
Computer Science and Information Systems 11(1):29–45 DOI: 10.2298/CSIS130129019C

SABUMO-dTest: Design and Evaluation of an Intelligent

collaborative distributed testing framework

Ricardo Colomo-Palacios1, José Luis López-Cuadrado1,

Israel González-Carrasco1, and Francisco José García-Peñalvo2

1 Universidad Carlos III de Madrid

Av. Universidad 30

28911 Leganés, Madrid, Spain

{ricardo.colomo, joseluis.lopez.cuadrado, israel.gonzalez}@uc3m.es
2 Universidad de Salamanca

Plaza de los Caídos s/n,

37008, Salamanca, Spain

fgarcia@usal.es

Abstract. Software development must increasingly adapt to teams whose

members work together but are geographically separated leading to distributed

development projects. Such projects consist of teams working together, but sited

in different geographic locations. Under these conditions, Global Software

Engineering is having a profound impact on the way products are conceived,

designed, constructed and tested. One of the problems with this area is the lack

of tools which supports the distributed process. Focusing on the testing process,

this paper presents SABUMO-dTest, a framework based on Semantic

technologies that allows software organizations to represent testing processes

with the final aim of trading their services or modeling their testing needs in a

social and competitive environment. The proposed framework benefits from a set

of shared and controlled vocabularies that permit knowledge and process sharing

with potential partners, experts and testing service providers. The evaluation of

the system included two kinds of projects, the ones in which testing was not

determined by SABUMO-dTest and the ones developed under its influence.

Results show remarkable outcomes in SABUMO-dTest driven projects.

Keywords: Semantic technologies, software testing, distributed testing,

knowledge management.

1. Introduction

Software industry and its practices have been profoundly changed due to the pressures

of globalization. As with many other current industries, software development must

increasingly adapt to teams whose members work together but are geographically

distributed [1]. Organizations dedicated to software development are more and more

confronted with a working philosophy shift towards the distribution of processes and

development teams [2]. This fact leads to distributed development projects. Such

projects consist of teams working together from different geographic locations [3].

30 Ricardo Colomo-Palacios et al.

Global Software Development (GSD) is a particular type of distributed software

development in which teams are distributed beyond the limits of a nation [4]. The

adoption of GSD means that software engineers should collaborate over geographic,

temporal, cultural and linguistic distance; these characteristics are usually termed

“global distance” [5]. Although the growth and spread of distributed work in itself is

testament to its success, studies continue to show that distributed workers face many

critical challenges [6]. In other words, GSD teams present a number of challenges

which must be considered before using a model for the management of teams in such

an environment [7]. These challenges have been reported in the literature:

communication, coordination, and control issues (e.g. [8]), loss of efficiency (e.g. [9]),

lack of team and interpersonal trust and socio-cultural distance (e.g. [10]) citing the

most relevant and reported challenges. On the other hand, there are several benefits

that the literature has extensively reported: closer proximity to market and customer

(e.g. [11]), reduced development costs (e.g. [12]), access to large skilled labor pool

(e.g. [13]) and shorter time-to-market cycles (e.g. [11]).

According to [4], GSD is having a profound impact on the way products are

conceived, designed, constructed and tested. Focusing on this last process, this paper

presents SABUMO-dTest, a framework based on Semantic technologies that allows

software organizations to represent testing processes with the final aim of trading their

services or modeling their testing needs in a social and competitive environment.

Based on previous works [14], SABUMO-dTest, benefits from a set of shared and

controlled vocabularies that permit knowledge and process sharing across with

potential partners, experts and testing service providers.

The remainder of this paper is organized as follows. Section 2 reviews the state of

the art related to semantic technologies along with main insights of testing in

distributed environments. Section 3 describes research scenario and Section 4 defines

the knowledge representation and the semantic technologies used. Section 5 describes

the architecture of SABUMO-dTest. Section 6 depicts the validation of the framework.

Section 7 includes the results and the discussion of the evaluation performed. Finally,

section 8 presents the conclusions and the future research.

2. Related Work

Software testing consists of the dynamic verification of the program behavior on a

finite set of test cases, suitably selected from the usually infinite executions domain,

against the expected behavior. Inadequate and ineffective testing is responsible for

many problems regarding software reliability faced by computer users [15]. Software

testing is a complicated process and the primary source of intricacy on testing of

software systems is the intrinsic complexity of the software being tested [16]. As a

result of this intrinsic complexity, software companies face serious challenges in

testing their products, and these challenges are increasing as software grows more

complex [17]. Distributed Software Test teams are a recent trend that has emerged due

to quality and ease of communication across vast physical locations and the boundless

efforts of all corporations to reduce costs associated with software development [18].

 SABUMO-dTest 31

Although this is an established practice, there is a need to investigate tests in the

context of distributed and global software engineering challenges [19].

