
Computer Science and Information Systems 11(2):645–664 DOI: 10.2298/CSIS130824025P

A Question-Based Design Pattern Advisement Approach

Luka Pavlič, Vili Podgorelec, and Marjan Heričko

Faculty of Electrical Engineering and Computer Science, University of Maribor

2000 Maribor, Slovenia

{luka.pavlic, vili.podgorelec, marjan.hericko}@uni-mb.si

Abstract. Design patterns are a proven way to build flexible software

architectures. But the selection of an appropriate design pattern is a difficult task

in practice, particularly for less experienced developers. In this paper, a

question-based design pattern advisement approach will be proposed. This

approach primarily assists developers in identifying and selecting the most

suitable design pattern for a given problem. We will also propose certain

extensions to the existing Object-Oriented Design Ontology (ODOL). In addition

to the advisement procedure, a new design pattern advisement ontology will be

defined. We have also developed a tool that supports the proposed ontology and

question-based advisement (OQBA) approach. The conducted controlled

experiment and two surveys have shown that the proposed approach is beneficial

to all software developers, especially to those who have less experience with

design patterns.

Keywords: design patterns, pattern selection, ontology, semantic web, selection

algorithm.

1. Introduction

One of the basic characteristics of any engineering discipline is that new systems are

built and developed from existing, already proven reusable elements using well known

approaches and best practices. Reuse has become an essential and important strategy -

also in the area of software and information systems development. The reuse of

concrete assets and software elements such as functions, classes and components has

already been well established and continues to be practiced on a daily basis. Attention

should also be placed to reuse at higher levels of abstraction i.e. to software patterns. A

pattern is a form of knowledge for capturing a recurring successful practice [1]. Design

patterns capture the best practices for solving recurring software design problems.

They explicitly capture knowledge that experienced developers understand implicitly

and facilitate training and knowledge transfer to new developers [2]. A survey

conducted by the Microsoft Patterns and Practice Group [3] indicated a low adoption of

design patterns among practitioners: respondents estimated that no more than half of

the developers and architects in their organization use software patterns. Therefore,

bridging the gap between expert design pattern communities and the typical design

pattern user is critical for achieving the full benefits of design patterns [4].

646 Luka Pavlič et al.

In [5] we can find an observation that it might be difficult to find a suitable design

pattern even in a catalogue such as the GoF (Gang Of Four) Design Pattern Catalogue

– with no more than 24 patterns. Several hundred software patterns have already been

published. The Pattern Almanac [6] published in 2000, provided a list of over 700

previously published patterns organized into 70 categories. Since then the number of

software patterns and catalogues has increased significantly. Consequently, software

developers have been experiencing more and more problems identifying appropriate

catalogues and finding patterns that match their design problems. Useful patterns

might easily be overlooked. That is why a manual identification and application of

patterns is not efficient enough. For the efficient identification and selection of suitable

design patterns, automated support is of critical importance.

There were some efforts within the research community to automate the application

of design patterns [7,8,9]. Mainly these efforts were focused on code generation and

the identification of design patterns in existing designs and/or source code and less on

the selection of suitable design patterns. Although it is not reasonable to believe that

the responsibility for selecting design patterns will be completely delegated to tools,

they could provide at least some advice for design pattern(s), which may be potentially

useful in a given situation. In order to be able to develop and provide efficient

automated tools, we need an adequate design pattern description approach. An

appropriate knowledge representation technique should be computer-readable, based

on standard technologies, extendable and relatively simple for developers to work with.

Consequently, the main focus and aim of this work is twofold:

 To define a means for capturing information and knowledge on design patterns in a

form that would enable a computer to process and use it in a more intelligent way

whilst also keeping it readable for humans.

 To provide assistance for software developers searching for an appropriate design

pattern for a given design problem.

The main idea of the proposed question-based approach originates from our

undergraduate course on software design patterns. Our students are taught how to

identify suitable design patterns and/or choose the most appropriate one when they are

unsure about two or more design patterns (e.g. whether to use the Adapter or Façade

pattern). In order to select the most appropriate design pattern some questions -- such

as those presented in Table 1 -- have proven to be helpful.

Table 1. Sample "recipe" on how to differentiate the applicability of two design patterns

Question

Could the necessary functionality be found in the existing

classes?

Yes Yes

Do we need a simpler interface for existing classes? Yes No

Is there a predefined interface that a class under development

should be compliant with?

No Yes

Are class objects expected to demonstrate polymorphic

behaviour?

No Probably

Do we want to change the way of how existing functionalities are

used?

Yes No

Possible solution Facade Adapter

 A Question-Based Design Pattern Advisement Approach 647

Figure 1 shows the holistic view of the proposed Ontology and Question-Based

Advisement (OQBA) approach. An ontology-based technique is used to represent

knowledge on design patterns, catalogues, pattern containers and pairs of

questions/answers used for reasoning regarding a suitable pattern for a particular

design problem. This design-pattern expert knowledge, gathered in the Ontology-

Based Design Pattern Repository, is then used for guiding the question/answer

interaction with the developer in order to identify and propose a suitable design

pattern, as well as to verify its applicability for a given situation.

Fig. 1. The holistic view of the proposed OQBA approach

The approach presented in this paper is focused on object-oriented design patterns.

