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Abstract. Because of the increasing availability of multi-core machines,
clusters, Grids, and combinations of these there is now plenty of compu-
tational power, but today’s programmers are not fully prepared to exploit
parallelism. In particular, Java has helped in handling the heterogeneity
of such environments. However, there is a lot of ground to cover regard-
ing facilities to easily and elegantly parallelizing applications. One path
to this end seems to be the synthesis of semi-automatic parallelism and
Parallelism as a Concern (PaaC). The former allows users to be mostly
unaware of parallel exploitation problems and at the same time manually
optimize parallelized applications whenever necessary, while the latter al-
lows applications to be separated from parallel-related code. In this pa-
per, we present EasyFJP, an approach that implicitly exploits parallelism
in Java applications based on the concept of fork-join synchronization pat-
tern, a simple but effective abstraction for creating and coordinating paral-
lel tasks. In addition, EasyFJP lets users to explicitly optimize applications
through policies, or user-provided rules to dynamically regulate task gran-
ularity. Finally, EasyFJP relies on PaaC by means of source code gener-
ation techniques to wire applications and parallel-specific code together.
Experiments with real-world applications on an emulated Grid and a clus-
ter evidence that EasyFJP delivers competitive performance compared to
state-of-the-art Java parallel programming tools.

Keywords: Parallel computing, implicit parallelism, explicit parallelism,
Parallelism as a Concern (PaaC), Java, fork-join synchronization patterns,
policies.

1. Introduction

The advent of powerful distributed environments such as clusters and Grids
equipped with multi-core machines doubtlessly calls for new tools for paral-
lel programming. Consequently, there are libraries and frameworks that allow
users to exploit parallelism in their applications. Still, many of these tools remain
hard to use for an average programmer, and prioritize performance over other
desirable attributes such as code invasiveness and independence of the under-
lying parallel environment. By code invasiveness we mean mixing application
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logic with parallel-related statements in programs. Simple parallel programming
models are essential to support users not proficient in parallel concepts, thus
helping “sequential” developers to gradually move into the mainstream. Like-
wise, low code invasiveness and environment neutrality are important given the
benefits of hiding parallelism from applications on code maintainability.

In dealing with the software diversity of such environments Java has gained
much popularity since it offers platform independence and competitive per-
formance compared to conventional languages [37, 42]. However, most Java
parallel libraries have historically focused on running on one specific parallel
environment, i.e., either multi-core machines or distributed settings. Besides,
tools often offer developers APIs and directives for programmatically coordinat-
ing parallel subcomputations. This clearly requires knowledge on parallel (and
distributed) development, and leads to codes that depend on the library being
used, making code maintainability and portability to other libraries an arduous
task. Thus, there is not a clear separation between writing application logic and
parallelizing it. All in all, parallel programming is nowadays the rule and not the
exception. Hence, researchers and software vendors have put down on their
agenda the long-expected goal of versatile parallel tools delivering low code
invasiveness and development effort.

This paper presents EasyFJP, an approach for parallelizing sequential ap-
plications. By “parallelizing” we mean preparing a code to take advantage of
a parallel environment. EasyFJP synthesizes semi-automatic parallelism and
Parallelism as a Concern (PaaC), through which the difficult and intrusive na-
ture of parallelism is mitigated. Furthermore, EasyFJP exploits the implicit par-
allelism present in Java-based applications through the concept of fork-join syn-
chronization pattern, i.e., a novel parallel abstraction of our own that represent
common ways present in existing tools of manually forking and synchronizing
subcomputations when parallelizing code. To automate this, EasyFJP provides
semi-automatic algorithms and parallel code generation techniques that rely
on mechanisms for separation of concerns to isolate application logic from
the code in charge of parallelism. Finally, EasyFJP offers an explicit but non-
invasive tuning mechanism based on the concept of policy, which allows users
to specify custom rules to optimize the generated applications at runtime.

EasyFJP builds on previous research carried out by the authors, which was
first reported in [27]. In this paper a number of additional contributions are in-
troduced:

– A technology-neutral, conceptualized view of our approach to parallelism
as a whole, which in turn could serve to facilitate the materialization of
EasyFJP to various programming languages and environments.

– The delineation of the concept of fork-join synchronization pattern by pre-
senting the existing patterns and the proposed heuristic algorithms to au-
tomate their usage in sequential applications. Unlike application-specific
parallel supports such as [38], EasyFJP materializes these patterns for
general-purpose recursive codes. This is since FJP is suitable for divide
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and conquer applications, which is an algorithmic abstraction present in
many real-life problems.

– A new type of policy called task placement policy, which allows developers
to non-invasively control task placement or mapping of unfinished tasks to
available executing nodes in Grids. This policy represents a simple mech-
anism to increase performance by taking into account network character-
istics, which is a major source of overheads when executing Grid-aware
applications [7].

– Empirical evidence of the feasibility of using our approach to parallelize real-
world sequential applications by comparing EasyFJP with other well-known
parallel programming models that rely on manual parallelism, such as those
based on parallel directives/annotations, and MapReduce [11, 25].

– A rigorous experimental evaluation of the approach by using an emulated
computational Grid and a cluster. Indeed, recent literature shows that there
is a rising interest in Java-based tools for parallel and distributed computing,
but their adoption is delayed due to the lack of up-to-date evaluations of their
performance [42].

Particularly, with respect to the last two contributions, the obtained results show
that implicit parallelism via fork-join synchronization patterns and policy-oriented
explicit tuning, glued together through mechanisms for separation of concerns,
is a viable approach to PaaC from a practical perspective. Although our ideas
may be applicable to other kind of applications, as suggested earlier we scope
our research to divide and conquer applications, since we aim at dealing with
massive parallelism.

The rest of the paper is organised as follows. The next Section discusses
the most relevant related works by pointing out the novelties of EasyFJP. Then,
Section 3 explains the concepts underpinning EasyFJP. After that, Section 4
describes EasyFJP in detail. The Section also includes source code examples
to illustrate our approach. It is worth noting that, since the advances presented
in this paper not only generalize but also complement our previous efforts, we
have deliberately included some of the explanations already reported in [27] to
make this article self-contained and therefore more readable. Section 5 reports
an evaluation of EasyFJP with two-real world applications, namely sequence
alignment and ray tracing, on an emulated computational Grid and a cluster.
Finally, Section 6 concludes the paper.

2. Parallelism in Java: background

In light of the increasing amount of available hardware, many Java tools for
implementing CPU-hungry parallel applications have been proposed.

2.1. Multi-core programming

Doug Lea’s framework [23] is a Java API that offers functionality for queuing
and synchronizing concurrent subcomputations. Alternatively, JCilk [10] sup-
plies Java with the spawn and sync library primitives. Each parallel method is
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associated with two clones, one used in the common case where serial se-
mantics suffice, and another executed when parallel semantics are required.
JCilk obeys the ordinary semantics of the try/catch construct when executing
on a single core CPU, but causes subcomputations to abort when an excep-
tion occurs on a multi-core machine. Furthermore, JAC [17] aims at separating
application logic from thread declaration and synchronization via Java annota-
tions, emphasizing on removing the differences between sequential and concur-
rent codes. Duarte et al. [13] address the same goal by automatically deriving
thread-enabled codes from sequential ones based on algebraic laws. Similarly,
JOMP [5] is compliant to OpenMP [9], a popular set of standard method-level/-
sentence-level directives and library routines for shared memory parallel pro-
gramming.

2.2. Cluster and Grid programming

JR [8] provides a rich concurrency model supporting remote JVM and object
creation, asynchronous communication and rendezvous. JR codes are trans-
lated into regular Java codes. JCluster [46] supports the execution of task-
oriented parallel applications in heterogeneous clusters. Tasks are scheduled
according to the novel transitive random stealing algorithm. Moreover, Satin [44]
is a library for parallelizing divide and conquer codes on LANs and WANs that
follows the semantics of JCilk. A programmer marks through API classes and
interfaces the application methods that must run in parallel. Satin then Grid--
enables the application by modifying its compiled code. JavaSymphony [21] is
another platform that features a semi-automatic execution model that transpar-
ently deals with migration, parallelism and load balancing of Grid applications,
and allows programmers to control such features via API calls embedded in
their codes.