However, the literature has produced a set of recent and relevant studies on the

topic. Thus, [20] recommend a series of testing team configuration for a set of

development and requirement scenarios. [21] describes four case studies in which one

of them is offshore software testing; this author investigates the implications of these

case studies for trust development in GSD teams. Casey (2003) also identified from a

theoretical point of view the essential information and infrastructure required to

support effective testing in GSD. On the other hand, there are relevant and recent

efforts to integrate expert systems into software testing processes (e.g. [22], [23]).

In spite of the relevance of these studies, this paper focuses on remote testing i.e.

testing of software remotely. Specifically, this study aims to assist the Partner-Supplier

election for software testing, one of the hard decisions that software project managers

must make [24].

3. Remote Testing Outsourcing: Scenario and Needs

There are different tools designed to help GSD embracers in their tasks. However,

these tools are devoted to support software testing processes more than to provide a

way to connect service providers with potential customers. Taking this into account,

SABUMO-dTest bridges the gap to this problem by offering the way to bring testers

and contractors into contact and support their collaboration.

The problem of distributed testing involves several practical problems to be solved.

There are a number of people involved in the testing process. Simplifying the roles

identified in [25], the distributed testing process involves testers and contractors.

Testers have different profiles according their background and role in the project. They

are also located in different places. There are a number of tests to be carried out by

testers. These tests must be classified into several types and have to be carried out by

different testers according to their competence, cost and availability.

All testers must have access to the pertinent software artifacts in order to perform

the tests. They must also collaborate with the other members of the project along with

the project manager. Secondly, testers need a way to interchange information as well as

results of the tests. Finally, there is a need for counting on with an environment to

represent the tests and their results as well as the organization of the testing process.

The inclusion of outsourcing remote testing partners in the problem implies the

need to locate the most adequate testers for a given software component or project.

Thus, the proposed framework must allow the intelligent allocation of resources based

on the representation of testing processes and testers. Collaborative work problems

should be solved by means of well-known state of the art tools, but the possibility of

finding the most accurate testing partner has not been covered in the literature. A

common platform that combines the possibility of contact with the most adequate

testing providers as well as the tools to orchestrate the collaboration among testing

stakeholders can ease the remote testing process as a whole.

32 Ricardo Colomo-Palacios et al.

4. Remote Testing Outsourcing: Knowledge Representation

As a basis for a knowledge-based system, defining a model which supports the

representation of the knowledge relative to the domain is necessary. In the case of

distributed testing, we have selected semantic technologies. Semantic technologies

present a solution to knowledge codification, and they have impacted on knowledge

representation and knowledge management during the last few years [14]. Semantic

technologies are based on the use of ontologies. Ontologies are aimed to establish

ontological agreements, which serve as the basis for communication between either

human or software agents, hence, reducing language ambiguity and knowledge

differences between agents, which may lead to errors, misunderstandings and

inefficiencies [26]. Given that, ontology creation and management related processes

are required for defining and developing semantic services [27].

Based on the premises of authors' previous research, the knowledge will be

represented by means of the SABUMO ontology, concretely the concept of Process and

its related concepts [14] adapted with the concepts relative to the testing domain

ontologies, in order to adapt the previous framework and permit information sharing

and rule-based reasoning. The main contribution of is the adaptation of the concepts of

the previous framework to the new domain and the inclusion of the test concepts of the

ontology.

Figure 1 depicts the main elements of the SABUMO-dTest ontology. Two main

groups of concepts must be represented: on the one hand the elements to be tested with

their corresponding test processes and, on the other hand, the testers who can test such

elements with their competences. Testers are characterized by a number of

competences that present competence levels. These competences determine the

capacity of the tester in order to select the most adequate tester for a given project. The

concrete concepts defined in the ontology are:

• Tester: represents testers who can participate in a testing. Contact information

and location are two of their main attributes.

 Individual: represents a person who participates in the project as an

individual, with or without an entailment with an organization.

 Company: represents a company as a generic tester that provides

testing services for software projects.

• Competence: represents the competences that characterize testers.

Competences are the skills, attitudes and knowledge that a tester presents at a

given level. In the case of companies, this concept is referred to those that the

company can provide through their personnel.

• Competence level: represents different levels for each competence.

 SABUMO-dTest 33

Fig. 1. . SABUMO-dTest ontology (partial view)

Each tester is able to perform different types of tests. Both tests and testers are

related to their corresponding domain ontologies. In this way, all projects, contractors

and service providers are characterized by means of common terms of the ontology. It

will allow the selection of the best candidates for a given element to be assessed.

The entity Test represents the tests to be carried out with one or more test elements.

According to the software engineering literature, the tests can be classified as Unit

tests, Integration tests, System Integration tests, System tests and Deployment tests.

