
Computer Science and Information Systems 11(2):549–567 DOI: 10.2298/CSIS130823024S

Iris: A Decentralized Approach to Backend Messaging
Middlewares

Péter Szilágyi1,2

1 Eötvös Loránd University
1053 Budapest, Hungary

2 Babeş-Bolyai University
400084 Cluj-Napoca, Romania

peterke@gmail.com

Abstract. In this work we introduce the design and internal workings of the Iris
decentralized messaging framework. Iris takes a midway approach between the two
prevalent messaging middleware models: the centralized one represented by the
AMQP family and the socket queuing one represented by ZeroMQ; by turning to-
wards peer-to-peer overlays as the internal transport for message distribution and
delivery. A novel concept is introduced, whereby a distributed service is composed
not of individual application instances, but rather clusters of instances responsible
for the same sub-service. Supporting this new model, a collection of higher level
messaging patterns have been identified and successfully implemented: broadcast,
request/reply, publish/subscribe and tunnel. This conceptual model and support-
ing primitives allow a much simpler way to specify, design and implement dis-
tributed, cloud based services. Furthermore, the proposed system achieves a signif-
icant switching speed, which – given its decentralized nature – can be scaled better
than existing messaging frameworks, whilst incurring zero configuration costs.

Keywords: peer-to-peer, decentralized, message oriented middleware.

1. Introduction

A message-oriented middleware (MOM) is either a hardware or software infrastructure
component, with the sole purpose of removing the complexity of communication from
a distributed system, allowing individual network components to focus on their specific
tasks [2].

The core concept behind MOMs is based on the observation that classical, stream-
based communication introduces a very tight coupling between network components, re-
quiring significant efforts to develop and maintain distributed systems. Instead, in MOM
based systems the unit of communication is a message, an undividable, self-contained
block of data propagating from sender to recipient(s). As the transferred data is self con-
tained, the network can evolve dynamically without costly protocol setups and teardowns.

The second core concept is the middleware part, whereby all distributed clients are
in contact only with the MOM, but not each other. The most important implication is
that the middleware is responsible for transferring application messages from origin to
destination, whilst clients remain ignorant of the routing complexity. This decoupling
grants the whole system both simplicity and greater flexibility in terms of scalability and
environmental heterogeneity [8].

550 Péter Szilágyi

The last (optional) concept in MOMs are message queues, which provide further de-
coupling by allowing applications to communicate asynchronously [23], not requiring the
communicating peer to be accessible at the time of messaging. However, for distributed
systems targeted by this paper (i.e. dynamically scaling back-end services), persistent
messaging is not a requirement.

Due to the significant popularity of cloud computing [3], messaging middlewares
gained an even bigger role in distributed system infrastructures. Whilst previously in-
ternal back-end systems could have used arbitrary network topologies, with the advent of
clouds, system designers are forced to think in more general – and many times, less re-
liable – solutions. Messaging middlewares provide the extra simplification of distributed
systems to keep focus on the problem and prevent it from shifting towards cloud commu-
nication.

Even though the operational environment of cloud providers, as well as operational
requirements of cloud services are drastically different from pre-cloud ones, the same
underlying messaging models are continued to be used. We argue, that although these
models are perfectly feasible, not taking advantage of cloud specifics leads to suboptimal
distributed systems. Essentially, cloud platforms encourage the load-based elastic evo-
lution of hosted services, where deployed applications must be ready to scale at a short
notice. This is the weakness of current messaging models, as they were not designed with
constant scaling in mind. To prepare for such scenarios, all non-scaling concepts need to
be eliminated: location and cardinality.

This paper presents a MOM model, design and algorithms that significantly simplify
the development of distributed back-end services. Firstly, a novel networking abstrac-
tion is introduced, whereby the smallest unit of composition in a distributed system is a
cluster of instances, opposed to individual instances in previous literature. Secondly, four
core communication patterns are defined, which are essential for back-end services and
are also fully compatible with the clustered compositional model: request/reply, broad-
cast, tunnel and publish/subscribe. Finally, the feasibility of the model and messaging
schemes are demonstrated through peer-to-peer networks, fully developing a P2P over-
lay supporting the required operations, and at the same time requiring zero configuration
and maintenance. The P2P related challenges of decentralized bootstrapping and peer-to-
peer security have already been covered in two previous papers [21,22], the present one
focusing solely on decentralized routing.

The paper starts out by presenting the existing solutions, continuing with the core
communication patterns and reliability guarantees identified as essential for back-end ser-
vices. Afterwards, the implementing models, algorithms and optimizations are presented.
Finally, the proposed solution is validated through a series of benchmarks, confirming the
model’s feasibility.

2. State of the art

Historically, hard requirements were placed on these messaging middlewares: the guar-
antee of data security and integrity in any operational environment; the guarantee that no
messages are lost in the face of any network, software or hardware failure; yet to still
achieve a significant switching throughput.

Iris decentralized messaging 551

The most prevalent technology to have met these criteria is the Advanced Message
Queuing Protocol (AMQP) [24,14], with RabbitMQ3 being one of the leading implemen-
tations of the specs. However, the reliability guarantees AMQP undertook blew up the
protocol complexity enormously, leading to centralized solutions that are hard to scale
[10].

iMatix took a new approach to messaging – diverging from AMQP – by removing
the concept of message brokers and instead, placed the message queues directly into the
client processes with their ZeroMQ library4, coining the term “sockets on steroids”, ar-
guing that all messaging should happen at the endpoints [11,19]. The main issue with
iMatix’s approach is that they reintroduced the tight coupling that MOMs originally set
out to remove, and although ZMQ provides higher level communication primitives, these
are bound to socket level, forcing the user of the library to define and implement the
needed network topology. This works well in static environments, but with the prevalence
of clouds (massive distributions and massive failures), the administrative overhead of a
custom, user-managed topology becomes a significant cost [18].