Furthermore, VCluster [47] executes thread-based applications on clusters.
Threads migrate between nodes for load balancing purposes. Inter-thread com-
munication is performed through virtual channels, which isolate threads phys-
ical location (i.e., machine). ProActive [4] allows developers to program par-
allel applications composed of active objects, which have migratory capabili-
ties. Active objects asynchronously or synchronously communicate with other
active or regular objects via method calls. Active object creation, communi-
cation and mobility are programmatically performed via an API. In addition,
JGRIM [26, 28] gridifies applications by non-invasively attaching Grid concerns
such as resource brokering, mobility and parallelism through Dependency Injec-
tion [20], which allows component-oriented Java applications [35] to be seam-
lessly supplied with middleware-level components that implement those con-
cerns. Last but not least, with respect to the plethora of tools for building classi-
cal master-worker applications, two representative examples are GridGain [16]
and JPPF [40].
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2.3. Summary of the discussed tools

Parallel programming is commonly classified into two categories: automatic (or
implicit) and manual (or explicit) [45, 15]. The former allows developers to write
parallel applications without any concern about parallelism, which is performed
by the underlying runtime system in an automatic way. However, by following
this approach performance may be suboptimal. Alternatively, explicit parallelism
supplies APIs or directives for initiating and coordinating subcomputations. De-
velopers have thus more control over parallel execution to implement efficient
applications, but the burden of managing parallelism falls on them. From now
on, “automatic” and “implicit”, and “manual” and “explicit”, will be used inter-
changeably throughout the rest of the paper.

Many of the above efforts are inspired by explicit parallelism. Despite its per-
formance, a negative side-effect of using traditional explicit parallelism is that
parallelizing applications requires learning the concepts and the features of the
parallel tool being used, which may not be easy for an average programmer.
From a software engineering standpoint, parallelized codes are hard to main-
tain and port to other libraries. Lastly, using these approaches lead to parallel
codes that contain not only statements for managing subcomputations but also
for tuning the application. This makes such tuning logic obsolete when the ap-
plication is ported to a different environment, e.g., from a cluster to a Grid. This
decision could be taken for example for scalability purposes.

An alternative approach to traditional explicit parallelism is to treat paral-
lelism as a concern, thus avoiding mixing application logic with code implement-
ing parallel behavior. This idea is followed by several Java tools which partly
rely on mechanisms for separation of concerns, e.g., class and method-level
code annotations (JAC, GridGain), metaobjects (ProActive), and Dependency
Injection (JGRIM). As one may expect, many other efforts support the same
idea through AOP, which is the most widely known technique in this line, and
skeletons, which capture recurring parallel application structures such as pipe
and master-worker in an application-agnostic way. These structures, which are
analogous to object-oriented design patterns, are instantiated by composing
wrapped sequential codes or specializing framework classes [2, 39].

In our view, current approaches pursuing PaaC fall short with respect to
applicability, code intrusiveness and expertise. Tools designed to exploit sin-
gle machines are in general not applicable to distributed settings, whereas ap-
proaches designed to exploit such settings experience overheads when used
in multi-core machines due to their distributed nature. Moreover, approaches
based on code annotations require explicit modifications to insert parallelism
and application-specific optimizations that obscure the final code. Metaobjects
and specially AOP have proven to cope with this problem, but at the expense of
demanding programmers to learn another programming paradigm. Lastly, tools
providing support for various parallel patterns feature good applicability in re-
spect to the variety of anatomies of parallel applications that are supported.
However, such approaches require knowledge on parallel notions (e.g., paral-
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lel patterns) and altering application logic after parallelization demands first to
understand the design of the produced parallel code.

We argue that PaaC should be further exploited to offer novice users a hy-
brid approach to parallel development that takes the simplicity of implicit par-
allelism, and the flexibility and efficiency of explicit parallelism. In this sense,
we propose EasyFJP, an approach to parallelism for Java that implicitly lever-
ages parallelism in sequential applications, and at the same time allows users
to explicitly tune the parallelized codes without affecting the application logic.
By drawing a parallel with existing proposals, EasyFJP borrows ideas from the
implicit approach to parallelism followed by functional languages designed for
multi-core CPUs –e.g., Erlang [3], Haskell [19]– that exploit the inherent con-
currency present in applications, and the explicit approach taken by existing
Java-based parallel and distributed programming tools promoting separation
of concerns, but by proposing a simpler approach to PaaC for a family of ap-
plications, i.e., divide and conquer codes. Furthermore, execution of parallel
applications is performed by leveraging the schedulers of existing Java parallel
libraries.

EasyFJP offers users who are not experienced in parallel programming
means for parallelizing applications by adopting a programming model that pro-
vides opportunities for implicit nevertheless versatile forms of parallelism, and
using a generative programming approach to build parallel codes that reuse
existing parallel/distributed programming libraries. Developers can then opti-
mize generated parallel and distributed codes. The next section presents the
EasyFJP approach in detail.

3. Fork-join parallelism

Fork-join parallelism (FJP) is a simple but effective technique through which
parallelism is expressed via two primitives: fork, which starts the execution of a
code fragment (commonly a procedure or a method) in parallel, and join, which
blocks its caller until the execution of the code fragment finishes. FJP represents
a high level mechanism to handle threads in programs, whose direct usage
has received criticism due to the inherent complexity of developing, testing and
debugging threads [24]. In fact, Java, which has offered threads as first-class
citizens for years, includes now an FJP framework for multi-core CPUs3. Indeed,
easy-to-use programming models like FJP are of major importance as they can
boost the performance of today’s sequential applications without the pressing
need for a solid background on parallel programming.

Broadly, FJP is useful for execution environments where the notions of “task”
and “processor” exist. For instance, forked tasks can be run among the nodes of
a cluster, thus improving performance and scalability. Some years ago, Compu-
tational Grids [14], which arrange resources from dispersed sites, have emerged
as another exciting environment for parallel computing. Interestingly, multi-core

3 http://openjdk.java.net/projects/jdk7/features
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CPUs, clusters and Grids alike can execute FJP tasks, because they conceptu-
ally comprise processing nodes (cores or individual machines) interconnected
through communication “links” (a system bus, a high-speed LAN or a WAN).
This uniformity suggests that the same FJP application may be run in either
environments, provided there is a scheduler aware of the specifics of the un-
derlying support. Then, a requirement for higher performance on a multi-core
FJP application may be fulfilled by gridifying it.

Broadly, current Java parallel libraries relying on task-oriented execution
models offer primitives to fork one or many tasks at once. These tasks are ex-
plicitly mapped through API calls to library-level execution units. For example,
the JPPF framework provides a job abstraction, implemented by the JPPFJob
class, which serves as a container of one or more parallel tasks. There are how-
ever operational differences among libraries concerning the primitives to syn-
chronize subcomputations. From Section 2 we conclude that these primitives
follow one of two fork-join synchronization patterns: single-fork join (SFJ) and
multi-fork join (MFJ). The former represents one-to-one relationships between
fork and join points, i.e., a programmer must block its application to wait for
the result of each task. Alternatively, MFJ models many-to-one relationships,
thus the programmer waits for the results of the tasks launched up to a syn-
chronization call. For example, in the following code snippet, two SFJ calls are
necessary to safely access the results of task1 and task2:

public class SomeClass{
public void someMethod(){
...
API.fork(task1);
API.fork(task2);
...
API.sfj(task1); /* Block until task1 finishes */
... // Access the result of task1
API.sfj(task2); /* Block until task2 finishes */
... // Access the result of task2

}
}

, whereas the next code achieves the same behavior with one MFJ call:

public class SomeClass{
public void someMethod(){
...
API.fork(task1);
API.fork(task2);
...
API.mfj([task1, task2]); /* Block until task1, task2 finish */
... // Access either results

}
}

Examples of Java-based parallel libraries that support such synchronization
patterns are GridGain (SFJ), JPPF (SFJ), ProActive (SFJ and MFJ) and Satin
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(MFJ), which developers take advantage of through certain API calls. Sadly,
this requires to learn a parallel API, and ties the code to the library at hand.
Moreover, managing synchronism for real-world applications with complex al-
gorithmic structures is time-consuming, and even more important, error prone,
as debugging concurrent programs has been historically conceived as a notori-
ously hard task [29].

