
Computer Science and Information Systems 12(1):1–31 DOI: 10.2298/CSIS131127082B 

 

Using Part-of-Speech Tags as Deep-Syntax Indicators in 

Determining Short-Text Semantic Similarity 

Vuk Batanović1 and Dragan Bojić2 

1 School of Electrical Engineering, Bulevar kralja Aleksandra 73, 

11120 Belgrade, Serbia 

bv115045p@student.etf.bg.ac.rs 
2 School of Electrical Engineering, Bulevar kralja Aleksandra 73, 

11120 Belgrade, Serbia 

bojic@etf.rs 

Abstract. This paper presents POST STSS, a method of determining short-text 

semantic similarity in which part-of-speech tags are used as indicators of the 

deeper syntactic information usually extracted by more advanced tools like parsers 

and semantic role labelers. Our model employs a part-of-speech weighting scheme 

and is based on a statistical bag-of-words approach. It does not require either 

hand-crafted knowledge bases or advanced syntactic tools, which makes it easily 

applicable to languages with limited natural language processing resources. By 

using a paraphrase recognition test, we demonstrate that our system achieves a 

higher accuracy than all existing statistical similarity algorithms and solutions of a 

more structural kind. 
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1. Introduction 

Determining the semantic similarity of short texts means assigning a certain metric to a 

given pair of texts based on the level of semantic matching between them. Semantic 

similarity systems provide a standard score between zero and one, where zero denotes 

complete semantic dissimilarity, and one full semantic equivalence. Short-text semantic 

similarity (STSS) is especially important since short texts are widely used on the Internet 

as search queries and results, comments on social networks, news headlines and 

snippets, product tags, etc. 

The use of some measure of semantic similarity is vital in many problems within the 

field of natural language processing (NLP), such as text summarization, text 

categorization, question answering and information retrieval, machine translation, etc. 

For instance, in extractive text summarization, selecting the sentences to be included in 

the final text is a crucial phase. During this phase, particularly in multi-document 

summarization, it is essential to avoid choosing a sentence that carries the same 

information as the already selected ones [1]. In information retrieval or question 

answering systems, the information from the query can be phrased in a way different 
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from the one used in the document that contains the answer. Hence, taking those 

variations into account can lead to improvements in system performance [2]. 

There are two basic approaches to determining the semantic similarity of two words: 

the topological or knowledge-based one, which uses expert knowledge, and the 

statistical or corpus-based one, which uses a text corpus. Topological similarity 

determines the semantic relatedness between words by using hand-crafted ontologies 

like WordNet [3]. Since such structures are created by using expert human knowledge, 

they are able to model the degrees of semantic relatedness between words quite 

successfully when suitable distance metrics are applied. However, significant human 

effort is required to create resources of this kind, rendering the topological approach 

inapplicable to many minor languages or languages with scarce NLP resources. A recent 

study [4] found that there are currently around 40 projects to build wordnets for various 

languages. Only about a third of them are available under a free, open-source license, 

while a further third are free solely for academic research. In comparison, there are over 

7000 languages spoken in the world today [5], 1300 of which are spoken by more than 

100,000 people. Moreover, many existing wordnet projects are still in inception, with a 

rather limited number of words and synsets included, making them unsuitable for 

complex NLP tasks like STSS. 

On the other hand, the only resource required in the implementation of statistical 

methods is a text corpus, which makes them widely and easily applicable. Statistical 

approaches to semantic similarity rely on the distributional hypothesis, which states that 

words with similar meanings tend to appear in similar contexts [6]. By applying this 

hypothesis to a large text corpus, it is possible to create a semantic space in the shape of 

a co-occurrence matrix. In this matrix every word found in the corpus has its own row 

and every context its own column. Cells of the matrix specify how many times each 

word appeared in each context. A context can usually be either a document from the 

corpus, or another word in whose proximity the given word appeared. In this way each 

word is assigned a context vector, which makes it possible to compare word meanings 

by comparing their vectors. 

A newer statistical viewpoint is based on the probabilistic approach to semantics, 

which originates in the field of topic modeling [7]. Topic models treat each document 

within a text corpus as a mixture of corpus-wide topics, and each topic as a distribution 

over a certain vocabulary. Topic modeling algorithms use the textual documents to infer 

the distribution of topics in the corpus, the per-document topic proportions, and the per-

word topic assignments. Since words can occur in multiple topics with different 

probabilities, they can be viewed in terms of their topic contributions. By comparing 

those contributions it is possible to compare word meanings. 

Part-of-speech (POS) tags are probably the most commonly used type of syntactic 

information. Part-of-speech tagging is the process of labeling each word in a text as 

belonging to a particular part of speech, based both on its definition, as well as its 

surrounding context. Various other syntactic and semantic procedures for text analysis, 

such as chunking, parsing, and semantic role labeling, depend on the results of POS 

taggers. Determining a word’s part of speech is a classification problem, which is why 

POS taggers are usually constructed by applying supervised machine learning to a text 

corpus that had been hand-annotated with the correct POS tags. English language POS 

taggers typically differentiate between 36 parts of speech (excluding the punctuation 

mark tags) which were standardized in the Penn Treebank Project [8]. 
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This paper is organized as follows: in Section 2 we give an overview of current STSS 

systems. Section 3 outlines the main ideas of our approach and the motivation behind it, 

and presents certain existing algorithms and tools used within it. In Section 4 we 

describe the corpus processing procedures which we employed. Section 5 contains a 

detailed explanation and an example of the operation of our proposed system and the 

way it utilizes POS tags. In Section 6 we elaborate on the procedure used to train and 

optimize our model. Section 7 presents an evaluation of our method and a comparison to 

other approaches. Finally, in Section 8 we summarize our work and point towards 

possible system improvements and directions for future research. 

2. Related Work 

Numerous STSS solutions, both topological and statistical, already exist, and many of 

them use some form of syntactic information. In terms of their approach toward syntax, 

there are two main types of STSS systems: 

1. Systems which ignore sentence structure by employing a bag-of-words technique. In 

this model, a sentence is treated as an unordered set of words, thereby ignoring the 

organization and interdependence of words within a sentence. These systems 

sometimes use shallow syntactic information, such as POS tags, but mostly in a 

superficial manner. 

2. Systems which adopt a more structural approach to semantics by harnessing deep 

syntactic information. These systems use more advanced NLP tools like parsers and 

semantic role labelers. 

In relation to STSS systems, there also exists an entire family of algorithms which 

deal with the issue of paraphrase identification, i.e. of determining whether sentences in 

a given pair are paraphrases of each other or not. Such algorithms commonly employ 

advanced machine learning classifiers and a wealth of features, oftentimes including 

syntactic ones, to arrive at a binary decision ([9], [10]). However, it should be pointed 

out that the task of generating a binary classification is a much more limited and easier 

one than the task of interval-based semantic gradation performed by STSS methods. 

2.1. Bag-of-Words Models 

Mihalcea et al. [11] proposed a notable bag-of-words approach which combines six 

knowledge-based metrics that use WordNet for determining the word-to-word 

similarities with two corpus-based algorithms into a unified measure. Since most of the 

word-to-word knowledge-based metrics cannot be applied across parts of speech, their 

method uses POS tags to prevent the pairing of words that do not belong to the same 

part of speech. The same POS tag usage can be found in the model of Fernando and 

Stevenson [12], who experimented with five different WordNet metrics. Similarly, 

Lintean and Rus [13] considered a bag-of-words model with which they tested LSA 

(Latent Semantic Analysis), a statistical algorithm, and a set of WordNet measures. They 

utilized POS tags in the same manner as [11] and [12], but they also considered a 
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weaker form of this restriction which relies only on basic word classes, e.g. verbs, and 

not on their subtypes like infinitives, past tenses, participles, etc. 

Rus et al. [14] experimented with the same LSA algorithm alongside LDA (Latent 

Dirichlet Allocation), a topic modeling method, within a syntactically simpler approach 

in which no POS information is utilized. Quan et al. [15] devised another approach 

based on topic modeling, called TBS (Topic Based Similarity). It compares short texts 

on the basis of their common words, as well as the probabilities of their distinguishing 

terms under each probabilistic topic. 

Ramage et al. [16] proposed a method that does not compare two bags-of-words 

directly but instead compares the distributions induced by each text when used as the 

seed of a random walk over a graph, which is constructed by using both WordNet and a 

text corpus. POS information is utilized during the graph construction phase, and as a 

part of text preprocessing, thus allowing the model to more accurately match the words 

in the given text with the nodes in the graph on which it operates. 