The elements to be tested have been subdivided into four categories: whole projects,

subprojects, modules and components. Components can be source code or executable

code. In what follows, the main concepts are defined:

• Test: represents the tests to be carried out in a given software project.

 Unit tests: this kind of test covers single software components. These

components can be source code or executable code.

 Integration test: it tests two or more components working together.

 System Integration test: it tests the integration of the whole software

modules of the project working together as a system.

 System test: tests the functionality of the system as a whole, taking

the user requirements as guidelines.

34 Ricardo Colomo-Palacios et al.

 Deployment test: it tests the correct deployment of the software

system in the execution environment.

• Test Element: represents the main products obtained in the software project

that should be tested.

 Component: is the minimum functional entity of the software.

Usually it is related to single functions or class methods.

 Module: represents a set of components with related functionality.

 Project: represents the complete software project.

 Subproject: represents a part of the project that can be considered

separately with respect to the whole functionality.

Each test has related one or more test processes which guides the tester during the

test phase. Of course, testers should have sufficient capacity for dealing with the testing

phase. However, the definition of the testing processes will allow contractor to guide

the activity of their service providers. Thus, the remainder of the elements of the

ontology are based on the definition of test processes. The knowledge elements have

been adapted from the previous works of the authors and summarized as follows:

• Process. This concept represents the test process as a whole. A test process is

composed by a number of test cases (contexts, situations and actions) that

includes information about the test to do and the results obtained. Each

individual in this concept is directly related to one developer. Thus, the same

process could be used for testing several elements from the same organization.

Each process has a set of requirements and can be focused to specific test

elements. Thus a Usability Test would be represented by a process related to one

developer and an element to be tested (for example a module for managing an

user profile in a web). The concept of process can be more specific, defining

processes for concrete aspects of small components (e.g. testing the

communications of a component), or more general as shown in the usability test

example.

• Context. This represents the set of conditions which determines the testing

process. This context is determined by the general characteristics related to the

project as well as the specific characteristics arising during the previous steps of

the testing process. Let’s suppose a process for testing a module. The module

can be subdivided by several sub-modules according its functionality. The

specific conditions that involve the testing process of each sub-module would be

represented by means of Contexts. Each context contains the specific test cases

to be executed, and they will be represented by means of situations.

• Situation. This represents each step to be taken in the testing process. It is

linked to an action to execute during the test process. For example, let’s

suppose the testing process of the module of user profile management. Testing

this module would involve a number of functionalities characterized by one or

more test cases, with related-information and actions to do. Each of these

functionalities would be represented by situations. Each situation have an action

related, as described next.

• Action. This represents an action to be executed in the testing process. . It

allows the execution of the action by a tester or by the system itself. The result

of this execution generates information to be processed. For example, in the

 SABUMO-dTest 35

context of testing the communications of the user profile module, one situation

could represent the testing of receive information from an external social

network. This situation determines the preconditions and the characteristics of

the process that the tester should execute. The action is executed by the tester

and the information generated could be, for example, the result of the test

(success or fail), the time required for the operation.

• Decision. This represents the rules related to a given situation. The decision

defines the next situation in the test process. Decisions allow evaluation of the

state of the test process in order to decide the next step. For example, the test

described in the previous concept generates two pieces of data: the result of the

test and the time required. For example, if the test successes (the information of

the social network is retrieved) but the response time is greater than 2 seconds,

then the process change to a new situation in which the developer should

review the component and the tester should test again the component.

It is remarkable the flexibility of the representation model, allowing from high level

definition of testing processes to low-detail tests in which each situation is a specific

test case for a function.

5. SABUMO-dTest: Architecture and Implementation

The architecture of SABUMO-dTest (see Figure 2) is based on a well-established

framework which allows the semantic definition of business processes [14]. The

knowledge representation has been adapted to the distributed testing domain, taking

into consideration the representation of the test elements as well as the different actors

that participate in the testing process. The selection of the most adequate testers is

driven by the competences defined for the processes. Collaboration between the actors

in the recommendations and the definition of the test processes are worth highlighting.

The main elements that are rooted in successful applications of this architectural

approach (e.g. [28]; [29]; [30]; [31]; [32]; [33]) are described in what follows.

5.1. Collaboration Layer

The collaboration layer is one of the main points for the SABUMO-dTest

implementation. The new approach introduces more aspects in the collaboration

between users. In fact, the interaction between users is twofold: on the one hand,

companies and service providers must establish collaboration relationships; on the

other hand, contractors and testing service providers collaborate on the definition and

execution of testing processes. For this reason, the collaboration layer provides, firstly,

the way to characterize the different users who participate and, secondly, the tools for

representing and executing the testing processes.

Finding the appropriate tester or set of testers for a given test element and test

process is, in fact, the main problem to be solved. The collaboration layer permits

characterization of each player in the process as well as the tests to be defined. The

36 Ricardo Colomo-Palacios et al.

characterization of actors and test elements are based on the competences defined in

[25]. Thus, each tester defines within their own profile the competences with their

corresponding level. Contractors must also define the competences and competence-

levels required for the tests they need. In this way, it is possible to find the best

candidates for a given test, according to the requirements of the process.