4. Semi-automatic FJP as a concern: the EasyFJP project

Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applica-
tions. D&C is a natural way of solving a problem by recursively breaking it down
into several subproblems until trivial subproblems are obtained. Small, non--
dividable subproblems are commonly solved by calling a fragment of sequential
code. The solutions to the different subproblems are then combined to solve the
whole problem.

Our ongoing EasyFJP project proposes source code analysis algorithms
and generation techniques to automate the task of introducing SFJ and MFJ
into sequential D&C codes. Basically, these algorithms exploit the implicit fork--
join structure present in a sequential D&C application, whereas the techniques
generate an FJP version to leverage a parallel library of the user’s choice. Paral-
lel code generation considers the synchronization support of the target library,
i.e., SFJ or MFJ. Central to EasyFJP is a semi-automatic parallelization pro-
cess that outputs library-dependent parallel applications with hooks for attach-
ing user-provided optimizations called policies. This process is illustrated in Fig-
ure 1. In this context, by parallel application we mean an application comprising
parallel entities that do not share memory and require no synchronization be-
tween each other during their execution other than joins.

D&C sequential
application

Step 2: Parallel
code generation

(Section 4.2)

Step 1: Source
code analysis
(Section 4.1)

1  package examples;
2  public class ItemSearch{ 
3   boolean search(int elem,
              int[] array){ 
4    boolean s1, s2 = false;
5    . . .
6    boolean s1 = search(
      elem, halfOne(array));
7    boolean s2 = search(
      elem, halfTwo(array));
8    . . .
9    return s1 || s2;
10  }
11 }

User policy: "Spawn 
search(int, int[]) if ... 
otherwise run it
sequentially"

FJP-based
tunable

application

Target library 
(GridGain, Satin, etc.)

Target method
(complete signature)

Source code                     Configuration
artifact                               artifact 

. . .

Step 3 (optional):
Policy declaration

(Section 4.3)

D&C sequential
application

Target library

task-result
dependencies
 = [{6,9}, {7,9}}

Fig. 1. EasyFJP: Parallelization process
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In the first step (Section 4.1), the source code of the application is ana-
lyzed to spot the points within the target method that perform recursive calls
and accesses to their results. These calls and accesses together form the task-
result dependencies of the method. Based on these dependencies, the points
in which library-dependent synchronization code is to be inserted in the method
are identified and passed on to the next step. In this way, the spotted depen-
dencies are ensured upon parallelization to keep the correctness of the resulting
application. Before processing a D&C sequential application with EasyFJP, pro-
grammers have to follow a simple code convention on their sequential codes,
namely assigning the results of recursive calls to local variables.

Targeting parallel libraries featuring SFJ simplifies the task of automatically
identifying synchronization points and hence inserting library-specific code to
handle dependencies, since the accesses to task results can be (usually) di-
rectly replaced by a proper blocking API call. This is harder with MFJ, as it
is necessary a deeper code analysis to consider the structure of sentences
and variable scopes, while ensuring the spotted dependencies and minimizing
the inserted parallel blocking calls. Either synchronization algorithms behave
heuristically, emulating a clever human developer while keeping the correctness
of the produced code.

The second step (Section 4.2) involves the generation of the parallel code
itself through builders, which are components that take advantage of the prim-
itives of the target parallel library. Builders also insert glue code to dynamically
evaluate the optimizations potentially defined at step 3. Lastly, builders adapt
the code to the application structure prescribed by the tarjet library. This in-
cludes extending from certain API classes and generating extra code artifacts,
among others.

A challenging issue in this regard concerns adapting code to the parallel
programming model of the target libraries. For example, targeting D&C libraries
such as Satin mostly requires source-to-source translation, i.e., recursive meth-
ods in the input application are forked in the output application via proper calls to
the target library API. However, targeting libraries relying on conventional exe-
cution models –e.g., master-worker or bag-of-tasks– in which there are not hier-
archical relationships between parallel tasks, is not straightforward as builders
must somehow “flat” the task structure of the input application. An example
of such a library is GridGain. We have nevertheless developed builders for
GridGain, and Satin, as will be explained in further paragraphs. Furthermore,
we are studying other libraries to detect more adaptation scenarios.

Lastly, at step 3 (Section 4.3), programmers can optionally customize their
parallel applications for efficiency purposes via a non-intrusive tuning mecha-
nism based on policies. Conceptually, a policy is a rule that controls the amount
of parallelism of an application. It is implemented as a user-supplied class that
specifies whether to fork a recursive call or run it sequentially instead. For in-
stance, ItemSearch (Figure 1) could be made forking the recursive calls to search
provided the length of the input unsorted array is above some threshold.
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Policies are associated to fork points through external configuration, and
therefore they can be modified and switched without altering the application
code. Policy usage is not mandatory for parallelizing applications. In addition,
the separation promoted by this mechanism –which is inspired by the concept
of separation of concerns– between the tasks of writing application logic and
tuning it contributes to the application development process, as these two ac-
tivities can be carried out independently by programmers with different skills.
Moreover, our tuning framework allows developers to specify policies based on
the nature of their applications and the execution environment, e.g., using mem-
oization or avoiding many forks with large-valued parameters in a high-latency
network.

One may argue that an alternative rule for paralleling D&C code is to directly
rely on the built-in FJP framework of Java 7. As such, this framework (and hence
the parallelized code) is portable to any implementation of Java. However, the
framework does not support distributed computing. Therefore, to support dis-
tributed task execution, a parallel library that conforms to this framework API is
needed. Even when it is not clear whether adapting parallel libraries to support
Java 7’s FJP is more difficult than to produce an EasyFJP builder for these li-
braries or not, not all library providers are interested in being compliant to this
framework (e.g., JPPF and Satin). EasyFJP then bridges the gap between D&C
sequential codes and parallel libraries relying on fork-join synchronization but
not necessarily compliant to Java 7’s FJP.

4.1. Step 1: Source code analysis

Before feeding EasyFJP with a sequential application, the result of each re-
cursive method must be stored in a local variable, which allows EasyFJP to
automatically spot task-result dependencies and determine the points in which
synchronization barriers are needed. This, in turn, ensures that recursive re-
sults are always available before they are accessed4. In case a programmer
targets a library supporting SFJ such as Doug Lea’s framework or GridGain,
the resulting join points are in fact the points in which those local variables are
read. When generating code for a parallel library based on MFJ such as Satin, a
smarter source code analysis is necessary to minimize the number of inserted
synchronization barriers and hence parallel code. The algorithms for spotting
join points based on SFJ and MFJ are shown in Algorithm 1 and Algorithm 2,
respectively.

Identifying SFJ-based synchronization points. The algorithm for spotting
SFJ-based synchronization points works by walking through the instructions of
a method and detecting the points in which a local variable is either defined
or used. A local variable is defined and thus becomes a parallel variable when

4 The source code conventions required by the EasyFJP approach are feasible to be
automated through proper IDE support [27].
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the result of a recursive method is assigned to it. Conversely, a parallel vari-
able is used when its value is read. When executing in parallel, to work properly
recursive methods can read parallel variables provided a join has been previ-
ously issued. Based on the identified join points at this step, EasyFJP modifies
the source code so as to ensure that a library-specific join primitive is called
between the definition and use of any parallel variable, for any execution path
between these two points. Any regular local variable that does not represent
results from parallel computations, or non-parallel, is naturally ignored by the
algorithm.

The algorithm operates on the nodes of the AST tree derived from the
source code of the input method. As such, this tree represents the different
scopes of the method, i.e., the root scope given by the method itself and the
scopes resulting from container sentences such as loops, conditionals, etc. Fur-
thermore, the arcs of the three represent the relationships between the scopes.
Algorithm 1 shows the process of identifying both the fork and the join points
of a D&C method. Fork points are obtained by traversing the sentences of the
tree that is derived from the method in a depth-first fashion and looking for def-
initions of parallel variables. The output of this analysis feeds another process
in charge of spotting the points of the method in which synchronization barriers
are to be inserted. Table 1 lists the helper functions of this algorithm.