To show the benefits, we experimented with the GoF design patterns catalogue, since

even catalogues with few patterns proved to be problematic when identifying the most

suitable pattern[5]. At the moment we cannot claim the approach to be general to all

software patterns. However, it is our belief that a primary idea of question-based

advisement approach could eventually be used also for other software patterns.

However for that it would be necessary to formalize additional concepts and

relationships that are specific to other software patterns groups.

This paper is organized as follows: An overview of related work and research is

given in the second section. The third section discusses problems related to design

pattern descriptions and presents our extensions to an existing ODOL ontology

(Object-Oriented Design Ontology). It also introduces a new ontology named DPAO

(Design Pattern Advisement Ontology). Section four gives a general description of the

proposed question-based approach and presents algorithms for assessing the usability

of patterns. In addition, the advisement procedure as it is implemented in the DPEX

(Design Pattern Expert) tool is introduced. The description of the conducted surveys

and experiment with their results are given in the fifth section. Finally, some

concluding remarks and directions for future work will be presented.

648 Luka Pavlič et al.

2. Related Work

Kung et al. [4] presented a five-step methodology for constructing an expert system is

presented that suggests design patterns to solve a design problem. The focus is on the

collection and analysis of knowledge on patterns in order to formulate questions,

threshold values and rules to be used by an expert shell. A prototype of the Rule-Based

tool (for a subset of GoF patterns) was developed. It selects the design pattern through

dialogue with the software designer to narrow down the choices. A preliminary

evaluation of the proposed methodology was done on a group of ten students. The focus

of the experiment was not on evaluating the efficiency of a tool in finding a solution

for a given problem situation. Rather it was aimed at proving that, with a known

design pattern, a tool would lead the user to a suitable suggestion or solution.

Therefore, the focus was on verifying that a tool would confirm the suitability of a

particular design pattern. Our approach is different: we want to suggest which design

pattern might be useful in given context.

Gomes et al. [10] introduced similar approach that is based on Case-Based

Reasoning (CBR) and lexical database WordNet [10]. The approach is based on the

idea that a system can learn to select and to apply design patterns if it can store and

reuse knowledge on pattern usage experience. An application of a specific pattern to a

specific software design is represented in the form of a design pattern application

(DPA) case. A DPA case describes a specific situation where a software design pattern

was applied to a class diagram. Our approach does not require a developer to prepare a

model first. The information needed to identify a suitable solution is gathered using a

guided dialogue, where a developer provides information on problem characteristics by

choosing items from the lists of available answers.

Birukuo et al. [11] proposed a multi-agent system that supports collaboration

between developers in order to chose the suitable design pattern for a given problem.

Suggestions are made using experiences from a group of developers who were

previously faced with a similar problem. The problem for which an appropriate pattern

is searched for is described using a “bag of words” approach as a sequence of terms.

Having a vector that maps these terms to a vocabulary of all terms, a search for

patterns can be initiated at all agent nodes. The approach assumes that the developers

will provide a textual description of the problem. Their work could be seen as a

complementary approach to ours – in the case that our approach would not result in a

suitable recommendation, a term vector could be automatically formed and used as an

input to their system.

Ontologies have already been successfully used to describe design patterns within

the scope of the ”Web of Patterns“ (WoP) project [8]. The main goals of the WoP

project were (1) to define an ontology with which object-oriented models could be

described, (2) to describe design patterns, anti-patterns and refactorings and (3) to

develop tools based on this ontology which would be useful for software engineers. The

main focus of the project was on finding pattern instances in Java projects as well as on

refactoring and anti-patterns. The project is not directly related to our work. However,

one of the artifacts of the WoP project is the Object Oriented Software Design

Ontology (ODOL), which contains a set of concepts and relationships used in all of the

more important object-oriented (OO) languages. ODOL includes basic OO concepts

 A Question-Based Design Pattern Advisement Approach 649

like classes and methods, OO design concepts and high-level concepts like design

patterns, pattern categories, aggregations etc. ODOL (available at [12]) is an open

ontology so it is possible to extend it with concepts that are currently not present in the

ontology. During our research we extended already existing ontology ODOL with

proposing capabilities as described later in paper. It was extended with additional

concepts and a new ontology that was needed to provide an infrastructure for the

application of the question-based approach.

3. Using Ontology for Describing Knowledge of Design Patterns

3.1. Towards a More Suitable Design Pattern Description

In order to develop a tool that would assist and advise the developer on the most

appropriate design patterns, or a combination of patterns, for a given design problem,

knowledge and experiences on design patterns should be gathered and described. Since

1994, when design patterns were introduced, many different approaches have been

used to document them. In general there are three main categories of descriptions: (1)

informal representations, (2) semiformal representations based on graphical notations

such as UML, and (3) various formal representations which also include notations

using semantic web technologies. Design patterns are traditionally described using

natural language and published in printed catalogues [5]. These documents are loosely

structured in a canonical form which consists of a series of fields: name, intent,

applicability, structure, participants, consequences, implementation etc. Because of its

loose structure, this kind of representation is less suitable for knowledge management

and sharing [13]. Informal representations based on a canonical form do not enable the

desired and necessary level of design pattern identification and application. For this we

need more structured representation forms. This has led some researchers to devise

more formal presentations, mainly by using existing mechanisms of UML or by

extending UML specifications [14,15]). Design patterns are usually described using

class diagrams and interaction diagrams – primarily parameterized communication

diagrams. The main drawback of these approaches is an over-reliance on visual

specifications with UML diagrams and limited support for the behavioural aspects of

design patterns [16]. They are efficient for a basic understanding of patterns since they

cover their structural elements. But they do not provide information and knowledge on

high level aspects such as intent, usability and consequences. The introduction of

automated support requires a formal approach to design pattern description.