A different initiative is the Data Distribution Service for Real-Time Systems (DDS) a
standardized MOM specification [15,17], with RTI Connext DDS5 being one of the most
advanced implementation of it [12]. As its name suggests, the primary goal of DDS is
modeling complex data flows through which data can be disseminated to interested parties
in a large network of nodes. This is achieved using a publish/subscribe model, where
the physicality of the network is hidden from participating nodes and all addressing is
done through so called topics. Although very powerful, the publish/subscribe abstraction
models only information flows, but does not cater for other messaging patters – such as
request/reply or load balancing – which are essential for implementing back-end services.

A final MOM needed mentioning is the eXtensible Messaging and Presence Protocol
(XMPP), an IETF standardized protocol6 focusing on data exchanges relating to instant
messaging, presence management and social collaboration. It can be considered a gen-
eralized routing protocol for XML data. However, its goals are very different from the
back-end service ones targeted here.

3. Proposed abstractions

To retain as much flexibility as possible, our messaging model assumes only a bare-bone
cloud environment. Such a cloud service-model is commonly called Infrastructure as a
Service (IaaS), and provides the consumer with the capability to provision fundamental
computing resources (e.g. processing, storage, network, etc.) and run arbitrary software
on them [13].

3.1. Distribution model and unit of composition

Originally, back-end services used vertical distribution: the logically distinguishable parts
of a complex service were split into individual component applications, each hosted either
together, or separately based on their resource consumption.

3 http://www.rabbitmq.com/
4 http://zeromq.org/
5 http://www.rti.com/products/dds/index.html
6 http://xmpp.org/xmpp-protocols/rfcs/

http://www.rabbitmq.com/
http://zeromq.org/
http://www.rti.com/products/dds/index.html
http://xmpp.org/xmpp-protocols/rfcs/

552 Péter Szilágyi

This solution has however quickly shown its weaknesses to failures, as well as its
limitations under high load. System designers hence extended the vertical model with the
concept of horizontal distribution: multiple instances of the same service components are
run simultaneously on different machines with tasks distributed between them according
to some load metric.

Whilst theoretically sound, the extended model incurs significant administrative costs,
since each entity must be able to contact its own servicing components and load-balance
between them. The addition or removal of instances further complicates overall compo-
nent logic and maintenance.

We introduce the high level abstractions required to retain the simplicity of the vertical
distribution, whilst obtaining the flexibility of the horizontal distribution. This is done by
turning towards peer-to-peer networks as the base communication model (Fig. 1).

Vertical Horizontal Peer-to-peer

Fig. 1. The vertical model is the theoretical target, whilst the horizontal one is the operational goal.
The paper presents a solution based on the last model, achieving the best of both worlds.

State of the art distribution models consider an application instance (e.g. web-server,
database, etc) the smallest unit. We argue that this is the most significant design flaw re-
sponsible for the increased complexity of distributed systems: distributed communication
is too complex to keep track of individual instances.

We propose a novel abstraction, where the cluster is at the lowest level: a group of
applications responsible for the same sub-task of the service (e.g. collection of databases).
At any point in time there can be any number of instances belonging to the same cluster
(including zero); it is all the same from the consumer’s point of view: a reply either arrives
or it does not.

These clusters can then be assembled into a service, where any component can query
another cluster for some sub-service, without having to know neither where, nor how
many instances can handle its requests. Such a service is considered the unit of security
[22].

Finally, multiple such services can be composed into a federation or a cloud, crossing
security boundaries and allowing inter-service communication (shortly expanded in the
future works section).

Iris decentralized messaging 553

3.2. Communication patterns

In order to support the proposed distribution and composition model, four communication
patters have been identified: request/reply, broadcast, tunnel and publish/subscribe (Fig.
2). These are refinements over author’s previously identified ones in [20].

Request/Reply Broadcast Publish/SubscribeTunnel

Fig. 2. Core messaging patterns to support the model. The first three accomplish standard back-end
communication, whilst the last one enables more specialized operations.

The first pattern is the request/reply, a natural communication pattern for the target
use-case of interconnected services: a consumer sends a request to a sub-service, which
responds with a reply. The proposed model adds a twist, which is a direct consequence
of the cluster being the smallest unit of composition: whenever a request is made, the
target is not a single entity, but rather the cluster of entities serving the same purpose.
It is the responsibility of a messaging middleware implementing this model to make sure
that an appropriate node gets the request, taking load balancing into consideration too. The
consumer should be aware of neither the serving cluster’s size, nor individual component’s
whereabouts, but the name/type of the cluster alone (e.g. ‘databases’) must be enough to
process the request.

The second pattern is the broadcast, a supporting scheme besides the request/reply.
The difference between the two is, that whilst a request is delivered to a single member
of the cluster, a broadcast is forwarded to all of the participants. This is the only way to
contact every instance within a group. But since there is no concept of member count,
there is no possibility for individual responses, as the recipient would never know how
many replies to wait for. Hence broadcasting is an asynchronous, one-way operation.

The third pattern is the tunnel, which itself is another supporting scheme of the cluster
communication. Its goal is to solve the challenge of stream communication and/or stateful
protocols, where an operation consists of multiple data exchanges (e.g. a database trans-
action). A tunnel establishes a communication stream between a client and a member of a
cluster, with ordered and throttled message delivery, persisting until either side closes the
connection.

The messaging patters enumerated above solve most of the communication require-
ments of a back-end service. The last scheme, the publish/subscribe, is a very specialized
one, as it allows breaking cluster boundaries. The underlying concept is well known in the
literature [5]. Any instance within the network may subscribe to a topic (any number of

554 Péter Szilágyi

them), effectively forming temporary clusters. Any node in the network can then publish
events to these clusters the same way as broadcast does.