Table 1. Algorithm for spotting SFJ-based synchronization points: Helper functions

Signature Functionality

getParallelVar
(aSentence,rootScope)

Checks whether aSentence is an assignment of a recursive call
to a parallel variable. If so, the name of the parallel variable
defined is returned, otherwise an empty result is returned.

getParallelVar
(aSentence)

Returns the name of the parallel variable defined in aSentence.

getFirstUse
(varName,aSentence)

Returns the first subsequent sentence of aSentence that uses
varName. If no such a sentence if found, an empty result is
returned.

getScope
(aSentence)

Returns the scope to which aSentence belongs. Sentences
belong to one scope only; if a parent scope SP has a child
scope Sc, a sentence of Sc does not belong to SP .

checkIncluded
(aScope,anotherScope)

Checks whether aScope is the same scope as anotherScope or
is a descendant of it by inspecting the corresponding tree.

Identifying MFJ-based synchronization points. Algorithm 2 summarizes the
process of identifying the MFJ-based points (joinPoints) of a D&C method. To
detect fork points, the first procedure included in Algorithm 1 is used. Like the
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Algorithm 1 Spotting SFJ-based points

procedure IDENTIFYFORKPOINTS(rootScope)
forkPoints← empty
for all sentence ∈ TRAVERSEDEPTHFIRST(rootScope) do

varName← GETPARALLELVAR(sentence,rootScope)
if varName ̸= empty then

ADDELEMENT(forkPoints,sentence)
end if

end for
return forkPoints

end procedure
procedure IDENTIFYJOINPOINTS(rootScope, forkPoints)

joinPoints← empty
for all sentence ∈ forkPoints do

varName← GETPARALLELVAR(sentence)
currSentence← sentence
scope← true
repeat

useSentence← GETFIRSTUSE(varName,currSentence)
if useSentence ̸= empty then

useSentenceScope← GETSCOPE(useSentence)
varNameScope← GETSCOPE(sentence)
if CHECKINCLUDED(useSentenceScope,varNameScope) then

ADDELEMENT(joinPoints,useSentence)
currSentence← useSentence

end if
else

scope← false
end if

until scope ̸= true
end for
return joinPoints

end procedure

previous algorithm, the MFJ-based algorithm operates on a tree-based repre-
sentation of the source code of the input method as well. However, it is less
intuitive, since it is in fact an heuristic that aims at inserting a minimal number
of synchronization barriers, as we detail below. In other words, the heuristic
pays attention to both correctness and efficiency aspects.

The algorithm maintains a map with the parallel variables and their asso-
ciated state (SAFE or UNSAFE) per scope. The former means that up to the
current analyzed instruction a parallel variable is safe to use and a synchro-
nization barrier is not needed. In opposition, the latter means that a barrier from
where the variable is defined is needed. The algorithm takes into account the
scope at which parallel variables are defined and used, i.e., it computes the
state of each variable according to the state it has within the (scope) node of
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Algorithm 2 Spotting MFJ-based points
procedure IDENTIFYJOINPOINTS(rootScope)

joinPoints← empty
for all sentence ∈ TRAVERSEDEPTHFIRST(rootScope) do

varName← GETPARALLELVAR(sentence,rootScope)
if varName ̸= empty then

currentScope← GETSCOPE(sentence)
if BEINGUSED(varName,sentence) = true then

if GETFIRSTSTATE(varName,currentScope) = UNSAFE
then

SYNCVARSINSCOPE(currentScope)
ADDELEMENT(joinPoints,sentence)

end if
else if BEINGDEFINED(varName,sentence) = true then

DESYNCVARUPTOROOT(varName,currentScope)
end if

end if
end for
return joinPoints

end procedure

the tree where the variable is read and the state of the same variable within the
ancestors of that node. Table 2 lists the helper functions of the algorithm.

Let us apply the algorithm to the sequential method shown below. The
method contains one non-parallel variable (nonParallelVar) and two parallel vari-
ables (varA and varB). The points in which a call to an MFJ-based barrier are
needed are explicitly indicated in the code. Table 3 shows the state of varA and
varB within their associated scopes as the analysis progresses.

1 public String D&CMethod() { // Scope 1
2 ...
3 boolean nonParallelVar = (Math.random() > 0.5) ? true:false;
4 String varA = D&CMethod();
5 if (!nonParallelVar) { // Scope 1.1
6 String varB = D&CMethod();
7 if (Math.random() > 0.5) { // Block 1.1.1
8 // An MFJ should be inserted here
9 System.out.println(varB);
10 varA = D&CMethod();
11 }
12 }
13 if (nonParallelVar) { // Scope 1.2
14 // An MFJ should be inserted here
15 System.out.println(varA);
16 }
17 ...
18 }
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Table 2. Algorithm for spotting MFJ-based synchronization points: Helper functions

Signature Functionality

getParallelVar
(aSentence)

Checks whether aSentence references –i.e., either defines or
uses– a parallel variable. In such a case, the variable name
within the method is returned. Otherwise, an empty result is
returned.

getScope
(aSentence)

Returns the scope to which aSentence belongs.

beingUsed
(varName,aSentence)

Checks whether the varName parallel variable is being read.
Analogously, beingDefined checks whether a parallel variable is
assigned the result of a recursive call. For container sentences,
both functions check whether the variable is accessed in the
header of the sentence, but not in the body.

getFirstState
(varName,scope)

Traverses the scope tree starting from the node represented by
scope upwards looking for the occurrence of a parallel variable
varName in any of the variable maps of these scopes. When
the variable is first found, the function returns the state it has in
the variable map of the scope it was first encountered.

syncVarsInScope
(scope)

Sets to SAFE the state of all parallel variables contained in
scope (encountered up to the current analyzed sentence) as
well as the ancestors of scope. The resulting pairs
[varName,SAFE] are only put into the map of scope.

desyncVarUpToRoot
(varName,scope)

Sets the state of a specific parallel variable to UNSAFE from a
given scope up to the root scope. This means that the variable
becomes UNSAFE in scope as well as all its ancestor scopes.

The algorithm iterates the instructions up to line 4, in which varA is defined.
Hence, varA becomes UNSAFE in scope 1 (see stage #1 in Table 3). At line 6,
varB is defined within scope 1.1, which makes it UNSAFE in scope 1.1 and its
parent scope 1 (stage #2). At line 9, varB is used within scope 1.1.1. Its first
occurrence is encountered in the parent of scope 1.1.1 as UNSAFE. All parallel
variables in the variable maps of scope 1.1.1 (none) and its ancestors (varA and
varB) are set to SAFE in scope 1.1.1, and the line right before line 9 is regarded
as a join point (stage #3). At line 10, another definition of varA is found, which
makes the variable UNSAFE in scopes 1.1.1, 1.1 and 1 (stage #4). At line 15,
varA is being used within scope 1.2. According to its parent scope 1, the first
state of this variable is UNSAFE. This causes to set to SAFE in scope 1.2 all
variables found in the maps of scope 1.2 (none) and its ancestors (varA and
varB), and to regard the line right before line 15 as a join point (stage #5).
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Table 3. Variable maps and MFJ-based synchronization points of D&CMethod

Stage Scope Variable map joinPoints

1

1 {[varA,UNSAFE]}

-1.1 -
1.1.1 -
1.2 -

2

1 {[varA,UNSAFE], [varB,UNSAFE]}

-1.1 {[varB,UNSAFE]}
1.1.1 -
1.2 -

3

1 {[varA,UNSAFE], [varB,UNSAFE]}

line 91.1 {[varB,UNSAFE]}
1.1.1 {[varA,SAFE], [varB,SAFE]}
1.2 -

4

1 {[varA,UNSAFE], [varB,UNSAFE]}

line 91.1 {[varA,UNSAFE], [varB,UNSAFE]}
1.1.1 {[varA,UNSAFE], [varB,SAFE]}
1.2 -

5

1 {[varA,UNSAFE], [varB,UNSAFE]}

lines 9, 151.1 {[varA,UNSAFE], [varB,UNSAFE]}
1.1.1 {[varA,UNSAFE], [varB,SAFE]}
1.2 {[varA,SAFE], [varB,SAFE]}

4.2. Step 2: Parallel code generation

Based on the synchronization information obtained at step 1, the source code
and configuration of the input application, and the parallel library selected by
the developer, EasyFJP generates parallel source code. For each class of the
input application, EasyFJP creates a peer class that exploits the target parallel
API. Then, sequential classes and peers are seamlessly “wired” at load time
by employing a simple bytecode rewriting technique. This essentially aims at
avoiding modifying the source code of the original classes while supporting
parallelism for them through those peers.

