
Computer Science and Information Systems 12(1):1–31 DOI: 10.2298/CSIS131127082B

Using Part-of-Speech Tags as Deep-Syntax Indicators in

Determining Short-Text Semantic Similarity

Vuk Batanović1 and Dragan Bojić2

1 School of Electrical Engineering, Bulevar kralja Aleksandra 73,

11120 Belgrade, Serbia

bv115045p@student.etf.bg.ac.rs
2 School of Electrical Engineering, Bulevar kralja Aleksandra 73,

11120 Belgrade, Serbia

bojic@etf.rs

Abstract. This paper presents POST STSS, a method of determining short-text

semantic similarity in which part-of-speech tags are used as indicators of the

deeper syntactic information usually extracted by more advanced tools like parsers

and semantic role labelers. Our model employs a part-of-speech weighting scheme

and is based on a statistical bag-of-words approach. It does not require either

hand-crafted knowledge bases or advanced syntactic tools, which makes it easily

applicable to languages with limited natural language processing resources. By

using a paraphrase recognition test, we demonstrate that our system achieves a

higher accuracy than all existing statistical similarity algorithms and solutions of a

more structural kind.

Keywords: short-text semantic similarity, statistical similarity, corpus-based

measures, part-of-speech tags, POS weighting, syntactic information, bag-of-

words model, natural language processing.

1. Introduction

Determining the semantic similarity of short texts means assigning a certain metric to a

given pair of texts based on the level of semantic matching between them. Semantic

similarity systems provide a standard score between zero and one, where zero denotes

complete semantic dissimilarity, and one full semantic equivalence. Short-text semantic

similarity (STSS) is especially important since short texts are widely used on the Internet

as search queries and results, comments on social networks, news headlines and

snippets, product tags, etc.

The use of some measure of semantic similarity is vital in many problems within the

field of natural language processing (NLP), such as text summarization, text

categorization, question answering and information retrieval, machine translation, etc.

For instance, in extractive text summarization, selecting the sentences to be included in

the final text is a crucial phase. During this phase, particularly in multi-document

summarization, it is essential to avoid choosing a sentence that carries the same

information as the already selected ones [1]. In information retrieval or question

answering systems, the information from the query can be phrased in a way different

2 Vuk Batanović and Dragan Bojić

from the one used in the document that contains the answer. Hence, taking those

variations into account can lead to improvements in system performance [2].

There are two basic approaches to determining the semantic similarity of two words:

the topological or knowledge-based one, which uses expert knowledge, and the

statistical or corpus-based one, which uses a text corpus. Topological similarity

determines the semantic relatedness between words by using hand-crafted ontologies

like WordNet [3]. Since such structures are created by using expert human knowledge,

they are able to model the degrees of semantic relatedness between words quite

successfully when suitable distance metrics are applied. However, significant human

effort is required to create resources of this kind, rendering the topological approach

inapplicable to many minor languages or languages with scarce NLP resources. A recent

study [4] found that there are currently around 40 projects to build wordnets for various

languages. Only about a third of them are available under a free, open-source license,

while a further third are free solely for academic research. In comparison, there are over

7000 languages spoken in the world today [5], 1300 of which are spoken by more than

100,000 people. Moreover, many existing wordnet projects are still in inception, with a

rather limited number of words and synsets included, making them unsuitable for

complex NLP tasks like STSS.

On the other hand, the only resource required in the implementation of statistical

methods is a text corpus, which makes them widely and easily applicable. Statistical

approaches to semantic similarity rely on the distributional hypothesis, which states that

words with similar meanings tend to appear in similar contexts [6]. By applying this

hypothesis to a large text corpus, it is possible to create a semantic space in the shape of

a co-occurrence matrix. In this matrix every word found in the corpus has its own row

and every context its own column. Cells of the matrix specify how many times each

word appeared in each context. A context can usually be either a document from the

corpus, or another word in whose proximity the given word appeared. In this way each

word is assigned a context vector, which makes it possible to compare word meanings

by comparing their vectors.

A newer statistical viewpoint is based on the probabilistic approach to semantics,

which originates in the field of topic modeling [7]. Topic models treat each document

within a text corpus as a mixture of corpus-wide topics, and each topic as a distribution

over a certain vocabulary. Topic modeling algorithms use the textual documents to infer

the distribution of topics in the corpus, the per-document topic proportions, and the per-

word topic assignments. Since words can occur in multiple topics with different

probabilities, they can be viewed in terms of their topic contributions. By comparing

those contributions it is possible to compare word meanings.

Part-of-speech (POS) tags are probably the most commonly used type of syntactic

information. Part-of-speech tagging is the process of labeling each word in a text as

belonging to a particular part of speech, based both on its definition, as well as its

surrounding context. Various other syntactic and semantic procedures for text analysis,

such as chunking, parsing, and semantic role labeling, depend on the results of POS

taggers. Determining a word’s part of speech is a classification problem, which is why

POS taggers are usually constructed by applying supervised machine learning to a text

corpus that had been hand-annotated with the correct POS tags. English language POS

taggers typically differentiate between 36 parts of speech (excluding the punctuation

mark tags) which were standardized in the Penn Treebank Project [8].

Using Part-of-Speech Tags as Deep-Syntax Indicators 3

This paper is organized as follows: in Section 2 we give an overview of current STSS

systems. Section 3 outlines the main ideas of our approach and the motivation behind it,

and presents certain existing algorithms and tools used within it. In Section 4 we

describe the corpus processing procedures which we employed. Section 5 contains a

detailed explanation and an example of the operation of our proposed system and the

way it utilizes POS tags. In Section 6 we elaborate on the procedure used to train and

optimize our model. Section 7 presents an evaluation of our method and a comparison to

other approaches. Finally, in Section 8 we summarize our work and point towards

possible system improvements and directions for future research.