3.3. Reliability guarantees

The reliability guarantees of a distributed messaging model are the assurances it can
always satisfy about message delivery in the presence of software, system or network
failures. From this point of view, the proposed model takes a significantly more modest
standpoint compared to previous messaging models (e.g. AMQP family). Most of such
requirements cannot be handled at the messaging level, and trials usually result in com-
plexity explosions [10]. This paper instead focuses on the robustness of the messaging
layer, providing only those guarantees that are essential and natural to the respective level
of abstraction.

The request/reply pattern has two possible points of failure. The first scenario of them
is that the request is lost during transit or that there are no available instances to respond.
This is impossible to circumvent in a loosely coupled environment, since any hardware
failure will result in message loss. The second scenario is when the request is successfully
serviced, but the reply is the one lost. The reason this problem is impossible to solve at
the messaging layer is twofold. Per the Two Generals’ Paradox [1], both of the endpoints
of a request/reply exchange can never be sure of the operation’s success, hence a reply
cannot be cached for resending. Secondly, without the guarantee of idempotence, neither
can the request be cached for automatic resending. This means, that transit failures can
be detected at the messaging layer (through timeout mechanisms for example), but their
handling must be delegated up to the application layer.

The broadcast and publish/subscribe schemes are sensitive to network partitioning,
where some of the addressed instances receive a message, but not all of them (possibly
even none). Although unfortunate, this issue persists in any distributed environment, and
can be solved solely using a central tracker. We argue, that reliance on such guarantees is a
fundamental design flaw in most distributed systems, and as such, the proposed communi-
cation model makes no attempt to provide it at the messaging layer. Of course, a high-level
client application can easily implement such behavior on top of the core schemes with the
exact guarantees needed (bearing the necessary sacrifices).

Finally, opposed to the previous patterns, the tunnel is a high reliability messaging
primitive. It provides the very same guarantees that a transport layer TCP connection
does: as long as the connection is alive, the messages are guaranteed to be delivered
eventually and in the same order as sent. Besides ordering, the data flow is also throttled
to prevent overloading the recipient.

4. Overlay network

The Iris overlay adopts a fully decentralized peer-to-peer model, where – given the one
messaging node per host constraint – each participant has equal responsibilities. To achieve
the desired messaging patterns, it builds application clusters based on the multi-cast trees
formed by Scribe [7], which in turn are based on the routing paths of Pastry [16].

Iris decentralized messaging 555

4.1. Foundations: Pastry and Scribe

Pastry is a generic, efficient, scalable, fault resilient, and self-organizing peer-to-peer sub-
strate [6], forming a highly robust distributed hash table (DHT). The goal of the Pastry
DHT is that, given a message and an associated routing key, to deliver the message to that
specific network participant, whose node identifier is numerically closest to the key itself.

To achieve this, each participating node is assigned a unique, uniform random node id,
taken from a circular, 128-bit identifier space. Each node is then considered responsible
for the slice of the id space circularly the closest to it. Furthermore, each node main-
tains a local routing state: Leaf-set (numerically closest peers), Routing table (peers with
matching prefixes of 1..N digits) and Neighborhood (physically closest peers).

Given the above routing state information, at each routing step a node checks the
common prefix (length l) of the message’s routing key with its own node id, and then
selects a node from its routing table which shares at least l + 1 digits with the message.
If such a node is not present within the routing table, the leaf-set is consulted and the
numerically closest peer receives the message. If according to the leaf-set, the current
node is the closest, the message is delivered upstream for higher level processing (Fig. 3).

Of course, Pastry achieves self-organization by dynamically maintaining the routing
state within each node, these synchronizing between each other whenever a churn event
is detected (a node joins or leaves). For such fine grained details about the protocol we
refer the reader to the original paper [16].

00 ... 011 ... 1

65a1fc

d13da3

d462ba

d467c4
d46a1c

d46a1c

d46a1c func route(dest, message) {
l := prefix(self, dest)
d := digit(dest, l + 1)
if peer := routes[l][d]; peer != nil {
send(peer, dest, message)

} else if leaves[0] < dest < leaves[last] {
peer := closest(leaves, dest)
if peer != self {
send(peer, dest, message)

} else {
deliver(dest, message)

}
}

}

Fig. 3. Pastry routing algorithm and example. A message with the routing key d46a1c is forwarded
from node 65a1fc towards its destination. The message is prefix routed, decreasing the distance
from its destination exponentially in each step. At the very last step no longer matching prefix is
found, so the leaf-set is consulted and the message delivered to its final destination.

Pastry was originally conceived for internet-scale networks. However, in our pro-
posed messaging scenario we assume that a service is running in its entirety within one
data center7, due to which two modifications were made. Firstly, the concepts of prox-
imity and associated neighborhood set were removed, since within a single cloud the
latency/bandwidth differences between links are not significant enough to warrant the
complexity. Secondly, with the reduced node count of back-end services – in the range of
hundreds – an ID space of 128-bits leaves the routing tables mostly empty. It should thus

7 It will be the responsibility of a federation to span data centers.

556 Péter Szilágyi

be reduced as much as possible, while keeping the probability of a random ID collision
insignificant. According to the birthday paradox [9], a 40-bit ID space S for 10K nodes
N results in a collision probability p(N,S) of 4.5483× 10−5.

p(N,S) = 1− e−N2/(2S)

Scribe is a decentralized, scalable application-level multicast infrastructure, built on
top of the Pastry overlay [7]. The goal of Scribe is to allow nodes to create groups, which
can then be joined/subscribed by any peer within the network. Messages sent to these
groups are delivered to all members.

