
DOI:10.2298-CSIS120713042R 

Validation of Schema Mappings with Nested 

Queries 

Guillem Rull, Carles Farré, Ernest Teniente, and Toni Urpí 

Departament d’Enginyeria de Serveis i Sistemes d’Informació 
Universitat Politècnica de Catalunya (UPC)—BarcelonaTech 

1-3 Jordi Girona, 08034 Barcelona, Spain 
{grull, farre, teniente, urpi}@essi.upc.edu 

Abstract. With the emergence of the Web and the wide use of XML for 
representing data, the ability to map not only flat relational but also 
nested data has become crucial. The design of schema mappings is a 
semi-automatic process. A human designer is needed to guide the 
process, choose among mapping candidates, and successively refine 
the mapping. The designer needs a way to figure out whether the 
mapping is what was intended. Our approach to mapping validation 
allows the designer to check whether the mapping satisfies certain 
desirable properties. In this paper, we focus on the validation of 
mappings between nested relational schemas, in which the mapping 
assertions are either inclusions or equalities of nested queries. We focus 
on the nested relational setting since most XML’s Document Type 
Definitions (DTDs) can be represented in this model. We perform the 
validation by reasoning on the schemas and mapping definition. In 
particular, we encode the given mapping scenario into a single flat 
database schema, and reformulate each desirable property check as a 
query satisfiability problem. 

Keywords: schema mapping, nested relational model, nested query, 
query equality, query inclusion, validation. 

1. Introduction 

Schema mappings are specifications that model a relationship between two 
data schemas. They are key elements in any system that requires the 
interaction of heterogeneous data and applications [16]. Such interaction 
usually involves databases that have been independently developed and that 
store the data of the common domain under different representations; that is, 
the involved databases have different schemas. In order to make the 
interaction possible, schema mappings are required to indicate how the data 
stored in each database relates to the data stored in the other databases. 
This problem, known as information integration, has been recognized as a 
challenge faced by all major organizations, including enterprises and 
governments [5]. 
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With the emergence of the Web and the wide use of XML for representing 
data, the ability to map not only flat relational but also nested data has 
become crucial. A sign of this is the growing interest of the research 
community during the last years on the topics of XML mappings—see, for 
instance, [3, 4]—and mappings between nested relational schemas—e.g., 
[20, 15]. 

However, the mapping design process is not a fully automatic one. A 
human designer is needed to guide the process, choose among mapping 
candidates, and successively refine the mapping [20]. Intricate manual work 
may actually be required to refine a particular mapping. Since manual design 
is labor-intensive and error-prone, the designer needs a way to figure out 
whether the mapping is what was intended. 

In order to address this need of validation, we propose an approach that 
allows the designer to ask questions about the mapping. In particular, it allows 
the designer to check whether the mapping satisfies certain desirable 
properties. In this paper, we focus on two properties that have been identified 
as important properties of mappings in the literature: mapping satisfiability [3] 
and mapping inference [19]. An additional property, mapping losslessness 
[22], is also addressed in the extended version of the paper [23]. 

Our approach is based on reasoning on the schemas and the mapping 
definition, and does not rely on specific schema instances, since that might 
not reveal all the potential pitfalls. 

In this paper, we focus on the application of this validation approach to 
mapping scenarios in which nested data is involved. More specifically, we 
address the validation of mapping scenarios in which the source and the 
target schema are nested relational [20], and in which the mapping is a set of 
assertions. Mapping assertions are in the form of either query inclusions, i.e., 

QS  QT, or query equalities, i.e., QS = QT, where QS and QT are queries over 
the source and the target schema, respectively, and whose result is a nested 
relation (i.e., QS and QT are nested queries). Note that a query inclusion 
(equality) assertion holds for a given pair of mapped schema instances if and 
only if the answer to QS over the source instance is a subset of (equal to) the 
answer to QT over the target instance. 

We focus on the nested relational setting since it covers the most common 
class of the well-known Document Type Definitions (DTDs) [3], and also 
because it is the model that is typically used in the data exchange context to 
represent semi-structured schemas [20]. 

The class of schemas and mappings that we consider is quite expressive. 
We consider schemas with integrity constraints, where these constraints are 
in the form of disjunctive embedded dependencies [10] (this class of 
dependencies is applied here to the nested relational setting instead of the 
traditional flat relational one in the same way as tuple-generating 
dependencies are applied to the nested relational setting in [20]). The integrity 
constraints of the schemas and the queries of the mapping may contain 
arithmetic comparisons and negations. Union of nested queries is also 
allowed. This class of mapping scenarios subsumes those considered by 
previous works on mapping validation [7, 6, 1], which also focus on the nested 
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relational setting but do not consider arithmetic comparisons nor negation. 
Moreover, these previous works deal with a class of constraints and mapping 
assertions—in the form of tuple-generating dependencies [13]—that is known 
to be a particular class of the disjunctive embedded dependencies that we 
consider [10]. 

To actually perform the validation, we propose a reformulation of each 
desirable property check in terms of the query satisfiability problem over a 
single flat relational database. Given a nested relational mapping scenario, we 
encode it into a flat database and define a query over this database such that 
the query is satisfiable if and only if the desirable property holds. This 
encoding takes into account the nested structure of the schemas, their 
integrity constraints, and the nested queries defined over them. Moreover, this 
encoding rewrites the mapping assertions as integrity constraints over the 
new flat relational database. 

In this way, we extend our previous work on validating relational mappings 
[22] and make it applicable to the nested case. 

We solve the query satisfiability problem by means of the Constructive 
Query Containment (CQC) method [14]. This method is able to deal with flat 
relational databases in which queries and integrity constraints have no 
recursion and may contain safe negation—on base and derived predicates—, 

equality and inequality () comparisons, and also order comparisons (<, , >, 

). To the best of our knowledge, the CQC method is the only query 
satisfiability method able to handle this class of schemas and queries. The 
use of the this method together with the encoding that we present in this 
paper is what allows us to address nested relational mapping scenarios that 
are more expressive than the ones addressed in the previous literature. 

Reasoning on the class of mapping scenarios that we consider here is, 
unfortunately, undecidable. However, extending the approach proposed by 
[21], we studied in [24] a series of conditions that, if satisfied, guarantee the 
termination of the CQC method for the current query satisfiability check. A 
detailed performance evaluation of the CQC method has been done in [22, 
24] for the case of flat relational mapping scenarios. This performance 
evaluation showed that, for those scenarios in which termination is 
guaranteed, the cost of the method is exponential with respect to the size of 
the mapping scenario, as expected given the complexity of reasoning on such 
an expressive language. 

We would also like to remark that the reduction that we propose of each 
desirable property in terms of query satisfiability is linear with respect to the 
size of the given mapping scenario. Moreover, this reduction does not 
increase the complexity of the problem, that is, checking query satisfiability is 
not more complex than checking the desirable properties [22]. 

We have performed some experiments to show the feasibility of our 
approach, using mapping scenarios from the STBenchmark [2]. The results 
are reported in the extended version of the paper [23]. 

Summarizing, the main contributions of the paper are the following: 

 We validate nested relational mappings by means of checking whether they 
satisfy certain desirable properties. We focus on two properties that have 
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airline: Rcd 
 flights: Set of Rcd 
  flight-id 

  from 
  to 
  departureTime 

  ticketPrice 
 connections: Set of Rcd 
  flight 

  connectingFlight 

flightDB: Rcd 
 flights: Set of Rcd 
  from 

  to 
  departureTime 
  airline 

  ticketPrice 
  connectsWith: Set of Rcd 
   flight-to 

   departureTime 
   airline 

Fig. 1. Example source (a) and target (b) nested relational schemas. 

