
Computer Science and Information Systems 13(3):827–847 DOI: 10.2298/CSIS160801038G

MyPMP: A Plug-in for Implementing the Metamodeling

Approach for Project Management in Small-sized

Software Enterprises

Ivan Garcia1, Carla Pacheco
1
, Magdalena Arcilla-Cobián

2
, and

Jose A. Calvo-Manzano3

1 Division de Estudios de Posgrado, Universidad Tecnológica de la Mixteca,

Carretera a Acatlima Km. 2.5, 69000. Oaxaca, Mexico.

{ivan, leninca}@mixteco.utm.mx
2 Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a

Distancia, Ciudad Universitaria, 28040. Madrid, España.

marcilla@issi.uned.es

3 Escuela Técnica Superior de Ingenieros Informaticos, Universidad Politecnica de Madrid,

Campus Montegancedo, 28660. Madrid, España.

joseantonio.calvomanzano@upm.es

Abstract. Nowadays, with the recurrent demands of high quality, delivery on time

and no extra costs, the task of managing a software project could be extremely

complex for any software enterprise. Furthermore, small-sized software

enterprises face several problems (e.g., lack of knowledge, human and financial

resources, time, and size of staff) that, undoubtedly, make this task more difficult.

In this context, obtaining a simplified version of the management activities can be

a helpful alternative for these enterprises. In this way, that an inexperienced

project manager can define the management process that best fits with a particular

project is not an easy task. Thus, this paper introduces the metamodeling approach

in order to help project managers to define a process for managing a software

project. Therefore, with the aim to validate its feasibility an add-in program was

developed as a part of a case study. The achieved results show an important

reduction in project‘s effort and time needed to develop a new software product.

Keywords: project management, metamodeling approach, plug-in, small-sized

software enterprises.

1. Introduction

In the context of the software industry, the quality of a product depends on the process

used to complete the project. Therefore, there is always a lot of pressure on software

projects to become more productive and efficient. Nevertheless, software projects have

been characterized by facing many issues and problems throughout their life cycles.

According to [1], managing a software project can be extremely complex, and its

success frequently relies on many personal, team, and organizational resources. In this

regard, research by Mir and Pinnington [2] argues that project success has been

conceptualized for many studies as a uni-dimensional construct related with meeting

828 Garcia et al.

budget, time, and quality whereas other studies have considered project success a

complex and multi-dimensional concept encompassing many more attributes. However,

in spite of the advancement in the definition of project management processes, tools, and

computer systems, the rate of software projects success has not significantly increased.

Moreover, a recent study stated that the value of project management depends on the

country, culture, industry type, size of organization, and organizations‘ needs [3]. In

fact, nowadays we still have not figured out how to substantially improve the software

project success rate. For example, Cerpa, Bardeen, Astudillo, and Verner [4], have

identified some factors influencing software project outcome: organizational structure;

communication with customer/users; scheduling and project budget; customer

satisfaction; product quality; leadership; software development methodologies; and the

project management process and tracking tools, among others. Many of these factors are

obviously related to project management. Thus, projects are the cornerstone of all

commercial activities in small-sized software enterprises.1 Therefore, these organizations

must conclude many software projects to achieve their business and financial goals using

a carefully planned and controlled process. In this regard, the nature of project

management required by small-sized software enterprises is very different than the

traditional forms suggested for larger enterprises. This is, small-sized software

enterprises require less bureaucratic forms of project management than those used by

larger, traditional organizations [5]. Unlike large enterprises, small-sized software

enterprises do not have enough staff to develop functional specialties that would enable

them to perform complex and secondary tasks to improve the software projects

management and, as consequence, the products quality. The employees of these

enterprises perform multi-tasks, so it is common that software projects are managed by

people for whom project management is not their main area of expertise. Furthermore,

due to the necessity of being competitive, small-sized software enterprises undertake

many projects that are often managed by amateurs that are leading them, as

consequence, to the failure. In this scenario, executing a proper process for software

project management is an important challenge. As O‘Connor and Laporte say: “a good

project management cannot guarantee project success, however a bad project

management usually results in project failure” [6], therefore good process and proper

techniques can improve the project chances of success. In this sense, it is common that

project management is seen as one of the key strategies for managing the success of

projects and organizations by recognizing the value of project management approaches

and the necessity of skilled employees for executing the projects.

Moreover, the work of the project is always carried out by planning, executing, and

monitoring and controlling processes [7]. In fact, many researchers agree that an

effective project management involves repeated performance of these processes. But,

how can a small-sized software enterprise, without knowledge and experience, define a

repeatable process for managing its projects? Research by Turner, Ledwith, and Kelly

1 A small-sized software enterprise —independently financed and organized companies with

fewer than 50 employees— is a privately owned and operated business that typically has a

small number of employees. In most countries around the world, the legal definition of a small

enterprise is determined by the government, which sets the criteria to be used by the national

market in making small business determinations [9].

MyPMP: Project Management in Small-sized Software Enterprises 829

[8] has shown that different versions of project management might be required for small-

sized enterprises (a micro-lite version). It means, a simplified version of project

management practices for managing the work, duration, and used resources in its core.

Additionally, project management procedures used by small-sized software enterprises

will also include status reports for cost and time, work breakdown structure, and task

sharing. In this context, it is true that some project management procedures for small-

sized enterprises have been developed and these have paid attention in the human

aspects of project management (e.g., team working, unskilled staff, motivational issues).

Nevertheless, these are also too bureaucratic and complex for small-sized enterprises.

On the other hand, traditional methodologies usually provide guidance on what steps to

follow in order to manage a project for obtaining a desired software product. Even so, an

extra effort is required when trying to match a given methodology with the necessities of

a small-sized software enterprise. In this scenario, metamodels have been proposed as an

alternative tool for proper understanding of the methodologies/processes of Software

Engineering through modeling. In essence, using metamodels means modeling a

methodology as if it were any other system, applying the same modeling ideas and

procedures that are usually applied to business applications or other software-intensive

systems [10]. Therefore, a metamodel can provide a conceptual model that leads to a

formalization of concepts, in order to provide formal definitions of a process that can be

used to generate tools for supporting the software development process [11]. In this

regard, this paper introduces a metamodel that enables project managers to define a

simplified version of the basic project management activities in the context of small-

sized software enterprises. The rest of this paper is organized as follows: Section 2

provides a detailed description of metamodels within the Software Engineering context

and outlines the related work related to the use of metamodels for project management.