3.2. How Can Ontologies and Semantic Web Technologies Help?

The semantic web enables knowledge to be expressed in a way that enables machine

processing and its use in web environments by both intelligent agents and human users

650 Luka Pavlič et al.

[17]. It is considered to provide an efficient way to present data, information and

knowledge on the internet or in the scope of a global interconnected database. Since

many semantic web technologies have reached high community consolidation and have

become W3C standards (including RDF - Resource Description Framework and OWL

- Ontology Web Language) it can also be considered as a long-term platform for

intelligent services based on a common knowledge base [18].

One of the enabling approaches used in the semantic web is metadata. It is

supported with the concept of ontologies and has a foundation in W3C standards.

Ontology describes the subject domain using the notions of concepts, instances,

attributes, relations and axioms. Concepts are typically organized into taxonomies

through which inheritance mechanisms can be used in an ontology. Ontologies build

on description languages such as RDF(S) and OWL, and add semantics to the model

representation. Their formal, explicit and shared nature makes them an ideal object

repository for catalogues.

With the presented facts we also justify our decision to use ontologies as well as

other semantic web technologies to provide a basis not only for a design pattern

description but also for providing additional information, relations and rules, needed to

define and implement the OQBA approach:

 Ontology-based design pattern descriptions are computer readable and therefore

suitable for automated (computer) processing.

 If design pattern descriptions are provided in the form of ontological definitions,

they can be presented in textual or graphical form as well as transformed to

presentation forms customized for developers (developer friendly representation).

 Ontology and related technologies are well established, recognized and also

extendable, whereas the semantic web is becoming an enabling factor for better

knowledge management and the management of a high volume of data that still has

to be inter- and cross-linked.

 Ontologies enable the establishing and revising of a knowledge base on design

patterns based on common, accepted standards and technologies.

 Navigation based on relationships between patterns helps with a better

understanding of a pattern space [19]; consequently ontology-based descriptions are

ideal because navigation-based relationship investigation capabilities are inherent to

ontologies and semantic web technologies.

 Ontologies enable the exchangeability of design pattern descriptions and are

extendable.

 Several knowledge sources can easily be integrated using relatively simple

transformations.

 The knowledge base can be distributed (on the web or in closed networks).

 Third-party ontology (OWL)–enabled tools are available, which can extend the use

of an ontology-enabled knowledge base.

 The behaviour of developed system can be improved simply by changing the

ontology and/or data without changing the system itself.

 Even generic search engines can be impacted to retrieve more reasonable results by

using ontology-rich data.

These were the main reasons to use the results of the WoP project and ODOL

ontology as a starting point for defining a novel approach and tools that are based on

 A Question-Based Design Pattern Advisement Approach 651

ontologies and other semantic web technologies. Alongside the definition of the

question-based advisement approach we have developed a new ontology, called DPAO

(Design Pattern Advisement Ontology) that represents the foundation for the proposed

question-based approach.

The WoP project was oriented toward design pattern instance identification and not

on the selection of suitable design patterns. Consequently, ODOL ontology does not

provide and/or enable one to capture all the information needed to introduce and apply

the OQBA approach. We needed additional information that would direct and guide

the advisement procedure as well as the process of verification so that the selected

design pattern actually represents a reasonable solution for a given problem. That is

why we extended the ODOL ontology with additional concepts that would enable the

efficient grouping of design patterns. In addition, we developed a new ontology, named

DPAO, which provides the infrastructure for two main aspects of the advisement:

 Advisement on an appropriate design pattern for a given problem situation:

Developers are faced with a problem for which they presume that the solution in the

form of pattern already exists, but they have no idea which pattern it is or which

pattern group or catalogue they should look at.

 Advisement on the applicability of a particular design pattern for a given problem

situation: Developers believe they know which are suitable design patterns within a

given context, however they would like to verify their choice and/or evaluate the

suitability of the identified design pattern(s).

3.3. Extending ODOL with New Concepts and Relations - Pattern Container,

Related, Alternative and Composed Patterns

The existing ODOL ontology has two concepts for identifying and classifying design

patterns: Pattern and PatternCatalog. This two-level hierarchy becomes insufficient

when the number of design patterns stored in the catalogue starts to rise.

PatternCatalog can only inlcude Patterns, not other also PatternCatalogs. For these

reason we have defined a new concept: PatternContainer. As the name suggests, it

should serve as a container for patterns and/or other pattern containers.

PatternContainer provides a means to group an arbitrary set of patterns based on

selected aspects. In addition, the same design pattern can be an element of many

different groups/categories. Even more: design patterns can be related to each other

while being part of different containers/catalogues. As can be seen in Figure 2,

PatternContainer becomes the main class for pattern grouping. In Figure 2, the

original ODOL concepts are shown as shadowed and/or written in italics whereas new

concepts are in bold. The existing PatternCatalog concept then becomes just a type of

PatternContainer. In order to provide efficient advisement some additional concepts

were added to ODOL. They enable us to connect an existing design pattern with

possible related patterns such as:

 Alternative design pattern that could represent a reasonable alternative to a

particular pattern – e.g. Façade to Adapter, Visitor to Observer, Decorator to

Adapter, Builder to Abstract factory.