Guo and Diab [17] also use POS tagging as a corpus preprocessing step within a 

latent semantic model of sentences called WTMF (Weighted Textual Matrix 

Factorization). Their method explicitly models the words that are not present in the 

sentences, but takes into account the fact that the missing words are not as informative 

as the observed ones. 

The approach devised by Islam and Inkpen [18] does not employ POS tags but 

instead combines string similarity with corpus-based semantic similarity. They also 

experimented with the inclusion of a measure of the common-word order between the 

two given texts. Furlan et al. [19] modified their model to utilize the more advanced 

COALS (Correlated Occurrence Analogue to Lexical Semantic) statistical algorithm. 

Furlan et al. [20] further developed this method into a language-independent, corpus-

based approach called LInSTSS which relies on term frequency weighting. 

2.2. Structural Models 

Structural solutions of the second kind include the one from Li et al. [21] which uses 

shallow parsing to divide each sentence into noun phrases (NP), verb phrases (VP), and 

preposition phrases (PP). Their method then compares the meanings of sentences by 

comparing the appropriate phrases within them, while individual word meanings are 

acquired through the use of WordNet. In addition, Li et al. experimented with a similar 

approach [22] in which sentences are compared based on the objects that appear in 

them, as well as the properties of those objects and their behavior. Shallow parsing is 

used to extract noun and verb phrases from each sentence. Their method groups the 

nouns from noun phrases as objects, the adjectives and adverbs from noun phrases as 

object properties, while verb phrases are grouped as object behaviors. The final 

similarity of sentences is determined as a sum of the similarities of these three groups, 

while the word-to-word similarities are calculated by using WordNet. 

Oliva et al. [23] created SyMSS (Syntax-based Measure for Semantic Similarity) – a 

more complex topological model which utilizes a joint dependency parser and semantic 

role labeler to perform a deep syntactic analysis of each sentence. SyMSS is able to 

semantically compare words or phrases that have the same syntactic function in both 

sentences, and to reduce the final similarity score in situations where one sentence 
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contains certain syntactic structures not present in the other. Like [11], [12], and [13], 

Oliva et al. also experimented with various WordNet metrics, and employed POS 

information in a similar way. 

Lee et al. [24] considered a combination of string similarity metrics similar to the 

ones used in [18] and a syntactic pattern matching mechanism which identifies subject-

verb-object structures in each sentence. This mechanism relies on the use of a parser, 

while the word-to-word semantic similarities are determined by using WordNet. Lee et 

al. [25] also proposed a different topological method that treats a sentence as a sequence 

of links, each of which contains a specific meaning and connects a pair of words. In 

order to extract such links it uses a syntactic parser called Link grammar. 

Furlan et al. [19] described a knowledge-based algorithm that employs a semantic net 

called ConceptNet as the word data model. They use a semantic role labeling module to 

extract subject-verb-object tuples from each sentence. Achananuparp et al. [26] 

proposed a way to address the syntactic variability of language expression by measuring 

the similarity of sentences via verb-argument structures. Such structures are obtained 

through semantic role labeling and the final similarity score is calculated as a sum of the 

similarities of verbs, determined by using WordNet, and their corresponding arguments. 

Several structural solutions employ a weighting scheme of some kind, in which the 

similarities of different constituents are given different weights. This is accomplished by 

weighting according to semantic roles ([19], [23]), phrase types [21], or a combination 

of phrase types and word types [22]. In some methods weighting is an optional 

component whose effects were not explored [24]. Other authors concluded that their 

methods perform best when equal weighting is utilized [26]. 

3. Proposed Method 

The central idea of our proposed method is that certain parts of speech and certain 

relationships between different parts of speech are semantically more important than 

others, not only inherently, but also due to the roles they commonly play within a 

sentence. By taking account of this notion, our STSS system is able to utilize POS tag 

information as an indicator of the deeper underlying syntactic structure. 

3.1. Motivation 

It is rather intuitive that not all elements of a sentence carry the same amount of 

semantic information. For instance, let us consider the following sentences: 

1. I drank some coffee. 

2. I drank some milk. 

3. I bought some milk. 

Most people would agree that the semantic distance between the first and the second 

sentence is smaller than the one between the second and the third. This is because 

human similarity is strongly affected by verb similarity and less so by object similarity 

[27]. This difference in semantic salience also exists between other constituents. 
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Hence, the use of weighting strategies in some of the existing STSS systems does 

have a sound justification. However, such a strategy has, so far as we know, never been 

implemented solely on the part-of-speech level. All existing STSS systems that employ 

weighting are structural ones. They use advanced syntactic tools – parsers and semantic 

role labelers – to delineate constituents by harnessing deeper syntactic information. 

As far as the existing bag-of-words methods are concerned, almost all of them either 

do not utilize POS tags at all, or they do so rather superficially and usually in order to 

prevent the pairing of words belonging to different parts of speech. This usage, though 

logical at first glance, can in fact easily lead to errors. Let us consider, for example, the 

following sentence pair: 

– He is a diligent worker. 

– He works diligently. 

Although these two sentences carry the same meaning, the combination of an 

adjective and a noun from the first sentence (diligent worker) is replaced by a 

combination of a verb and an adverb in the second (works diligently). In such cases, it 

would be a mistake to forbid the pairing of words (worker, works) and (diligent, 

diligently), even though the words comprising those pairs belong to different parts of 

speech. Similar examples can be found in pairs of sentences where one sentence is in the 

active and the other in the passive voice: 

– They finished constructing the bridge. 

– The construction of the bridge was finished. 

The words constructing and construction do not belong to the same part of speech, 

but it is clear that the pairing of those words is appropriate and should not be prohibited. 

3.2. POST STSS 

Our method, which we call POST STSS (POS-tag-supported STSS), combines a 

weighting strategy based on POS tags with a bag-of-words approach. Although POS tags 

offer only a shallow representation of sentence structure, we argue that through their use 

it is possible to obtain much of the information usually provided by the more complex, 

but also more error-prone NLP tools. In addition, we recognize the merits of allowing 

the coupling of certain parts of speech and disallowing the pairing of others, but we 

handle such rules much more carefully than did the previous STSS solutions.  

Since we aimed at creating a general STSS method that could be applied even to 

languages with scarce NLP resources, we opted for a statistical similarity model. We 

chose to base our method on the approach proposed by Islam and Inkpen [18], since the 

string similarity measure which they included in the final similarity score allows their 

model to perform better when dealing with different forms of infrequent proper nouns. 

Furthermore, we decided to utilize the COALS algorithm for determining the word-to-

word semantic similarity, as suggested by Furlan et al. [19], since it is able to better 

predict human similarity judgments than older algorithms like LSA [28]. An integral 

part of COALS is an algebraic operation called SVD (Singular Value Decomposition) 

which, through matrix factorization and decomposition, is able to reduce the generated 

semantic space to a lower dimension, rendering the whole algorithm more scalable. We 
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utilized the algorithm implementation provided by the S-Space package [29], with the 

default setting of 14000 for the initial size of the co-occurrence matrix. Its 

dimensionality is then reduced to 800 through SVD. 

For text preprocessing we used the Stanford CoreNLP package [30]. This suite 

encompasses many NLP tools, including a tokenizer, a sentence splitter, a lemmatizer, a 

POS tagger, a named entity recognizer, a dependency parser, and a coreference 

resolution tool. They are all tied together in a modular fashion, making it easy to take 

advantage of the more advanced functions, if needed. In our system we utilized only the 

tokenizer, the sentence splitter, the lemmatizer, and the POS tagger. The POS tagger is 

based on a log-linear approach and achieves an accuracy of over 97% [31]. 

4. Corpus Processing 

The text corpus chosen for the creation of the POST STSS system needed to be 

sufficiently large, topically diverse, and publicly available, which is why we selected the 

English Wikipedia abstract corpus. This corpus contains short text summaries of all the 

articles present in the English Wikipedia. Its size, at the time, was around 3.7 GB. Since 

the corpus is available as an XML file which, aside from the abstracts, also includes 

other irrelevant information, we had to scan through the file to extract the useful data. 

We then cleaned the text by eliminating all numbers and words that contain numbers, by 

removing all punctuation marks, and by normalizing all letters into lower case. 

We tested two text preprocessing procedures on our system: stemming and 

lemmatization. Stemming is a transformation in which a given word is stripped of its 

suffixes, thereby reducing it to its stem. In this manner, multiple different words can be 

normalized into a single morphological form, thus reducing the overall number of 

different words. Hence, the application of stemming to a text corpus ultimately leads to 

the creation of a smaller semantic space. This can, in effect, reduce the overall 

computational costs. In our system we utilized the standard Porter stemmer [32]. 