Fig. 2. . SABUMO-dTest architecture

The testing processes are based on the actions to be executed by means of web

interactions and characterized by the competences required. Thus, when a process is

defined it can be published in the tool. Moreover, the web environment is accessible for

all users. Each of them can execute processes and rate them. In this way, contractors

define testing processes and label these processes with required competences, and

testers execute the testing process, providing a rating for both process and actions. This

mechanism provides necessary feedback for the improvement of the processes.

So far two different user profiles have been mentioned: testers and contractors. Each

of them has different roles in the process, but they have in common the testing process

itself.

Given this setup, the collaboration layer is formed by:

• Competences GUI. This element permits interaction between contractors and

testers, in order to find testers who test a piece of software according to a

number of competences and competence levels required. This component

allows communication between users as well as establishing relationships

between them according their competences. Each tester and contractor has a

profile characterized according to competences and competence levels. In this

 SABUMO-dTest 37

way, each tester is related to a number of concepts according to their expertise

and interests that help find the best processes and testers. Competence GUI also

allows contractors to contact the testers related to the topics of a given project

in order to carry out a testing process. Once an agreement between testers and

contractors has been reached, the test process is assigned to the tester. Finally,

this GUI includes a module relative to the assessment of testing processes,

contractors and testers, allowing for the sharing of opinions and valuations in

order to ease the search for the most adequate testing partner.

• Process Definition GUI. This element allows the definition of the workflow of

the testing processes based on the ontology described earlier. Contractors

define the testing processes according to software requirements and the

competences and competence levels required for execution. Each testing

process is characterized according to such competences in order to ease their

location and the assignment of testers.

• Testing GUI. This element allows testers to follow the workflow of the testing

processes defined by the developer. Testers connect to the system and execute

the testing processes assigned to them by contractors.

The annotation is based on OWL ontologies and the process of annotation is

embedded in the interface because it is present in Competences GUI (characterization

of testers and contractors) and Process and Testing GUI (characterization of processes).

Once the testing processes have been defined and labeled, they are published and

assigned to one or several testers. The testing environment is based on [14]. After the

execution of the testing processes, the tester rates the processes and the contractor in

order to establish a public valuation of each. Moreover, after the execution of the

testing process, contractors rate testers in order to establish a public valuation of this

stakeholder. The rating system will help users to find the best candidates for a given

task as well as to improve the testing processes based on the feedback of the users

involved in the project.

5.2. Logic Layer

As mentioned before, the annotation is based on domain ontologies. Thanks to the

interaction of these ontologies and the competences defined, all elements are inter-

related and it allows intelligent searching.

The logic layer contains the engines that ensure the operation of the system. First of

all this layer is in charge of performing the intelligent searching of the best testers for

each test process. Secondly, this layer allows the execution of the processes defined by

the contractors, tracing and storing the results. Finally, based on the evaluation of

testers and contractors, this layer allows the calculation of the valuation of each tester

and process in order to improve the quality of the recommendations.

This layer consists of three components detailed below:

• Process Engine. The process engine is in charge of the execution of the

workflow of the testing processes defined by the developers. The process is

defined in order to guide the tester in the testing process. Then, the testing

process shows the steps to be taken by testers and will register the evolution of

38 Ricardo Colomo-Palacios et al.

its execution with the feedback provided by testers. Despite the fact that some

testing tasks can be automatized, according to the characteristics of the

ontology [14], full automation will be addressed in a future study. Thus,

testers should execute assigned tasks and provide feedback on the results.

• Search Engine. The search engine allows searching users and processes based

on the competences and competence-levels required as well as the functional

environment related to the domain ontologies. Thus, the search process is

based on competences, annotations and ratings. The framework includes the

option of establishing a threshold in the rating in order to provide more

accurate results. For instance, contractors can search for testers rated with

more than 5 points. Thanks to this, contractors can identify the most

competent and best rated testers in their areas of interest according to the

requirements of the process. Likewise, the best testing processes can be

identified by means of the ratings obtained in order to improve the results of

future projects.

• Rating Engine. The rating engine allows the rating of testers, contractors and

testing processes. This engine automatically updates the rating of each

element according the valuation of the users involved.

5.3. Persistence Layer

Finally the persistence layer provides the logic layer with permanent storage of data for

the process definition, annotations, ratings and the execution of the testing processes.

Processes and domain ontologies are represented and stored in OWL format, while

annotations and ratings mix the OWL storage and a conventional database system in

order to improve the system performance. This hybrid approach is based on the fact

that the results of the process execution are stored in a database system. Hence, the

database of annotations and ratings links the OWL storage with the database system.