652 Luka Pavlič et al.

 Related design pattern as a pattern for which it is very likely to be used in

combination with a selected pattern, e.g. Chain of Responsibility together with

Composite, Memento together with Command, Abstract Factory implemented with

Singleton, Composite processed with Iterator.

 Composite pattern that provides higher granularity of interrelated patterns, e.g. the

MVC (Model-View-Controller) pattern is a combination of patterns and

incorporates Composite, Observer and Strategy.

Fig. 2. Extensions (in bold) of the ODOL ontology

With these extensions, the descriptions of GoF design patterns in ODOL ontology

can be updated, for instance, with definitions for the three GoF pattern categories,

namely: creational, structural and behavioural patterns. Existing definitions of GoF

patterns could then be expanded with categories as well as information on related and

alternative patterns. ODOL ontology has been extended with a few additional relations

that are of crucial importance for efficient automation and support in the process of

suitable design pattern identification and selection.

3.4. Design Pattern Advisement Ontology (DPAO)

In addition to the knowledge on patterns, a precondition for successfully advising on

patterns is the tool. It should be able to ask the right questions and according to the

answers lead the dialogue with a developer until enough certainty is reached to propose

a certain design pattern. We need an ontology that provides the basis for: (1) the

selection of appropriate patterns and (2) the verification of candidates that are

appropriate for a particular design problem. The developed DPAO ontology meets both

goals.

Figure 3 shows the concepts that cover the aspect of selecting the most appropriate

design pattern for a given design problem in a particular context. AdviceArea class

represents a set of matrices (AdviceMatrix) which are connected in a graph. The

advice process starts with the initial matrix. The initial matrix typically holds the

knowledge necessary to make decisions about general context whereas latter matrices

can also hold some context-specific knowledge. AdviceMatrix is three-dimensional

 A Question-Based Design Pattern Advisement Approach 653

structure and is constructed from questions, answers and pattern/pattern container

candidates. A candidate is modeled with the class AdviceMatrixNode and can be a

terminal one (AdviceMatrixLeafNode leading to particular Pattern or

PatternContainer) or a link to another AdviceMatrix (AdviceMatrixNodeMatrix). The

matrix content is modelled as AdviceMatrixCell, holding in CellAssessment the

weight value of how relevant a candidate can be if a particular answer for a given

question is selected. Since assessments can be given by more than one expert,

assessments are grouped into AssesmentSets. Expert knowledge can be gathered using

simple in-house developed tools. Weights, questions, answers and their relations to

patterns and pattern containers are freely inserted by experts. For example data and

meaning during the dialogues please see section 4.1.

Fig. 3. Concepts in DPAO ontology enabling the selection of relevant design pattern(s)

The second aspect, supported by the new approach, is to verify the relevance or

possibility to use a pattern in a known problem situation. In this case the developer has

already selected a solution (pattern) to be used and would just like to verify if the

provided pattern is relevant or there are more relevant patterns. This aspect is covered

by the ontology concepts depicted in Figure 4.

654 Luka Pavlič et al.

Fig. 4. Concepts in the DPAO ontology enabling relevance verification of a particular design

pattern

Obviously, the DPAO ontology enables us to connect some question-answer pairs to

a candidate, i.e. pattern or pattern container. Most of the introduced concepts in Figure

4 are known from prior figures. Questionary is attached via Question instances to a

particular candidate. The weight of the question is modelled with the

questionWeightValue held as a numeric value in QuestionAssessment, and respectively

in the answerWeightValue attribute in AnswerAssessment for every possible answer to

the question. The details of expert-inserted weights in terms of meaning and usage is

described in details in section 4.1. Experts use user-friendly tool for inserting

questions, answers and weights, as well possibility to review and alter already existing

data in the ontology.

4. The Advisement Procedure

Utilizing knowledge on design patterns as well as a set of question/answers pairs that

indicate the applicability of design patterns, we can apply the advisement procedure. In

general the question-based advisement procedure consists of five phases:

 Phase 1: Reducing a set of possible solutions to a subset of pattern containers

Using knowledge in the Ontology-Based Design Pattern Repository, especially

advice matrices, and based on user’s answers, the overall intention of applying a

design pattern should be revealed, e.g. is it related to a specific development phase,

technology, domain or any other criteria used to form pattern containers in the

repository. The procedure is directed by initial matrices and corresponding

question/answer pairs, using algorithms and the usability function presented in

chapters 4.1 to 4.3. As a result we get a set of containers that might include a

suitable solution.

 Phase 2: Identifying the most suitable pattern container

An additional narrowing down is necessary in order to identify the atomic container

with concrete design pattern candidates. The selection of an appropriate container is

also based on advice matrices and algorithms, presented in the sections that follow.

As a result, we get a single pattern container. e.g. - after the GoF container is

 A Question-Based Design Pattern Advisement Approach 655

selected in the first phase, in the second phase we would identify one of the GoF

pattern containers, namely behavioural, creational or structural patterns.

 Phase 3: Selecting the most suitable pattern in a given design pattern container

In this phase, we identify the most appropriate design pattern within the container

found in the previous phase. To achieve this we select questions that are common to

as many patterns in the container as possible. For this we use groups of questions

and answers for relevant patterns. The result is advice based on the most relevant

design pattern and eventually related alternative solutions (design patterns).