Despite their advantages, stemmers also have their drawbacks, like their inability to 

cope with prefixes. However, the biggest issue concerning stemmers is their propensity 

to make mistakes. For instance, the words animal, animation, and animism, although 

semantically diverse, will all be reduced to a single stem – anim. While such errors are 

the exception rather than the rule, numerous other examples can be found. In a semantic 

space, these mistakes can trigger the merger of words which have completely unrelated 

meanings, consequently having a detrimental effect on system performance. These 

problems are further exacerbated when working with highly inflectional languages. 

That is why we also considered lemmatization, a more advanced word 

transformation. Lemmatization is the process of determining the lemma, or dictionary 

form, of a given word. This allows different inflected forms of a word to be treated like 

a single item. For example, lemmatization reduces the past participle, present participle, 

and all other inflected forms of a verb to its base form. This can be of particular value 

when dealing with words with irregular inflections, like the verb to be, for which a 

stemmer would generate multiple stems. Due to their different approach, lemmatizers 

are not limited to dealing with suffixes, and do not lead to the merger errors that 

stemmers can produce. 
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Still, unlike stemmers, which operate on individual words with no knowledge of the 

surrounding context, lemmatizers have to be able to discriminate between words that can 

have different meanings depending on their part of speech. Thus, a POS tagger is 

required for their operation. Since we devised our STSS model around using POS tags, 

it was simple to add lemmatization to it, via the appropriate Stanford CoreNLP module. 

After stemming or lemmatizing our text corpus, we created the semantic space by 

supplying the processed corpus to the COALS algorithm. The produced semantic space 

was saved to the hard drive in the Sparse Text format, defined in the S-Space package. 

5. System Operation 

The POST STSS approach employs the method proposed in [18] of matching each word 

in the shorter text P to its most similar counterpart in the longer text R, and then adding 

up the individual similarity scores, based on both the string and the semantic similarity, 

into a unified measure. We improve this method by weighting word similarity scores 

using values determined on the basis of both words’ POS tags. 

Determining the semantic similarity of two short texts begins by creating annotation 

modules from the Stanford CoreNLP package for tokenizing, sentence splitting, part-of-

speech tagging, and lemmatizing, and applying them to both texts. Properly identifying 

the placement of sentence boundaries in a given short text is important for the proper 

functioning of POS tagging. Words are tokenized, and POS tagging is subsequently 

performed. Tokens are then either stemmed or lemmatized. Finally, all tokens containing 

numbers or other non-alphabetic characters are excluded from further consideration, 

thus generating the processed texts and their POS tag sequences. The number of tokens 

in the shorter text P will hereafter be referred to as m, while the number of tokens in the 

longer text R will be n. 

We then identify the words which appear in both texts, whose count we will refer to 

as d. Since those words are identical in both P and R, both their string and semantic 

similarities are maximal. Hence, their final similarity measures depend only on their 

POS tags. We describe the precise manner of POS weighting in Section 5.3. The scores 

of all of the words appearing in both texts are added up into a similarity sum Ssame. 

The remaining m – d and n – d words from both texts are used to construct three (m – 

d) × (n – d) matrices in which the remaining words from the shorter text P are assigned 

to the rows of the matrix, whereas the columns of the matrix represent words from the 

longer text R. These matrices are: 

1. The string similarity matrix; 

2. The semantic similarity matrix; 

3. The POS weighting matrix. 

5.1. String Similarity 

In the string similarity matrix each cell has a value between zero and one that represents 

the level of string similarity between the row-word and the column-word, where zero 

indicates completely different string contents, and one full string equality. In the same 
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way as [18], we calculate this similarity score by combining the following three 

modifications of the LCS (Longest Common Subsequence) metric: 

– NLCS – Normalized Longest Common Subsequence; 

– NMCLCS1 – Normalized Maximal Consecutive Longest Common Subsequence 

starting at character 1; 

– NMCLCSN – Normalized Maximal Consecutive Longest Common Subsequence 

starting at character N. 

Unlike the LCS where consecutiveness is not required, the second and the third 

modification only search for the longest consecutive common subsequence. The second 

algorithm searches for the maximal consecutive portion of the shorter string that 

consecutively matches with the longer string, where matching starts from the first 

character in both strings. The third algorithm does the same, but allows the matching to 

start at any character in both strings. In all three modifications the basic similarity value 

is divided by the length of both strings compared, thereby normalizing the score. The 

final string similarity score is gained by summing the individual scores of these three 

metrics, while giving each an equal weight. 

5.2. Semantic Similarity 

In the semantic similarity matrix each cell has a value that represents the level of 

semantic similarity between the row-word and the column-word. We obtain this score by 

taking the context vectors of the two words being compared and calculating their cosine 

similarity. The context vectors are extracted from the semantic space generated by 

COALS. A score of zero indicates total semantic dissimilitude while a score of one 

signifies a complete semantic match. COALS can also produce negative similarity 

scores for certain vector pairs, as a side effect of the SVD operation, but this occurs 

relatively rarely [28]. As far as we have noticed, such scores tend to have low absolute 

values. We experimented with setting those scores to zero, but found no performance 

benefit from doing so and, hence, we ultimately retained them.  

5.3. POS Weighting 

In the POS weighting matrix each cell has a value given by our POS weighting method 

to the POS tags of the word pair which consists of the row-word and the column-word. 

This value reflects the relative importance/unimportance of the given parts of speech, as 

well as the significance of their interaction in determining short-text semantic similarity. 

Given the number of POS tags used in English, as well as the considerably higher 

number of combinations of interactions between them, it is infeasible to manually 

compile an optimal list of such values. Although a solution based on certain linguistic 

intuitions and general approximations could be constructed, a set of training data is 

required in order to optimize system performance on a given task. This learning process 

is described in detail in Section 6. 
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Our POS weighting method uses a set of weights for different POS tags and a POS 

interaction matrix. The POS interaction matrix is a symmetric matrix which consists of 

binary values specifying for any two diverse tags whether the coupling of words that 

have those tags assigned to them should be allowed or not. In other words, the POS 

interaction matrix determines which diverse part-of-speech couplings are allowed and 

which are forbidden. 

When comparing two words that belong to the same part of speech we simply place 

the weight for that part of speech in the appropriate cell of the POS weighting matrix. 

On the other hand, in situations when the words being compared belong to different 

parts of speech, a lookup is performed within the POS interaction matrix. If the binary 

value assigned to a given coupling is zero, a zero weight is written to the appropriate 

cell of the POS weighting matrix, which effectively prohibits that coupling. Conversely, 

if the binary value is one, the POS weighting matrix cell is given a value determined by 

a POS weighting function which uses the respective POS weights. We experimented 

with the following five forms of this function: 

1. Choosing the higher POS weight of the two; 

2. Choosing the lower POS weight of the two; 

3. Calculating the arithmetic mean of the two POS weights; 

4. Calculating the geometric mean of the two POS weights; 

5. Calculating the harmonic mean of the two POS weights. 

The exact form of this function is chosen during the training process. This selection is 

elaborated upon in Section 6.3. 

The same method of POS weighting is also applied to words that appear in both given 

texts. However, in their case the POS weighting score is not written to a matrix cell but 

instead represents their final similarity score. 

5.4. Final Similarity Calculation 

The string similarity, the semantic similarity, and the POS weighting matrices are then 

combined into one as follows: We first combine the string and the semantic similarity 

matrices by multiplying their values with the relative weights given to the word-to-word 

string and semantic similarities and then adding them up. These relative weights are 

global, i.e. not word-specific, they add up to one, and their optimal values are 

determined during the training phase. Afterwards, we multiply each cell of this new 

matrix with its corresponding cell in the POS weighting matrix. Thus, we gain a 

similarity measure for each word pair according to the following expression: 

),()),(),((),( jiPOSjiSemanticwjiStringwjiSim semstr       (1) 

where String (i, j) represents the string similarity score of the words in the i-th row and 

the j-th column, Semantic (i, j) stands for their semantic similarity score, and POS (i, j) 

represents the POS weighting score assigned to them based on their respective POS tags. 

The relative weights wstr and wsem are given to the word-to-word string and semantic 

similarities, where wstr + wsem = 1. 
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Once we have created the final similarity matrix, we proceed to extract the best word 

pairs on the basis of it. We do so by finding the matrix cell with the highest score and 

adding it to a similarity sum Sdifferent. We then pair the row-word and the column-word of 

that cell, after which we discard the entire row and column from the matrix. By doing 

this, we remove from further consideration all other word pairs in which words from the 

chosen pair appeared. Hence, we only allow a word from text P to be paired with a word 

from text R once. We repeat this procedure until there are no more matrix rows left. 