(a) 
(b) 

been identified as important properties of mappings: mapping satisfiability 
and mapping inference. 

 We consider a class of mapping scenarios that is significantly more 
expressive than those considered by previous works on nested relational 
mapping validation. 

 We propose an encoding of the nested relational schemas in the mapping 
scenario into a single flat relational database. 

 We propose a rewriting of the mapping assertions as integrity constraints 
over the new relational database. 

 We extend our previous work on validating relational mappings [22] to the 
nested relational case. In particular, we propose a reformulation of each 
desirable property of nested relational mappings in terms of the query 
satisfiability problem over a flat relational database. Such a query 
satisfiability check can be solved by means of the CQC method. 

To better motivate the kind of validation that we propose, the next 
subsection discusses detailed examples. The rest of the paper is structured 
as follows. Section 2 introduces base concepts. Section 3 outlines our 
approach for validating mappings with nested queries. Section 4 and Section 
5 detail how to encode a given nested relational mapping scenario into a 
single flat database schema. Section 6 explains how to reformulate the check 
of each desirable property of mappings in terms of the query satisfiability 
problem. Section 7 reviews the related work. Section 8 concludes the paper. 

1.1 Examples of Mapping Validation 

Consider a mapping scenario in which an airline company wants to publish 
information about their flights and connecting flights into a certain flight-
searching Web site. Fig. 1 shows the source and the target schema of this 
scenario, where dashed lines denote referential constraints and the 
underlined attribute denotes a key. 

Example 1 
Let us assume the mapping designer has come up with two mapping 
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candidates. The first candidate is a mapping with two assertions: {m1, m2}. 
Assertion m1 maps the information of individual flights available in the source 
schema, independently of whether these flights have connecting flights or not. 
Assertion m2, maps the information about the connecting flights. 

 

The second candidate is a mapping with a single assertion: {m3}. Assertion 
m3 maps both the information of individual flights and of their connecting 
flights at the same time. It uses nested queries to ensure that flights without 
connecting flights are also mapped; that is, for each flight in the source, it 
creates a tuple that contains not only the flight’s data but also a set with the 
corresponding connecting flights; a set that may be empty if the flight has no 
connecting flights. 

 

The designer could think that both mapping candidates may be actually 
equivalent and that in that case he would feel more inclined to choose 
mapping {m3} since it seems more compact. Let us suppose that the designer 
wants to be sure before making the decision. He could then check whether m3 
is actually inferred from {m1, m2}, and whether m1 and m2 are both inferred 
from {m3}. 

The check of the mapping inference property [19] would reveal that while 
assertions m1 and m2 are indeed inferred from mapping {m3}, assertion m3 is 
not inferred from mapping {m1, m2}. Fig. 2 shows an instantiation of the 
mapping scenario that exemplifies the latter, i.e., it shows a source and a 
target instance that satisfy {m1, m2} but not m3. The example shows that 
mapping {m1, m2} does not ensure the correlation between a flight’s ticket 
price and the flight’s connecting flights. Notice that there is one single flight 

for f in airline.flights 

return f.from, f.to, f.departureTime,  
  “airlineXY”, f.ticketPrice,  
  for c in airline.connections,  

   f2 in airline.flights 
 where c.flight = f.flight-id  
   and c.connectingFlight =  

          f2.flight-id 
 return f2.to, f2.departureTime,  
   “airlineXY” 

for f in flightDB.flights 
return f.from, f.to, f.departureTime,  
  f.airline, f.ticketPrice,  

  for c in f.connectsWith 
 return c.flight-to,  
   c.departureTime,  

   c.airline 

 m3: 

for c in airline.connections,  
  f1 in airline.flights,  
  f2 in airline.flights 

where c.flight = f1.flight-id and  
  c.connectingFlight = f2.flight-id 
return f1.from, f1.to, 

f1.departureTime,  
  “airlineXY”, f1.to,  
  f1.departureTime, “airlineXY” 

for f in flightDB.flights,  
  c in f.connectsWith 
return f.from, f.to, 

f.departureTime,  
  f.airline, c.flight-to,  

  c.departureTime, c.airline 

 m2: 

for f in airline.flights 
return f.from, f.to, f.departureTime,  
           f.ticketPrice, “airlineXY” 

for f in flightDB.flights 
return f.from, f.to,  
   f.departureTime,  

   f.ticketPrice, f.airline 

 m1: 
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with connecting flights on the source instance, and that the data of that flight 
is split in three tuples on the target instance: a first one with no connecting 
flights but with the right ticket price, a second one with a wrong ticket price 
and with only two of the three connecting flights, and a third one also with a 
wrong ticket price and with the remaining connecting flight. 

The designer could thus conclude that mapping {m3} is preferable not only 
because is more compact but also because is more accurate than {m1, m2}. 

Example 2 
Let us assume now that, according to a new business rule, only the most 
expensive connecting flights should be advertised by means of the flight-
searching Web site. Let us also assume that the Web site has a constraint t1 
according to which, only flights with a ticket price no greater than 200 can be 
published. 

 
Taking into account the business requirement and target schema’s t1 

constraint, the designer could decide to adapt mapping {m3} and introduce 
and additional condition in the inner query block (shown in bold). The result is 
mapping {m4}. 

Let us also assume that another business rule was introduced, which the 
designer thinks has no effect on the mapping. The requirement is enforced by 
a new constraint s1 on the source schema, which requires that the connecting 
flights must be cheaper than the initial flight. 

 

s1: for c in airline.connections, f1 in airline.flights, f2 in airline.flights 
 where c.flight = f1.flight-id and c.connectingFlight = f2.flight-id 
 then f2.ticketPrice < f1.ticketPrice 

t1: for f in flightDB.flights then f.ticketPrice  200 

 

flights 

flight-id from to departureTime ticketPrice 

1 A B T1 50 

2 A C T2 70 

3 C D T3 45 

4 C E T4 60 

5 C F T5 55 

 

 

connections 

flight connectingFlight 

2 3 

2 4 

2 5 

 

(a) Source instance: 

 

flights 

from to departureTime airline ticketPrice connectsWith 

A B T1 airlineXY 50  

A C T2 airlineXY 70  

C D T3 airlineXY 45  

C E T4 airlineXY 60  

C F T5 airlineXY 55  

A C T2 airlineXY 80 

flight-to departureTime airline 

D T3 airlineXY 

E T4 airlineXY 

A C T2 airlineXY 90 
flight-to departureTime airline 

F T5 airlineXY 

 

(b) Target instance: 

Fig. 2. Example (a) source and (b) target instances. 
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In order to be sure that no further modifications to the mapping should be 
made as a result of this new business requirement, the designer could check 
the non-trivial satisfiability of mapping {m4} at all its levels of nesting. By doing 
that, he would realize that m4’s inner level of nesting never maps any data, 
i.e., mapping {m4} is only mapping those flights with no connecting flights. The 
problem is that there is a contradiction between source constraint s1 and the 
source query of m4; in particular, since the source query of m4 selects only 
connecting flights with ticket price equal to 200 in its inner query block, and s1 
requires these connecting flights to be cheaper than the initial flight selected 
by the outer query block, that implies the initial flight should have a ticket price 
greater than 200, which is not allowed by the target schema. 