 Phase 4: Verification of the proposed design pattern

In this phase, the verification is done to see if any of alternative patterns can be

equally or even more relevant. At this stage all questions and trade-offs, connected

with a selected pattern, are taken into consideration especially those that can

identify negative effects. The same is done for eventual alternative patterns. If the

alternative pattern demonstrates less negative consequences it is applied instead of

the initially proposed design pattern. The aim of this phase is also to eliminate

possible mistakes, caused if a developer misunderstands a question in the

advisement procedures.

 Phase 5: Identifying related design patterns

We want to identify design patterns that might be useful in combination with the

already selected pattern. A list of all design patterns that are related to the selected

verified design pattern is constructed first. These patterns are then evaluated using

the same procedure as applied in phase 4. Thus, composite design patterns can also

be identified and applied.

4.1. Calculating the Pattern / Pattern Container Usability

Our aim is to identify and suggest the most appropriate design pattern that could be

used by a user in the situation described. For this purpose the usability u(P) of each

design pattern container P (in phases 1 and 2) or design pattern P (in phase 3) is

calculated as:

A
i

A
i

Qq

iq

Qq

iaiq

qPw

kqPwqPw

Pu
),(

),,(),(

)(

(1)

where

P is a design pattern or pattern container (category),

),(iq qPw

is the weight of a question qi regarding the given P

),,(kqPw ia
is the weight of the obtained answer k for the question qi

 regarding the given P
AQ

is the set of already answered questions

As we can see from the (Eq. 1), the same function is used to determine the usability

of a design pattern or a pattern container. This is possible because the same

mechanism of questions/answers matrices are used throughout the advisement process.

656 Luka Pavlič et al.

In the following text, we will use the term “design pattern” to explain the algorithm;

please note that the same procedure is also used to identify and select the pattern

containers.

The usability u(P) of each design pattern P is 0 when no question has been

answered. After a user answers a question qi, the usability u(P) of each pattern P

changes regarding the values of the weight for this question (wa(P,qi)) and weight for

the given answer (wa(P,qi,k)); the weights are pre-determined by experts. A gain for a

pattern P, obtained by answering the question qi with answer k is calculated as:

}{

),(

),,(),(
),,(

i
A

j qQq

jq

iaiq

i
qPw

kqpwqPw
kqPgain

 (2)

To clarify this concept, let us consider the following example: there are three

possible patterns P1, P2, and P3, from which we want to select the most appropriate

one. From the advisement matrix the question qn is chosen as the first question to be

asked with the weight value wq(P,qn)=0.3. There are two possible answers (k=1 or k=2)

available for the question qn with the following weight values:

 When choosing the first answer k=1, the weights are wa(P1,qn,1)=-0.3,

wa(P2,qn,1)=0.0, wa(P3,qn,1)=0.8.

 When choosing the second answer k=2, the weights are wa(P1,qn,2)=0.5,

wa(P2,qn,2)=0.7, wa(P3,qn,2)=0.0.

Let us now presume that the user chooses the second answer (k=2). Using (Eq. 2)

the gains for patterns P1 through P3 are the following (note that no questions have been

answered yet): gain(P1,qn,2)=0.5, gain(P2,qn,2)=0.7, gain(P3,qn,2)=0.0.

For the chosen question qn and the given answer k=2, the pattern P2 gains the most

and is temporarily (after answering only one question qn) considered to be the most

appropriate design pattern. Naturally, the design pattern having the highest usability

score u(P) (Eq. 1) is ultimately selected after obtaining enough answers to the given

questions.

The weight values for questions range from 0 to 1, meaning:

 If the weight value for a question is 0, the answer will have no effect on the

selection of design patterns (unimportant question),

 If the weight value for a question is 1, the answer will have the maximum effect on

the selection of the design pattern (the most important question), and

 Weights between 0 and 1 determine the importance of the question – the higher the

weight value, the more important the question.

The weight values for the answers also range from -1 to 1, meaning:

 If the weight value of an answer is less than zero, choosing this answer will include

some penalty for a design pattern,

 If the weight value of the answer is 0, choosing this answer will not change the

usability of the design pattern, and if the weight value of the answer is greater than

zero, choosing this answer will add something to the usability of the design pattern.

 A Question-Based Design Pattern Advisement Approach 657

4.2. Dynamic Question Selection

Since the weights for questions and answers are pre-determined by experts, the order of

choosing questions and/or assessment matrices is determined by the selected strategy

and goals of the advisement process. If we want to identify and suggest an appropriate

design pattern as soon as possible (with a minimum number of questions), a question

should be chosen that maximizes the difference in usability functions for the most

appropriate design pattern Pfirst and the second most appropriate design pattern

Psecond. This can be determined by calculating specific gains for each of the patterns

and all the remaining (unanswered) questions. As, naturally, we do not know which

answer will be given by a user, we have decided to use the min-max algorithm, well

known from game playing, for selecting the next question; it has been implemented in

the prototype tool, used to obtain the results in the experiment performed (see section

5). The algorithm is presented in Figure 5.

findTheMostRelevantQuestion(Matrix m)

1 create a list L of all unasked questions

2 from a matrix m

3 if notEmpty(L)

4 foreach design pattern Pi

5 foreach question q in list L

6 calculate gain(Pi,q,k) for each possible ans. k

7 according to (Eq. 2)

8 determine minimal gain(Pi,q,k)

9 determine maximal of all mininal gains

10 select question q where the mininal

11 gain(Pi,q,k) is maximal

12 else

13 find next matrix or solution

Fig. 5. OQBA pseudo code algorithm for choosing the most relevant question

4.3. The Basic Design Pattern Selection Algorithm

The proposed ontology and question-based design pattern advisement approach is

based on the proposition that the developers can adequately describe their specific

situations following an interactive question/answer session. From their answers,

enough information should be obtained to automatically identify and suggest

appropriate design patterns. Based on the set of already answered questions, a level of

usability is calculated that determines the appropriateness of each specific design

pattern or pattern container. This set of answered questions is also used in combination

with the remaining questions to determine the next most relevant question, until the

usability of the most appropriate design pattern is dominant over all the other patterns.