To achieve this, whenever a node wishes to create a new group, the name of the group
is mapped to a Pastry identifier, after which Scribe uses Pastry to route a create message to
the node responsible for that specific ID, which implicitly assigns the group to the specific
node. This node will assume responsibility for it, becoming the group’s rendez-vous point
(Fig. 4a).

After group creation, any participant of the Scribe network can become a member of
the group by routing a join message towards the group’s rendez-vous point. Opposed to
the create message, the join is not forwarded blindly between nodes, but instead each node
along the path to the group owner maintains a local subscription list, and if the current
node is already part of the group, then the new node will be attached to it. If the traversed
node is not a member of the group, it will create a new local subscription, terminate the
arrived join, and initiate a new join itself. This procedure will create a tree structure for
every group, rooted at the rendez-vous point (Fig. 4b).

join
<<hash>>

join
<<name>>

md5

join
<<hash>>

join
<<name>>

md5
R

send
<<group>>
<<msg>>

md5

R

create
<<name>>

create
<<hash>>

md5

created
<<hash>>

R

Create (a) (b) Join
(d) Deliver

R

deliver
<<msg>>

deliver
<<msg>>send

<<hasg>>
<<msg>>

Send (c)

Fig. 4. Scribe group operations.

Given the freshly built subscription tree, whenever a message is to be disseminated to
the group members, it is first routed to the group’s rendez-vous point, which will initiate

Iris decentralized messaging 557

a distribution along the edges of the tree, from parent to child, each internal node of the
tree in its turn also forwarding the message to its children (Fig. 4c & 4d).

Since Scribe was conceived for public peer-to-peer networks, it contains an underly-
ing credential system to limit group membership and communication to authorized enti-
ties only. The proposed system uses a different authentication mechanism [22], whereby
a successful connection already pertains the granting of full privileges. Removing the
credential sub-system makes group creation redundant, since group joining will already
entail all the necessary steps. Due to the same reason, during content distribution, the mes-
sages do not necessarily have to reach the root node before dissemination can begin: any
subscriber receiving such a message can immediately begin distributing to both children
and parent, saving valuable network hops.

4.2. Iris overlay

Iris is a decentralized, application-scope, group communication platform, built on top of
modified Scribe and Pastry protocols. The goal of Iris is to implement a batch of high
level messaging primitives to simplify the distributed communication among nodes in a
back-end service.

Cluster formation and teardown As defined in section 3.1, the cluster is the smallest
unit of composition in the Iris platform. Whenever an application wishes to communicate
through Iris, it must first become a member of a cluster. Hence the first step in the life of
an Iris application is joining – possibly by creating – such a cluster.

Cluster formation and membership management are based on the Scribe multi-cast
groups. Whenever an application requests to join a cluster with a given name, Iris maps
that cluster name to a Scribe group name by prepending a tag to it. The goal of the tag
is to differentiate between other types of Scribe groups. After tagging the name, a Scribe
join is initiated, turning the node a member of the requested group, implicitly creating the
group if non-existent.

When the application finishes using the Iris network, it issues a close request, leaving
the joined cluster. After the same cluster to group mapping, a Scribe leave is initiated,
removing the application from the group subscription tree. If a node’s local subscriptions
all terminate, the node itself leaves the group, cascading until either a live member remains
or the whole group is torn down.

Messaging primitives The simplest communication pattern is the cluster broadcast,
specifically because Scribe already provides it out of the box. When an application broad-
casts a message to a cluster, Iris first resolves the Scribe group name of the cluster, after
which it delegates message distribution to the Scribe protocol according to its multi-cast
subscription tree (Fig. 4c & 4d).

Request/replies are a little more tricky. The core concept is the same as with broad-
cast: Iris resolves the Scribe group name and issues a Scribe delivery. But opposed to the
previous scenario, the message must be delivered to a single recipient. To achieve this,
the message is routed towards the group rendez-vous point, but after entering the multi-
cast tree it is not simply distributed to all sub-trees, but rather at every group member, a
decision is made. Each member maintains the load balancing state of itself and all local

558 Péter Szilágyi

subtrees. An outstanding request is either delivered to a locally available cluster member,
or routed on a single path to a subtree (details at the end of the section). When the request
is finally delivered to a node and processed, the reply is routed back to the sender using
the Pastry DHT directly.

The tunnel primitive is assembled through a combination of the previous request/reply
pattern and direct usage of the Pastry network. When a tunneling request is made to a
member of a cluster, that request is delivered the same way as a normal request. However,
upon arrival, the remote side replies with its own Pastry address. At this point both parties
have obtained each other’s Pastry identifier and can communicate directly through the
DHT. The tunnel is assembled using the same concepts as a TCP stream: each side is
assigned a tunnel id (incremental throughout the lifetime of the node) and each packet
assigned a sequence id. With these two information, any packet can be reliably delivered
to the correct tunnel endpoint in the correct order. To prevent overloading a peer, each
tunnel has a throttling mechanism, whereby each packet requires an acknowledgment
from the remote side, allowing only a limited number of un-acked packages to be sent.

The last pattern, the publish/subscribe, is based on the same exact principle as the
broadcast. The difference is that topic names are mapped to a separate set of Scribe groups
than clusters by using a different prepended tag. This ensures that cluster and topic names
will never collide with each other. Additionally, opposed to clusters, applications have to
manually subscribe to topics, but can be subscribed to an unlimited number of then.

Split clustering Although the Scribe multi-cast trees supporting the Iris clusters are de-
centralized, since all inbound messages target the root of the tree for distribution, this root
node can become a significant bottleneck.