2. Preliminaries 

In this section, we introduce the basic concepts of nested relational mapping 
scenarios and of flat relational databases. We also discuss the query 
satisfiability problem and its solution by means of the CQC method. 

2.1 Nested Relational Mapping Scenarios 

A nested relation R(A1, ..., An) is a relation in which each attribute Ai can be 
defined either as a simple type (e.g., integer, real, string) or as another nested 
relation. For instance, the nested relation flights on Fig. 1b has five simple-
type attributes: from, to, departureTime, airline and ticketPrice; and one 
attribute that is also a nested relation: connectsWith. 

A nested relational schema consists of a root record whose elements are 
either simple types or nested relations. Nested relational model generalizes 
the relational one. A flat relational schema can be modeled as a nested 
relational schema in which the root record is a collection of flat relations, i.e., 
relations with all their attributes defined as simple types. Fig. 1a shows a flat 
relational schema and Fig. 1b a truly nested relational one. 

for f in airline.flights 
return f.from, f.to, f.departureTime,  
  “airlineXY”, f.ticketPrice,  

  for c in airline.connections,  
   f2 in airline.flights 
 where c.flight = f.flight-id  

   and c.connectingFlight =  
    f2.flight-id 
   and f2.ticketPrice = 200 

 return f2.to, f2.departureTime,  
   “airlineXY” 

for f in flightDB.flights 
return f.from, f.to, f.departureTime,  
  f.airline, f.ticketPrice,  

  for c in f.connectsWith 
 return c.flight-to,  
   c.departureTime,  

   c.airline 

 m4: 
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We consider nested relational schemas with integrity constraints. An 
integrity constraint is a Boolean condition in the form (we adapt the XQuery-
like notation of [20]): 

for variable1 in relation1, ..., variablen in relationn where condition1 then condition2 

The variables in the for clause are bound to tuples from the relation that 
follows the in. A variablei can be used in relationi+1,...,relationn, condition1 and 
condition2. The condition in the where and then clauses denotes a Boolean 

expression that may include arithmetic comparisons (=, , <, , >, ) and 
make use of conjunction, disjunction, and negation. As an example, see the 
constraints s1 and t1 on the Example 2 of Section 1.1. 

An instance of a nested relational schema is consistent if it satisfies all the 
integrity constraints defined over the schema. Fig. 2 shows a consistent 
instance for each of the two schemas in Fig. 1. 

A nested query is a query whose answer is a nested relation. That is, 
nested queries define derived nested relations. We use a notation similar to 
that of the integrity constraints (also adapted from [20]): 

for variable1 in relation1, ..., variablen in relationn     
 where condition1 return result1, ..., resultn 

where each resulti can be either a simple-type expression or another nested 
query. See, for example, the queries on assertion m3 in the Example 1 of 
Section 1.1. 

A mapping scenario is a triplet (S, T, M), where S is a source nested 
relational schema, T is a target nested relational schema, and M is a set of 
mapping assertions. 

A mapping assertion m is a pair of nested queries related by a  or = 
operator; the query on the left-hand side being defined over the source 
schema, and the query on the right-hand side being defined over the target 

schema: Qsource /= Qtarget . 
An instantiation of a mapping scenario (S, T, M) consists of an instance IS 

of S and an instance IT of T, such that IS and IT satisfy all the assertions in M. 

A mapping assertion Qsource /= Qtarget is satisfied by instances IS, IT iff the 
answer to Qsource on IS is included/equal to the answer to Qtarget on IT. 

We apply the definition of inclusion and equality of nested relations used in 
[18]. 

The inclusion of two nested structures R1, R2 of the same type T, i.e., R1  
R2, can be defined by induction on T as follows: 

(1) If T is a simple type, R1  R2 iff R1 = R2 

(2) If T is a record type (i.e., a tuple), R1=[R1,1,…,R1,n]  R2=[R2,1,…,R2,n] iff 

R1,1  R2,1  …  R1,n  R2,n 

(3) If T is a set type, R1={R1,1,…,R1,n}  R2={R2,1,…,R2,n} iff i j R1,i  R2,j 

Equality of nested structures, i.e., R1 = R2, can be defined similarly: 

(1) If T is a simple type, R1 = R2 

(2) If T is a record type, [R1,1,…,R1,n] = [R2,1,…,R2,n] iff R1,1 = R2,1  …  R1,n = 
R2,n 
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(3) If T is a set type, {R1,1,…,R1,n}={R2,1,…,R2,n} iff i j R1,i = R2,j  j i R2,j = 
R1,i 

Note that, given the definitions above, Q1 = Q2 is not equivalent to Q1  Q2 

 Q2  Q1 [18]. 

2.2 Flat Relational Databases 

A flat relational schema is a finite set of flat relations with integrity constraints. 
We use first-order logic notation and represent relations by means of 
predicates. Each predicate P has a predicate definition P(A1,…,An), where 
A1,…,An are the attributes. A predicate is said to be of arity n if it has n 
attributes. Predicates may be either base predicates, i.e., the tables in the 
database, or derived predicates, i.e., queries and views. Each derived 
predicate Q has attached a set of non-recursive deductive rules that describe 
how Q is computed from the other predicates. A deductive rule has the 
following form: 

q(X̄ )  r1(Ȳ 1)  …  rn(Ȳ n)  rn+1(Z̄ 1)  …  rm(Z̄ s)  C1  …  Ct 

Each Ci is a built-in literal, that is, a literal in the form of t1 op t2, where op  

{< , , >, , =, } and t1 and t2 are terms. A term can be either a variable or a 

constant. Literals ri(Ȳ i) and ri(Z̄ i) are positive and negated ordinary literals, 
respectively (note that in both cases ri can be either a base predicate or a 

derived predicate). Literal q(X̄ ) is the head of the deductive rule, and the 

other literals are the body. Symbols X̄ , Ȳ i and Z̄ i denote lists of terms. We 

assume deductive rules to be safe, which means that the variables in Z̄ i, X̄  

and Ci are taken from Ȳ 1, …, Ȳ n, i.e., the variables in the negated literals, the 
head and the built-in literals must appear in the positive literals in the body. 
Literals about base predicates are often referred to as base literals and literals 
about derived predicates are referred to as derived literals. 

We consider integrity constraints that are disjunctive embedded 
dependencies (DEDs) [10] extended with arithmetic comparisons and the 
possibility of being defined over views (i.e., they may have derived predicates 
in their definition). A constraint has one of the following two forms: 

r1(Ȳ 1)  ...  rn(Ȳ n)  C1  ...  Ct  

r1(Ȳ 1)  ...  rn(Ȳ n)  C1  ...  Ct   V̄ 1 rn+1(Ū 1)  ...  V̄ s rn+s(Ū s) 

Each V̄ i is a list of fresh variables (i.e., variables that have not been used 

anywhere else before), and the variables in Ū i are taken from V̄ i and Ȳ 1, ..., 

Ȳ n. Note that each predicate ri (on both sides of the implication) can be either 
base or derived. We refer to the left-hand side of a constraint as the premise, 
and to the right-hand side as the consequent. 

Formally, we write S = (PD, DR, IC) to indicate that S is a database 
schema with predicate definitions PD, deductive rules DR, and integrity 
constraints IC. We omit the PD component when it is clear from the context. 
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An instance D of a schema S is a set of facts about the base predicates of 
S. A fact is a ground literal, i.e., a literal with all its terms constant. An instance 
D is consistent with schema S if it satisfies all the constraints in IC. The 
extension of the queries and views of S when evaluated on D is the 
intensional database (IDB) of D, denoted IDB(D). The answer to a query Q on 
an instance D, denoted AQ(D), is the set of all facts about predicate q in the 

IDB of D, i.e., AQ(D) = {q(ā) | q(ā)  IDB(D)}, where ā denotes a list of 
constants. 