To obtain the final similarity score of texts P and R we add up the scores Ssame and 

Sdifferent. As in [18], we then normalize them by using the reciprocal harmonic mean of m 

and n, the lengths of the two texts: 

In addition, in order to gain a final similarity between zero and one, we place an 

upper limit on the score value. We do this because the similarity score can theoretically 

exceed the value of one if we are comparing texts containing only those words whose 

POS weights are higher than one. However, no such instances occurred in practice 

during our evaluation since real-life examples always include function words and other 

word types whose lower POS weights decrease the similarity score. 

5.5. Example 

We will demonstrate the functioning of the POST STSS method on a pair of sentences 

from the Microsoft Research Paraphrase Corpus [33]. Table 1 contains the original 

sentences, their preprocessed and lemmatized forms, and their POS tag sequences. 

Table 1. An example sentence pair from the Microsoft Research Paraphrase Corpus 

1 

Houston fourth-graders also performed similarly 

houston fourth grader also perform similarly 

NNP JJ NNS RB VBD RB 

to national peers in writing 

to national peer in write 

TO JJ NNS IN VBG 

2 

New York City and Houston 

new york city and houston 

NNP NNP NNP CC NNP 

fourth-graders were at the national 

fourth grader be at the national 

JJ NNS VBD IN DT JJ 

average in writing   

average in write   

NN IN VBG   

 








 
 1  , 

2
)(max),(

mn

nm
SSRPS differentsame  (2) 
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These sentences were classified by human annotators as semantically different. Their 

meanings are actually rather similar, though worded differently, but the second sentence 

includes information about New York City students, which is not present in the first one. 

All system parameters used in this example are the ones gained by training our model 

on the training part of the Microsoft Research Paraphrase Corpus. We describe this 

training process in detail in Section 6. 

For the sake of convenience, we listed all POS weights used in this example and their 

respective POS interaction values in Table 2. The entire list of POS weights that our 

trained model utilizes is shown in Table 11, Section 7.3, while the entire configuration 

of the POS interaction matrix is given in Figure 1, in the same section. The chosen POS 

weighting function is the calculation of the arithmetic mean of the two POS weights. 

Table 2. POS weights and POS interaction values used in this example 

 CC DT IN JJ NN NNS NNP RB TO VBD VBG 

 0.7 0.7 0.7 0.7 0.8 1.0 0.8 1.3 0.8 1.2 1.1 

CC 1 1 0 0 0 0 0 0 1 1 1 

DT 1 1 0 1 0 0 0 0 1 1 0 

IN 0 0 1 0 1 0 0 1 1 1 0 

JJ 0 1 0 1 0 0 0 1 0 1 1 

NN 0 0 1 0 1 0 1 1 0 1 1 

NNS 0 0 0 0 0 1 1 1 0 1 1 

NNP 0 0 0 0 1 1 1 1 0 1 1 

RB 0 0 1 1 1 1 1 1 0 0 0 

TO 1 1 1 0 0 0 0 0 1 1 1 

VBD 1 1 1 1 1 1 1 0 1 1 1 

VBG 1 0 0 1 1 1 1 0 1 1 1 

 

After preprocessing and lemmatization, the first sentence contains 11 tokens and the 

second 14. Hence, n = 14 and m = 11. There are 6 identical tokens in both sentences – 

houston, fourth, grader, national, in, write. Therefore, d = 6. 

The scores of these words depend only on their POS tag weights. If such a word has 

the same POS tag in both sentences, then its score is equivalent to the weight of its tag. 

Otherwise, its score is either equal to zero, if the pairing of the two different tags 

assigned to the word is prohibited, or is equal to the POS weighting function of its two 

tags, if the pairing of those tags is permitted. 

To illustrate, the score of the word write is 1.1, since it appears in both sentences with 

a VBG tag, whose weight is 1.1. On the other hand, it could have been the case that in 

one of the sentences the word write appeared as a verb in the past tense (tag VBD), and 

in the other as a gerund/present participle (VBG). The POS interaction value for these 

two tags is one, meaning that their coupling is permitted. Since the weight of the VBD 

tag is 1.2 and the weight of the VBG tag is 1.1, the score of the word write would have 

been calculated as the arithmetic mean of these two values, which is 1.15. 

The scores of all the words appearing in both sentences are then added up into a 

similarity sum Ssame. In this example, that sum would be Ssame = 5.0. 

For the remaining words in both sentences we create three 5 × 8 matrices in which 

the words from the shorter sentence are assigned to the rows of the matrix, whereas the 
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columns of the matrix represent words from the longer sentence. These matrices are: the 

string similarity matrix, shown in Table 3; the semantic similarity matrix, shown in 

Table 4; and the POS weighting matrix, shown in Table 5. The actual values in the 

matrices always depend on the particular words being considered. The semantic 

similarity scores also depend on the text corpus chosen to create the semantic space. 

These matrices are then combined into a final similarity matrix, shown in Table 6. 

The values in each cell of the final matrix are calculated according to formula (1). Our 

trained model utilizes the same weight of 0.5 for both the string and the semantic 

similarity, which is also the value used in this example. 

Table 3. The string similarity matrix 

 new york city and be at the average 

also 0.000 0.041 0.000 0.083 0.000 0.124 0.000 0.035 

perform 0.031 0.094 0.000 0.000 0.047 0.000 0.031 0.054 

similarly 0.000 0.018 0.046 0.024 0.000 0.037 0.000 0.026 

to 0.000 0.083 0.083 0.000 0.000 0.165 0.165 0.000 

peer 0.055 0.041 0.000 0.000 0.083 0.000 0.055 0.094 

Table 4. The semantic similarity matrix 

 new york city and be at the average 

also -0.033 0.023 0.052 0.100 0.240 0.018 -0.003 -0.058 

perform -0.097 -0.045 -0.031 0.225 0.031 0.106 -0.010 0.074 

similarly -0.051 -0.070 -0.032 0.081 0.018 0.047 0.006 0.080 

to -0.053 -0.142 -0.085 0.170 0.067 0.016 0.007 0.152 

peer -0.052 -0.056 -0.101 0.149 0.071 -0.003 -0.063 0.025 

Table 5. The POS weighting matrix 

  new york city and be at the average 

  NNP NNP NNP CC VBD IN DT NN 

also RB 1.05 1.05 1.05 0.00 0.00 1.00 0.00 1.05 

perform VBD 1.00 1.00 1.00 0.95 1.20 0.95 0.95 1.00 

similarly RB 1.05 1.05 1.05 0.00 0.00 1.00 0.00 1.05 

to TO 0.00 0.00 0.00 0.75 1.00 0.75 0.75 0.00 

peer NNS 0.90 0.90 0.90 0.00 1.10 0.00 0.00 0.00 

Table 6. The final similarity matrix 

 new york city and be at the average 

also -0.017 0.034 0.027 0.000 0.000 0.071 0.000 -0.012 

perform -0.033 0.024 -0.016 0.107 0.047 0.050 0.010 0.064 

similarly -0.027 -0.027 0.008 0.000 0.000 0.042 0.000 0.056 

to 0.000 0.000 0.000 0.064 0.033 0.068 0.064 0.000 

peer 0.001 -0.007 -0.045 0.000 0.085 0.000 0.000 0.000 
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We extract the best word pair from the final similarity matrix by finding the 

maximum-valued matrix element. We add the value of that element to a similarity sum 

Sdifferent and then we remove the entire row and the entire column of that element from 

the matrix. The process is repeated as long as there are matrix rows left. The values 

extracted from the final similarity matrix are marked in bold script. The Sdifferent sum 

would in this case be Sdifferent = 0.383. 

Our approach is based on a bag-of-words model, so it is incapable of pairing entire 

phrases, such as “similarly to national peers” and “at the national average”. However, 

since our trained model mostly allows the pairings of words belonging to different parts 

of speech, it is able to pair the adverb “similarly” in the first phrase with the noun 

“average” in the second phrase, which is, arguably, the most appropriate choice here. 

The final similarity score is found by using the formula (2) and its value is S (P, R) = 

0.437. Our trained model utilizes a paraphrase detection threshold of 0.5, which means 

that this sentence pair has correctly been identified as one in which sentences are highly 

related, but not to the extent that they could be viewed as paraphrases. As an illustration, 

the score of this sentence pair would have been 0.519 had POS weighting not been used, 

leading to its misclassification by the system. This highlights the importance of POS 

weighting in giving a more realistic assessment of semantic similarity. 