6. Evaluation

6.1. Design

Given that SABUMO-dTest is aimed to be tested in a distributed environment, the

evaluation proposed has been carried out by comparing a set of similar projects in

which testing was performed outsourced. In order to do so, a collection of direct

measures was taken from the set of projects described in the Sample section. These

direct measures included conventional productivity metrics for software projects,

specifically, Function points; number of defects discovered before, during and after

testing process; defect detection efficiency (number of defects detected / total number of

defects). Later, two combined metrics were calculated: defects per function point and

 SABUMO-dTest 39

defects detected in testing per function point. This latter will shed some light about the

efficiency of the approach presented in the paper. Finally, a set of data was harvested

regarding collaboration history between contractor and supplier, namely, number of

projects working together and satisfaction (before the current project).

Given that a set of comparable projects were considered (some of them using

SABUMO-dTest pilot and others not), this setup permits comparison between the two

scenarios. Table 1 shows the detailed information relative to the set of projects.

Table 1. Results of the application of SABUMO-dTest

 Without framework SABUMO-dTest

 P1 P2 P3 P4 P5 P6 P7 P8

Function points 512 643 361 445 498 598 365 438

Defects discovered

before testing

701 892 543 523 725 798 539 592

Defects discovered

during testing

1065 1115 654 891 922 1187 721 921

Defects discovered

after testing

72 105 94 73 19 47 65 47

Total defects

discovered

1838 2112 1291 1487 1666 2032 1325 1560

Defect detection

efficiency

96.08

%

95.03

%

92.72

%

95.09

%

98.86

%

97.69

%

95.09

%

96.99

%

Defects per function

point

3.59 3.28 3.58 3.34 3.35 3.40 3.63 3.56

Defects detected in

testing per function

point

2.08 1.73 1.81 2.00 1.85 1.98 1.98 2.10

Collaboration:

number of projects

3 1 2 3 4 5 1 0

Collaboration:

satisfaction

5 4 3 4 5 5 5

6.2. Sample Description

The sample was composed of a set of eight different projects developed by two different

companies based in Spain. This set of projects was taken from a collection of potential

participants who responded positively to a personal invitation sent by the authors to

professional contacts. Projects were analyzed to form a coherent sample in terms of

project size, type and complexity. Regarding testing partners, the sample included four

different testing partners. In order to isolate the three distances (temporal, cultural and

geographical), all testing partners were Spaniards. Every partner participated in two

different projects, in one the partner was assigned by means of SABUMO-dTest and in

the other not.

40 Ricardo Colomo-Palacios et al.

6.3. Data Collection

Data collection was conducted through a questionnaire. Most of the data to be coded

was available in post-mortem documents related to the projects. As stated before, data

included adjusted function points (using IFPUG Value Adjustment Equation), number

of defects discovered before, during and after the testing process and finally, defect

detection efficiency. Two measures were also calculated from this data: Defects per

function point and Defects detected in testing per function point. Regarding

collaboration history, number of projects in the collaboration track and overall

satisfaction of previous projects were coded. Regarding the latter, responses were coded

using a 1-6 Likert-type scale (1= Extremely dissatisfied; 2= Very dissatisfied; 3=

Somewhat dissatisfied; 4= Somewhat satisfied; 5= Very satisfied; 6= Extremely

satisfied).

Printed questionnaires were designed to be completed by software project managers,

assisted on site by a researcher who gave the respondents all the instructions they need

to fill out the questionnaire. Subsequently, responses were codified using a statistical

analysis software tool.

6.4. Threats to Validity

Regarding internal validity, it is concerned with correctly concluding that an

independent variable is, in fact, responsible for variation in the dependent variable, in

this case, defect detection efficiency. In this particular case, results provide an

acceptable level of internal validity as the independent variables included in the

questionnaire are based on a literature review on the topic along with authors’ previous

studies on software productivity and estimation (e.g. [34], [35]).

External validity is concerned with the generalizability of research findings to and

across populations of participants and settings. The authors face two possible threats.

The first is the limited number of projects analyzed, which complicates generalization

of the results. The second is subject representativeness. Although both threats are

notable, due to the nature of the study, the authors consider the design of the study

acceptable.

7. Results and Discussion

Table 1 shows results from evaluation. Projects are divided into two groups: the ones in

which testing was not determined by SABUMO-dTest and the ones developed under its

influence. Regarding the size of the projects, the mean is 482 function points with a

standard deviation of 101. However, if standard deviation is calculated only taking into

account projects developed in the same company (P1, P2, P5 & P6 on the one hand and

P3, P4, P7 & P8 on the other hand) this is 69.40 and 45.44 points respectively. Defect

detection efficiency ranges from 92.72% (P3) to 98.86% (P5). In general all figures

related to defect detection efficiency are higher for SABUMO-dTest environments.