2.3 Query Satisfiability and the CQC Method 

A query Q is said to be satisfiable on a database schema S if there is some 
consistent instance D of S in which Q has a non-empty answer, i.e., 

AQ(D)   [17]. 
The CQC (Constructive Query Containment) method [14], originally 

designed to check query containment, tries to build a consistent instance of a 
database schema in order to satisfy a given goal (a conjunction of literals). 

Clearly, using literal q(X̄ ) as goal, where X̄  is a list of distinct variables, 
results in the CQC method checking the satisfiability of query Q. 

The CQC method starts by taking the empty instance and uses different 
Variable Instantiation Patterns (VIPs) based on the syntactic properties of the 
views/queries and constraints in the schema, attempting to generate only the 
relevant facts that are to be added to the instance under construction. If the 
method is able to build an instance that satisfies all the literals in the goal and 
does not violate any of the constraints, then that instance is a solution and 
proves the goal is satisfiable. The key point is that the VIPs guarantee that if 
the variables in the goal are instantiated using the constants they provide and 
the method does not find any solution, then no solution is possible. 

The solution space that the CQC method explores is a tree, called the 
CQC-tree. Each branch of the CQC-tree is what is called a CQC-derivation. A 
CQC-derivation can be either finite or infinite. Finite CQC-derivations can be 
either successful, if they reach a solution, or failed, if they reach a violation 
that cannot be repaired. As proven in [14], the CQC method terminates when 
there is no solution, that is, when all CQC-derivations are finite and failed, or 
when there is some finite solution, i.e., when there is a finite, successful CQC-
derivation. 

A series of sufficient conditions for the termination of the CQC method has 
been studied in [24]. These conditions extend the ones proposed by [21]. 

A detailed performance evaluation of the CQC method has been done in 
[22, 24] for the case of flat relational mapping scenarios. It showed that, for 
those scenarios in which termination is guaranteed, the cost of the method is 
exponential with respect to the size of the mapping scenario. This is expected 
given the complexity of reasoning on such an expressive class of mapping 
scenarios. 
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3. Validation by Means of Checking Desirable Properties 

We understand mapping validation as checking whether the mapping being 
designed meets the intended needs and requirements. To perform this 
validation, we propose to allow the designer to check whether the mapping 
has certain desirable properties. In this paper, we focus on two desirable 
properties of mappings (we will provide the formal definition of these 
properties in Section 6): satisfiability and inference. 

As illustrated in the Example 2 of Section 1.1, mapping satisfiability allows 
detecting contradictions either between the mapping assertions or between 
the mapping assertions and the integrity constraints of the schemas. Mapping 
inference allows to detect redundancies in the mapping, i.e., redundant 
mapping assertions, and also to compare mapping candidates. 

In order to actually check these desirable properties of mappings, we 
propose to translate the mapping scenario from the nested relational setting 
into the flat relational one. That implies flattening not only the nested relational 
schemas, but also the nested queries on the mappings. Then, we propose to 
take advantage of previous work on validating mappings in the relational 
setting [22] and reformulate the desirable property checking on this new flat 
relational mapping scenario in terms of the query satisfiability problem. To do 
so, we firstly combine the relational versions of the two mapped schemas into 
a single relational schema. Secondly, we rewrite the mapping assertions as 
integrity constraints over this single relational schema. Finally, for each 
mapping desirable property that we want to check on the original nested 
mapping scenario, we define a query on the single relational schema in such 
a way that this query will be satisfiable on this schema if and only if the 
mapping desirable property holds on the original mapping scenario. 

In the next sections we discuss in detail how to translate the nested 
relational mapping scenario into the flat relational one (Section 4 and Section 
5), and how to reformulate each desirable property check in terms of a query 
satisfiability problem over this flat relational translation (Section 6). 

4. Flattening Nested Schemas and Queries 

In this section, we detail how to encode the nested schemas and the nested 
queries of a given nested relational mapping scenario into a single flat 
database schema. Note that when we say nested queries we mean those in 
the mapping assertions. We will later rely on this encoding of the nested 
queries to rewrite the mapping assertions as integrity constraints. 
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4.1 Nested Schemas 

Our translation of nested relational schemas into flat relational ones is based 
on the hierarchical representation used by Yu and Jagadish in [25]. They 
address the problem of discovering functional dependencies on nested 
relational schemas. They translate the schemas into a flat representation, so 
algorithms for finding functional dependencies on relational schemas can be 
applied. 

The hierarchical representation assigns a flat relation to each nested table. 
To illustrate that, consider the nested relational schema in Fig. 3a, which 
models data about an organization, its employees, and the projects each 
employee works on. The hierarchical representation, as defined in [25], of this 
nested relational schema would be the following set of flat relations: 

{org(@key, parent, org-name), employees(@key, parent, name, address),  
projects(@key, parent, proj-id, budget)} 

(b) Nested relational instance: 

org 

org-
name 

employees 

orgXY 

name address projects 

e1 A 

proj-id budget 

p1 1000 

p2 500 

e2 B 
proj-id budget 

p3 2000 
 

(c) Flat relational instance: 

org 

@key parent org-name 

1 null orgXY 
 

employees 

@key parent name address 

1 1 e1 A 

2 1 e2 B 
 

projects 

@key parent proj-id budget 

1 1 p1 1000 

2 1 p2 500 

3 2 p3 2000 

 Fig. 3. A (a) nested relational schema, an (b) instance of this schema, and (c) 
the translation of the instance into flat relations 

(a) Nested relational schema 
 org: Rcd 
  org-name 
  employees: Set of Rcd 
   name 
   address 
   projects: Set of Rcd 
    proj-id 
    budget 
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Note that each flat relation keeps the simple-type attributes of the nested 
relation, and has two additional attributes: the @key attribute, which models 
an implicit tuple id; and the parent attribute, which references the @key 
attribute of the parent table and models the parent-child relationship of the 
nested relations. Fig. 3b shows an instance of the previous nested relational 
schema, and Fig. 3c shows the corresponding instance of the flat relational 
schema into which the previous nested schema is translated. 

For simplicity, we skip the flat relation of the root record when it has only 
set-type attributes and no simple-type ones. We also skip the parent attribute 
of those relations that do not have a parent relation, and we skip the @key 
attribute of those relations that do not have child relations. For example, we 
would translate the source and target schema of the mapping scenario in Fig. 
1 into flat relations as follows: 

source = {flightsS(flight-id, from, to, departureTime, ticketPrice),  
connections(flight, connectingFlight)} 

target = {flightsT(@key, from, to, departureTime, airline, ticketPrice),  
connectsWith(parent, flight-to, departureTime, airline)} 

The semantics of the @key and parent attributes are made explicit by 
means of adding the corresponding key and referential constraints to the flat 
relational schema that results from the flattening process. As an example, the 
flat version of the target schema in Fig. 1 (see above) would include the 
following key and referential constraint: 

key: flightsT(@key, f, t, dt, a, tp)  flightsT(@key′, f, t, dt, a, tp)  @key = @key′ 

ref: connectsWith(parent, ft, dt, a)  flightsT(parent, f′, t′, dt′, a′, tp′) 

The integrity constraints that already exist on the original nested schemas 
can be straightforwardly translated into constraints over the flat relational 
version of the schema. For example, let us consider again the source and 
target constraint s1 and t1 of the Example 2 of Section 1.1; the constraints 
would be translated into the following: 

s1′: connections(f, cf)  flightsS(f, frm, to, dt, tp)  flightsS(cf, frm′, to′, dt′, tp′)  tp′ < tp 

t1′: flightsT(@k, frm, to, dt, a, tp)  tp  200 

4.2 Nested Queries 

Regarding the flattening of nested queries, we follow a variation of the 
approach used in [18]. In this approach, each nested query is translated into a 
collection of flat queries, one for each nested query block. For example, let us 
consider the source schema from Fig. 1, and let us suppose that we have the 
following nested query Q defined over this source schema, which selects the 
flights with a ticket price of at least 50 and, for each of these flights, selects 
the connecting flights that are cheaper than the original flight: 
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The nested query Q has two query blocks: the outer block Qouter  

 
and the inner block Qinner. 