6. Parameter Optimization 

In order to obtain an optimal configuration of parameters for a given task, it is necessary 

to train the POST STSS model on a particular dataset. The optimization procedure must 

be performed only once for any given task, after which the system can function 

indefinitely using the obtained optimal parameters. Our training algorithm optimizes 

three types of parameters: 

1. POS weights; 

2. POS interaction matrix values; 

3. Relative weights of the string and the semantic similarities. 

We sought to keep the average similarity score around the mean value of 0.5 in an 

effort to prevent the general distribution of scores from becoming unbalanced. Since our 

model multiplies a similarity score by a weighting value, we used a POS weight range of 

[0.7, 1.3], which is both centered on the neutral value of one and symmetrical with 

regard to it. In effect, our POS weighting can increase or decrease the similarity score of 

a word pair by 30% at most. This particular choice was a trade-off between the 

preference for a broad range of weights and the need to keep the length of the training 

process manageable. 

The relative weights of the string and the semantic similarities always add up to one. 

As a result, they can actually be optimized in terms of a single value in the range of [0, 

1]. We chose to optimize the string similarity weight wstr while the semantic similarity 

weight wsem was calculated as wsem = 1 – wstr. 

In order to avoid overfitting to the training data we decided to utilize a relatively 

coarse step value of 0.1 in altering both the POS weights and the string similarity 

weight. This step value is used throughout our algorithm. 
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6.1. Dimensionality 

The main problem in optimizing our model lies in its dimensionality. The Penn 

Treebank Project defined 36 different POS tags for the English language, which means 

that the POS interaction matrix contains 36 × 36 = 1296 cells. However, since semantic 

similarity is a symmetric relation, the POS interaction matrix is symmetric as well. 

Furthermore, it is logical to always permit the coupling of words belonging to the same 

part of speech, rendering the values along the main diagonal irrelevant. Consequently, 

there are 630 distinct binary values within the POS interaction matrix that ought to be 

determined. Taking into account the number of variables and their respective ranges of 

values, the size of the search space is given by the following expression: 

1127   63036 SizeSpaceSearchFull  (3) 

Clearly, an exhaustive search is impossible, given the enormous number of 

combinations. We tackled this problem by partially optimizing the parameters in a 

lower-dimensional search space and then continuing on from that semi-optimized point 

in the full-sized search space. 

The lower-dimensional search space we used was based on aggregating several 

related POS tags into broader classes. We utilized six such categories: 

1. Nouns – includes common nouns in the singular (NN) and the plural (NNS), as well 

as proper nouns in the singular (NNP) and the plural (NNPS). We also put nouns 

tagged as numerals (CD) in this category. Still, this does not include numeric tokens, 

since they are discarded in the preprocessing steps. 

2. Verbs – includes verbs in their base form (VB), the past tense (VBD), and the present 

tense (VBP, VBZ), as well as present participles/gerunds (VBG), past participles 

(VBN), modals (MD), and particles (RP). 

3. Adjectives – includes adjectives in their base (JJ), comparative (JJR), and 

superlative (JJS) forms. 

4. Adverbs – includes adverbs in their base (RB), comparative (RBR), and superlative 

(RBS) forms, as well as Wh-adverbs (WRB). 

5. Pronouns – includes personal (PRP) and possessive pronouns (PRP$), as well as 

their Wh- counterparts (WP, WP$). 

6. Others – includes the remaining 12 tags (CC, DT, EX, FW, IN, LS, PDT, POS, SYM, 

TO, UH, WDT). 

The reasoning behind this approach is that the model should first be allowed to learn 

the relative importance of and interactions between general word classes. Only then 

should the focus shift toward the specificities of individual POS tags. For instance, it 

ought to be possible to detect whether, generally speaking, nouns are semantically more 

salient than adjectives and whether the pairing of these word classes in the context of 

STSS is sensible. These general conclusions can then be particularized with regard to 

the individual tags within these broader categories. 

Our lower-dimensional search space uses 6 different POS weights instead of 36, and 

its POS interaction matrix contains 15 distinct binary values that ought to be optimized. 

Hence, the size of the reduced search space is as follows: 
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1127   156 SizeSpaceSearchReduced  (4) 

Although this reduction significantly contains the combinatorial explosion, an 

exhaustive search still remains intractable. Therefore, our training procedure consists of 

the following two phases: 

1. Pseudo-exhaustive searching in the lower-dimensional search space; 

2. Steepest ascent hill climbing with momentum in the full-sized search space. 

6.2. Pseudo-exhaustive Search 

The idea of pseudo-exhaustive searching is to search exhaustively only among those 

parameter values which have some likelihood of being the optimal ones. We begin by 

choosing a single initial value for all POS weights, as well as a starting binary value for 

all the cells within the POS interaction matrix. An initial string similarity weight is also 

chosen. Finally, we select a POS weighting function among the five described in Section 

5.3. We note the performance of the system on the training data with these initial 

settings, via a chosen metric. 

We then explore all possible pairings of POS categories. We sequentially select a 

pairing and iterate over all combinations of POS weights for the word classes in the pair. 

While doing this, we fix to their initial values the weights of other word classes, the POS 

interaction matrix contents, and the string similarity weight. We then invert the POS 

interaction matrix bit of the pair that is being considered and repeat the process. In other 

words, we freeze the model in its initial state and only iterate over the changes of POS 

weights of the two given word classes and the changes of their respective POS 

interaction bit. Once a word class pairing has been explored, we reset the model to its 

initial state and start exploring another one. We do this for all possible pairings. 

While iterating, we evaluate the model on the training data. For each pairing we note 

the POS weights and the respective POS interaction bit that maximized system 

performance. Since there are 15 different pairings possible in our lower-dimensional 

model, the size of the search space is quite manageable: 

15272 e Sizeearch Spac Pairing SWord Class  (5) 

The motivation for this procedure is to observe in isolation the interplay between any 

two word classes and the relative importance of one with regard to the other. If a 

particular POS weight for a particular word class was not detected as optimal in any of 

the pairings, then it is highly unlikely that such a value would ultimately lead to optimal 

system performance. Consequently, we discard it from further consideration, thereby 

reducing the number of combinations to explore in the next step of the search process. 

Similarly, if a certain POS interaction value leads to worse performance than the other, 

we simply remove it from further consideration. Still, there can be more than one 

optimal combination of parameters for many pairings. For instance, a {0.7, 1.1} 

combination of POS weights with a POS interaction value of zero might perform just as 

well as a {0.8, 1.0} combination with a POS interaction value of one. 
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This approach presupposes that it is possible to accurately observe the interaction 

between two word classes in isolation. In effect, we assume that the choice of optimal 

weights and POS interaction bits for the entire model can be divided into a number of 

entirely separate decisions for each word class pairing. This assumption is obviously 

problematic, but it allows us to significantly reduce the search space and, ultimately, 

leads to promising results. 

We then compile a list of candidate weights for each word class by going through the 

pairings in which it participated and collecting its optimal weights. The candidate values 

for each POS interaction matrix cell are simply the optimal POS interaction bit(s) from 

the respective word class pairing. 

We exhaustively iterate over all combinations of candidate values for all POS weights 

and POS interaction bits. We do this while still keeping the string similarity weight fixed 

to its initial value. In each iteration we evaluate the model on the training data. At the 

end of the search we select those POS parameters which maximized system 

performance. The exact size of the search space in this stage is impossible to determine 

in advance, since it depends on the results of the previous step, but in our experience it 

can range from as low as 50 to as high as a couple of thousand. Nevertheless, this is still 

much smaller than the entire reduced search space whose size is on the order of ~10
10

. 

In the final step of our pseudo-exhaustive search, we iterate over all possible values 

of the string similarity weight (from zero to one, with a step of 0.1) for each of the best-

performing POS parameter sets from the previous stage. Since there are usually only one 

or two of them, this process is executed quickly. Again, in each iteration we evaluate the 

model on the training data. The full parameter combination(s) which maximized system 

performance is/are presented as the output of the pseudo-exhaustive search and is/are 

used as a starting point in the second phase of our training procedure – hill climbing. 

We also experimented with applying a value minimization process to that output 

before starting the climb. The idea is that, depending on the set of initial conditions used 

in the search, certain POS weights might remain needlessly high and certain POS 

interactions might remain needlessly permitted, thereby obscuring the truly relevant POS 

interactions and weight values. To remedy this, our value minimization iterates over all 

POS weights and attempts to lower their values, if they are not already at the 0.7 

minimum and if such changes do not diminish system performance on the training data. 

It also iterates over all bits of the POS interaction matrix and attempts to set them to 

zero, prohibiting the pairing of the respective word classes, if such modifications do not 

diminish system performance. The decision whether to use value minimization was one 

of the hyperparameters, which are described in the following subsection. 