Iris circumvents this issue by introducing split clustering. Instead of relying on a sin-
gle Scribe multi-cast tree, every cluster and topic internally uses a number of Scribe
groups simultaneously (simply adding a second tag to the name). Whenever a message
enters the system, a sub-cluster is chosen using round-robin for delivery, ensuring that
consecutive messages take different paths (Fig. 5).

A B

C

D

E

Cluster: db db#1

A

B

C

D

E

db#2

A

B C

D E C

E

D

A

B

db#3

Fig. 5. A single Iris cluster split into multiple Scribe groups. On the left, the Pastry DHT can be
seen with the green circles being part of an Iris group. On the right, these same few nodes can form
a number of different Scribe multi-cast trees, each time with a different group rendez-vous point.
Note, additional intermediary nodes may be part of these trees, but were not displayed to prevent
clutter.

Iris decentralized messaging 559

Load balancing As mentioned in the previous section, using the request/reply scheme,
the framework is expected to load balance messages between all possible destinations
that could handle them. In order to see how this might be accomplished, it is important to
observe the internal state of the system, more specifically, that of an Iris cluster.

An Iris cluster – implemented by a Scribe group – is a rooted multi-cast tree, where
each node within the tree has knowledge only about its direct children and parent. This
conceptual separation, that some neighboring nodes are children and one is the parent,
is essential for maintaining the tree structure, but irrelevant otherwise. Thus, from a load
balancing standpoint, each node can be considered the root of a tree, where each child
is a subtree of the original cluster (Fig. 6). This abstraction permits a uniform balancing
algorithm for all nodes, without needing specialized logic for different parts of a tree.

R

X R

X

Global view Local view

Fig. 6. Different views of the cluster. The global view is how the multi-cast tree really looks like in
the network, but the local view is how an internal node sees the tree from a balancing standpoint.

With the above abstraction, the load balancing mechanism boils down to a greedy
algorithm, where each node, upon receiving a request, decides whether to deliver it to a
locally attached client application, or route it down to one of its local subtrees (except the
one from which the message originates).

The logic which decides on the exact subtree to forward a request to is based on the
dynamic weighed round-robin algorithm. The core concept of the round-robin algorithm
is to issue every request to a different entity; but since these entities – subtrees in the cur-
rent scenario – are wildly heterogeneous, specific weights are assigned to each, ensuring
that the number of requests are proportional to the total available computing capacity of
the subtree. Additionally, the capacities of each subtree can vary over time due to new
nodes arriving, old ones leaving, or simply by experiencing an unrelated load on certain
members. To cater for these dynamic scenarios, the nodes periodically exchange capac-
ity information between neighbors, ensuring that each node has a local estimate of the
capabilities of each of its neighboring subtrees.

Although this mechanism is very robust, it suffers from two weaknesses. Firstly, re-
quests are passed on each link in both directions due to the greedy decision making. But
each request matched by another – flowing in the opposite direction – could have been
avoided in the first place. A theoretical solution would be a predictive algorithm, but in the
presence of sporadic bursts, such an algorithm causes massive congestions. Furthermore,
the effect of this weakness is only visible if the transfer of the data is more expensive that
it’s processing.

560 Péter Szilágyi

The other weakness is in the capacity estimation, which at the moment is based on the
number of requests processed at the present load since the last periodic capacity exchange.
If the time required to process a request comes close to or goes over this cycle, the load
balancer will become random. Still, given the use case of back-end services, this should
occur rarely and only during serious system overloads.

5. Preliminary evaluation

To analyze the performance of the suggested Iris overlay, a prototype8 was implemented
in the Go programming language and benchmarks executed in two different environments:

• For computational performance measurements, a single machine with dual Intel Xeon
E5-2687W processors and 64GB of memory was used, with all messaging passing
running through localhost.

• For scalability measurement, a small physical cluster of 12 machines, each containing
two dual code AMD Opteron 275 processors and 4GB system memory was used, with
all messaging passing through a 1 Gigabit network.

5.1. Request/reply performance and scalability

The computational broadcast benchmarks were run by starting 4 Iris nodes on the Xeon
machine, with one client application attached to each. The clients formed two clusters,
two in each. Furthermore, each client was a simple echo service (i.e. responds with the
request itself).

To measure the performance, each cluster started issuing requests of a given size to
the other, loading the system until saturation. At that point the load was kept up for 30
seconds and the throughput measured. Afterwards the system stepped to the next message
size and repeated the procedure. The results were plotted on Fig. 7.

2 <­> 2 request/reply rate
Requests Bandwidth

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

1,000

10,000

0.1

1

10

100

1,000

Request size (bytes)

Th
ro
ug
hp
ut
 (r
eq
ue
st
s
/ s
ec
)

Th
ro
ug
hp
ut
 (m

eg
ab
yt
es
 /
se
c)

Fig. 7. Request/reply performance evaluation. Blue designates the requests served by the whole
system while the red the payload bandwidth.

8 Publicly available at http://iris.karalabe.com

http://iris.karalabe.com

Iris decentralized messaging 561

As seen from the above chart, the system reaches a remarkable switching capacity,
capping at around 50 thousand requests per second (100 thousand messages counting the
replies). Looking at the bandwidth, the useful data throughput caps at over 900MB/s. It
is important to emphasize that this performance is achieved with 128-bit AES encryption
included between nodes [22].

For the scalability benchmark the same echo service model was used, but each ma-
chine ran a single client application and one Iris node. This benchmark was ran for sys-
tems of gradually increasing sizes from 2 to 12 hosts, and the same metrics collected.

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

100

1000

10000

Request size (bytes)

T
hr

ou
gh

pu
t (

re
qu

es
ts

 /
se

c)

Fig. 8. Globally served requests.