The overall algorithm that can be used for both the solicitation of pattern containers

(phases 1 and 2) and for the selection of design patterns (phase 3) is presented in

658 Luka Pavlič et al.

Figure 6. The process of identifying appropriate candidate solutions (pattern containers

or design patterns) is presented. The integral part of the algorithm (line 5) is also the

procedure for finding the most relevant question described above.

QBA algorithm(AdviceArea aa)

1 for a given AdviceArea aa

2 ma = getMatrix(aa)

3 Qa = {} ; set of already answered questions

4 do

5 q = findMostRelevantQuestion(aa)

6 a = getAnswer(q)

7 Qa = Qa + q

8 foreach pattern P in aa

9 calculate u(P) using (Eq. 1)

10 calculate remaining gain(P) using (Eq. 2)

11 ;the remaining gain is the sum of max possible

12 ;gains of all the remaining questions until

13 ;remaining gain (P) < u(Pfirst)-u(Psecond)

14 ;if the dominant pattern cannot be changed

15 ;with the remaining questions

16 if isContainer(Pfirst)

17 ma=nextMatrix(Pfirst)

18 else

19 displaySolution(Pfirst)

Fig. 6. OQBA pseudo code algorithm for choosing the most appropriate pattern container/design

pattern

5. Concept Verification: The Experiment

In order to evaluate the efficiency of the proposed OQBA approach, a controlled

experiment was designed and conducted. Two surveys were also taken – one before and

one after the experiment. This section presents methodology, results and discussion on

results.

5.1. Experiment Introduction and Methodology

The experiment was aimed at confirming or rejecting the following propositions:

 (P1) The OQBA approach contributes to more successful design pattern

identification in comparison to manual identification.

 (P2) Less experienced developers benefit the most from using the OQBA approach

in identifying the appropriate design patterns.

The experiment was carried out in four phases: in the first phase, participants had to

answer a few questions concerning their development background and level of

 A Question-Based Design Pattern Advisement Approach 659

expertise (see Table 2). In the second phase, they were given the opportunity to solve a

set of design problems manually, without the DPEX tool (but they were allowed to use

other instruments such as books and established search facilities). In the third phase,

the DPEX tool was provided to help them solve the same design problems. The fourth

phase was aimed at gathering participants' opinions and reflections on the tool. For

this purpose a post-experiment survey was conducted.

Two groups of developers were involved in the experiment. The basic profile of the

participants and differences between groups are summarized in Table 2. The results of

this self-assessment on GoF patterns knowledge is given in the last row in Table 2.

Table 2. Group profiles – used in experiment

Group no. I II

No. of participants

(profile)

10

(software engineers /

developers)

11

(students)

Formal training in GoF design

patterns

None All – one year ago

Active in production software

development

less than 3 years: 0

3-6 years: 5

7-9 years: 3

10 years or more: 2

less than 3 years:4

3-6 years:6

7-9 years:1

Knowledge of GoF design

patterns (self-assessment)

Weak: 1

Good: 5

Very good: 2

Excellent: 2

Weak: 4

Good: 4

Very good: 3

Excellent: none

How often they use design

patterns

Never: 2

Rarely: 7

Often: 1

Never: 3

Rarely: 7

Often: 1

Each participant was given the descriptions for nineteen problem situations in

which a particular GoF design pattern might represent a suitable solution. The

participants were asked to propose the most appropriate design pattern to solve each of

the given design problems. Design problems were chosen to represent real-life

situations, not academic ones.

When preparing problem descriptions we intentionally selected problem situations

with higher complexity and as we will describe later, some were even too complex. We

wanted to evaluate the approach for situations that are similar to those that developers

are faced with during their daily work.

Using the tool, they needed on average 40 minutes to complete all 19 tasks whereas

an average completion time without the tool was 65 minutes (55 minutes for the fastest

participant, 80 minutes for the slowest). Undoubtedly this difference is not caused by

the tool, but due to the fact that they were familiar with the problems since they had

been solving them in the previous stage of the experiment.

660 Luka Pavlič et al.

5.2. Results of The Experiment

We can observe that using DPEX tool, on average developers in the first group

identified the appropriate design pattern in 58% of all cases. The approach and tool

helped achieve more than 50 percent more correct solutions to design problems (40%

without the tool).

Fig. 7. Efficiency and improvement factors on solving problems with and without the DPEX tool

– Group 1 and Group 2

Using the paired t-test we determined that for Group I the difference between the

number of correct solutions found with and without the DPEX tool is statistically

significant (P = 0.000706). The results of the post-experiment survey have shown that

only one of the participants found the use of the tool to be less efficient than searching

for an appropriate solution without the tool.