This technique uses the java.lang.instrument package, a built-in API of Java
that defines hooks for modifying classes at load time. The package is intended
to be extended through special user libraries –regular JAR files (Java ARchive)–
called Java agents. These agents customize the class loading process and are
accessed by the JVM every time an application requests to load a class. In
EasyFJP, the classes that are subject to modification are the ones configured
by the user as targets for parallelization.

When rewriting a sequential class for such purposes, EasyFJP replaces the
body of its D&C method with a stub that delegates its execution to its parallel
counterpart in the associated peer. For example, let us consider the recursive
version for computing the nth Fibonacci number, whose code is as follows:
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public class FibApp{
public long fibonacci(long n){
if (n < 2)
return 1;

f1 = fibonacci(n - 1);
f2 = fibonacci(n - 2);
return f1 + f2;

}
}

Then, the fibonacci method of the FibApp class is dynamically rewritten as fol-
lows, so that its computation is performed by the peer (FibApp Peer):

public class FibApp{
public long fibonacci(long n){
FibApp_Peer peer = new FibApp_Peer();
copyProperties(this, peer);
// Assuming we are relying on SFJ through GridGain
ExecutorManager m = ManagerFactory.getExecutor("GridGain");
return (long)m.execute(peer, "fibonacci", new Object[]{n});

}
}

The instance variables of the peer, which may be used by the computation,
are instantiated via Java reflection from the running sequential object. Basically,
copying properties is a generic procedure that is possible thanks to the unifor-
mity provided by following the getters/setters convention of the well-known Jav-
aBean specification [41], to which sequential classes must also be compliant to.
Finally, ExecutorManager represents the EasyFJP API class that communicates
with the library-level support that executes peers by performing the correspond-
ing parallel library-specific initialization and disposal activities.

Let us illustrate the peers generated by EasyFJP based on the GridGain
library, which offers SFJ-based synchronization and is currently supported by
EasyFJP:

1 import org.gridgain.grid.Grid;
2 import org.gridgain.grid.GridFactory;
3 import org.gridgain.grid.kernal.executor.*;
4 import org.gridgain.grid.GridTaskFuture;
5 import java.util.concurrent.Callable;
6 // Peer
7 public class FibApp_Peer implements java.io.Serializable{
8 // Properties are copied as is from the original class
9 ...
10 public long fibonacci(long n){
11 return fibonacci(n, initContext(...));
12 }
13 // The GridGain-enabled method
14 public long fibonacci(long n, ExecutionContext ctx){
15 ...
16 Grid grid = GridFactory.getGrid();
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17 GridExecutorCallableTask ex = new GridExecutorCallableTask();
18 GridTaskFuture<long> f1future = grid.execute(
19 ex, new FibAppTask(this, updateContext(ctx, ...), n - 1);
20 GridTaskFuture<long> f2future = grid.execute(
21 ex, new FibAppTask(this, updateContext(ctx, ...), n - 2);
22 return f1future.get() + f2future.get();
23 }
24 }
25 // Subcomputation
26 public class FibAppTask implements Callable{
27 // Instance variable declarations
28 ...
29 FibAppTask(FibApp_Peer peer, ExecutionContext ctx, long p0){
30 // Copy arguments into instance variables
31 }
32 // Setters/getters for "peer", "ctx" and arguments
33 ...
34 public Serializable call(){
35 return getPeer().fibonacci(p0, ctx);
36 }
37 }

As shown in the code, the peer contains a proxy method (lines 10-12) that
invokes the actual parallelized method (lines 14-23), whose code has been de-
rived from the original fibonacci method but modified to include GridGain forks
and joins (lines 18-21 and 22, respectively). Particularly, GridGain materializes
the SFJ pattern by extending the conventional future construct from the Java
concurrency API to support task asynchronysm and distribution. In a broad
sense, a future is an abstraction that allows programmers to represent and
manipulate an individual asynchronous computation. For the sake of simplicity,
the code shown does not exploit the latest version of the GridGain API (i.e., 4.1)
since it is fairly more verbose than previous versions.

Instances of FibAppTask carry out the subcomputations by calling fibonacci(long,
ExecutionContext) on individual branches of the execution tree. Besides, the
peer keeps track of the depth of the tree at runtime. This information, together
with the method parameters are encapsulated in an ExecutionContext object,
which is used to feed policies by further modifying the source code of the
newly generated parallel method. The additional modifications are essentially
glue code for invoking policies by passing along context information. It is out of
the scope of this paper to detail such code modifications, which can be found
in [27].

Besides automating the use of GridGain and its SFJ-based API, EasyFJP
also supports the Satin library, which provides SFJ-based parallelism, and the
standard fork-join framework of Java [27]. To manually use Satin, methods con-
sidered for parallel execution must be indicated by the user through a marker
interface that includes their exact signature and extends the satin.Spawnable
interface. The class containing parallel (D&C) methods extends the satin.Sat-
inObject class and implements the marker interface. In addition, the invoca-
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tions to parallel methods are stored in local variables. After specifying parallel
methods and inserting synchronization calls into the code, the developer must
feed a compiled version of the application to the Satin compiler that translates,
through Java bytecode instrumentation, each invocation to a parallel method
into a Satin runtime task, so that forks are issued at runtime. Bytecode instru-
mentation means transforming the compiled version of a program to alter its
semantics.

The purpose of the Satin builder is to automatically reproduce these tasks.
The Satin builder generates the marker interface based on the operations spec-
ified within the configuration file of the application, and makes the peer extend
and implement the required API classes and interfaces. Besides, the builder
inserts appropriate calls to sync –the MFJ-based primitive of Satin– based on
the output of the source code analysis of step 1. Passing the source code of
FibApp through the Satin builder (without taking into account policies) results in
the following parallel code:

1 // Marker interface
2 public interface FibApp_Marker extends satin.Spawnable{
3 public long fibonacci(long n, ExecutionContext ctx);
4 }
5 // Peer
6 public class FibApp_Peer extends satin.SatinObject
7 implements FibApp_Marker, Serializable{
8 // Properties are copied as is from the original class
9 ...
10 public long fibonacci(long n){
11 return fib(n, initContext(...));
12 }
13 // The Satin-enabled method
14 public long fibonacci(long n, ExecutionContext ctx){
15 ...
16 f1 = fib(n - 1, updateContext(ctx, ...));
17 f2 = fib(n - 2, updateContext(ctx, ...));
18 super.sync();
19 return f1 + f2;
20 }
21 ...
22 }

The builder generates the FibApp Marker marker interface (lines 1-4), and makes
the peer implement it (line 7). MFJ-based synchronization in the resulting peer
is managed via calls to the sync primitive of the Satin API (line 18).

4.3. Step 3: Policy declaration

Policies represent a mechanism to express, separately from the application
logic, customized strategies to achieve better performance. Conceptually, a pol-
icy implements a user-specified rule that governs the behavior of an application
within the underlying execution environment. As mentioned earlier, EasyFJP
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provides a policy-inspired tuning support that let developers introduce common
FJP optimization heuristics without altering their applications by means of spe-
cial Java classes.

Basically, policies represent tuning decisions that depend on the algorithmic
nature of the application being parallelized. Particularly, policies model the no-
tions of threshold, memoization and task placement, which are explained in the
following subsections. These are, in other words, ways of regulating the levels
of parallelism in an application for non-experienced developers.