The scalability results look very promising, with additional nodes linearly increasing
the overall system throughput (Fig. 8): two nodes have capped at around 12 thousand
requests per second and each additional pair increased this by 6K, reaching 46 thousand
requests (92 thousand messages) for the full 12 nodes.

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

0.001

0.01

0.1

1

Request size (bytes)

T
hr

ou
gh

pu
t (

G
bi

t /
 s

ec
)

Fig. 9. Globally useful bandwidth (request + reply).

Looking at the data-rate chart (Fig. 9), the most interesting part is the bandwidth cap,
which for 12 nodes is at around 2.1Gbits/sec. Since each node had a 1 Gigabit network
connection, the theoretical maximum throughput is 6Gbits/sec. This means that – ignoring
system messages and headers – each data packet traversed an average 2.85 network hops.

562 Péter Szilágyi

This hop count is not caused by the overlay network, but rather the inferior load balancer
currently implemented.

5.2. Broadcast performance and scalability

To benchmark the broadcast operation, the same environmental setup was used as in the
request tests: a number of clients form the Iris network, half joining one cluster and the
other half another. The clients then started broadcasting all of the members of the opposite
group.

As previously, the performance benchmarks were ran on the Xeon machine and the
scalability benchmarks on the AMD cluster, plotting the delivered message and payload
data-rates on Fig. 10 and Figs. 11, 12 respectively.

2 <­> 2 broadcast rate
Broadcasts Bandwidth

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

1,000

10,000

100,000

0.1

1

10

100

1,000

Message size (bytes)

Th
ro
ug
hp
ut
 (b
ro
ad
ca
st
s
/ s
ec
)

Th
ro
ug
hp
ut
 (m

eg
ab
yt
es
 /
se
c)

Fig. 10. Broadcast performance evaluation. Blue designates the delivered broadcasts by the whole
system while the red the payload bandwidth. Note, these are twice as many as initiated since each
has two recipients.

An important observation is a regression in both maximal request throughput as well
as bandwidth cap. The system was able to deliver 80 thousand messages only (20% lower
than using requests), and has also peaked at approx. 475MB/s throughput (down from
900MB/s).

We consider two explanations probable: since the network is very small – consisting of
only 4 nodes – requests almost always get delivered to the right place, but broadcasts need
to traverse the Scribe multi-cast tree. One additional hop per broadcast would be enough
to halve the maximal data-rate. Another possible explanations is within the implementa-
tion details of the broadcast, namely that the handling of broadcast messages has higher
memory costs both size and operation wise. Since the single machine is saturated already,
extra memory allocations and copies could have an adverse effect on performance.

Looking at the scalability charts (Fig. 11), the most pleasant thing to notice, is that
the total message switching capacity of the system is the same as in the request/reply
benchmarks. This leads to the presumption that the above noticed regression may be a
benchmark anomaly and not a real issue. Still, further experiments are needed to confirm
one or the other.

Iris decentralized messaging 563

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

100

1000

10000

Message size (bytes)

T
hr

ou
gh

pu
t (

br
oa

dc
as

ts
 /

se
c)

Fig. 11. Globally delivered broadcasts.

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536
262144

1048576

0.001

0.01

0.1

1

Message size (bytes)

T
hr

ou
gh

pu
t (

G
bi

t /
 s

ec
)

Fig. 12. Globally useful bandwidth.

On the data-rate side (Fig. 12) again we have positive results: not only did the anomaly
noticed earlier disappear, but the system reached an overall data throughput of over 2.6
Gbits/s, reducing the average hop count to 2.3 per message.

At closer look, there is a small inflection on the data-rate chart when broadcasting
large messages. This is deemed to be caused by a limitation of the benchmark and not
the system itself and is only seen due to a combination of the AMD machines reaching
their processing limits and the network being saturated simultaneously. The net effect is
pulsating broadcasts, alternating between overload and starvation.

5.3. Tunnel performance and scalability

The tunnel benchmarks use the same environmental setup: a number of clients form the
Iris network, out of which half join one cluster and the other half the other. Each node
will then establish a tunnel into the opposite cluster and will stream messages.

It must be noted however, that this benchmark is not accurate. The problem is that
these tunnels will not be distributed evenly between the nodes forming the two clus-
ters, and because of that, overloaded nodes will produce significant delays. This could be
avoided with more sophisticated benchmarks, but that would require a production quality
overlay implementation.

564 Péter Szilágyi

As previously, the performance benchmarks were executed on the Xeon machine (Fig.
13). Skipping the wobbly effect cause by the aforementioned anomaly, we can observe a
staggering throughput regression compared to previous messaging patterns. The highest
rate achieved was 36–40 thousand messages per second, half of previous speeds.

The cause however lies within the implementation of the tunnel: to achieve ordered
and throttled delivery, all messages need to be acked, which in effect matches each data
packet with a system packet. The result is, that for 40K data message, the system passes
80K messages in total. This means, that for small messages, a tunnel is limited by the
system noise.

2 <­> 2 tunnel data rate
Messages Bandwidth

1
4

16
64

256
1024

4096
16384

65536

10,000

50,000

0.1

1

10

100

1,000

Message size (bytes)

Th
ro
ug
hp
ut
 (m

es
sa
ge
s
/ s
ec
)

Th
ro
ug
hp
ut
 (m

eg
ab
yt
es
 /
se
c)

Fig. 13. Tunnel performance evaluation. The blue line is the total number of messages transferred
through tunnels whilst the red is the useful payload bandwidth.

Looking at larger messages, we can see this issue alleviated a bit, with only 30%
performance loss compared to the asynchronous message patterns, capping at around
500MB/s compared to the requests’ 762MB/s.