Only in four cases did the developer not accept and agree with the solution advised

by the tool. In general the tool increased the efficiency of less experienced developers,

and also of experts. The information on standard deviation for successfully solved

problems with and without the tool confirms that by using the tool, less experienced

developers manage to achieve results that are closer to those demonstrated by experts

(Figure 7). After all, this was one of our main goals: to bridge the gap between the

pattern expert community and the typical pattern user.

The use of the tool also resulted in improvements in the second experimental

student group. The average improvement factor was 1.33. A paired t-test for Group 2

confirmed that there is a significant difference between the results achieved with and

without the tool (P=0.001575).

The post-experiment survey showed that three developers believed it was easier to

search for a solution using a tool, while four participants were convinced that it was

easier to work without the tool. Four developers found the tool easy to use and

beneficial to them.

The efficiency of both groups have improved significantly using the DPEX tool

(group 1 by factor 1.63 and group 2 by factor 1.33). We can observe that the

 A Question-Based Design Pattern Advisement Approach 661

improvement factor for Group 1 is surprisingly higher. The discussion of the results

follows in next section.

5.3. Discussion and Future Work

As shown by the experiment, most developers were able to solve more design problems

by using DPEX tool. This shows that our approach assure better achievements

regarding design pattern use. Let us discuss the propositions.

 P1: The OQBA approach contributes to a more successful design pattern

identification in comparison to manual identification. P1 was confirmed since

results confirmed that the use of tool and implemented approach improved the

achievements of developers. We can detect the improvements in both groups.

 P2: Less experienced developers benefit the most from using the OQBA approach in

identifying the appropriate design patterns. Proposition is not confirmed with the

experiment. Group I average improvement factor is 1.63, while average

improvement factor for Group II is 1.33.

It is a surprise that improvement factor is higher in Group I (experts). The reason

might be in experiences, that professional developers have in terms of understanding

questions and giving appropriate answers. However, interesting observation could be

identified while comparing standard deviations for both groups. Decreased standard

deviation show that the design pattern selection efficiency is becoming more equal

using the DPEX tool. Less-experienced developers are obviously becoming more

similar to experienced developers.

Additional analysis will be necessary (pre and post-experiment survey, log files) in

order to improve the advisement on selecting a suitable pattern. It is also our aim to

upgrade the approach with learning capabilities to ask personalized questions.

As future work, we plan to develop a holistic methodology for design pattern

selection including automatic question forming based on the analysis of paths

(recorded in logs) taken by developers interacting with the system during the question-

answer session. We also plan to develop/use ontology based reasoning and techniques

in order to automatically create relevant questions and answers based on information,

concepts and relationships stored in the ontology. Nevertheless, the proposed Ontology

and Question Based Design Patterns Advisement Approach might contribute to our

common goal: to bridge the identified gap between pattern experts and the typical

pattern user from the software community. For that purpose we also plan to join

initiatives such as [23] aimed at resolving this challenge by networking, sharing ideas

and joining resources.

6. Conclusion

The potential of using patterns has not yet been fully realized. Many challenges and

issues still remain to be solved. Finding a suitable design pattern for a given situation

obviously represents a great challenge for a typical developer. Tools assisting in this

662 Luka Pavlič et al.

process have become of the utmost importance [11]. There are some facilities and

approaches based on pattern review, browsing and full-text search. They might be

helpful for the pattern expert community, but not for less-experienced developers, who

are unaware as to which patterns exist in their work domains. The novel ontology and

question-based approach presented in this paper was aimed at improving the use of

design patterns. The proposed OQBA approach and corresponding DPEX tool assist

software developers in choosing design patterns suitable for a given problem. The main

contributions of the conducted research were:

 Definition of the Question and Ontology-Based Design Pattern Advisement

approach.

 Extension of existing ODOL ontology with concepts needed to capture additional

knowledge on patterns.

 Definition of the DPAO ontology that is used to provide knowledge for applying the

OQBA approach.

Using the defined ontological concepts, information and knowledge on design

patterns could be shared and automatically analyzed. We also provided the semantic

based description of GoF patterns not available in the WoP project. The DPEX tool

was developed and a controlled experiment was conducted. The main aim of the

experiment was to explore if the DPEX tool-enabled and OQBA approach for selecting

an appropriate pattern would do better than a manual selection. The results of the

controlled experiment show that the developers were essentially able to solve more

problem cases when the tool was available. The proposed approach also provided

promising results with regard to the use of design patterns in the community of less-

experienced developers.

Introducing the concepts and technologies of the semantic web into the field of

design-pattern research creates new possibilities for making design patterns more

approachable to software engineers. One could envisage a global knowledge database

on design patterns, which would be specified using the ODOL ontology and other

derived ontologies, such as DPAO ontology. This knowledge base could then be

accessible through some form of a service-oriented architecture and available to

various software development tools. This would allow the integration of facilities of a

global knowledge base into Web-based knowledge platform on design patterns as

defined in [4]. At the time of publishing the results we are extending and improving

both approach and tools. Because of the platforms ability to insert new knowledge

easily we are also introducing it to new fields, which include selecting design patterns

in other domains (e.g. Service Oriented Architecture) or as a helper in expert systems

for selecting resources (e.g. e-services).

References

1. L. Rising, Understanding the Power of Abstraction in Patterns, IEEE Software, 24 (4)

(2007) 46-51.