In Section 3 our metamodel is presented in order to provide an easy description for

project management in the context of small-sized software enterprises. With this aim in

mind, we make our approach more practical by providing an add-in program for

Microsoft Project® 2007. The detailed information is also provided. Furthermore, in

order to illustrate the feasibility of our approach in small-sized software enterprises,

quantitative results of a case study are also provided in Section 4. Finally, Section 5

draws the conclusions and main findings of this study.

2. Related work on metamodeling approaches in project

management

Over the last decade we have witnessed the creation of a more rigorous support to the

various areas of software project management. For example, some of these areas are the

introduction of artificial intelligence for project scheduling [12, 13], the conception of

agile management [14, 15], the reuse of software project manager‘s experience [16, 17],

and the modeling as support for software development [18, 19]. In the latter case,

Henderson-Sellers [10] affirms that a model is an abstraction that represents some view

of reality, necessarily omitting details, for some specific purpose and which may be used

to document existing situations or to describe situations that might occur. Therefore,

some researchers have created descriptive models for depicting and documenting the

830 Garcia et al.

software project management activities in order to get a finer granularity and to correctly

understand the state of the practice [20]. With this idea in mind, the benefit for small-

sized software enterprises from using these models is to get a better understanding of the

project management activities by obtaining a ―simplified‖ version of the current practice.

In this regard, a metamodel can be used too to increase the general understanding of the

project management process. Thus, a metamodel is also a model and it is generally

defined as a ―model of models‖ or, equally, ―a model of a set of models‖ [10]. In this

context, the use of metamodels has been increasingly explored by diverse researchers in

the context of Software Engineering. Nevertheless, in spite that diverse areas of

Software Engineering have been addressed with the metamodel approach (e.g.,

requirements engineering [21–23], software process assessment [24, 25] and

measurement [26, 27], software process improvement [28–30]), the software project

management has been poorly analyzed. For example, research by [31] introduced the

PROMONT ontology for project management in order to build a common understanding

of project related terms and methods, and thus, facilitating the management of projects

conducted in dynamic virtual environments. In this regard, according to Henderson-

Sellers the domain ontologies can be used to create a vocabulary for a specific

application domain (e.g., project management) ensuring that elements in the model have

well-defined semantics. Otherwise, meta-ontologies or foundational ontologies, which

are equivalent to a metamodel, encapsulate the concepts needed for creating domain

ontologies [10]. Thereby, PROMONT provided means for expressively stating axioms

and specifications of the concepts and relations in project management.

Moreover, in [32] a metamodel for agile project management is proposed within an

educational context. Concretely, this study defines a workflow for teaching and

practicing the agile project management methods by using the LEGO® bricks building

concept. Thus, bricks are used as a medium to transmit agile principles practices to

participants with various background knowledge and experience. The proposed

workflow was used for designing an educational workshop and it is the result of a

metamodel of methods —agile project management and bricks building. Therefore, this

metamodel conceptualizes the analogies among software development, software

engineering principles, bricks building process, and agile project management.

Similarly, research by Callegari and Bastos [11] presents a metamodel for software

project management based on the PMBOK® Guide and its integration with RUP

(Rational Unified Process). Although the reference documents for both models describe

different kinds of models or metamodels, the purpose of this study was to provide a

complete understanding of the core concepts of both models by providing a mapping

between them, and by proposing an integrated model that can guide practitioners

towards a better software project management and, as consequence, to obtain high

quality products. In this regard, the metamodel for project management provides

concepts that cover human and physical resources, activities, deliverables, as well as

time and organizational concepts and their associated classes.

Finally, research by Thiemich and Puhlmann [33] combines the BPM (Business

Process Management) methodology and Scrum (an agile methodology for project

management) to introduce a metamodel for agile BPM projects. This metamodel

consists of three core aspects: project approach, artifacts, and methods, and it indicates

how they are connected with the management process in order to enhance the reflected

adaption of agile principles in BPM projects. As a result of this research, the first two

MyPMP: Project Management in Small-sized Software Enterprises 831

steps of a traditional BPM lifecycle (i.e., modeling and implementation) are merged

together, resulting in ―better‖ processes that can be implemented according the

organization‘s necessities (i.e., the processes that are really needed). Since the

organization gets a better understanding of what they really want in each iteration, the

fuzziness of the to-be processes is cleared up in early stages.

In this regard, it is important to highlight that in the previous studies, improving

project management within enterprises is assumed to be made through the creation of

metamodels which include specific project management practices, such as work

breakdown structures or earned value management, as well as simplification of activities

that would help to improve the understanding of management activities, including the

description of project management processes, tools, and techniques, or the designation

of formal titles and roles for those in charge of projects, and their adequate training.

With this aim in mind, we have developed a metamodel to define a ―lite‖ version of the

project management process for the context of small-sized software enterprises.

Moreover, we have implemented our approach into an add-in program for Microsoft

Project® 2007 in order to simplify the management process and to manage the

knowledge generated during the software development. Additionally, it is important to

mention that this approach does not require a large investment of cash capital to

establish within small-sized software enterprises.

3. Developing MyPMP for small contexts

As we said before, the advances of Software Engineering have inspired the use of

modeling techniques to different areas; in fact, various researchers have seen this as a

chance to represent the knowledge of particular issues of their research (e.g., risk

identification, requirements analysis, project management) in the form of metamodels. In

this regard, the benefits of a metamodel may include: domain concepts are easier to

apply for novices or young unexperienced employees (i.e., concepts would be presented

in the metamodel instead of having to look for them in a dispersed collection of books,

papers, models); increased portability of practices across supportive management tools;

and better communication among project manager and employees [34]. Furthermore,

according to Othman and Beydoun [35] a metamodel is a fundamental building block

that makes statements about the possible structure of models. Moreover, a metamodel is

usually defined as a set of constructs of a modelling language and their relationships, as

well as constraints and modelling rules without necessarily the concrete syntax of the

language [34].