The message throughput plot on the scalability charts (Fig. 14) presents both good
and bad news. The good is, that – as expected – the tunnel primitive too scales linearly
with the number of added nodes. The bad however, that the benchmark anomaly is getting
worse with each added node.

Plotting the scalability data throughput (Fig. 15) tells a similar story to the perfor-
mance benchmarks, that tunnels suffer a 36% performance loss compared to the re-
quests, with the total useful bandwidth reaching 1.6Gbits/sec for 12 nodes compared to
2.2Gbits/sec.

The moral of the tunnel benchmarks is that the current ack-ing implementation has a
serious hit on total system performance. The proposed exploration points are prioritized
system messages, the splitting of larger messages into smaller manageable chunks to pre-
vent clogging up network links and even a completely new tunnel implementation based
on Iris requests and lower level direct TCP links.

The final scheme, the publish/subscribe has the exact same implementation internally
as the broadcasts (from the message passing point of view) and hence are expected to
perform identically. Due to space limitations, these have not been separately plotted and
analyzed.

Iris decentralized messaging 565

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536

1000

10000

Message size (bytes)

T
hr

ou
gh

pu
t (

m
es

sa
ge

s
/ s

ec
)

Fig. 14. Globally transferred messages.

2 nodes

4 nodes

6 nodes

8 nodes

10 nodes

12 nodes

1
4

16
64

256
1024

4096
16384

65536

0.0001

0.001

0.01

0.1

1

Message size (bytes)

T
hr

ou
gh

pu
t (

G
bi

t /
 s

ec
)

Fig. 15. Globally useful bandwidth.

6. Conclusions

This paper presented the design of the Iris decentralized group communication infrastruc-
ture based on the Scribe multi-cast protocol and the Pastry distributed hash table. The
proposed overlay introduced a novel concept where clusters of nodes are considered the
unit of composition, supporting four communication primitives: request/reply, broadcast,
tunnel and publish/subscribe. These, combined with the framework’s zero configuration
nature, result in a significantly simplified approach to implementing decentralized back-
end services.

To support the design, a preliminary evaluation was executed using a prototype imple-
mentation. Through the obtained results we conclude, that the Iris decentralization model
looks very promising, reaching a simplicity yet scalability beyond previous messaging
attempts. A further case study has also been carried out, assembling a decentralized ray-
tracer using the Iris system. Due to space limitations, this experiment can be found as
supplementary material on the Iris project’s website9.

The model presented in the paper supports a single decentralized, back-end service. It
is important to emphasize that these distributed systems can be composed to create an even
larger ecosystem of intercommunicating services. Depending on the desired goal, these

9 http://iris.karalabe.com/papers

http://iris.karalabe.com/papers

566 Péter Szilágyi

ecosystems can be achieved using two models. Tightly coupled services could be feder-
ated across data centers for availability and location considerations using direct links be-
tween services and having gateway nodes relay messages between them. Or more loosely
coupled ones could be assembled into a cloud of services using a super-peer architecture
[4], creating a Platform-as-a-Service middleware. Each of these models, however, poses
significant new challenges and thus are the next steps in the Iris research project.

Acknowledgments. The research was partially carried out as part of the EITKIC 12-1-2012-0001
project, which is supported by the Hungarian Government, managed by the National Development
Agency, financed by the Research and Technology Innovation Fund and was performed in cooper-
ation with the EIT ICT Labs Budapest Associate Partner Group.
This research is partially supported from the project POSDRU/88/ 1.5/S/60185 Innovative doc-
toral studies in a Knowledge Based Society PhD scholarship, Project co-financed by the SEC-
TORAL OPERATIONAL PROGRAM FOR HUMAN RESOURCES DEVELOPMENT 2007 -
2013, Babeş-Bolyai University, Cluj-Napoca, Romania.

References

1. Akkoyunlu, E., Ekanadham, K., Huber, R.: Some constraints and tradeoffs in the design of
network communications. ACM SIGOPS Operating . . . pp. 67–74 (1975), http://dl.acm.
org/citation.cfm?id=806523

2. Banavar, G., Chandra, T., Strom, R., Sturman, D.: A case for message oriented middleware.
Lecture Notes in Computer Science, Distributed Computing 1693, 1–17 (1999), http://
link.springer.com/chapter/10.1007/3-540-48169-9_1

3. Berman, S., Kesterson-Townes, L., Marshall, A., Srivathsa, R.: The power of
cloud: Driving business model innovation. Tech. rep., IBM Global Business Ser-
vices (2011), http://www.ibm.com/cloud-computing/us/en/assets/
power-of-cloud-for-bus-model-innovation.pdf

4. Beverly Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings
19th International Conference on Data Engineering (Cat. No.03CH37405). pp. 49–60.
IEEE (2003), http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1260781

5. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems. In: 11th ACM
Symposium on Operating systems principles. pp. 123–138. ACM New York, NY, USA (1987),
http://dl.acm.org/citation.cfm?id=37515

6. Castro, M., Druschel, P., Hu, Y.C., Rowstron, A.: Exploiting network proximity
in peer-to-peer overlay networks. Tech. Rep. MSR-TR-2002-82, Microsoft Research
(2002), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
71.7902&rep=rep1&type=pdf

7. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale
and decentralized application-level multicast infrastructure. Selected Areas in Communi-
cations 20(8), 100–110 (2002), http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=1038579

8. Curry, E.: Message-oriented middleware. In: Middleware for communications, chap. 1. John
Wiley & Sons, Ltd, Chichester, UK (2005)

9. Girault, M., Cohen, R., Campana, M.: A generalized birthday attack. Advances in Cryptol-
ogy - Eurocrypt ’88 pp. 129–156 (1988), http://link.springer.com/chapter/
10.1007/3-540-45961-8_12