 
Since both query blocks are flat queries when considered independently, 

and assuming we have already flattened the corresponding schema (the 
source schema in this case), each of these blocks can be straightforwardly 
translated into a query over the flat version of the schema. The only technical 
detail, and the main difference with respect to [18], is the treatment of the 
inherited variables—called indexes in [18]—, which are the variables defined 
in the for clause of the outer block that are also used in the inner block. In 
[18], the translation of both the outer and the inner block would be extended to 
select the key attributes of the relations bound to the inherited variables; in the 
case of the inner block, since it uses the inherited variables but does not 
define them, that would require copying in the inner block’s translation those 
literals from the outer block’s translation that correspond to the definition of 
the inherited variables. In our example, the inherited variable “f” is defined in 
the translation of Qouter by the literal “flightsS(fid, frm, to, dt, tp)”, where “fid” 
corresponds to the key attribute and is selected by this translation. The 
translation of Qinner should thus contain a copy of this literal (shown below in 
bold) and also select “fid”: 

Qouter(fid, frm, to, dt, “airlineXY”)  flightsS(fid, frm, to, dt, tp)  tp  50 

Qinner(fid, to′, dp′, “airlineXY”)  connections(fid, cf)  flightS(cf, frm′, to′, dp′, tp′)  

 flightsS(fid, frm, to, dt, tp)  tp′ < tp 

Notice that without the literal in bold, Qinner would not have access to 
variable “tp” (i.e., f.ticketPrice) and could not make the required comparison. 

The flat relational equivalent to answering the original nested query Q 
would be making a left outer join of the translations of Qouter and Qinner with 
“fid” as the join variable. 

In order to simplify the translation, not only that of the nested queries 
themselves but specially the translation of the mapping assertions (see next 
section), we use access patterns [9]; in particular, we consider derived 
relations with “input-only” attributes in addition to the traditional “input-output” 
ones. We use R<x1, ..., xn>(y1, ..., yn) to denote that x1,...,xn are input-only 

Qinner: for c in airline.connections, f2 in airline.flights 
 where c.flight = f.flight-id and c.connectingFlight = f2.flight-id 
   and f2.ticketPrice < f.ticketPrice 
 return f2.to, f2.departureTime, “airlineXY” 

Qouter: for f in airline.flights where f.tp  50 
 return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice 

Q: for f in airline.flights where f.tp  50 
 return f.from, f.to, f.departureTime, “airlineXY”, f.ticketPrice,  
   for c in airline.connections, f2 in airline.flights  
   where c.flight = f.flight-id and c.connectingFlight = f2.flight-id  
    and f2.ticketPrice < f.ticketPrice 
 return f2.to, f2.departureTime, “airlineXY” 
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terms bound to derived relation R, and y1,...,yn are input-output ones. As an 
example, we would translate Qinner and Qouter as follows: 

Qouter(fid, tp, frm, to, dt, “airlineXY”)  flightsS(fid, frm, to, dt, tp)  tp  50 

Qinner<fid, tp>(to′, dp′, “airlineXY”)  connections(fid, cf)  flightS(cf, frm′, to′, dp′, tp′)  

                                                                tp′ < tp 

Notice that we enforce the translation of Qouter to select the variables “fid” 
and “tp”, which are then to be inherited by Qinner through its input-only 
attributes. Note also that there is no need now to repeat the ordinary literal of 
Qouter in Qinner. 

In order for a deductive rule to be safe, the variables that appear as input-
only terms of some literal in the body of the rule must either appear as input-
output terms of some other positive ordinary literal in the same body, or 
appear in the head of the rule as input-only terms. Similarly, the variables that 
appear in a negated or built-in literal in the body of a rule must either appear 
as input-output terms of some other positive ordinary literal in the same body, 
or appear in the head of the rule as input-only terms. See for instance, 
variable “tp” in Qinner above, which appears in the body of the rule in a built-in 
literal, and in the head of the rule as an input-only term. 

5. Rewriting Mapping Assertions As Integrity Constraints 

A nested relational mapping scenario consists of two nested relational 
schemas and a mapping with nested queries that relates them. We have 
already discussed how to translate each nested schema into the flat relational 
formalism. In order to complete the translation of the nested relational 
mapping scenario into the flat relational setting, we must see now how to 
translate the mapping assertions. We assume the queries in both sides of the 
mapping are part of each schema’s definition and have already been 
translated along with them. 

To translate a mapping assertion Qsource /= Qtarget, we will make use of the 
definition of inclusion/equality of nested structures from [18] (see Section 2.1), 
and we will rely on the flat queries that result from flattening Qsource and Qtarget. 
As an example, consider the mapping assertion m3 from Example 1 (see 
Section 1.1). Let us assume the source and target query—let us call them Q

S
 

and Q
T
—are translated into the flat queries Q

S
outer, Q

S
inner and Q

T
outer, Q

T
inner, 

respectively, as follows: 

Q
S

outer(fid, frm, to, dt, “airlineXY”, tp)  flightsS(fid, frm, to, dt, tp) 

Q
S

inner<fid>(to, dt, “airlineXY”)  connections(fid, cf)  flightsS(cf, frm, to, dt, tp) 

Q
T

outer(@k, frm, to, dt, a, tp)  flightsT(@k, frm, to, dt, a, tp) 

Q
T

inner<@k>(to, dt, a)  connectsWith(@k, to, dt, a) 

According to the semantics of query inclusion, two schema instances IS and 
IT satisfy m3 if and only if the answer to Q

S
 on IS, i.e., AQ

S(IS), is included in the 
answer to Q

T
 on IT, i.e., AQ

T(IT). Recall that, as defined in [18], a nested 
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structure such as AQ
S(IS) is included in another nested structure such as 

AQ
T(IT) if and only if each tuple a in AQ

S(IS) “matches” some tuple b of AQ
T(IT), 

where “matches” means that each simple-type attribute on b (e.g., the from 
attribute) must have the same value than the corresponding attribute of a, and 
that the value of each set-type attribute on b (e.g., the connectsWith attribute) 
must be a set that recursively includes the set bound to the corresponding 
set-type attribute of a. Notice that this is a recursive definition, where simple-
type attributes are the base case and set-type ones are the recursive case. 

We can express the above definition as a Boolean condition over the flat 
translations of the mapped schemas. The condition will be true if the given 
schema instances satisfy the mapping assertion, and false otherwise. The 
condition begins with the requirement that for all tuple a returned by the outer 
query block of Q

S
 there must be a matching b on the result of the outer query 

block of Q
T
 with the same value on the simple-type attributes: 

fid,frm,to,dt,a,tp (Q
S

outer(fid, frm , to, dt, a, tp)  @k (Q
T

outer(@k, frm, to, dt, a, tp) ... 