6.3. Hyperparameters 

Our pseudo-exhaustive search relies on several hyperparameters – parameters that have 

an impact on the functioning of the process but cannot be optimized by the training 

algorithm itself. Instead, they must be manually set in advance. In order to both 

determine the optimal configuration of these hyperparameters and to avoid overfitting 

our model to the training data we used a three-fold stratified cross-validation. The more 

usual choice of a ten-fold cross-validation could have, perhaps, yielded even better 

results. Still, due to the time constraints, we opted for a lower number of folds. 
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Hence, we divided the training data into three folds and repeatedly trained our model 

via a pseudo-exhaustive search on two of them and tested its final performance on the 

third while cyclically switching which fold is used for testing. We executed this 

procedure for all hyperparameter combinations. Finally, we adopted the combination 

that led to the best average test result on all three folds. In Table 7 we present a list of all 

hyperparameters, the different options we considered, and the optimal options that were 

chosen as final. The cross-validation was performed on the training portion of the 

Microsoft Research Paraphrase Corpus [33], which is described in detail in Section 7. 

The selected POS weighting function is used not only during the pseudo-exhaustive 

search, but in the remainder of the training process and in the general functioning of the 

POST STSS method as well. Therefore, it can be regarded as a hyperparameter of the 

entire POST STSS model. 

Table 7. Hyperparameters used in the pseudo-exhaustive search 

Hyperparameter Options considered Optimal option 

Initial POS weights 0.7 / 1.0 / 1.3 0.7 

Initial POS interaction values 0 / 1 0 

Initial string similarity weight 0.3 / 0.4 / 0.5 / 0.6 / 0.7 0.5 

Usage of the value 

minimization process 
Yes / No No 

POS weighting function 

Choose the higher weight 

Choose the lower weight 

Arithmetic mean of the two 

Geometric mean of the two 

Harmonic mean of the two 

Arithmetic 

mean of the two 

weights 

6.4. Steepest Ascent Hill Climbing 

The task of the second phase of our training process is to take the parameter set 

produced by the first phase and fine-tune it within the full-sized search space. We 

expand the parameter set from the lower-dimensional search space into the full-sized 

one as follows: each individual part of speech in the full-sized space is assigned a weight 

according to its broader category in the lower-dimensional space. For instance, the 

weight given to the class of adjectives is copied onto the specific POS weights for 

adjectives in their base (JJ), comparative (JJR), and superlative form (JJS). Moreover, 

the POS interaction matrix is expanded so that all relations between parts of speech stay 

the same. For example, if the pairing of adverbs and adjectives was permitted in the 

lower-dimensional space, then the pairing of adjectives in their base form (JJ) and 

adverbs in their comparative form (RBR) would remain permitted in the full-sized space. 

The same would be true for all other combinations of individual parts of speech from 

these two word classes. The interactions among the individual parts of speech within a 

single, broader category are all allowed. For instance, all specific adjective forms can be 

freely paired with all the others. Finally, as in the lower-dimensional space, we 

automatically allow the pairing of words belonging to the same part of speech. The only 
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difference is that now this rule refers to individual parts of speech instead of broader 

word classes. Regardless, in such instances the POS interaction matrix is not consulted. 

In the second phase of the training procedure we utilize a variation of the steepest 

ascent hill climbing algorithm. As the full-sized space is so large, hill climbing is one of 

the few viable options. We employ three kinds of moves: 

1. An increase/decrease of a single POS weight; 

2. An inversion of a single bit within the POS interaction matrix; 

3. An increase/decrease of the string similarity weight. 

In each step of the climb we evaluate the effect of every possible move on the entire 

training data. The typical steepest ascent reasoning would be to select the move which 

leads to the largest increase in system performance. Instead of always following this 

logic, we add a momentum to each move which alters the string similarity weight or a 

POS weight. If a certain weight change has the largest positive impact on system 

performance, then it is perpetuated as long as the performance keeps increasing, even if, 

at some point, there appears another move which would lead to a greater performance 

increase. The momentum feature allows our algorithm to escape from certain local 

maxima and not only leads to better final results, but speeds up the hill climb as well. 

Once the repeated weight increase/decrease no longer improves system performance, we 

resume the climb using the standard steepest ascent method. 

To speed up the climb, we allow a move which alters a POS weight to simultaneously 

invert one POS interaction bit. This added inversion is permitted only on the bits that 

pertain to the POS whose weight is being modified. Furthermore, we allow the climb to 

include jumps – moves in which a weight is changed not by the usual step of 0.1, but by 

twice as much. We also let the POS weight jumps to invert a related POS interaction bit. 

If multiple moves lead to the same level of performance improvement, our algorithm 

randomly picks one of them. Thus, each run of the climb can produce different results. 

This allows multiple runs of our algorithm to explore a larger portion of the search space 

than would have otherwise been the case. 

The hill climbing can be sustained as long as there are moves which lead to better 

performance on the training data. However, this would likely result in an overfitted 

model. To prevent this, we used a simple heuristic – we first ran the hill climbing 

algorithm several times, finishing the climb only when all the moves leading to superior 

system performance are exhausted. In each run we noted how many moves it took to 

reach that final stage. Our analysis showed that the maximum length of this process is 

around 50 moves. We chose to stop the climb after 25 moves, i.e. half of the maximum. 

Although this heuristic is rather crude, it actually performed quite well in practice. 

Therefore, the parameters acquired after 25 moves are the ones we adopt as final. They 

are used in the evaluation of the POST STSS method described in Section 7. 

If a certain hyperparameter combination leads to multiple starting points for the hill 

climb, we can simply repeat the climb from each point. Then we can pick the final 

parameter combination which performs best on the training data. However, this situation 

did not occur with our optimal hyperparameter options. 

In principle, the aforementioned value minimization can also be applied to the 

parameters obtained through hill climbing. Since the cross-validation already showed 

that such a technique does not improve performance in the lower-dimensional space, we 

did not employ it in the full-sized space either. 
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Although our training procedure is not guaranteed to find the global optimum, it still 

leads to good results. One of main strengths of the proposed training algorithm is that 

almost all of its stages can be effectively parallelized, leading to a significant reduction 

in the length of the procedure. 

7. Evaluation 

We evaluated our model by using a paraphrase recognition test on the Microsoft 

Research Paraphrase Corpus (MSRPC) [33]. The MSRPC is a corpus containing 5801 

pairs of sentences which are all semantically related to some extent. However, only 

some sentence pairs are paraphrases, i.e. semantically equivalent, while others have only 

partly overlapping semantic information. The entire corpus was hand-annotated with 

binary scores indicating for each pair if it is a paraphrase or not. 3900 pairs (67%) were 

deemed semantically equivalent, while the remaining 1901 (33%) were classified as 

semantically diverse. Two human raters examined each pair, while a third cast the 

deciding vote in cases of disagreements. The average inter-rater agreement was 83%, 

which is therefore the maximum accuracy an STSS system can reach.  

The task of STSS systems is to match the sentence-pair scores of human annotators, 

thereby testing the systems’ ability to accurately assess the level of semantic similarity 

between two sentences. To do so, a threshold between zero and one has to be chosen, so 

that any score above it is treated as recognition of semantic equivalence and any below it 

as indication of semantic divergence. 

The MSRPC dataset was originally split into a training portion consisting of 4076 

sentence pairs, and a test portion encompassing 1725 pairs. The training part is used to 

determine the optimal threshold value, while the evaluation is performed on the testing 

part. We changed the threshold in 0.1 increments in order to limit the possibility of 

overfitting to the training data. In addition, we used the training set in the parameter 

optimization process described in the previous section. During training, a new optimal 

threshold value was determined whenever a performance evaluation was required. This 

was done so as to maximize system performance at each point in the process. 