Threshold-based policies. Threshold policies are used to avoid forking a sub-
computation more than needed and otherwise execute it sequentially. For ex-
ample, in the FibApp application, we may want to “throttle” the number of forks
that are injected into the runtime system –and therefore the task granularity–
depending on the depth of the execution tree associated to the method at run-
time. This decision is indicated to EasyFJP by associating the following policy
to the fibonacci method:

class MyThresholdPolicy implements Policy{
static final int THRESHOLD = 10;
public boolean shouldFork(ExecutionContext ctx){
return (ctx.getCurrentDepth() <= THRESHOLD);

}
}

The code implements the Policy interface from the EasyFJP policy API and al-
lows each execution of fibonacci to be forked provided the current depth of the
execution tree of the method is below THRESHOLD. As mentioned in past para-
graphs, ExecutionContext provides operations to further introspect the execution
of the application, namely obtaining the values of method parameters. For ex-
ample, for the recursive search method over an array of Figure 1, a policy may
be associated to restrict parallelism depending on the size of the input array:

...
public boolean shouldFork(ExecutionContext ctx){

int[] array = (int[])ctx.getArgument(1); // search(elem,array)
return (array.length > MIN_ARRAY_SIZE);

}
...

The above policy code uses the ExecutionContext object to access the value of
the second argument of each call to search to decide whether the size of the
received array justifies another fork. To attach the above threshold policy to the
FibApp class, we must supply the corresponding declaration in the configuration
of the application.

Memoization policies. Memoization is another common optimization tech-
nique used to gain efficiency by having applications to avoid forking a sub-
computation when results have been already computed. In this sense, in our
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FibApp class, we may want to avoid recalculating previously computed results,
as the nature of the application makes subcomputations to overlap. From a pro-
grammer’s perspective, coding a memoization policy requires deciding whether
to fork or not, and in the latter case to identify the particular result that should
be reused:

class MyMemoizationPolicy implements MemoizationPolicy{
public boolean shouldFork(ExecutionContext ctx){
long n = (Long)ctx.getArgument(0); // fibonacci(n)
return (n % 2 == 0);

}
public String buildResultKey(ExecutionContext ctx){
return String.valueOf(ctx.getArgument(0));

}
}

The policy indicates EasyFJP to fork and hence to ignore previously computed
results if the argument of a call to fibonacci is even. Moreover, whenever should-
Fork evaluates to false, EasyFJP attempts to reuse the value from a result cache
with the key as indicated by buildResultKey. However, if shouldFork evaluates to
false but the key is invalid and leads to a cache miss, the execution in parallel
takes place. Depending on the target execution environment for the application
(e.g., multi-core, cluster), memoization works by using a local in-memory or a
distributed cache [27]. Memoization strategies like the one implemented by this
policy, in which only a subset of already calculated results are reused, are use-
ful in parallel optimization problems where forking for a subproblem may yield a
better solution than reusing a similar computed suboptimal result [1].

Task placement policies. Task placement or mapping refers to the problem
of assigning unfinished tasks to available executing nodes. This problem has
been proved to be NP for both static as well as dynamic placement [22], i.e.,
when tasks are mapped in an off-line and a runtime fashion, respectively. Pre-
cisely, tasks resulting from executing D&C applications belong to the second
category, because the execution of an individual task may trigger the execution
of N more. Under EasyFJP, the node in charge of executing a task is not deter-
mined by the application but the underlying scheduler. However, the hierarchical
task structure of EasyFJP applications indirectly determines task dependencies
that, if ignored, may result in suboptimal performance. Then, the goal of these
policies is to allow the user to control the placement of forked tasks by selec-
tively ignoring some of the decisions taken by the underlying task scheduler.

Consider, for instance, an application that performs some recursive compu-
tation on a quadtree data structure. As such, every parallel task creates four
more tasks, each in charge of processing a particular region of the data (see
Figure 2). Now, let us suppose we execute this application on four clusters C1,
C2, C3 and C4, connected through wide-area links. Assuming we are targeting a
parallel library based on cluster-aware round robin scheduling such as the Satin
framework and launching the execution of our application at cluster C1, one pos-
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Fig. 2. An application processing a quadtree data structure.

sible task mapping is taskd1 /taskd+11 → C1, taskd+12 → C2, taskd+13 → C3 and
taskd+14 → C4.

Alternatively, we could force taskd+11 and taskd+12 to be located at clus-
ter C1, and delegate the placement of the rest of the siblings tasks of taskd1

to the scheduler (e.g., taskd+13 → C2, taskd+14 → C3). Depending on the
amount of data interchanged between taskd1 and taskd+11 /taskd+12 , the semi-
automatic mapping may justify the loss of processing power at cluster C4, to
which no task would be assigned.

Roughly, this kind of decision can be specified in EasyFJP through a task
placement policy, which tells, based on an API-exposed task identifier, where
to submit parallel tasks for execution. Below is the policy code that implements
the above mapping:

class MyTaskPlacementPolicy implements TaskPlacementPolicy{
public boolean shouldMap(ExecutionContext ctx, TaskId id){
if (ctx.getCurrentDepth() % 2 != 0){
// This avoids overloading the local node
return false;

}
return (id.getNumber() <= 2);

}
public InetAddress mapTo(ExecutionContext ctx, TaskId id){
return InetAddress.getLocalHost();

}
}

Basically, the shouldMap method decides whether to activate explicit task map-
ping for a given subcomputation, whereas mapTo indicates EasyFJP to which
node the task should be submitted. Each task is assigned a unique identifier
that comprises the depth associated to the task such as id.getDepth() plus one
equals ctx.getCurrentDepth(), and a subsequent number. In this case, we have
made the forked tasks to be placed in the same physical node as the parent
tasks originating them. However, other complex actions could had been taken
in this respect, such as mapping tasks to any node of a given cluster, or even
a cluster where a certain task is executing. Finally, task placement policies as-
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sume that the underlying library API has support for explicit task mapping, a fea-
ture present in several Java-based parallel tools, e.g., ProActive and GridGain.

5. Experimental evaluation

The practical implications of using EasyFJP are determined by two essential as-
pects, i.e., how competitive is implicitly supporting FJP synchronization patterns
in D&C codes compared to other parallel programming models, and whether
policies are effective to tune parallelized applications. We have already con-
ducted experiments to partially answer these questions in the context of the
MFJ pattern with computational kernels and Grids [27], from which encourag-
ing results were obtained. Next, we report experiments with the SFJ and MFJ
synchronization patterns along with real-world applications, through our bind-
ings to GridGain (Section 5.2) and Satin (Section 5.3) on both an emulated
Grid and a cluster to better analyze the tradeoffs inherent to EasyFJP.

5.1. Testbeds and test applications

We set up a LAN comprising 8 dual core nodes with similar CPU capabilities
running Ubuntu 11.04, Java 6, Satin 2.2, and GridGain 3.2.1. The nodes were
connected through a 100 Mbps network. We refer to this environment as the
cluster. Then, we established a wide-area Grid on top of this cluster by employ-
ing WANem version 2.2 [43], a software for emulating WAN conditions over a
local area network. We emulated 3 remote clusters C1, C2 and C3 by using 2,
3 and 3 of the nodes of the cluster, respectively, which were connected together
by using virtual Internet links. Each WAN link was a T1 connection (bandwidth
of 1,544 Mbps) with a round-trip latency of 100 ms and a jitter of 5 ms, there-
fore inter-cluster latencies were in the range of 95-105 ms, which are network
conditions found in Internet-wide Grids. The reason of using this setting was
to provide a challenging testing scenario for EasyFJP. We refer to this second
environment as the emulated Grid or simply Grid. In either environments, we
configured middlewares in such a way 16 computing processors were available
for the experiments.

Furthermore, we used two test applications. The first one was ray tracing,
a widely-known rendering technique that generates a digital picture from an
abstract description of a 3D scene [18]. Basically, we based our experiments
on an existing D&C ray tracing code from the Satin project5, which operates by
deriving an initial image from an input scene, dividing this image to recursively
apply the algorithm, and then joining the results. Computationally, the ray tracing
application is both CPU and memory intensive.

The second application was local pairwise sequence alignment, a problem
from Bioinformatics that involves representing a biological entity (e.g., a gene)

5 http://www.cs.vu.nl/ibis/satin.html
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in a computer-understandable way (e.g., strings) and manipulating this repre-
sentation by using sequence alignment algorithms, which are usually comput-
ing intensive. Basically, we took an existing master-worker implementation of
the application for aligning protein sequences whose code was obtained from
the JPPF project [40]. This source code relies on JAligner [30], which given
any pair of sequences outputs a coefficient representing the similarity level be-
tween these two by using a scoring matrix from a set of predefined matrixes.
The original JPPF application aligned an unknown input sequence against an
entire sequence database, which was replicated across the nodes of the ex-
perimental testbed to allow parallel tasks to locally access sequence data. The
sequence alignment application makes extensive use of CPU and I/O, because
of the many database accesses.