The condition must also include the requirement that the set-type attributes 
of a must be included in the corresponding set-type attributes of b, i.e., the 
recursive case: 

...  to′,dt′,a′ (Q
S

inner<fid>(to′, dt′, a′)  Q
T

inner<@k>(to′, dt′, a′))  )) 

By making the union of the flat mapped schemas and introducing this 
Boolean condition as an integrity constraints over this union, we will get that 
each consistent instance of the resulting flat database schema will correspond 
to a consistent instantiation of the mapping scenario (i.e., an instantiation in 
which the mapping assertions are true), and vice versa. The only problem is 
that the above condition does not fit the syntactic requirements of the class of 
constraints we consider, i.e., disjunctive embedded dependencies (DEDs), 

which are expressions of the form X̄  ((X̄ )  Ȳ 1 1(X̄ , Ȳ 1)  ...  Ȳ n 

n(X̄ , Ȳ n)) in which  quantifiers are not allowed inside 1,...,n. Fortunately, 
we can take advantage of the fact that we are able to deal with negation and 

get rid of that inner  quantifier. We can introduce a double negation  in 

front of the  quantifier, and move one of the negations inwards: 

...  to′,dt′,a′ (Q
S

inner<fid>(to′, dt′, a′)  Q
T

inner<@k>(to′, dt′, a′))  )) 

There are only two details remaining now. The first is that we only allow 
direct negation of single literals and not of conjunction of literals. However, we 
do allow negation of derived literals, so we can just fold the conjunction into a 
new derived relation: 

fid,frm,to,dt,a,tp (Q
S

outer(fid, frm , to, dt, a, tp)  @k (Q
T

outer(@k, frm, to, dt, a, tp) 

 Q
S

inner-not-included-in- Q
T

inner<fid, @k>( )  )) 

where 

Q
S

inner-not-included-in- Q
T

inner<fid, @k>( )  Q
S

inner<fid>(to′, dt′, a′)  

 Q
T

inner<@k>(to′, dt′, a′) 
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The second detail is that we do not allow the explicit use of negation in the 

integrity constraints, i.e., the literals in  and in 1,...,n cannot be negated. 
We do however allow constraints in which the consequent is a contradiction, 
e.g., 1 = 0. With that and the introduction of double negation in front of the 

remaining  quantifier, we can rewrite the expression as follows. First, we 
introduce the double negation and move one of the negation inwards just as 
we did before: 

fid,frm,to,dt,a,tp (Q
S

outer(fid, frm, to, dt, a, tp)  @k (Q
T

outer(@k, frm, to, dt, a, tp) 

 Q
S

inner-not-included-in- Q
T

inner<fid, @k>( )  )) 

To get rid of the inner  quantifier, we fold the conjunction into a new 
derived relation: 

fid,frm,to,dt,a,tp (Q
S

outer(fid, frm, to, dt, a, tp)                                            

aux- Q
S

outer-not-included-in-Q
T

outer<fid, frm, to, dt, a, tp>( ) 

where 

aux- Q
S

outer-not-included-in-Q
T

outer<fid, frm, to, dt, a, tp>( )   

Q
T

outer(@k, frm, to, dt, a, tp)  Q
S

inner-not-included-in- Q
T

inner<fid, @k>( ) 

We still make an additional folding to get rid of the remaining  quantifier, 
and we get: 

Q
S

outer-not-included-in-Q
T

outer( ) 

where 

Q
S

outer-not-included-in-Q
T

outer( )  Q
S

outer(fid, frm, to, dt, a, tp)   

aux- Q
S

outer-not-included-in-Q
T

outer<fid, frm, to, dt, a, tp>( ) 

Finally, we can get rid of the  by stating that the atom implies a 
contradiction: 

Q
S

outer-not-included-in-Q
T

outer( )  1 = 0 

This constraint, together with the deductive rules that define the new 
derived relations that we just introduced, enforces the mapping assertion m3. 

In a more generic way, the rewriting of a query inclusion mapping assertion 
can be formalized as follows. 

Let Q
A
 and Q

B
 be two generic (sub)queries with compatible answer: 

Q
A
:for var1 in rel1, ..., varna in relna where cond return A1, ..., Am, B1, ..., Bk  

Q
B
:for var1′ in rel1′,..., varnb′ in relnb′ where cond ′ return A1′, ..., Am′, B1′,..., Bk′  

where each Ai and Ai′ are simple-type expressions, and each Bi and Bi′ are 
subqueries. Let us assume the outer block of Q

A
 is translated into the derived 

relation Q
A

outerx1, ..., xka(v1, ..., vna, r1, ..., rm), where x1,...,xka denote the 
variables inherited from the ancestor query blocks, v1,...,vn denote the 
additional variables to be inherited by the inner query blocks of Q

A
outer, and 

r1,...,rm denote the simple-type values returned by the block. Similarly, let us 

also assume the outer block of Q
B
 is translated into Q

B
outerx1′, ..., xkb′(v1′, ..., 

vnb′, r1′, ..., rm′). 
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We use T-inclusion(Q
A
, Q

B
, {i1, …, ih}) to denote the translation of Q

A
  Q

B
, 

where {i1, …, ih} is the union of the variables inherited by Q
A
 and Q

B
 from their 

respective parent blocks (if any): 

T-inclusion(Q
A
, Q

B
, {i1,...,ih}) = Q

A
-not-included-in-Q

B
i1,...,ih 

where 

Q
A
-not-included-in-Q

B
i1,...,ih  Q

A
outerx1,...,xka(v1,...,vna, r1,...,rm)  

aux-Q
A
-not-included-in-Q

B
i1,...,ih, v1,...,vna, r1,...,rm 

aux-Q
A
-not-included-in-Q

B
i1,...,ih, v1,...,vna, r1,...,rm   

Q
B

outerx1′,...,xkb′(v1′,...,vnb′, r1,...,rm)   

T-inclusion(B1, B1′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})  ...  
T-inclusion(Bk, Bk′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′}) 

If Q
A
 and Q

B
 are not subqueries but full queries, then the following 

constraint is to be introduced: 

T-inclusion(Q
A
, Q

B
, {i1,...,ih})  1 = 0 

Similarly, the rewriting of a generic query equality assertion Q
A
 = Q

B
 as a 

set of integrity constraints can be formalized as follows: 

T-equality(Q
A
, Q

B
, {i1, …, ih})  1 = 0 

T-equality(Q
B
, Q

A
, {i1, …, ih})  1 = 0 

where 

T-equality(Q
A
, Q

B
, {i1,...,ih}) = Q

A
-not-eq-to-Q

B
i1,...,ih 

and 

Q
A
-not-eq-to-Q

B
i1,...,ih  Q

A
outerx1,...,xka(v1,...,vna, r1,...,rm)  

aux-Q
A
-not-eq-to-Q

B
i1,...,ih, v1,...,vna, r1,...,rm 

aux-Q
A
-not-eq-to-Q

B
i1,...,ih, v1,...,vna, r1,...,rm   

Q
B

outerx1′,...,xkb′(v1′,...,vnb′, r1,...,rm)  

T-equality(B1, B1′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})  

T-equality(B1′, B1, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})  ...  

T-equality(Bk, Bk′, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′})  
T-equality(Bk′, Bk, {i1,...,ih, v1,...,vna, r1,...,rm, v1′,...,vnb′}) 

The two constraints above, together with the deductive rules of the 
corresponding derived relations, enforce the definition of query equality as 
defined in [18] (see Section 2.1). 