3.1. The proposed metamodel

In our context, and according to Henderson-Sellers [10], metamodeling in current

Software Engineering follows one of two possible architectures. The OMG (Object

Management Group) architecture that is based on strict metamodeling [36] wherein the

only relationship between levels is called ―instance of‖ (left side of Fig. 1). In OMG

standards, for example, an M0 object is said to be an instance of a class in level M1; a

832 Garcia et al.

class in level M1 is said to be an instance of a metaclass in level M2 and so on. On the

other hand, the right side of Fig. 1 shows an alternative multi-level architecture that

introduces the powertype pattern as used in ISO/IEC 24744 [37]. Thus, an object facet

provides attributes for Method Domain entities while the class facet provides

specification of attributes that are given a value in the Endeavour Domain. Furthermore,

the use of powertypes permits both instance-of and generalization relationships between

levels. Thus, in the context of defining methodologies for software development, this

pattern combines the main advantages of other metamodeling approaches and enables

the integration of documental aspects into the methodology [38].

Fig. 1. Architectures for metamodeling in the context of Software Engineering [5]

In this regard, and taking into account the ISO/IEC 24744 recommendations, we have

proposed a conceptual architecture to build our metamodel. This architecture was

constructed by a combination of bottom-up and top-down analysis and best practice. The

representation of Fig. 2 aims to integrate all the process-related elements through four

layers and leads the formalization of concepts in the context of small-sized software

enterprises. Therefore, the aim of this conceptual architecture is to provide a mechanism

for improving the understanding and implementation of a management process through

four layers of abstraction. These four layers of abstraction are defined as follows:

 Level M0: The data generated by the projects represent the ―real word‖ in the

architecture. Thus, all historical data obtained by developing successful or failed

projects are useful to learn how to manage them and, in a long-term, to predict the

process performance.

 Level M1: An adjustment of complexity of practices recommended by process

reference models (e.g., the PMBOK® Guide) is needed to provide to small

enterprises a simplification of the practice. In this sense, our metamodel provides a

set of scripts, templates and guidelines (called project planning assets) to support the

project manager‘s work. Additionally, the process evaluation is a crucial activity for

this level, because it is not possible to define (or adapt) a new process without

MyPMP: Project Management in Small-sized Software Enterprises 833

determining the current state of the practice (i.e., weaknesses and strengths of project

management within enterprise).

 Level M2: The definition of a new process (or the adaption of an existing one) is

related to the necessity to adequate a simplified description of this in a specific

context. The pattern concept explored by González-Pérez and Henderson-Sellers [38]

is introduced in M2 for enabling project managers to take, from the concepts defined

in M1, those useful to develop a specific project. This level defines a Process Asset

Library (PAL) to support project management good practices within the participant

small-sized software enterprises and to enable project managers the definition of an

enacted process.

 Level M3: The repository of all previous meta-elements uses instances at different

levels, as an analogy to the SPEM metamodel [39], to create different versions of a

process from other processes that may be previously defined.

Fig. 2. A conceptual architecture for our metamodel

This conceptual architecture establishes the necessity of establish a set of common

concepts to be used in the metamodel. In this sense, the PMBOK® Guide joins the

knowledge of proven traditional and widely applied practices on project management,

and it has been promoted by the Project Management Institute, a non-profit professional

association, which primary goal is to advance the practice, science, and profession of

project management [40]. Thus, in the context of introducing the project management

process in small-sized software enterprises, in preparation for eventually managing

larger and complex projects, the PMBOK® Guide has been widely explored. Therefore,

we have focused our efforts in developing a metamodel for the Project Scope

Management, Project Time Management, and Project Cost Management from the ten

knowledge areas of PMBOK®. It is important to mention that by definition the

PMBOK® Guide was not created to be a process and, as consequence, does not specify

how to perform the activities on a software project for the development of a high quality

834 Garcia et al.

product and, hence, achieve the project success. Taking into account this situation, our

metamodel was created with the aim of facilitating the definition of project management

in the context of small-sized software enterprises. Moreover, this metamodel

summarizes the essential elements of project management that a small-sized enterprise

can use to begin to manage their projects. Furthermore, the main idea of this research is

that with this metamodel a small-sized software enterprise can begin to mature at

project-level and, with its recurrent use in the future, mature at process-level. With this

aim in mind, we initially pretend to model all the basic process elements of the

PMBOK® Guide, for managerial activities, and MoProSoft® [41], for productive

activities. Consequently, the metamodel depicted in Fig. 3 was built using UML class

diagrams.

Fig. 3. The metamodel approach for project management in small-sized software enterprises

To better explain the metamodel, our description begins from ―basic‖ concepts of

management depicted in the PMBOK® Guide and their relationships to define a

simplified management schema. In this regard, through this metamodel, a small

enterprise can define a process to develop a project by integrating small teams that

perform activities by following, or trying to follow, at least, a methodology (e.g.,

MoProSoft®). As we said before, it is common that a software development

methodology states ―what to do‖, but not ―how‖, neither ―who does it‖. Therefore, these

MyPMP: Project Management in Small-sized Software Enterprises 835

methodologies are composed of a collection of phases. Each phase is composed by a set

of activities. It is noteworthy that the architecture of our metamodel does not establish

by default a set of strict steps or activities for project managers. According to the

conceptual architecture shown in Fig. 2, when a request for a specific project is created,

it is necessary that the project manager defines (i.e., instantiates) all the elements of his

own process. This process should take into the account the necessities and complexity of

that project. At the same time, activities can be broken down into more specific actions

called tasks that may require work products to facilitate their execution. Activities may

have dependencies between them, which help to define the order in which they should

be executed within the project. Additionally, the activities are usually supported by some

kind of guideline (e.g., a tool, technique, artifact, process asset) so that it is possible to

verify the procedure to be performed before its execution. The activities typically

produce outputs (e.g., deliverables, documents, artifacts), and depend on inputs to

generate a result.