 SABUMO-dTest 41

Regarding collaboration history, the number of projects range from zero in the case of

P8 to 5 (P6). It is important to note that SABUMO-dTest suggested a partner with no

collaboration history with the contractor. This means that, in spite of not having a

common background, the system suggested a partner with a competent profile in the

testing needed for P8; defect testing efficiency reaches the third best score with a

remarkable 96.99% of defects found.

Although the sample is quite small, some interesting conclusions can be drawn from

data available. The first conclusion is that defect detection efficiency is better in

SABUMO-dTest than in the absence of it, the average being 97.16% over 95.20%.

With the aim of verifying whether SABUMO-dTest users obtained results significantly

better than non-users, the statistical method Student's t-test (comparison of two means)

was used to carry out one-way between-groups analysis of variance. The level of

statistical significance was set at 0.05. The results indicate that SABUMO-dTest users

do not present statistically significant differences with non-users (t(6)=-2.283, p>.05).

In any case, the average of defect detection efficiency metric is higher in SABUMO-

dTest projects.

The second finding is the irregular distribution of the calculated metrics “Defects

per function point” and “Defects detected in testing per function point”. For the first

metric, figures range from 3.28 to 3.63. In this case, defects introduced appear

randomly in projects no matter if they are using the tool or not. Given that SABUMO-

dTest is focused on the testing stage, it does not affect the introduction of defects.

Therefore, for “Defects detected in testing per function point”, the conclusion is the

same, given that this metric depends on the number of defects introduced. However, a

new metric can be calculated counting “Defects discovered after testing” and Function

points. Thus, these measures are P1:0.080; P2:0.163; P3:0.260; P4:0.157; P5:0.038;

P6:0.079; P7:0.178; P8:0.107. A quick look at results suggests that measures are again

comparable, but slightly better in the case of SABUMO-dTest users, with P5 showing

the minimum figure with 0.038 defects not detected in testing per function point.

However, this difference cannot be considered statistically significant given Student's t-

test results (t(6)=-1.367, p>.05).

Finally, it is important to note that SABUMO-dTest provides recommendations for

testing partners that are normally highly ranked in satisfaction (P5=5, P6=5, P7=5),

but also takes into account that high competence with no previous interaction could be

attractive for testing contractors.

8. Conclusions and Future work

This research is focused on remote testing, which is related to testing of software

remotely. More precisely, this study aims to assist the Partner-Supplier election for

software testing, one of the hard decisions that software project managers must make.

In this sense, the authors present SABUMO-dTest, a framework based on Semantic

technologies that allows software organizations to represent testing processes with the

final aim of trading their services or modeling their testing needs in a social and

competitive environment. SABUMO-dTest, benefits from a set of shared and

42 Ricardo Colomo-Palacios et al.

controlled vocabularies that permit knowledge and processes sharing between potential

partners, experts and testing service providers.

As has been explained, the architecture of SABUMO-dTest is based on a well-

established framework which allows the semantic definition of business processes [14].

The knowledge representation has been adapted to the distributed testing domain,

taking into consideration the representation of the test elements as well as the different

actors who participate in the testing process. The selection of the most adequate testers

is driven by the competences defined for the processes. Collaboration between the

actors in the recommendations and the definition of the test processes is worth

mentioning. .

Finally, the evaluation proposed has been carried out by comparing a set of similar

projects in which testing was performed outsourced, i.e. in a distributed environment.

Projects were divided into two groups: the ones in which testing were not determined

by SABUMO-dTest and the ones developed under its influence. The main conclusion

obtained is that defect detection efficiency is slightly better in SABUMO-dTest than in

its absence, the average being 97.16% over 95.20%. This small improvement can be

improved in less mature environments in terms of defect introduction. Furthermore,

the results suggest that the others measures included in the evaluation are comparable,

but slightly better in the case of SABUMO-dTest users.

In future research, the inclusion of the remaining phases of GSD in the SABUMO

architecture could improve the overall process, allowing identification of the best

partners and the communication between the distributed members of the project, as

well as the control by defining the workflow of each project phase using adaptations of

the proposed ontology. It is also intended to calculate correlations among several

factors of the model (e.g. defect detection efficiency and collaboration satisfaction

before and after SABUMO-dTest project). Finally, the inclusion of the Linked Data

paradigm in SABUMO-dTest would open up the possibilities of finding possible testers

and topics related to new projects in larger datasets.

References

1. Prikladnicki, R., Audy, J.L.N., Shull, F.: Patterns in Effective Distributed Software

Development. IEEE Software, vol. 27, no. 2, 12 –15, (2010).

2. Palacio, R.R., Vizcaíno, A., Morán, A.L., González, V.M.,: Tool to facilitate appropriate

interaction in global software development,” IET Software, vol. 5, no. 2, 157–171, (2011).

3. Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.O.: Agile Practices Reduce

Distance in Global Software Development, Information Systems Management, vol. 23, no.

3, 7–18, (2006).

4. Herbsleb J. D., Moitra, D.: Global software development, IEEE Software, vol. 18, no. 2, 16

–20, (2001).

5. Noll, J., Beecham, S., Richardson, I.: Global software development and collaboration:

barriers and solutions, ACM Inroads, vol. 1, no. 3, 66–78, (2011).

6. Johri, A.: Sociomaterial bricolage: The creation of location-spanning work practices by

global software developers, Information and Software Technology, vol. 53, no. 9, 955–968,

(2011).

 SABUMO-dTest 43

7. Misra, S., Colomo-Palacios, R., Pusatli, T., Soto-Acosta, P.: A discussion on the role of

people in global software development, Tehnički vjesnik, vol. 20, no. 3, 525, 525–531, 531,

(2013).

8. Avritzer, A., Paulish, D., Cai, Y., Sethi, K.: Coordination implications of software

architecture in a global software development project, Journal of Systems and Software,

vol. 83, no. 10, 1881–1895, (2010).

9. Milewski, A.E. Tremaine, M., Köbler, F., Egan, R., Zhang, S., O’Sullivan, P.: Guidelines

for effective eridging in global software engineering, Software Process: Improvement and

Practice, vol. 13, no. 6, 477–492, (2008).

10. Casado-Lumbreras, C., Colomo-Palacios, R., Soto-Acosta, P., Misra, S.: Culture

dimensions in software development industry: The effects of mentoring. Scientific Research

and Essays, vol. 6, no. 11, 2403–2412, (2011).

11. Conchúir, E. O., Holmström Olsson, H., Ågerfalk, P. J., Fitzgerald, B.: Benefits of global

software development: exploring the unexplored. Software Process: Improvement and

Practice, vol. 14, no. 4, 201–212, (2009).

12. Patil, S., Kobsa, A., John, A., Seligmann, D.: Methodological reflections on a field study of

a globally distributed software project. Information and Software Technology, vol. 53, no.

9, 969–980, (2011).

13. Khan, S.U., Niazi, M., Ahmad, R.: Factors influencing clients in the selection of offshore

software outsourcing vendors: An exploratory study using a systematic literature review.

Journal of Systems and Software, vol. 84, no. 4, 686–699, (2011).

14. López-Cuadrado, J.L., Colomo-Palacios, R., González-Carrasco, I., García-Crespo, A.,

Ruiz-Mezcua, B.: SABUMO: Towards a collaborative and semantic framework for

knowledge sharing. Expert Systems with Applications, vol. 39, no. 10, 8671 – 8680, (2012).

15. Catelani, M., Ciani, L., Scarano, V.L., Bacioccola, A.: Software automated testing: A

solution to maximize the test plan coverage and to increase software reliability and quality

in use. Computer Standards & Interfaces, vol. 33, no. 2, 152–158, (2011).

16. Dhavachelvan, P., Uma, G.V. Venkatachalapathy, V.S.K.: A new approach in development

of distributed framework for automated software testing using agents. Knowledge-Based

Systems, vol. 19, no. 4, 235–247, (2006).

17. Whittaker, J.A.: What is software testing? And why is it so hard?. IEEE Software, vol. 17,

no. 1, 70–79, (2000).

18. Hossain, L., Zhu, D.: Social networks and coordination performance of distributed software

development teams. The Journal of High Technology Management Research, vol. 20, no. 1,

52–61, (2009).

19. Sangwan R.S., Laplante, P.A.: Test-Driven Development in Large Projects. IT Professional,

vol. 8, no. 5, 25–29, (2006).

20. Yu L., Mishra, A.: Risk Analysis of Global Software Development and Proposed Solutions.

AUTOMATIKA: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije,

vol. 51, no. 1, 89–98, (2010).

21. Casey, V.: Global Software Development Testing Infrastructure. The proceedings of the 9th

European Software Engineering Conference, Helsinki, Finland, (2003).

22. Banzi, A.S., Nobre, T., Pinheiro, G.B., Árias, J.C.G., Pozo, A., Vergilio, S.R.,: Selecting

mutation operators with a multiobjective approach. Expert Systems with Applications, vol.

39, no. 15, 12131–12142, (2012).

23. Ding, S., Yang, S.L., Fu, C.,: A novel evidential reasoning based method for software

trustworthiness evaluation under the uncertain and unreliable environment,” Expert

Systems with Applications, vol. 39, no. 3, 2700–2709, (2012).

24. Garcia-Crespo, A., Colomo-Palacios, R., Soto-Acosta, P., Ruano-Mayoral, M.: A qualitative

study of hard decision making in managing global software development teams.

Information Systems Management, vol. 27, no. 3, 247–252, (2010).