Intuitively, T-equality(Q
A
, Q

B
, {i1,…,ih}) denotes the condition that, for each 

instantiation of the mapping scenario, each tuple in the answer to Q
A
 must 

have an equal tuple in the answer to Q
B
. Notice that in order to fully express 

the definition of query equality, we need to enforce both T-equality(Q
A
, Q

B
, 

{i1,…,ih}) and T-equality(Q
B
, Q

A
, {i1,…,ih}). 
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6. Desirable Properties in Terms of Query Satisfiability 

In this section, we show how two desirable properties of mappings—
satisfiability and inference—can be reformulated as a query satisfiability check 
over the flat relational translation of mapping scenarios we have presented in 
Section 4 and Section 5. 

6.1 Mapping Satisfiability 

We say a mapping is satisfiable if there is a pair of schema instances that 
make all the mapping assertions true in a non-trivial way. An example of trivial 
satisfaction would be a pair of empty schema instances, which is not the case 
we are interested in here. We distinguish two kinds of satisfiability: strong and 
weak. 

Intuitively, a mapping is strongly satisfiable if all its mapping assertions can 
be non-trivially satisfied at the same time at all their levels of nesting, e.g., the 
inner query block of mapping assertion m4’s source query from the Example 2 
of Section 1.1 never maps any data (i.e., always provides an empty answer); 
therefore, although the outer query block does map some data, mapping {m4} 
is not strongly satisfiable. 

Definition 1 (Strong Satisfiability).  A mapping M is strongly satisfiable iff 
there exist IS, IT instances of the source and target schema, respectively, such 
that IS and IT satisfy the assertions in M, and for each assertion Qsource op 
Qtarget in M, the answer to Qsource in IS is a strong answer. We say R is a strong 
answer iff  

(1) R is a simple type value,  
(2) R is a record [R1, ..., Rn] and R1, ..., Rn are all strong answers, or  
(3) R is a non-empty set {R1, ..., Rn} and R1, ..., Rn are all strong answers. 
Intuitively, we say a mapping is weakly satisfiable if at least one mapping 

assertion can be satisfied at least at its outermost level of nesting. As an 
example, mapping {m4} is indeed weakly satisfiable. 

Definition 2 (Weak satisfiability).  A mapping M is weakly satisfiable iff 
there exist IS, IT instances of the source and target schema, respectively, and 

some mapping assertion m: Qsource /= Qtarget in M, such that IS, IT make m 

true and the answer to Qsource on IS is not empty, i.e., AQsource(IS)  . 

Let us assume M is a mapping with assertions {Q
S

1 op Q
T

1, ..., Q
S

n op Q
T

n}. 
Let S = (PDS, DRS, ICS) be the flat translation of the source schema, and T = 
(PDT, DRT, ICT) be the flat translation of the target schema. Let us also 
assume that ICM and DRM are the constraints and deductive rules that result 
from the rewriting of the assertions in M. The flat database schema that 
encodes the mapping scenario is: 

DB  =  (PDS PDT ,  DRS DRT DRM ,  ICS ICT ICM ) 
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The reformulation of strong satisfiability of M as a query satisfiability check 
over DB is the following: 

QstrongSat  StrongSat(Q
S

1, )  ...  StrongSat(Q
S

n, ) 

where StrongSat is a function generically defined as follows. Let Q be a 
generic (sub)query: 

Q: for var1 in rel1, ..., vars in rels where cond return A1, ..., Am, B1, ..., Bk  

where A1,...,Am are simple-type expressions and B1,...,Bk are inner query 
blocks. Let predicate Qouter be the translation of the outer query block of Q. 
Then, 

StrongSat(Q, inheritedVars) = Qouterx1,...,xr(v1,...,vs, r1,...,rm)  

StrongSat(B1, inheritedVars {v1,...,vs, r1,...,rm})  ...  

StrongSat(Bk, inheritedVars {v1,...,vs, r1,...,rm}) 

where {x1,...,xr}  inheritedVars. 
Boolean query QstrongSat is satisfiable over DB if and only if mapping M is 

strongly satisfiable. 
Intuitively, if we can find an instance of DB that satisfies QstrongSat, we can 

obtain from that database instance a source and a target instance for the 
mapping scenario. These two instances will be consistent with their respective 
schemas and with the mapping assertions because DB includes the 
corresponding integrity constraints. The strong satisfiability property will hold, 
because QstrongSat is encoding its definition. 

As an example, let us assume the outer query block of mapping assertion 
m4’s source query in Example 2 is translated into derived relation Q

S
outer(flight-

id, from, to, departureTime, airline, ticketPrice), and the inner query block into 
derived relation Q

S
inner<flight-id>(to, departureTime, airline). Then, strong 

satisfiability of {m4} would be reformulated as follows: 

QstrongSat  Q
S

outer(fid, frm, to, dt, a, tp)  Q
S

inner<fid>(to′, dt′, a′) 

The reformulation of weak satisfiability of M as a query satisfiability check 
over DB is the following: 

QweakSat  Q
S

1,outer(X̄ 1) 
··· 

QweakSat  Q
S

n,outer(X̄ n) 

where Q
S

1,outer,...,Q
S

n,outer are the translations of the outermost query blocks of 
the source mapping’s queries. 

Boolean query QweakSat is satisfiable over DB if and only if mapping M is 
weakly satisfiable. 

The intuition is that QweakSat can only be if some of the outermost blocks of 
the source mapping’s queries is not empty. Therefore, if QweakSat is true, we 
can extract from the corresponding instance of DB an instantiation of the 
mapping scenario that exemplifies the property. 
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As an example, weak satisfiability of mapping {m4} would be reformulated 
as follows: 

QweakSat  Q
S

outer(fid, frm, to, dt, a, tp) 

Notice that there is only one deductive rule for QweakSat because the 
mapping has only one assertion. 

6.2 Mapping Inference 

The mapping inference property [19] checks whether a given mapping 
assertion is inferred from a set of others assertions. It can be used, for 
instance, to detect redundant assertions in a mapping, or to test equivalence 
of candidate mappings. As an example, recall mapping {m1, m2} from 
Example 1. Assertions m1, m2 are each one inferred from mapping {m3}, but 
assertion m3 is not inferred from {m1, m2}. 

Definition 3 (Mapping Inference).  Let M be a mapping from schema S to 
schema T. Let F be an assertion from S to T. We say F is inferred from M iff 

IS, IT instances of schema S and T, respectively, such that IS and IT satisfy 
the assertions in M, then IS and IT also satisfy assertion F. 

As with the previous property, the flat database schema that encodes the 
mapping scenario is: 

DB  =  (PDS PDT ,  DRS DRT DRM ,  ICS ICT ICM ) 

In order to reformulate mapping inference in terms of query satisfiability, we 
must get rid of the universal quantifier that appears in the property’s definition. 
The reason is that by means of query satisfiability we can check whether 
there exists an instance that satisfies the property encoded by the query, but 
not whether all instances satisfy that property. We can address this situation 
by checking the negation of the property instead of checking the property 
directly; that is, we will check whether there is a pair of schema instances that 
satisfy the mapping but not the given assertion. 