Moreover, the roles in the metamodel are divided according to the type of activity to

be performed (i.e., a managerial activity or a productive activity). Thus, each activity

must be performed by one or more roles, something that is typical within small teams. A

similar relationship can occur with the resources (physical or human) because an

activity may depend on certain infrastructure and knowledge to achieve the project‘s

objective. Furthermore, any given activity has only one responsible (as it is indicated by

the standards and methodologies for project management), thus we are trying to

eliminate the common problem in small-sized software enterprises when roles are

constantly changed for each project. An activity can use a work product as input or

output, but it can also modify an existing one; thus, this concept has been extended to

allow three distinct associations in the metamodel: generates, modifies, and uses as

inputs (e.g., an activity can generate a work product, or modify or use an existing one).

It is important to mention that it has also been indicated the association ―modifies‖

between the work product and the role, because it is the employee who plays that role

the one who has the possibility to change an artifact without performing any work. This

consideration was also added to enable automation of an instantiated process

considering the fact that it is not possible to eliminate an activity that creates a work

product if there is another activity that modifies or uses as input the same product. Each

work product must display information about its version (i.e., configuration

management) and its type: ―external‖ (when it is subjected to the approval of a person or

client) or ―internal‖ (when is total or partially delivered to the role that is responsible of

that activity). Finally, a work product and an activity should use metrics to be verified

and to determine its successful use, respectively.

In this regard, this metamodel provides a ―lite‖ version of project management

highlighting three basic concepts:

 Development activities, for helping employees to perform their work, including the

sequencing of those activities and the interfaces between them. The employees of the

small-sized software enterprises learn to explore and understand that a development

activity is an artifact (e.g., a requirements document, a formal specification, program

code, and test cases), and the recurrently use of this forces each employee to gain

experience from scratch.

836 Garcia et al.

 Management activities, for helping project managers to plan and control all the

development activities from the earliest conception stage to the final support stage of

the project lifecycle.

 Tools and techniques, for supporting the activities execution (both managerial and

productive) by defining assets, information, and resources.

From the inputs and outputs products proposed by MoProSoft®, and from the inputs,

techniques, and outputs proposed by the selected processes of the PMBOK® Guide, we

have designed a Process Asset Library (PAL) to support the performance of our project

management metamodel (see Fig. 4). Moreover, in the experience of different

organizations, the definition and implementation of a well-structured and organized PAL

is the key that enables organizations to have a culture focused on the maturity of their

processes.

Fig. 4. Process asset library for supporting the project management metamodel

Therefore, following the metamodel from Fig. 3, a project management process from

the PAL is defined in terms of tasks, products, metrics (of process, product, and task)

and assets (of process, product, and metrics). Thus, all the assets are artifacts or

mechanisms that provide support to perform the management process, products, tasks,

and metrics. In this way, a project management process can be used by the projects of

the small-sized software enterprise taking into account the guidelines and tailoring

criteria defined in the levels of abstraction M1 and M2 of the metamodel.

MyPMP: Project Management in Small-sized Software Enterprises 837

3.2. Creating an add-in program for implementing the metamodel

The presented metamodel provides a conceptual architecture that enables project

managers to define a unique process to assist them in project planning and control taking

into account the concepts arising from the PMBOK® Guide and MoProSoft®. In order

to demonstrate the feasibility of the proposed metamodel, we have developed MyPMP

(My Project Management Process) as an add-in program for Microsoft Project® 2007.

Based on this idea, the concepts coming from the metamodel were added to this

prototype (which has already included as start point the simplifications of the PMBOK®

Guide and MoProSoft® for managerial and productive activities, respectively). This

choice allows small-sized software enterprises to take advantage of the features that are

already implemented in Microsoft Project® with the proposed definition of a process for

project management. In this regard, Microsoft Project® has been widely used by

researchers and professionals for project planning and control, estimation, and analysis.

While custom projects can be easily built with the current functionalities of Microsoft

Project®, sophisticated and highly customizable macros can also be compiled using

Visual Basic for Applications (VBA).

Once the add-in program has been installed, a pull-down MyPMP menu appears in

the menu bar when Microsoft Project® is launched. As shown in Fig. 5, a project

manager may select an option of interest from the menu and start a project taking into

account the simplification of MoProSoft® activities to establish a software development

lifecycle and the PMBOK® Guide to manage the project, such as the metamodel has

defined it. The MyPMP program provides many customizable options for supporting the

definition of a ‗lite‘ version of a project management process, including selection of

activities, initial planning values, pre-uploaded templates, and guidelines for a correct

implementation in the context of small-sized software enterprises. In addition, all the

data related to MoProSoft® and the PMBOK® Guide has been uploaded into a database

to help project managers to begin from the scratch. This feature is provided as a guide

for unskilled project managers to help them to arrange their projects into a suitable form

for developing a high quality product. In this context, Fig. 5 shows five options to

implement the proposed metamodel in a pull-down menu and one exit function has been

developed for project managers who want to use Microsoft Project® without the add-in

program.

The MyPMP functionalities can be used to define a new process, adapted to the

enterprise and project contexts, for managing the software projects; to quantitatively

analyze the projects and process performances, according to the defined metrics; and to

print the created assets in case that the project manager wants to study or analyze a

template, or read a recommendation for the proper execution of an activity. In this case,

for example, in Fig. 5 the project manager has selected the option ―Library of assets‖ to

download an asset from four available categories: process, product, knowledge, or tools.

All the assets are in PDF format to support the execution of an activity, the use of a tool,

the understanding of a metric, or just for providing more specific knowledge about the

software development and project management processes. For example, many small-

sized software enterprises do not understand how to represent the project tasks as a work

breakdown structure (WBS). In this regard, the M1 level of our metamodel provides the

assets component to make each team member clear of the duties, powers, responsibilities

and interests in the project. Thus, if the project has a good WBS, then as long as each

838 Garcia et al.

member complete his/her own part of work, the entire project can be completed [42]. In

this context, MyPMP provides assets to explain, for example, the WBS importance and

a template to correctly perform the task related to this tool.