7.1. Performance Metrics 

The most important metric used to determine a system’s performance is system 

accuracy, which is defined as the ratio of the number of correctly identified sentence 

pairs and the total number of pairs in the corpus. By definition, accuracy is calculated as 

the sum of true positives and true negatives divided by the sum of all positives and 

negatives. True positives (TP) are sentence pairs which are paraphrases and are 

correctly identified by an algorithm as such. False positives (FP) are sentence pairs that 

are semantically diverse, but are misclassified as semantically equivalent. False 

negatives (FN) represent the reverse case – sentence pairs which are paraphrases but are 

mistakenly labeled as semantically different. Finally, true negatives (TN) are properly 

recognized pairs of semantically dissimilar sentences. 
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However, there are other metrics, taken from the information retrieval theory, which 

are also frequently employed. Precision is the ratio of true positives and all pairs 

classified as paraphrases. Therefore, precision reflects the level of false positive errors, 

while ignoring false negative ones. Recall is calculated as the ratio of true positives and 

all paraphrase pairs from the corpus. Recall measures the level of false negatives, but 

ignores the false positive errors. This is why it is easy to optimize a system to have 

either high precision or high recall, at the expense of the other. The F-measure was 

introduced as a standard way of combining these measures into a unified, balanced 

score, and is defined as the harmonic mean of precision and recall. The mathematical 

formulas for calculating all these metrics are given by the following expressions: 
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As shown in expressions 7–9, the F-measure fails to take into account the level of 

true negatives an STSS system produces. This makes accuracy the predominant 

parameter of system evaluation since it measures not only false positive and false 

negative types of errors, but also the level of performance on both true positives and true 

negatives. Such a broad scope of evaluation is essential for problems in which the level 

of true negatives is not to be ignored. This is the case in all situations where measuring 

semantic dissimilarity is important (e.g. in extractive text summarization STSS is used to 

calculate semantic dissimilarity between the already selected summary sentences and a 

set of potential candidates). Thus, we decided to train the model and to pick the optimal 

threshold value according to the maximal system accuracy. 

7.2. Results 

An overview of POST STSS behavior on the MSRPC paraphrase recognition test with 

regard to different threshold values is given in Table 8. As shown, the optimal threshold 

value for our system is 0.5. 

Table 9 shows a comparison between the results of the existing STSS solutions and 

our proposed method. Solutions which require both a knowledge base and a text corpus, 

such as the ones proposed by Mihalcea et al. [11] or Ramage et al. [16], were listed as 

topological, since a suitable knowledge base is much harder to find. We sorted the 

results in each category in increasing order according to their accuracies. 
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Some previously devised methods were presented in a number of variants. In such 

cases, the version with the highest accuracy was chosen for comparison. Lintean and 

Rus [13] presented both a topological and a statistical similarity variant of their 

approach, so we included both in the table. 

In addition, we implemented a slight modification of the LInSTSS approach of Furlan 

et al. [20] which does not use stop-word removal. This was done in order to compare 

that algorithm to our own on equal terms, since our model does not use a stop-word list. 

The LInSTSS implementation utilized the same text corpus and stemming technique 

described in Section 4. 

Table 8. An overview of POST STSS performance on the MSRPC paraphrase recognition test 

with regard to different threshold values 

Threshold Accuracy Precision Recall F-measure 

Training set 

0 67.54% 67.54% 100.00% 80.63% 

0.1 67.54% 67.54% 100.00% 80.63% 

0.2 67.57% 67.56% 100.00% 80.64% 

0.3 67.62% 67.61% 99.93% 80.65% 

0.4 69.09% 69.01% 98.44% 81.14% 

0.5 74.34% 75.87% 90.92% 82.72% 

0.6 68.40% 82.69% 67.31% 74.21% 

0.7 53.70% 92.62% 34.18% 49.93% 

0.8 36.21% 97.52% 5.70% 10.78% 

0.9 32.56% 100.00% 0.15% 0.29% 

1.0 32.46% NaN 0% NaN 

Test set 

0 66.49% 66.49% 100.00% 79.87% 

0.1 66.49% 66.49% 100.00% 79.87% 

0.2 66.49% 66.49% 100.00% 79.87% 

0.3 66.55% 66.53% 100.00% 79.90% 

0.4 68.87% 68.46% 98.61% 80.81% 

0.5 74.09% 75.74% 89.80% 82.17% 

0.6 66.78% 81.89% 64.25% 72.01% 

0.7 51.42% 88.92% 30.78% 45.73% 

0.8 36.93% 96.83% 5.32% 10.08% 

0.9 33.51% NaN 0% NaN 

1.0 33.51% NaN 0% NaN 

 

The results of our POST STSS method are presented stepwise, in four variants. The 

first one is the direct application of COALS, with no stemming, lemmatization, or POS 

weighting performed. The results of this version can be considered a baseline for 

evaluating the proposed improvements. The second and the third variation depict the 

changes in system performance when either stemming or lemmatization is used. The 

fourth variant shows the results of our final POST STSS model, obtained by utilizing the 

proposed POS weighting strategy in conjunction with lemmatization as the 

preprocessing step. 
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The POST STSS method outperforms the current state-of-the-art statistical similarity 

algorithms in terms of accuracy. Its F-measure is also higher than most other statistical 

solutions. Only TBS [15], a topic modeling approach, performs slightly better in terms 

of the F-measure, but with a considerably lower accuracy. The topological similarity 

measures of Fernando and Stevenson [12] and Lintean and Rus [13] attain similar or 

better results than we do, but at the cost of having to use a hand-crafted knowledge base 

in the form of WordNet. This makes their solutions unsuitable for a broad range of 

languages in which such resources are nonexistent. Moreover, the POST STSS method 

achieves a significantly better accuracy than all structural models, including the 

algorithms ([19], [21], [22], [23]) which employ a weighting mechanism in conjunction 

with (shallow) parsing and/or semantic role labeling to detect constituents. This result 

validates our view that POS tags are well suited to be used in such weighting schemes as 

indicators of the deeper syntactic information. 

Table 9. A comparison between the results of the existing STSS solutions and our proposed 

method on the MSRPC paraphrase recognition test 

Algorithm Accuracy Precision Recall F-measure 

Topological similarity 

Lee et al. [24] / 75.30% 55.60% 63.90% 

Achananuparp et al. [26] 67.56% 67.53% 97.58% 79.82% 

Furlan et al. [19] – ConceptNet 68.23% / / / 

Mihalcea et al. [11] 70.30% 69.60% 97.70% 81.30% 

Ramage et al. [16] 70.80% / / 80.10% 

Li et al. [21] 70.80% 70.30% 97.40% 81.60% 

SyMSS [23] 70.87% 74.47% 84.17% 79.02% 

Lee et al. [25] 71.02% 73.90% 91.07% 81.59% 

Li et al. [22] 72.10% 71.30% 97.30% 82.30% 

Fernando and Stevenson [12] 74.10% 75.20% 91.30% 82.40% 

Lintean and Rus [13] – LCH 75.70% 78.30% 87.90% 82.80% 

Statistical similarity 

TBS [15] 69.90% 100% 69.90% 82.30% 

LInSTSS [20] 70.03% 78.43% 75.76% 77.07% 

Furlan et al. [19] – COALS 70.32% / / / 

WTMF [17] 71.51% / / / 

Islam and Inkpen [18] 72.64% 74.70% 89.10% 81.30% 

Lintean and Rus [13] – LSA 73.00% 77.30% 84.00% 80.50% 

Rus et al. [14] 73.56% 75.34% 89.53% 81.83% 

Our proposed method 

Plain COALS 71.77% 74.02% 88.67% 80.68% 

COALS + Stemming 72.17% 73.64% 90.58% 81.24% 

COALS + Lemmatization 72.87% 74.23% 90.67% 81.63% 

POST STSS 74.09% 75.74% 89.80% 82.17% 

 

When compared to the existing solutions of Islam and Inkpen [18] and Furlan et al. – 

COALS [19], which were a foundation for our approach, is it evident that the POST 

STSS method outperforms them by all standards. More detailed statistics of this 
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comparison, alongside our Plain COALS baseline, are shown in Table 10. We also 

included the LInSTSS algorithm [20] in the comparison, because it is a modification of 

the same two methods we used as our starting point. We presented the error rates of all 

algorithms, given that the maximal possible accuracy on the task is 83%. In addition, we 

calculated the relative error reduction of our approach, when compared to the existing 

solutions and our baseline. The relative error reduction is computed as: 

ES

STSSPOSTES

Error

ErrorError
RER  

  (10) 

where Error ES is the error rate of one of the existing solutions or the baseline, and Error 

POST STSS is the error rate of the POST STSS method. 

Table 10. Improvements of the POST STSS method with regard to related methods and the 

existing solutions which were used as a starting point for our approach 

Algorithm Accuracy Error rate RER 

Furlan et al. – COALS 70.32% 12.68% 29.73% 

Islam and Inkpen 72.64% 10.36% 14.00% 

LInSTSS 70.03% 12.97% 31.30% 

Plain COALS baseline 71.77% 11.23% 20.66% 

POST STSS 74.09% 8.91% / 

 

Surprisingly, the LInSTSS approach actually performed the worst. We found several 

factors which could have had a detrimental effect on it. To begin with, in order to avoid 

overfitting to the training data we had decided to use a 0.1 increment when searching for 

the optimal threshold. This did not degrade the performance of POST STSS since the 

values of the POS weights it uses also change in steps of 0.1, i.e. rather coarsely. On the 

other hand, the method of term frequency weighting implemented in LInSTSS uses a 

finely differentiated range of weights between 0.5 and 1.0. This means that the 0.1 step 

is much too coarse for choosing a threshold in LInSTSS. We tested this hypothesis by 

lowering the threshold step to 0.001, as was suggested by Furlan et al. [20]. The results 

validated our finding since the accuracy rose to 71.48%. 