If the assertion to be tested is a query inclusion, i.e., Qsource  Qtarget, then 
the query to be tested satisfiable on DB is defined by a single deductive rule: 

QnotInferred  T-inclusion(Qsource, Qtarget, ) 

If the assertion to be tested is a query equality, i.e., Qsource = Qtarget, then the 
query to be tested satisfiable on DB is defined by two deductive rules: 

QnotInferred  T-equality(Qsource, Qtarget, ) 

QnotInferred  T-equality(Qtarget, Qsource, ) 

Boolean query QnotInferred is satisfiable over DB if and only if the given 
assertion F is not inferred from mapping M. 

Fig. 2 shows an instantiation of the example mapping scenario in Example 
1 which satisfies mapping {m1, m2} but not assertion m3, i.e., the instantiation 
is an example that illustrates m3 is not inferred from {m1, m2}. 
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7. Related Work 

In this section, we compare our approach with the previous works on nested 
relational mapping validation and on translating nested queries into the flat 
relational setting. 

7.1 Mapping Validation on Nested Scenarios 

Previous work on mapping validation on the nested relational setting has 
mainly focused on instance-based approaches: the Routes approach [7], the 
Spicy system [6], and the Muse system [1]. These approaches rely on specific 
source and target instances in order to debug, refine and guide the user 
through the process of designing a schema mapping, which do not 
necessarily reflect all potential pitfalls. 

The Routes approach requires both a source and a target instance in order 
to compute the routes. The Spicy system requires a source instance to be 
used to execute the mappings, and a target instance to compare the mapping 
results with. The Muse system can generate its own synthetic examples to 
illustrate the different design alternatives, but even in this case the detection 
of semantic errors is left to the user, who may miss to detect them. 

Routes, Spicy and Muse allow both relational and nested relational 
schemas with key and foreign key-like constraints—typically formalized by 
means of tuple-generating dependencies (TGDs) and equality-generating 
dependencies (EGDs)—, and mappings expressed as source-to-target TGDs 
[20]. Muse is also able to deal with the nested mapping formalism [15], which 
allows the nesting of TGDs. Comparing with our setting, the class of 
disjunctive embedded dependencies (DEDs) with derived relation symbols 
and arithmetic comparisons that we consider includes that of TGDs and 
EGDs. That is easy to see since it is well-known that traditional DEDs already 
subsume both TGDs and EGDs [11]. Similarly, our mapping assertions go 
beyond TGDs in two ways: (1) they may contain negations and arithmetic 
comparisons, while TGDs are conjunctive; and (2) they may be bidirectional, 
i.e., assertions in the form of QA = QB (which state the equivalence of two 
queries), while TGDs are known to be equivalent to global-and-local-as-view 

(GLAV) assertions in the form of QA  QB [13]. 
Outside the nested relational setting, other works have proposed and 

studied desirable properties for different classes of XML mappings. 
In [3], the authors study the consistency checking problem for XML 

mappings that consist of source-to-target implications of tree patterns 
between DTDs. Such a mapping is consistent if at least one tree that 
conforms to the source DTD is mapped into a tree that conforms to the target 
DTD. This work extends the previous work of [4], where mapping consistency 
is addressed for a simpler class of XML mappings. 

The mapping consistency property of [3] is very similar to our notion of 
mapping satisfiability; the main difference is that we introduce the requirement 
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that mapping assertions have to be satisfied in a non-trivial way, that is, a 
source instance should not be mapped into the empty target instance. We 
introduce this requirement because the class of mapping scenarios we 
consider—with integrity constraints, negations and arithmetic comparisons—
makes likely the existence of contradictions either in the mapping assertions, 
or between the mapping assertions and the schema constraints, or between 
the mapping assertions themselves; which may result in mapping assertions 
that can only be satisfied in a trivial way. 

7.2 Translation of Assertions with Nested Queries into Flat Relational 

Since our mapping assertions are in the form of query inclusions and query 
equalities, the problem of translating these assertions into the flat relational 
setting matches the problem of reducing the containment and equivalence 
check of nested queries to some other property check over flat relational 
queries. The works in this latter area that are closer to ours are [18, 12, 8]. 

In [18], Levy and Suciu address the containment and equivalence of COQL 
queries (Conjunctive OQL queries), which are queries that return a nested 
relation. They encode each COQL query as a set of flat conjunctive queries 

using indexes. An indexed query Q is a query hose head is in the form of Q(Ī1; 

...; Īd; V1, ..., Vn), where Ī1, ..., Īd denote sets of index variables, and variables 
V1, ..., Vn denote the resulting tuple. Relying on the concept of indexed query, 
Levy and Suciu define in [18] the property of query simulation, and reduce 
containment of COQL queries to an exponential number of query simulation 
conditions between the indexed queries that encode them. Levy and Suciu 
also define the property of strong simulation [18], and reduce equivalence of 
COQL queries which cannot construct empty sets to a pair of strong 
simulation conditions (equivalence of general COQL queries is left open). 

In [12], Dong et al. adapt the technique proposed by Levy and Suciu [18] to 
the problem of checking the containment of conjunctive XQueries. They also 
encode the nested queries into a set of indexed queries, and also reduce the 
containment checking to a set of query simulation tests between the indexed 
queries. Dong et al. also propose some extensions to the query language, 
such as the use of negation and the use of arithmetic comparisons. They 
however do not consider both extensions together as we do, and they do not 
consider the presence of integrity constraints in the schemas. 

In [8], DeHaan addresses the problem of checking the equivalence of 
nested queries under mixed semantics (i.e., each collection can be either set, 
bag or normalized bag). DeHaan proposes a new encoding for the nested 
queries into flat queries that captures the mixed semantics, and proposes a 
new property: encoding equivalence, to which nested query equivalence 
under mixed semantics can be reduced to. Notice that this approach is 
different with respect to ours in the sense that it focus on mixed semantics 
while we focus on set semantics ([18, 12] focus on set semantics too). We 
consider set semantics since it makes easier the generalization of our 
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previous results from the relational setting. DeHaan also proposes some 
extensions to the query language, but he does not consider the use of 
negation or arithmetic comparisons. 

The main difference of the approach followed by these three works with 
respect to ours is that we do not intend to translate the mapping assertions 
into some condition over conjunctive queries. Instead, we propose a 
translation that takes into account the class of queries and constraints the 
CQC method is able to deal with, especially the fact that the CQC method 
allows for the use of negation on derived atoms. We take advantage of this 
feature and propose a translation that expresses the definition of query 
inclusion and query equality into first-order logic, and then rewrites it into the 
syntax required by the CQC method by means of algebraic manipulation. We 
finally obtain a set of integrity constraints (DEDs) that model the semantics of 
the mapping assertions and that allows us to encode the mapping when we 
reformulate mapping validation in terms of query satisfiability. 

8. Conclusion 

We follow and approach to mapping validation that allows the designer to 
check whether the mapping satisfies certain desirable properties. We focus in 
this paper on how to apply this approach to the validation of nested relational 
mapping scenarios in which mapping assertions are either inclusions or 
equalities of nested queries. We encode the given nested relational mapping 
scenario into a single flat database schema. That includes the flattening of the 
mapped schemas and the mapping’s queries, and the encoding of the 
mapping assertions as integrity constraints. Then, we take advantage from 
our previous work on validating flat relational mappings [22] and reformulate 
each desirable property check in terms of a query satisfiability problem over 
the flat database schema. The idea is that the nested relational mapping will 
satisfy a certain desirable property if and only if the query that results from the 
reformulation is satisfiable on the flat database schema. To solve the query 
satisfiability problem, we apply the CQC method [14], which, to the best of our 
knowledge, is the only method able to deal with the class of scenarios that we 
consider here. 
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