Fig. 5. MyPMP menu in Microsoft Project® environment

To satisfy the metamodel requirements, MyPMP uses a database with all the

information of MoProSoft® and the PMBOK® Guide classified according to the levels

defined by the layers of abstraction of the conceptual architecture. The MyPMP features

have been purposely implemented to fit with the knowledge necessities of the small-

sized software enterprises, otherwise project managers would have not a guidance to

properly start, plan, and control a project, jeopardizing the project success. Thus, Fig. 6

shows how the add-in program enables project managers to define a process for project

management taking into account the conceptual architecture of the metamodel. In this

regard, once the project manager has selected to use the phase and activities of

MoProSoft® and the PMBOK® Guide, he/she can delete anything that does not fit with

the project and customize his/her own process (see Fig. 6 (a)). Additionally, if the

project manager has selected the support option, MyPMP provides some advice about

scheduling (see Fig. 6 (b)) according to some parameters previously configured (e.g.,

complexity, total time, size of team, cost, and more).

MyPMP: Project Management in Small-sized Software Enterprises 839

Fig. 6. Using MyPMP to define a project management process in Microsoft Project®

4. Case study

The aim of this case study was to evaluate, in an industrial context, how well MyPMP

works when the metamodeling approach is implemented for project management within

a small-sized software enterprise. In this regard, according to Kitchenham, Pickard, and

Pfleeger [43], experimentation in Software Engineering increases the understanding of

software quality characteristics and how to properly do it. Therefore, a case study was

chosen as the experimental empirical strategy to be followed in the validation of the

proposed metamodel through the use of MyPMP. Furthermore, in accordance with the

recommendations of Wohlin, Höst and Henningsson [44], there are three different

strategies to develop a case study:

 Comparing the results obtained from a new proposal and a baseline.

 Developing two projects in parallel (‗twin projects‘) choosing one of them as the

baseline.

 Applying the new proposal on some selected components and comparing the results

obtained with the components that were not applied.

In this regard, we have decided to use the second strategy, which considers the

development of twin projects (one project uses the traditional approach to manage a

project while the other one implements our metamodel using MyPMP for Microsoft

Project®). Therefore, the case study focuses on the application of the MyPMP add-in

program in a small-sized software enterprise. Thus, the case study began with the

definition of the scope of the pilot project included in the experiment. In accordance

840 Garcia et al.

with the objectives of this paper, we used the proposed add-in program to help project

managers to define a process for managing a software project that fits with the

necessities and resources (e.g., human, financial, equipment) of a small-sized software

enterprise. By using MyPMP, an experimental group can load the assets of MoProSoft®

and the PMBOK® Guide without altering the scope of the project, while the control

group must use Microsoft® Project as usually. As we said, the processes defined by

MyPMP are adapted according to the conceptual architecture of our metamodel that

classifies the tasks, processes, products and measures to use in any project. Nevertheless,

most of the obtained products, such as the requirements specification, follow the

standards used within the small-sized software enterprise in order to minimize the

change impact. The experimental and control groups were conformed by six people: one

project manager, two analysts, two programmers, and one quality manager. The

selection of the group‘s members was made based on their experience and knowledge

about software development and project management, and their knowledge about the

project‘s domain. All of the participants had the same number of years of experience in

the enterprise (4 years).

Otherwise, the hypothesis tested in the study was as follows:

H1: The MyPMP add-in program can reduce the effort and time required to develop a

new software project.

Additionally, in order to capture several aspects of performance related to MyPMP, it

was necessary to define two response variables as follows:

 Effort. What percentage of the effort was reduced by applying correctly the proposed

add-in program in project management?

 Time. What percentage of the estimated time for developing the software project was

reduced by applying correctly the proposed add-in program?

To answer these questions, we examined the documentation of the project, observed

participants during their work, applied questionnaires, and performed interviews. In this

regard, the study has an explorative character.

4.1. Context of the study

The study was performed within a small-sized software enterprise, called SmallEnt for

confidential reasons. SmallEnt uses regularly Microsoft® Project for planning and

controlling all the software projects. The project developed in this case study was named

‗MediControl‘, a software product developed for a small medical clinic. MediControl

would allow doctors, patients, and nurses initiate and control the appointments, and

manage the pharmaceutical products through their respective interfaces. Thus,

MediControl would include the following modules: authentication of users,

appointments management, cash flow, stock of pharmaceutical products, recipes

generator, clients catalog, bar code generation for products, and reporting. In order to

illustrate the application of MyPMP in the development of MediControl, Fig. 6 shows an

MyPMP: Project Management in Small-sized Software Enterprises 841

example of how the metamodel is implemented while being supported by the created

add-in program.

4.2. Method

We collected the data in four different ways: review of historical documents, observation

of participants, semi-structured interviews, and questionnaires using a Likert scale. It is

noteworthy that the majority of the collected data were quantitative; nevertheless, also

qualitative data were collected in lesser extent. During the review of historical

documents, an expert researcher2 reviewed if the assets (e.g., project plan, WBS,

configuration management) were properly filled out. Otherwise, in relation to the

observation of participants, it was necessary to participate in various planning and

feedback meetings to get firsthand information concerning the problems about the

project management. The interviews were applied to all team members of both groups.

Each interview began with general questions and discussions about how the project

managers carry out the project management and the use of the add-in program to define

and use an enacted process, in order to ensure that applicants had a common

understanding of the concepts involved. Also, after using the add-in program, we applied

a questionnaire using a Likert scale, to obtain the participants‘ opinions about the add-in

program and its benefits.

4.3. Empirical results

As mentioned before, the created add-in program has provided a formal structure for

defining customized project management processes within the context of a small-sized

software enterprise. In this regard, the modules that implement the metamodel

characteristics are accessible via a well-defined interface created for Microsoft® Project

2007. In order to assess the feasibility of the MyPMP add-in program, we have

developed twin projects into a small-sized software organization. The results of this

experiment are summarized in Table 1, in which column Effort shows the effort changed

or extended, and column Time shows the approximate time spent in the management

phase.