44 Ricardo Colomo-Palacios et al.

25. Saldaña-Ramos, J., Sanz-Esteban, A., García-Guzmán, J., Amescua, A.: Design of a

competence model for testing teams. IET Software, vol. 6, no. 5, 405–415, (2012).

26. Blanco, C., Lasheras, J., Fernández-Medina, E., Valencia-García, R., Toval, A.: Basis for

an integrated security ontology according to a systematic review of existing proposals.

Computer Standards & Interfaces, vol. 33, no. 4, 372–388, (2011).

27. García-Peñalvo, F.J. Colomo-Palacios, R. García, J., Therón, R.: Towards an ontology

modeling tool. A validation in software engineering scenarios. Expert Systems with

Applications, vol. 39, no. 13, 11468–11478. (2012).

28. Colomo-Palacios, R., García-Crespo, A., Soto-Acosta, P., Ruano-Mayoral, M., Jiménez-

López, D.: A case analysis of semantic technologies for R&D intermediation information

management. International Journal of Information Management, vol. 30, no. 5, 465–469,

(2010).

29. García-Crespo, A., Colomo-Palacios, R., Gómez-Berbís, J.M., Ruiz-Mezcua, B.: SEMO: a

framework for customer social networks analysis based on semantics,” Journal of

Information Technology, vol. 25, no. 2, 178–188, (2010).

30. García-Crespo, A. López-Cuadrado, J.L. González-Carrasco, I. Colomo-Palacios, R., Ruiz-

Mezcua, B.: Sem-Fit: A semantic based expert system to provide recommendations in the

tourism domain. Expert systems with applications, vol. 38, no. 10, 13310–13319, (2011).

31. García-Crespo, A. López-Cuadrado, J.L. González-Carrasco, I. Colomo-Palacios, R., Ruiz-

Mezcua, B.: SINVLIO: Using semantics and fuzzy logic to provide individual investment

portfolio recommendations. Knowledge-Based Systems, vol. 27, no. 1, 103–118, (2012).

32. García-Peñalvo, F. J., Colomo-Palacios, R., Soto-Acosta, P. Martínez-Conesa, I., Serradell-

López, E.: SemSEDoc: Utilización de tecnologías semánticas en el aprovechamiento de los

repositorios documentales de los proyectos de desarrollo de software. Information

Research, vol. 16, no. 4, paper 504, (2011).

33. González-Carrasco, I. Colomo-Palacios, R., López-Cuadrado, J.L. García Crespo, A., Ruiz-

Mezcua, B.: PB-ADVISOR: A private banking multi-investment portfolio advisor.

Information Sciences, vol. 206, 63–82, (2012).

34. Colomo-Palacios, R. Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.J., Tovar,

E.: Project managers in global software development teams: a study of the effects on

productivity and performance. Software Quality Journal, 1–17.

35. González-Carrasco, I. Colomo-Palacios, R., López-Cuadrado, J.L. García-Peñalvo, F.J.:

SEffEst: Effort estimation in software projects using fuzzy logic and neural networks.

International Journal of Computational Intelligence Systems, vol. 5, no. 4, 679–699.

(2012).

Ricardo Colomo-Palacios is an Associate Professor at the Computer Science

Department of the Universidad Carlos III de Madrid. His research interests include

applied research in Information Systems, software project management, people in

software projects and future web. He received his PhD in Computer Science from the

Universidad Politécnica of Madrid (2005). He also holds a MBA from the Instituto de

Empresa (2002). He has been working as Software Engineer, Project Manager and

Software Engineering Consultant in several companies including Spanish IT leader

INDRA. He is also an Editorial Board Member and Associate Editor for several

international journals and conferences and Editor in Chief of International Journal of

Human Capital and Information Technology Professionals.

 SABUMO-dTest 45

Jose Luis Lopez-Cuadrado is assistant professor in the Computer Science Department

at the Universidad Carlos III of Madrid. He holds his PhD degree in Computer Science

by this University. His research is focused on web based expert systems applications,

neural networks, software engineering and processes improvement. Also he is co-

author of several contributions published in international congresses and journals.

Israel Gonzalez-Carrasco is an assistant professor in the Computer Science

Department of Universidad Carlos III of Madrid. He holds his PhD degree in

Computer Science by this University. He is co-author of several papers in international

journals and conferences and his main lines of research are Neural Networks, Expert

Systems and Software Engineering. He is involved in international projects and he is

also an Editorial Board and Review Board Member for several international journals.

Francisco J. García-Peñalvo received a PhD in Computer Science (2000) from the

University of Salamanca, Spain. He works as a Teacher in the Computer Science

Department of the University of Salamanca. He is the Director of the research GRoup

in InterAction and e-Learning (GRIAL). His main research interests are e-Learning

systems, web engineering, semantic web, human–computer interaction and software

reuse.

Received: January 29, 2013; Accepted: October 25, 2013