10. Hintjens, P.: What is wrong with AMQP (and how to fix it). Tech. rep. (2008), http://www.
imatix.com/articles:whats-wrong-with-amqp

http://dl.acm.org/citation.cfm?id=806523
http://dl.acm.org/citation.cfm?id=806523
http://link.springer.com/chapter/10.1007/3-540-48169-9_1
http://link.springer.com/chapter/10.1007/3-540-48169-9_1
http://www.ibm.com/cloud-computing/us/en/assets/power-of-cloud-for-bus-model-innovation.pdf
http://www.ibm.com/cloud-computing/us/en/assets/power-of-cloud-for-bus-model-innovation.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1260781
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1260781
http://dl.acm.org/citation.cfm?id=37515
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.7902&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.7902&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1038579
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1038579
http://link.springer.com/chapter/10.1007/3-540-45961-8_12
http://link.springer.com/chapter/10.1007/3-540-45961-8_12
http://www.imatix.com/articles:whats-wrong-with-amqp
http://www.imatix.com/articles:whats-wrong-with-amqp

Iris decentralized messaging 567

11. IMatix Corporation: Multithreaded Magic with ØMQ. Tech. rep. (2010), http://zeromq.
wdfiles.com/local--files/whitepapers%3Amultithreading-magic/
imatix-multithreaded-magic.pdf

12. Innovations, R.T.: RTI Connext (2012)
13. Mell, P., Grance, T.: The NIST Definition of Cloud Computing, Recommendations of the

National Institute of Standards and Technolog. National Institute of Standards and Tech-
nology (2011), http://csrc.nist.gov/publications/nistpubs/800-145/
SP800-145.pdf

14. Oasis: Advanced Message Queuing Protocol Specification - Version 1.0. Tech.
Rep. October (2012), http://docs.oasis-open.org/amqp/core/v1.0/
amqp-core-complete-v1.0.pdf

15. OMG: Data distribution service for real-time systems - Version 1.2. Tech. Rep. Jan-
uary (2007), http://kurser.iha.dk/ee-ict-master/timico/slides/2012_
Fischer_DDS_Slides.pdf

16. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for
large-scale peer-to-peer systems. Middleware 2001 (November 2001) (2001), http://
link.springer.com/chapter/10.1007/3-540-45518-3_18

17. Schneider, S., Farabaugh, B.: Is DDS for You? A Whitepaper by Real-Time Innovations (April)
(2009), http://omg.org/news/whitepapers/IsDDS4U.pdf

18. Sústrik, M.: Broker vs. Brokerless. Tech. rep., iMatix (2008), http://zeromq.org/
whitepapers:brokerless

19. Sústrik, M.: ØMQ: The Theoretical Foundation (2011), http://250bpm.com/concepts
20. Szilágyi, P.: ErlHop: Erlang Hosting Platform. Achieving Dynamic Scalability and

Load Balancing on a Cloud Architecture. Masters, Babes-Bolyai University (2010),
https://dl.dropboxusercontent.com/u/10435909/Documents/Theses/
MSc-ErlangHostingPlatform.pdf

21. Szilágyi, P.: Decentralized bootstrapping in clouds. In: 10th Jubilee International Symposium
on Intelligent Systems and Informatics. pp. 277–281. IEEE, Subotica (Sep 2012), http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6339529

22. Szilágyi, P.: Securing communication in a peer-to-peer messaging middleware. In: 15th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE,
Timisoara, Romania (2013)

23. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms (2nd Edition).
Prentice Hall, 2 edn. (2006)

24. Vinoski, S.: Advanced message queuing protocol. Internet Computing, IEEE (December),
87–89 (2006), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=
4012603

Péter Szilágyi is currently finalizing his PhD studies at the Eötvös Loránd University in
Budapest and Babeş-Bolyai University in Cluj, while also being enrolled as a business
student of the European Institute for Innovation and Technology. At the moment he’s
focused on simplifying the development of backend services through the Iris project, and
the launch of a public demo service on top of it, called RegionRank.

Received: August 23, 2013; Accepted: January 10, 2014.

http://zeromq.wdfiles.com/local--files/whitepapers%3Amultithreading-magic/imatix-multithreaded-magic.pdf
http://zeromq.wdfiles.com/local--files/whitepapers%3Amultithreading-magic/imatix-multithreaded-magic.pdf
http://zeromq.wdfiles.com/local--files/whitepapers%3Amultithreading-magic/imatix-multithreaded-magic.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://kurser.iha.dk/ee-ict-master/timico/slides/2012_Fischer_DDS_Slides.pdf
http://kurser.iha.dk/ee-ict-master/timico/slides/2012_Fischer_DDS_Slides.pdf
http://link.springer.com/chapter/10.1007/3-540-45518-3_18
http://link.springer.com/chapter/10.1007/3-540-45518-3_18
http://omg.org/news/whitepapers/IsDDS4U.pdf
http://zeromq.org/whitepapers:brokerless
http://zeromq.org/whitepapers:brokerless
http://250bpm.com/concepts
https://dl.dropboxusercontent.com/u/10435909/Documents/Theses/MSc - Erlang Hosting Platform.pdf
https://dl.dropboxusercontent.com/u/10435909/Documents/Theses/MSc - Erlang Hosting Platform.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6339529
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6339529
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4012603
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4012603

	Introduction
	State of the art
	Proposed abstractions
	Distribution model and unit of composition
	Communication patterns
	Reliability guarantees

	Overlay network
	Foundations: Pastry and Scribe
	Iris overlay
	Cluster formation and teardown
	Messaging primitives
	Split clustering
	Load balancing

	Preliminary evaluation
	Request/reply performance and scalability
	Broadcast performance and scalability
	Tunnel performance and scalability

	Conclusions