Table 1. Results from the Case Study

Control group Experimental group % of reduction

Effort (hours) Time (weeks) Effort (hours) Time (weeks) Effort Time

456 23 330 15 26.6 35

2 This expert was not part of the research group, and he was unaware that his work was part of an

experiment performed within a case study. Therefore, the expert made a completely blind

evaluation on the both projects‘ documentation (obtained by the experimental and control

groups), not knowing anything about how these data were obtained.

842 Garcia et al.

As we observed, the difference between the traditional approach (performed by the

control group and using Microsoft Project® as usually, without MyPMP) to manage the

software project and the proposed approach is relatively large.

Moreover, even unskilled project managers can work with MyPMP to define a

process for managing the software projects; the developed add-in program provides

them a strong support to define and simplify the management concept.

Furthermore, in the case study presented the difference between the control and

experimental groups is evident. The effort required for the control group is about 75%

more than the effort required for the experimental one; while the time required for the

control group is about 65% more than the time required for the experimental one

because MyPMP enables project managers to define a set of activities to develop a new

software product. These results allow us to validate our hypothesis (H1: The MyPMP

add-in program can reduce the effort and time required to develop a new software

project).

Finally, the benefits offered by an add-in program for Microsoft Project® are

achieved, while it is enriched with the specific functionalities required for incorporating

the created metamodel.

4.4. Threats to validity

It is noteworthy that we did not use a statistical test over our hypothesis, because our

case study only has focused on the analysis of the performance of two groups (the

experimental group and the control group) in the development of a software project.

Nevertheless, we have taking into account the advice of Runeson and Höst [45], defining

the following main threats to validity the achieved results:

 Internal validity. In our case study, internal validity issues primarily deal with the

causal issues of our findings. These concerns are addressed to some extent because of

the fact that the participants had no knowledge that this study was being conducted to

prevent the modification of their behavior/management practices and avoid affecting

our measurements. Similarly, the participants (from the control and experimental

groups) had the same experience in software development and project management,

the same domain knowledge, and the same experience in number of years in the

enterprise (4 years). Hence, there is no internal motivation to show results either way

to influence this study; however, we cannot ensure that the employees participating in

the experimental group have been particularly motivated by the use of the MyPMP

add-in program or if this group had cleverer members than the control group.

 Construct validity. Construct validity issues arise when there are errors in

measurement. In this sense, the process to collect data uses questionnaires (applied to

the project managers and the rest of employees) using a well-structured Likert scale.

Moreover, at the end of the project we performed interviews with the participants to

assess if the projects fulfilled all the planned functionalities. Thus, we assure that

independently from whom analyzes the data, the answer value for each person will be

the same (passing from a qualitative approach to a quantitative one). However, we

cannot discard that if the compared projects would have developed under and agile

MyPMP: Project Management in Small-sized Software Enterprises 843

approach, the control group would have had a more satisfactory product delivery than

the experimental one.

 External validity. It is possible that some problems of external validity arise given the

fact that the company where the case study was applied has a small size (no more than

15 employees, where 12 are devoted to the software development), if the set of

software requirements was small, of the enterprise was very related to the project

domain (i.e., management system).

5. Conclusions

Many project management methodologies have been developed from industry practices

and international standards to ensure a higher rate of success for software projects. It is

true that these methodologies have been widely and effectively used in large-sized

software companies. However, when software projects are developed within the context

of small-sized software enterprises, there is often a lack of an appropriate method for

project management due to the unskilled project managers who cannot use the

methodologies used in large-sized organizations. In fact, this situation is exacerbated

when the current literature has determined that most of the problems in these

organizations may be related to the lack of capacity to manage projects. Therefore, our

study coincides with the findings of Sánchez-Gordón and O‘Connor [46] in the sense

that it is necessary to provide an insight toward a simplification of work products as they

relate to the activities of the software development process in small-sized software

enterprises for supporting the project success.

In this regard, this paper has presented a metamodeling approach for simplifying the

main concepts related to project management and helping project managers to define a

customized process in the context of a small-sized software enterprise. With this aim in

mind, our study has initially analyzed MoProSoft®, for productive activities, and the

PMBOK® Guide, for managerial activities, and we have then proposed an alternative

metamodel that aims to provide a simplified view of both perspectives. This metamodel

identifies the basic elements that enable small-sized software enterprises to focus their

effort on improving at project-level and, in the future, at process-level. Thus, the

definition of a customized process emphasizes the importance of individuals‘ skills to

both develop and manage a software project and create a solid basis of knowledge to

improve the software and product qualities. In order to support our approach, we have

created the MyPMP add-in program for Microsoft Project® 2007, one of the most used

management tools in the context of small-sized software enterprises, to evaluate the

feasibility of our metamodel. We are currently collecting data through performing more

case studies to provide more formal conclusions about the incorporation of the

metamodel to define simplified processes in real projects within the context of small-

sized software enterprises.

Finally, we have obtained some important lessons learned from the case study.

However, there is still much to be done, especially if we focus on non-expert adoption;

we learned a number of generic lessons that are helpful for similar situations. The most

critical, in our opinion, are the following:

844 Garcia et al.

 Facilitate process definition: The MyPMP interfaces, which help to perform the

process definition, are simple and easy to understand. Nevertheless, it was necessary

to provide a solid background to all participants about the project management

process because they lacked specific knowledge about it. It is important to mention

that the lack of technical knowledge is one of the most important disadvantages

within the context of small-sized software enterprises.

 Choice of vocabulary: It is important to encourage the creation of a vocabulary

mapping (i.e., employees may be unaware of some terms used by the add-in program)

thus reducing the overhead and need for expert intervention in the process.

 Long-term commitment: It is necessary the establishment of a solid commitment with

top management and project managers of small-sized software enterprises to obtain

better results.