2. Schmidt, D.C., Using Design Patterns to Develop Reusable Object-Oriented

Communication Software, Communications of the ACM, 38 (10) (1995) 65-74.

3. Microsoft Patterns & Practices Group, http://msdn.microsoft.com/practices

 A Question-Based Design Pattern Advisement Approach 663

4. D.Manolescu, W. Kozaczynski, A. Miller, J. Hogg, The Growing Divide in the Patterns

World, IEEE Software, 24 (4) (2007), 61-67.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1998.

6. L. Rising, The Pattern Almanac 2000, Addison Wesley, 2000.

7. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, P. S. Yu, Automatic Code Generation from

Design Patterns, IBM Systems Journal, 36 (2)(1996) 151-171.

8. J. Dietrich, C. Elgar, The Web of Patterns Project, http://www-ist.massey.ac.nz/wop

9. A. H. Eden, A. Yehudai, J. Gil, Precise Specification and Automatic Application of Design

Patterns, 12th IEEE International Conference on Automated Software Engineering, IEEE

Press, 1997, Proceedings, pp. 143-152.

10. P. Gomes, F.C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. Ferreira, C. Bento, Selection and

Reuse of Software Design Patterns Using CBR and WordNet, 15th International Conference

on Software Engineering and Knowledge Engineering, SEKE 2003, Proceedings,

(SEKE'03), pp. 289-296.

11. A. Birukuo, E. Blanzieri, P. Giorgini, Choosing the Right Design Pattern: The Implicit

Culture Approach, Arturo Hinojosa, A Cognitive Model of Design Pattern Selection.

Technical Report DIT-06-007, Informatica e Telecomunicazioni, University of Trento,

2006.

12. ODOL- Object-Oriented Design Ontology,

http://svn.sourceforge.net/viewvc/webofpatterns/wop-patterndefinitions/20060324/ wop.owl

13. J. M. Rosengard, M. F. Ursu, Ontological Representations of Software Patterns, Lecture

Notes in Computer Science (Proceedings of the of KES’04), 3215 (2004), pp. 31-37.

14. M. Fontoura, C. Lucena , Extending UML to Improve the Representation of Design

Patterns, Journal of Object-Oriented Programming, 13(11) (2001) 12-19.

15. G. Sunyé, A.L. Guennec, J-M Jézéquel, Design Patterns Application in UML, Lecture

Notes in Computer Science (ECOOP'2000 proceedings), 1850 (2000), pp. 44-62.

16. R. B. France, D. K. Kim, S. Ghosh and E. Song. A UML-Based Pattern Specification

Technique, IEEE Transactions on Software Engineering, 30(3)(2004), 193-206.

17. T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American, 284 (5)

(2001) 28-37.

18. W3C Semantic Web Activity, http://www.w3.org/2001/sw/

19. M. Safiz, P. Adamczyk, R.E. Johnson, Organizing Security Patterns, IEEE Software, 24 (4)

52-60.

20. M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

21. C. Alexander et al, A Pattern Language, Oxford University Press, New York, 1977.

22. Kung, D. C., H. Bhambhani, R. Shah, and G. Pancholi. 2003. An expert system for

suggesting design patterns: a methodology and a prototype. In Software Engineering With

Computational Intelligence, ed. T. M. Khoshgoftaar. Kluwer Int. Lazovik, A., M. Aiello,

and M. Papazoglou. 2006.

23. M. Weiss, A. Birukou, P. Giorgini, EuroPLoP 2007 Focus Group on Pattern Repositories,

http://www.patternforge.net/wiki/index.php?title=EuroPLoP 2007 Focus Group.

664 Luka Pavlič et al.

Luka Pavlič received his Ph.D. degree in computer science in 2009 from the

University of Maribor, Slovenia. He is currently a senior researcher with the Institute

of Informatics, FERI, at the University of Maribor. His main research interests include

all aspects of IS development, reuse in software engineering, object orientation,

information system architecture, Java, UML and XML-related technologies, semantic

technologies, intelligent systems, big data and nosql. He has appeared as an author and

co-author in several peer-reviewed scientific journals. He has also presented his work

at a number of international conferences. In addition, he has participated in many

national and international research projects.

Vili Podgorelec is a professor of computer science at the University of Maribor,

Slovenia. His main research interests include intelligent systems, semantic

technologies, and medical informatics. He has been participating in many international

research projects and is author of several journal papers on computational intelligence,

software engineering and medical informatics. Dr. Podgorelec has worked as a visiting

professor and researcher at several universities around the world, including University

of Osaka, Japan, University of Nantes, France, University of La Laguna, Spain,

University of Madeira, Portugal, and University of Applied Sciences Seinäjoko,

Finland. He received several international awards and grants for his research activities.

Marjan Heričko is a full professor at the Institute of Informatics. He is the head of the

Information systems laboratory and Deputy Head of the Institute of informatics. He

received his PhD in Computer Science from University of Maribor in 1998. His main

research interests include all aspects of information systems development, software and

service engineering, agile methods, process frameworks, software metrics, functional

size measurement, SOA, component-based development, object-orientation, software

reuse and software patterns. Dr. Heričko has been a project or work co-ordinator in

several applied projects, project or work co-ordinator in several international research

projects and committee member and chair of several international conferences.

Received: August 24, 2013; Accepted: January 25, 2014