Nonetheless, even this result is still slightly below our COALS baseline. In fact, it 

would be more appropriate to compare LInSTSS to our COALS + Stemming variant, 

since LInSTSS uses stemming as a text preprocessing step. This comparison is even 

worse for LInSTSS and indicates that term frequency weighting decreased system 

performance instead of increasing it, as was the case in the original system constructed 

for Serbian. The precise cause of this effect in English is somewhat unclear, but it has 

been previously detected by other researchers ([12], [13]). It is possibly linked to the 

size of the corpus used to create a semantic space and generate term frequencies. The 

English-language corpus is significantly larger than the Serbian one, leading to generally 

lower min-max TF weights for frequently found words. Hence, all sentence pairs which 

contain a number of such words will have their similarity score noticeably reduced, 

lowering the overall system accuracy. 
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7.3. Optimal Parameters 

The final results of the POST STSS method were achieved by using the POS weights 

shown in Table 11. Entries in the table are sorted alphabetically according to their POS 

tag [8]. We obtained these specific weights by training the model on the MSRPC 

training set in the manner described in Section 6. The final optimal weights for the string 

and the semantic similarities were both 0.5. 

Table 11. Optimal part-of-speech weights 

Part of speech Tag Weight 

Coordinating conjunction CC 0.7 

Cardinal number CD 0.8 

Determiner DT 0.7 

Existential there EX 0.7 

Foreign word FW 0.7 

Preposition or subordinating conjunction IN 0.7 

Adjective JJ 0.7 

Adjective, comparative JJR 0.7 

Adjective, superlative JJS 0.8 

List item marker LS 0.7 

Modal MD 1.2 

Noun, singular or mass NN 0.8 

Noun, plural NNS 1.0 

Proper noun, singular NNP 0.8 

Proper noun, plural NNPS 0.8 

Predeterminer PDT 0.7 

Possessive ending POS 0.7 

Personal pronoun PRP 0.7 

Possessive pronoun PRP$ 0.7 

Adverb RB 1.3 

Adverb, comparative RBR 1.2 

Adverb, superlative RBS 1.0 

Particle RP 1.2 

Symbol SYM 0.7 

To TO 0.8 

Interjection UH 0.7 

Verb, base form VB 1.2 

Verb, past tense VBD 1.2 

Verb, gerund or present participle VBG 1.1 

Verb, past participle VBN 0.8 

Verb, non-3rd person singular present VBP 1.2 

Verb, 3rd person singular present VBZ 1.2 

Wh-determiner WDT 0.7 

Wh-pronoun WP 0.7 

Possessive wh-pronoun WP$ 0.7 

Wh-adverb WRB 1.3 
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Our system gives the highest weight to verbs and adverbs, reflecting the claim of 

Wiemer-Hastings that humans are more strongly affected by the similarities of verbs 

than that of the other constituents [27]. This also corresponds to the findings of other 

researchers ([19], [23]) who showed that actions, i.e. verbs, are semantically more 

salient than subjects/objects involved in them. Interestingly, it is two of the adverb tags 

(RB and WRB) that actually have the highest weight assigned to them. Apart from the 

inherent importance of adverbs as modifiers of verbs, this effect likely stems, at least in 

part, from the distribution of examples in the paraphrase corpus. The MSRPC contains 

numerous instances where both sentences in a pair describe the same basic action but 

performed in different manners. In such situations giving more weight to adverbs is an 

elegant way of detecting these dissimilarities. 

In addition to verbs and adverbs, nouns are also given higher weights than most other 

parts of speech. This showcases their syntactic significance since nouns often play the 

roles of subjects and objects in a sentence. The remaining parts of speech are mostly 

given lower weights, indicating their reduced impact on STSS due to the limited amount 

of semantic information they carry. 

The optimal POS interaction matrix configuration is depicted in Figure 1. Values 

within it are ordered according to the alphabetical ordering of tags in both the left-to-

right and the top-to-bottom direction [8]. Therefore, the first row and the leftmost 

column correspond to the tag CC, while the last row and the rightmost column 

correspond to the tag WRB. A value of one means that the pairing of the parts of speech 

that correspond to a particular row and column is permitted. A value of zero means that 

such a coupling is forbidden. 

Even though the starting value of all matrix cells was zero, as set via a 

hyperparameter described in Section 6.3, the final matrix mainly contains values of one. 

This means that disallowing the pairing of words with different POS tags can be 

beneficial only in a limited number of situations. Hence, the impact of POS weights is 

even larger, since most POS interactions are allowed. 

Most values are grouped in uniform rectangular portions of the matrix, since they 

were chosen jointly, by allowing/disallowing pairings on the level of broader word 

classes. Many groupings have a linguistically understandable backing, if considered 

within a bag-of-words model. For instance, verbs can be paired with any word class 

except for adverbs. Nouns can, in general, only be paired with verbs and adverbs. Most 

adjectives cannot be paired with nouns and words in the “other” category. It is permitted 

to pair adverbs with adjectives, nouns, and pronouns, but not with verbs and words in 

the “other” category. There are also certain matrix values that are somewhat surprising. 

For example, pronouns can be paired with any word class, except for nouns. Since nouns 

and pronouns often have similar syntactic roles, this indicates that aligning words solely 

on the basis of their syntactic properties might not be the correct choice for STSS, at 

least within a bag-of-words model. Finally, words in the “other” category can be paired 

with pronouns and verbs. Of course, words within a broader word class can, by and 

large, be paired with other words in the same class. 

Still, there are exceptions to these general rules which break the rectangular patterns 

in the POS interaction matrix. For instance, the system found that disallowing the 

pairing of common nouns in the singular and common nouns in the plural leads to better 
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performance. Such fine-grained decisions are made during the hill-climbing part of the 

training process, described in Section 6.4. 

 

 

1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 

1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 

1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 

0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 

0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 

0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 

0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 

1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Fig. 1. The optimal configuration of the POS interaction matrix 
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8. Conclusion 

In this paper we have presented POST STSS, a bag-of-words approach to measuring the 

semantic similarity of short texts based on using part-of-speech tags as indicators of the 

deeper syntactic information. We have described our proposed system’s operation, 

including the central POS tag weighting technique, as well as the parameter optimization 

procedure. We have trained the model and evaluated its performance by using a 

paraphrase corpus. We have concluded that our method achieves a higher accuracy than 

current state-of-the-art statistical similarity algorithms. In this respect it also outperforms 

the methods which utilize more advanced syntax-processing tools. Since our approach 

does not require either hand-crafted knowledge bases or advanced syntactic tools like 

parsers and semantic role labelers, it is more easily applicable to languages with scarce 

natural language processing resources. 

A potential avenue of future research could focus on integrating our POS weighting 

strategy with shallow parsing, which groups several words/POS tags into noun, verb, or 

preposition phrases. By weighting both the phrases and the POS tags within them, it may 

be possible to develop an even better representation of the relative semantic importance 

of different constituents. 

An alternative research direction would be the verification of our approach on 

another language. Serbian is an interesting potential candidate since it differs from 

English in many respects, particularly morphosyntactic ones. Despite the scarcity of 

NLP resources for Serbian, there are existing corpora in this language in which every 

word has been annotated with a POS tag and a lemma ([34], [35], [36]). Research has 

shown that these corpora can be successfully utilized to create POS taggers and 

lemmatizers for Serbian ([35], [37]).  

Still, the usefulness of our STSS method largely depends on the cardinality of the 

utilized set of POS tags and the accuracy of the tagging process. If there are too many 

different tags our method becomes essentially inapplicable since it is not possible to 

learn the relative importance of each part of speech from the usually limited amount of 

training data. A large tag set also has a negative impact on tagger accuracy, which could 

render our POS weighting mechanism much less effective. Earlier annotation schemes 

for Serbian are especially problematic in this respect since they use hundreds of different 

morphosyntactic labels, due to the complexity of the language itself [34]. Nevertheless, 

the need for a more compact and practical set of tags has been recognized in the recently 

developed corpora where sets of 16 [35] or 45 [36] POS tags are employed. These 

figures are on a par with the number of tags used in the Penn Treebank Project [8]. 

Taggers trained on these corpora achieve accuracies comparable to those of the English-

language taggers, which should therefore enable the implementation and proper 

functioning of our STSS method. 
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