References

1. Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F. J., Tovar,

E.: Project managers in global software development teams: a study of the effects on

productivity and performance. Software Quality Journal, Vol. 22, No. 1, 3-19. (2014)

2. Mir, F. A., Pinnington, A. H.: Exploring the value of project management: Linking project

management performance and project success. International Journal of Project Management,

Vol. 32, No. 2, 202-217. (2013)

3. de Carvalho, M. M., Patah, L. A., de Souza, B. D.: Project management and its effects on

project success: Cross-country and cross-industry comparisons. International Journal of

Project Management, Vol. 33, No. 7, 1509-1522. (2015)

4. Cerpa, N., Bardeen, M., Astudillo, C. A., Verner, J.: Evaluating different families of

prediction methods for estimating software project outcomes. Journal of Systems and

Software, Vol. 112, 48-64. (2016)

5. Turner, R., Ledwith, A., Kelly, J.: Project management in small to medium-sized enterprises:

Matching processes to the nature of the firm. International Journal of Project Management,

Vol. 28, No. 8, 744-755. (2010)

6. O‘Connor, R. V., Laporte, C. Y.: Software project management in very small entities with

ISO/IEC 29110. In: Winkler, D., O‘Connor, R. V., Messnarz, R. (eds.): Systems, Software

and Services Process Improvement. Communications in Computer and Information Science,

Vol. 301. Springer-Verlag, Berlin Heidelberg, 330-341. (2012)

7. Caniëls, M. C. J., Bakens, R. J. J. M.: The effects of project management information systems

on decision making in a multi project environment. International Journal of Project

Management, Vol. 30, No. 2, 162-175. (2012)

8. Turner, R., Ledwith, A., Kelly, J.: Project management in small to medium-sized enterprises:

Tailoring the practices to the size of company. Management Decision, Vol. 50, No. 5, 942-

957. (2012)

9. Richardson, I.: Why are small software organizations different? IEEE Software, Vol. 24, No.

1, 18–22. (2007)

10. Henderson-Sellers, B.: Bridging metamodels and ontologies in software engineering. Journal

of Systems and Software, Vol. 84, No. 2, 301-313. (2011)

11. Callegari, D. A., Bastos, R. M.: Project management and software development processes:

integrating RUP and PMBOK. In Proceedings of the 2007 International Conference on

Systems Engineering and Modeling (ICSEM ‗07), Haifa, Israel, 1–8. (2007)

MyPMP: Project Management in Small-sized Software Enterprises 845

12. Alba, E., Chicano, J. F.: Software project management with GAs. Information Sciences, Vol.

177, No. 11, 2380-2401. (2007)

13. Chen, W. N., Zhang, J.: Ant colony optimization for software project scheduling and staffing

with an event-based scheduler. IEEE Transactions on Software Engineering, Vol. 39, No. 1,

1-17. (2013)

14. Lee, S., Yong, H. S.: Distributed agile: project management in a global environment.

Empirical Software Engineering, Vol. 15, No. 2, 204-217. (2010)

15. Persson, J. S., Mathiassen, L., Aaen, I.: Agile distributed software development: enacting

control through media and context. Information Systems Journal, Vol. 22, No. 6, 411-433.

(2012)

16. Petter, S., Vaishnavi, V.: Facilitating experience reuse among software project managers.

Information Sciences, Vol. 178, No. 7, 1783-1802. (2008)

17. Gasik, S.: A model of project knowledge management. Project Management Journal, Vol. 42,

No. 3, 23-44. (2011)

18. Kellner, M. L.: Software process modeling support for management planning and control. In

Proceedings of the First International Conference on the Software Process. Redondo Beach,

California, USA, 8-28. (1991)

19. Bryde, D. J.: Modelling project management performance. International Journal of Quality &

Reliability Management, Vol. 20, No. 2, 229-254. (2003)

20. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry

software development. Journal of Systems and Software, Vol. 87, No. 1, 48-59. (2014)

21. Cerón, R., Dueñas, J. C., Serrano, E., Capilla, R.: A meta-model for requirements

engineering in system family context for software process improvement using CMMI. In:

Bomarius, F., Komi-Sirviö, S. (eds.): Product Focused Software Process Improvement.

Lecture Notes in Computer Science, Vol. 3547. Springer-Verlag, Berlin Heidelberg, 173-

188. (2005)

22. Fernández, D. M., Penzenstadler, B., Kuhrmann, M., Broy, M.: A meta model for artefact-

orientation: fundamentals and lessons learned in requirements engineering. In: Petriu, D.,

Rouquette, N., Haugen, Ø. (eds.): Model Driven Engineering Languages and Systems.

Lecture Notes in Computer Science, Vol. 6395. Springer-Verlag, Berlin Heidelberg, 183-

197. (2010)

23. Goknil, A., Kurtev, I., van de Berg, K., Spijkerman, W.: Change impact analysis for

requirements: A metamodeling approach. Information and Software Technology, Vol. 56,

No. 8, 950-972. (2014)

24. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamodels and

the creation of a new generic standard. Information and Software Technology, Vol. 47, No.

1, 49-65. (2005)

25. Ayed, H., Vanderose, B., Habra, N.: A metamodel-based approach for customizing and

assessing agile methods. In Proceedings of the 8th International Conference on the Quality of

Information and Communications Technology (QUATIC), Lisbon, Portugal, 66-74. (2012)

26. García, F., Serrano, M., Cruz-Lemus, J., Ruiz, F., Piattini, M.: Managing software process

measurement: A metamodel-based approach. Information Sciences, Vol. 177, No. 12, 2570-

2586. (2007)

27. Colombo, A., Damiani, E., Frati, F., Ontolina, S., Reed, K., Ruffatti, G.: The use of a meta-

model to support multi-project process measurement. In Proceedings of the 15th Asia-Pacific

Software Engineering Conference (APSEC ‘08), Beijing, China, 503-510. (2008)

28. Martins, P. V., da Silva, A. R.: PIT-ProcessM: A software process improvement meta-model.

In Proceedings of the 7th International Conference on the Quality of Information and

Communications Technology (QUATIC), Porto, Portugal, 453-458. (2010)