Moreover, various EasyFJP variants (SFJ-based and MFJ-based) of the
ray tracing application were obtained by removing from the original Satin code
any sentence related to parallelism or tuning application execution in order to
derive its sequential D&C counterpart, and then automatically generating the
corresponding parallel codes. The same was carried out to generate various
EasyFJP variants of the sequence alignment application from the original JPPF
code. The manual GridGain and Satin variants were obtained by directly alter-
ing the original parallel codes. We fed the applications with various 3D scenes,
and real gene sequence databases from the NCBI (National Center for Biotech-
nology Information). For ray tracing, we used two scenes Scene 1 and Scene 2
with resolutions of 1024x1024 and 2048x2048. For sequence alignment, we
compared five sequences against real protein sequence databases. Concretely,
we employed five sequence databases of increasing sizes (4,289 up to 12,325
sequences).

5.2. SFJ-based parallelism

With respect to task granularity for ray tracing we used two task sizes: base
and medium granularity. The former represents splitting the whole computation
into the minimum number of parallel tasks such that all processors (i.e., 16 in
our case) get work to do, or in other words one task per processor. On the
other hand, with the medium granularity, 64/256 tasks were generated when
using the 1024x1024/2048x2048 image, which means 4/16 parallel tasks per
node. For sequence alignment, we also employed two granularities, base (i.e.,
1 parallel task per node), and medium, where the number of tasks to execute
depended on the size of the input database for efficiency purposes. This is,
the larger the database, the more the generated tasks, thus enabling for better
parallelism. In this context, a task refers to a computing intensive calculation
that actually processes a region of the input data. Therefore, the number of
created tasks associated with each granularity was the number of launched
workers in the manual GridGain variants, and the number of leaf nodes that
resulted from executing the (recursive) EasyFJP variants. For either application,
we used three EasyFJP variants:
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– A variant including a default built-in policy that provides a base granularity
for tasks. The policy finds the minimum factor f that satisfies # of tasks =
fanoutf ≥ # of processors, where fanout is the number of recursive calls
included in the target D&C parallelized method. As suggested, this policy
is attached by default to EasyFJP applications, thus no intervention from
programmers is required.

– A variant using a threshold policy to configure medium task granularity.
– A variant using a policy that extended the above policy to place tasks pro-

cessing near regions of the input data in the same cluster.
Preliminary experiments regarding the use of another variant considering
the default built-in policy plus task placement showed some serious per-
formance problems. This is because the performance benefits of placing a
set of related tasks in the same physical cluster scene becomes negligi-
ble when less tasks are executed. In other words, dynamically dividing the
computation in few, computationally heavy tasks that are placed in the same
physical cluster makes the rest of the clusters to be underused most of the
time. Thus, we decided to left this variant out of the analysis.

Afterwards, we developed manual GridGain variants through its annotation--
based parallel directives and its support for Google’s MapReduce [11, 25]. We
then modified the resulting codes to generate four manual GridGain variants by
considering the two aforementioned granularities.

For the sake of fairness, all variants (automatic and manual) were configured
to use the same load balancing mechanism at the platform (GridGain) level,
namely round robin scheduling with the default configuration. According to the
authors, this algorithm provides a fair distribution of tasks among the nodes of
a Grid/cluster and works well in most cases. Basically, upon executing an appli-
cation, the algorithm randomly picks a Grid node and then dynamically and se-
quentially assigns tasks for execution in a round-robin fashion. For the EasyFJP
implementations using task placement policies, on the other hand, some of the
generated tasks were heuristically and manually placed on nodes while for the
rest this decision was delegated to this scheduler. In general, round-robin is
known to be an algorithm that is much less effective when scheduling a heavy-
tailed set of tasks [36], i.e., where processing few long-sized tasks takes a high
percentage of the processing time for the entire set. However, all variants em-
ployed in the experiments generated tasks in charge of computing over similar
portions of the input data, which made round-robin an effective scheduler for
our test applications.

Emulated Grid. Figure 3 and Figure 4 illustrate the average execution time
(AET) of the ray tracing and sequence alignment applications for 40 runs, re-
spectively. In all cases, standard deviations were in the range of 5-12%. Note
that this percentage is somewhat high, however it is mainly explained by the
fact that GridGain, and hence the EasyFJP variants generated automatically,
used a random load balancing support, plus the variability of the WAN links of
the testbed in terms of latency.
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For ray tracing, from Figure 3 (a), it can be seen that EasyFJP performed
competitively for almost all scenes, because it consistently added an average
overhead of around 5 seconds with respect to the manual variants. The excep-
tion to this rule was the combination GridGain (MapReduce) variant and Scene
1 (1024x1024), which showed an overhead in favor of EasyFJP, but this may be
explained by the unpredictable nature of the execution environment. We believe
these results are acceptable taking into account that EasyFJP automates SFJ-
based parallelism, and the non-invasive nature of policies allowed the EasyFJP
code to remain clean from these kind of rules, which simplified the implementa-
tion of the medium-grained variants. Precisely, by observing Figure 3 (b), some
very interesting facts arise. For the case of the 1024x1024 resolution scenes,
again, EasyFJP added an overhead of few seconds with regard to its com-
petitors. However, for the case of the 2048x2048 scenes, using a raw thresh-
old allowed EasyFJP to perform even closer to the two manual variants, and
task placement introduced gains of up to 63% with respect to the most efficient
manual variants in either cases. It is worth mentioning that the weak point of
implementing effective task placement policies is the requirement of a deeper
knowledge on the EasyFJP API. Users without the necessary knowledge can
fall back to threshold policies, which are much easier to specify.

For sequence alignment, the execution times uniformly increased as database
sizes increased for all tests, which shows a good overall correlation of the dif-
ferent variants. Interestingly, for the base granularity (see Figure 4 (a)) and
databases DB 2, DB 3 and DB 5, EasyFJP performed better than the two man-
ual variants. For DB 1 and DB 4, on the other hand, EasyFJP added a very
small performance overhead. Although this is interesting, our goal is not to out-
perform existing Grid libraries but simplifying their usage while achieving com-
petitive performance. Note that Figure 4 (b) reveals similar results when relying
on medium-grained parallel tasks.

Besides, from Figure 4 (b), it can be seen that task placement did not help
in reducing execution times since, unlike ray tracing, parent and child parallel
tasks did not interchange large amounts of data. In other words, for sequence
alignment, we observed that manually mapping individual tasks to nodes nat-
urally lead to less communication delays but also to much lower levels of pro-
cessor usage. This does not imply that task placement policies are not effective
but their usage should be decided depending on the nature of the application,
otherwise they may yield negative results. Last but not least, we emphasize the
positive aspect of policies given by the fact that whenever a tuning decision
does not work as expected, the programmer can easily switch between several
policies with no harm to the logic of its application.

Cluster. Figure 5 and Figure 6 illustrate the average execution time (AET) of the
ray tracing and sequence alignment applications for 25 runs, respectively. We
performed less runs compared to the emulated Grid as the standard deviations
were much lower. Moreover, unlike the previous subsection, it can be seen that
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Fig. 3. SFJ-based EasyFJP and manual GridGain variants: AET on the emulated Grid
(ray tracing)
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Fig. 4. SFJ-based EasyFJP and manual GridGain variants: AET on the emulated Grid
(sequence alignment)

the variants using the task placement policy were not used as this policy does
not apply to this execution environment.

