
(2011)

48. Such, J.M., Alberola, J.M., Garca-Fornes, A., Espinosa, A., Botti, V.: Kerberos-based
secure multiagent platform. In: Sixth International Workshop on Programming Multi-
Agent Systems (ProMAS’08). pp. 173—186 (2008)

49. Such, J.M., Alberola, J.M., Mulet, L., Espinosa, A., Garcia-Fornes, A., Botti, V.:
Large-scale multiagent platform benchmarks. In: LAnguages, methodologies and
Development tools for multi-agent systemS (LADS 2007). Proceedings of the Multi-
Agent Logics, Languages, and Organisations - Federated Workshops. pp. 192-204
(2007)

50. Such, J.M., Alberola, J.M., Mulet, L., Garcia-Fornes, A., Espinosa, A., Botti, V.: Hacia
el diseo de plataformas multiagente cercanas al sistema operativo. In: International
workwhop on practical applications on agents and multi-agent systems (2007)

51. Vrba, P.: Java-based agent platform evaluation. In: Proceedings of the HoloMAS
20083. pp. 47-58 (2003)

Juan M. Alberola is a PhD student at the Departament de Sistemes Informatics

i Computacié of the Universitat Politecnica de Valéncia. His interest areas in-
clude agent organizations, adaptation, multiagent platforms, case-based-reasoning
and electronic markets.

Jose M. Such is Lecturer in the School of Computing and Communications
at Lancaster University (UK). He was previously research fellow at Universi-
tat Politecnica de Valéncia (Spain), by which he was awarded a PhD in Com-
puter Science in 2011. He is mostly interested in the following research topics:
Privacy, Security, Trust, Reputation, Multi-agent Systems, and Atrtificial Intelli-
gence.

Vicent Botti is Full Professor at the Universitat Politecnica de Valéencia (Spain)
and head of the GTI-IA research group of the Departament de Sistemes In-
formatics i Computacié. He received his Ph.D. in Computer Science from the
same university in 1990. His research interests are multi-agent systems, agree-
ment technologies, and articial intelligence, where he has more than 200 ref-
ereed publications in international journals and conferences. Currently he is
Vice-rector of the Universitat Politecnica de Valéncia.

Agustin Espinosa is Lecturer at the Departament de Sistemes Informatics
i Computacio of the Universitat Politecnica de Valencia and a researcher at
the GTI-IA Research Group of the Universitat Politécnica de Valéncia. His re-
search interests include multiagent systems, agent architectures, agent plat-
forms, agent frameworks, and real-time agents. He received his Ph.D. in Com-
puter Science from the Universitat Politécnica de Valéencia, Spain in 2003.

76 ComSIS Vol. 10, No. 1, January 2013

A Scalable Multiagent Platform for Large Systems

Ana Garcia-Fornes is a Professor at the Departament de Sistemes Informatics
i Computacié of the Universitat Politecnica de Valéncia. Her interest areas in-
clude: real-time artificial intelligence, real-time systems, development of mul-
tiagent infrastructures, tracing systems, operating systems based on agents,
agent organizations, and negotiation strategies.

Received: October 29, 2011; Accepted: October 8, 2012.

ComSIS Vol. 10, No. 1, January 2013 77