29. Tian, L., Zeng, G. Y., Yu, L., Zhu, B.: Research and implementation of software process

metamodel for CMMI. Computer Engineering Design, Vol. 18, 245-267. (2010)

846 Garcia et al.

30. Banhesse, E. L., Salviano, C. F., Jino, M.: Towards a metamodel for integrating multiple

models for process improvement. In Proceedings of the 38th EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), Izmir, Turkey, 315-318. (2012)

31. Abels, S., Ahlemann, F., Hahn, A., Hausmann, K., Strickmann, J.: PROMONT —a project

management ontology as a reference for virtual project organizations. In: Meersman, R., Tari,

Z., Herrero, P. (eds.): On the Move to Meaningful Internet Systems. Lecture Notes in

Computer Science, Vol. 4277. Springer-Verlag, Berlin Heidelberg, 813-823. (2006)

32. Velić, M., Padavić, I., Dobrović, Ž.: Metamodel of agile project management and the process

of building with LEGO® bricks. In Proceedings of the 23rd Central European Conference on

Information and Intelligent Systems (CECIIS), Varazdin, Croatia, 481–193. (2012)

33. Thiemich, C., Puhlmann, F.: An agile BPM project methodology. In: Daniel, F., Wang, J.,

Weber, B. (eds.): Business Process Management. Lecture Notes in Computer Science, Vol.

8094. Springer-Verlag, Berlin Heidelberg, 291-306. (2013)

34. Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J., Pavon, J.,

Gonzalez-Perez, C.: FAML: A generic metamodel for MAS development. IEEE Transactions

on Software Engineering, Vol. 35, No. 6, 841-863. (2009)

35. Othman, S. H., Beydoun, G.: Metamodelling approach to support disaster management

knowledge sharing. In Proceedings of the 21st Australasian Conference on Information

Systems (ACIS), Atlanta, Georgia, USA, 1-10. (2010)

36. Atkinson, C.: Metamodelling for distributed object environments. In Proceedings of the First

International Enterprise Distributed Object Computing Workshop (EDOC‘97), Gold Coast,

Queensland, Australia, 90-101. (1997)

37. International Organization for Standardization/International Electrotechnical Commission.:

ISO/IEC 24744. Software Engineering—Metamodel for Development Methodologies. ISO,

Geneva. (2007)

38. Gonzalez-Perez, C., Henderson-Sellers, B.: Modelling software development methodologies:

a conceptual foundation. Journal of Systems and Software, Vol. 80, No. 11, 1778-1796.

(2007)

39. Object Management Group. Software & Systems Process Engineering Meta-Model

Specification, Version 2.0. Available at: http://doc.omg.org/formal/08-04-01.pdf (2008)

40. Mesquida, A. L., Mas, A.: A project management improvement program according to

ISO/IEC 29110 and PMBOK®. Journal of Software: Evolution and Process. Vol. 26, No. 9,

846-854. (2014)

41. Oktaba, H..: MoProSoft: A software process model for small enterprises. In Proceedings of

the First International Research Workshop for Process Improvement in Small Settings,

Pittsburgh, Pennsylvania, USA, 93-100. (2005)

42. Lu, X., Liu, H., Ye, W.: Analysis failure factors for small & medium software projects based

on PLS method. In Proceedings of the 2nd IEEE International Conference on Information

Management and Engineering (ICIME), Chengdu, China, 676-680. (2010)

43. Kitchenham, B., Pickard, L., Pfleeger, S. L.: Case studies for method and tool evaluation.

IEEE Software, Vol. 12, No. 4, 52-62. (1995)

44. Wohlin, C., Höst, M., Henningsson, K.: Empirical research methods in software engineering.

In: Conradi, D., Wang, A. I. (eds.): Empirical Methods and Studies in Software Engineering.

Lectures Notes in Computer Science, Vol. 2765. Springer-Verlag, Berlin Heidelberg, 7-23.

(2003)

45. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering, Vol. 14, No. 2, 131-164. (2009)

46. Sanchéz-Gordón, M. L., O‘Connor, R. V.: Understanding the gap between software process

practices and actual practice in very small companies. Software Quality Journal, Vol. 24, No.

3, 549-570. 2016

MyPMP: Project Management in Small-sized Software Enterprises 847

Ivan Garcia holds a PhD in Software and Systems from the Universidad Politécnica de

Madrid and he is full-time professor at the Division de Estudios de Posgrado of the

Universidad Tecnológica de la Mixteca, Mexico. He is author of international papers

related to Software Engineering and, more specifically, Software Process Improvement.

He also is a member of the team that has translated CMMI-DEV V1.2 and CMMI-DEV

v1.3 to Spanish.

Carla Pacheco studied a PhD in Informatic Language and Software Engineering in the

Universidad Politécnica de Madrid and she is full-time professor at the Division de

Estudios de Posgrado of the Universidad Tecnológica de la Mixteca, Mexico. She is

author of international papers related to Software Engineering and, more specifically,

Requirements Engineering. She also has participated in several Mexican projects related

to software requirements as a part of process to improve the Mexican software industry.

Magdalena Arcilla-Cobián holds a PhD in Computer Science. She is an assistant

professor in the Computer Science School at the Universidad Nacional de Educación a

Distancia (Open University). She is teaching in the area of Software Engineering,

specifically in the domain of software process management and improvement. She is

author of papers related to process improvement, mainly in the service domain. She

holds the ITIL® v2 and v3 Foundation certificates.

Jose A. Calvo-Manzano holds a PhD in Computer Science. He is an assistant professor

in the Computer Science School at the Universidad Politécnica de Madrid. He is

teaching in the area of Software Engineering, specifically in the domain of software

process management and improvement. He has participated in more than 20 research

projects (European and Spanish Public Administration). He is author of more than 50

international papers. He is author of books related to software process improvement and

software engineering topics also. He has been a member of the team that has translated

CMMI-DEV v1.2 and CMMI-DEV v1.3 to Spanish. He also holds the ITIL® v2 and v3

Foundation, and CMDB Certification.

Received: August 1, 2016; Accepted: October 20, 2016.