As illustrated in Figure 5, EasyFJP incurred an average and constant over-
head of around 6 seconds with respect to its competitors. As suggested by
Figure 6, this problem was not present with the sequence alignment appli-
cation. A main component of this overhead is caused by the policy support
of EasyFJP. Particularly, for ray tracing, the shouldFork(ExecutionContext ctx)
method of the policies of both EasyFJP variants receives a copy of the param-
eters of the parallelized method the policies are attached to. Therefore, upon
each policy invocation, the ctx object is populated with a copy of the subimage
being processed plus some image meta-data (dimensions, color information,
etc.) that were present in the signature of the parallelized method. However, the
implemented threshold policy, upon deciding whether to fork a task into more
subtasks or not, it only needs the subimage dimensions. In this sense, lots of
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Fig. 5. SFJ-based EasyFJP and manual GridGain variants: AET on the cluster (ray trac-
ing)
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Fig. 6. SFJ-based EasyFJP and manual GridGain variants: AET on the cluster (se-
quence alignment)

objects are unnecessarily created/copied. Then, to avoid this overhead, one so-
lution could be parametrizing policies with the minimal set of parameters. We
are extending the way developers can currently specify policies at the Step 3 of
the process of Section 4 by allowing them to build a mapping between a target
method’s parameters and the input data actually used by the associated pol-
icy. Consequently, at runtime, EasyFJP could perform only the copy operations
specified in the mappings.

5.3. MFJ-based parallelism

In these experiments, we compared the performance of the applications gen-
erated automatically via EasyFJP and our bindings to Satin versus the ones
manually coded by using the Satin API. The next paragraphs report the ob-
tained results.
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Emulated Grid. For both applications, we also employed base and medium
task granularities. Additionally, unlike GridGain, Satin is designed to support
finer forms of parallelism. Due to this particularity of the targeted parallel library,
we also used fine task granularities, comprising twice as many runtime tasks
compared to the medium granularity. Furthermore, for controlling task granular-
ity in the EasyFJP variants, threshold-based policies were also employed.

Figures 7 and 8 illustrate the AET of the MFJ-based ray tracing and se-
quence alignment codes for 40 runs. Again, standard deviations were in the
range of 8-17%, which was due to the variability of the WAN links of the testbed,
plus the fact that Satin and hence EasyFJP exploited the CRS [44] task schedul-
ing algorithm of Satin, which implements a cluster-aware random task stealing
mechanism. With CRS, when a Grid node becomes idle, it attempts to steal an
unfinished task both from nodes belonging to the same local cluster or external
nodes, however intra-cluster steals have higher priority than inter-cluster ones,
minimizing expensive WAN communication.
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Fig. 7. MFJ-based EasyFJP and Satin variants: AET on the emulated Grid (ray tracing)

All in all, the codes performed very well compared to Satin, considering that
our goal is not to outperform existing Grid libraries but automating as much
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Fig. 8. MFJ-based EasyFJP and Satin variants: AET on the emulated Grid (sequence
alignment)

as possible their usage while achieving competitive performance. From Fig-
ure 7 (a) it can be seen that EasyFJP either performed very closely with respect
to Satin or incurred in overheads of few seconds. Specifically, the most visible
execution overhead was only for the case of base and medium granularities and
Scene 2 (2048x2048), however, with the threshold policy using the fine gran-
ularity, EasyFJP slightly outperformed Satin whereas remained competitive for
the rest of the scenes and resolutions (see Figure 7 (c)). In practice, this means
that whenever a desired performance level is not reached for an experimental
scenario, another policy can be non-invasively configured to the same applica-
tion code. In general, this is more difficult to achieve manually with Satin, since
the code controlling granularity may be scattered across the application logic.

For sequence alignment and the medium task granularity, EasyFJP incurred
in overheads of 5% and 3% for DB1 and DB2, respectively. Furthermore, for the
fine task granularity and DB4, EasyFJP had a negligible overhead. In general,
EasyFJP outperformed Satin in 12 out of 15 granularity-input combinations, with
gains of up to 14%. In principle, this may seem confusing since the generated
EasyFJP code uses Satin as the underlying support for execution. This is ex-
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plained in part by the random nature of the Satin scheduler, but the main reason
is that the code executed by the Satin runtime in either cases is subject to dif-
ferent computational requirements. The pure Satin versions of the applications
were parallelized by hand, while the EasyFJP counterparts were parallelized
automatically and as such they contained more sentences for supporting poli-
cies. Since the sequence alignment is much less CPU intensive compared to
the ray tracing application, having more sentences means heavier tasks, which
favors scheduling for libraries designed to efficiently handle CPU-bound tasks
like Satin.

Standard deviations were 9-15% for the case of Satin but in the range 8-
17% for the case of EasyFJP. This fact may suggest that the execution time of
the EasyFJP variants of sequence alignment was more affected by the data-
intensive nature of the application, however this should be further corrobo-
rated. To sum up, we believe these are acceptable results that justify the use of
EasyFJP to ease the exploitation of the Satin library in particular –via the MFJ
synchronization pattern– in similar Grid scenarios.

Cluster. In a final round of experiments, we compared the performance of
EasyFJP and Satin in a computer cluster. To schedule parallel tasks, we used
the random job stealing algorithm (or RS for short) provided by Satin. It is worth
noting that the “workhorse” of Satin for running tasks is the CRS algorithm,
however we also considered a cluster and therefore RS for the sake of com-
pleteness.

Figures 9 and 10 show the resulting times for the ray tracing and the se-
quence alignment applications. For the case of ray tracing, we did not obtain sig-
nificant differences in favor of any of the two approaches, and consequently we
can say that in general EasyFJP performed competitively. For sequence align-
ment and base granularity, however, EasyFJP performed worse. The reader
should recall that our synchronization algorithms are heuristics that do not guar-
antee optimal barrier placement compared to programs parallelized by hand in
a smart way. Then, when combined with the default task granularity policy, re-
sults may be suboptimal. It can be seen however that the use of threshold poli-
cies (particularly the variant shown in Figure 10 (c)) ameliorated the overheads,
which enforces the experimental findings from the previous subsections.

6. Conclusions

In this paper we have described EasyFJP, an approach to simplify the par-
allelization of divide and conquer sequential Java applications. EasyFJP in-
troduces the concept of FJP synchronization pattern, i.e., common forms of
fork-join parallelism present in many task-based Java frameworks and libraries.
EasyFJP exploits this through semi-automatic algorithms and source code rewrit-
ing techniques to generate parallel applications. Also, execution of parallel ap-
plications is performed by leveraging the scheduling and load balancing ser-
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Fig. 9. MFJ-based EasyFJP and Satin variants: AET on the cluster (ray tracing)

vices of existing parallel tools, and can be explicitly adjusted for optimization
purposes via policies.

We have shown that this approach has the potentiality to offer a better bal-
ance to the “ease of use and versatility versus performance” tradeoff inherent
to tools for parallel programming, plus the flexibility of generating code to exploit
various parallel libraries and FJP optimization heuristics. The experimental re-
sults obtained based on real world applications and execution environments, in
conjunction with the ones preliminary reported in [27] confirm that implicit syn-
chronization based on FJP patterns and policy-oriented explicit tuning, glued
together through generative programming, are a viable approach to PaaC from
a practical perspective. Interestingly, we have shown that using EasyFJP and
targeting such libraries –in this case GridGain and Satin– does not lead to re-
signing performance compared to manually using the libraries.

Up to now, EasyFJP deals with two broad parallel concerns, namely (pattern-
based) task synchronization and application tuning. We are investigating how
to incorporate to our approach other common concerns in parallel programming
and specially FJP applications such as inter-task communication, and adapting
our ideas to newer parallel environments such as Cloud environments [6, 34],
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Fig. 10. MFJ-based EasyFJP and Satin variants: AET on the cluster (sequence align-
ment)

which have recently gained much attention and have became a hot topic in high
performance computing. However, this is a mid-term research goal that should
be deeply studied.

Moreover, there is a recent towards programming tools that simplify parallel
software development. One of the aims of these tools is reducing the analy-
sis and transformation burden when parallelizing sequential programs, which
improves programmer productivity [12]. In this line, we are building IDE sup-
port to simplify the adoption and use of EasyFJP. As a starting point, we will
adopt Eclipse, which is very popular among Java developers. Finally, we have
produced a materialization of our ideas to support the development of parallel
applications within pure engineering communities, where scripting languages
such as Python and Groovy are the common choice [31, 33, 32]. At present, we
have redesigned the policy support of EasyFJP to allows developers to code
policies in Java as well as Python and Groovy. We also plan to materialize
EasyFJP concepts into these scripting languages. Then, we will investigate how
to port and exploit the parallelization heuristics of EasyFJP apart from its pol-
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icy mechanism, which will require determining which is the most appropriate
fork-join parallelization pattern for these languages.
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