2. Related Work

Numerous STSS solutions, both topological and statistical, already exist, and many of

them use some form of syntactic information. In terms of their approach toward syntax,

there are two main types of STSS systems:

1. Systems which ignore sentence structure by employing a bag-of-words technique. In

this model, a sentence is treated as an unordered set of words, thereby ignoring the

organization and interdependence of words within a sentence. These systems

sometimes use shallow syntactic information, such as POS tags, but mostly in a

superficial manner.

2. Systems which adopt a more structural approach to semantics by harnessing deep

syntactic information. These systems use more advanced NLP tools like parsers and

semantic role labelers.

In relation to STSS systems, there also exists an entire family of algorithms which

deal with the issue of paraphrase identification, i.e. of determining whether sentences in

a given pair are paraphrases of each other or not. Such algorithms commonly employ

advanced machine learning classifiers and a wealth of features, oftentimes including

syntactic ones, to arrive at a binary decision ([9], [10]). However, it should be pointed

out that the task of generating a binary classification is a much more limited and easier

one than the task of interval-based semantic gradation performed by STSS methods.

2.1. Bag-of-Words Models

Mihalcea et al. [11] proposed a notable bag-of-words approach which combines six

knowledge-based metrics that use WordNet for determining the word-to-word

similarities with two corpus-based algorithms into a unified measure. Since most of the

word-to-word knowledge-based metrics cannot be applied across parts of speech, their

method uses POS tags to prevent the pairing of words that do not belong to the same

part of speech. The same POS tag usage can be found in the model of Fernando and

Stevenson [12], who experimented with five different WordNet metrics. Similarly,

Lintean and Rus [13] considered a bag-of-words model with which they tested LSA

(Latent Semantic Analysis), a statistical algorithm, and a set of WordNet measures. They

utilized POS tags in the same manner as [11] and [12], but they also considered a

4 Vuk Batanović and Dragan Bojić

weaker form of this restriction which relies only on basic word classes, e.g. verbs, and

not on their subtypes like infinitives, past tenses, participles, etc.

Rus et al. [14] experimented with the same LSA algorithm alongside LDA (Latent

Dirichlet Allocation), a topic modeling method, within a syntactically simpler approach

in which no POS information is utilized. Quan et al. [15] devised another approach

based on topic modeling, called TBS (Topic Based Similarity). It compares short texts

on the basis of their common words, as well as the probabilities of their distinguishing

terms under each probabilistic topic.

Ramage et al. [16] proposed a method that does not compare two bags-of-words

directly but instead compares the distributions induced by each text when used as the

seed of a random walk over a graph, which is constructed by using both WordNet and a

text corpus. POS information is utilized during the graph construction phase, and as a

part of text preprocessing, thus allowing the model to more accurately match the words

in the given text with the nodes in the graph on which it operates.

Guo and Diab [17] also use POS tagging as a corpus preprocessing step within a

latent semantic model of sentences called WTMF (Weighted Textual Matrix

Factorization). Their method explicitly models the words that are not present in the

sentences, but takes into account the fact that the missing words are not as informative

as the observed ones.

The approach devised by Islam and Inkpen [18] does not employ POS tags but

instead combines string similarity with corpus-based semantic similarity. They also

experimented with the inclusion of a measure of the common-word order between the

two given texts. Furlan et al. [19] modified their model to utilize the more advanced

COALS (Correlated Occurrence Analogue to Lexical Semantic) statistical algorithm.

Furlan et al. [20] further developed this method into a language-independent, corpus-

based approach called LInSTSS which relies on term frequency weighting.

2.2. Structural Models

Structural solutions of the second kind include the one from Li et al. [21] which uses

shallow parsing to divide each sentence into noun phrases (NP), verb phrases (VP), and

preposition phrases (PP). Their method then compares the meanings of sentences by

comparing the appropriate phrases within them, while individual word meanings are

acquired through the use of WordNet. In addition, Li et al. experimented with a similar

approach [22] in which sentences are compared based on the objects that appear in

them, as well as the properties of those objects and their behavior. Shallow parsing is

used to extract noun and verb phrases from each sentence. Their method groups the

nouns from noun phrases as objects, the adjectives and adverbs from noun phrases as

object properties, while verb phrases are grouped as object behaviors. The final

similarity of sentences is determined as a sum of the similarities of these three groups,

while the word-to-word similarities are calculated by using WordNet.

Oliva et al. [23] created SyMSS (Syntax-based Measure for Semantic Similarity) – a

more complex topological model which utilizes a joint dependency parser and semantic

role labeler to perform a deep syntactic analysis of each sentence. SyMSS is able to

semantically compare words or phrases that have the same syntactic function in both

sentences, and to reduce the final similarity score in situations where one sentence

Using Part-of-Speech Tags as Deep-Syntax Indicators 5

contains certain syntactic structures not present in the other. Like [11], [12], and [13],

Oliva et al. also experimented with various WordNet metrics, and employed POS

information in a similar way.

Lee et al. [24] considered a combination of string similarity metrics similar to the

ones used in [18] and a syntactic pattern matching mechanism which identifies subject-

verb-object structures in each sentence. This mechanism relies on the use of a parser,

while the word-to-word semantic similarities are determined by using WordNet. Lee et

al. [25] also proposed a different topological method that treats a sentence as a sequence

of links, each of which contains a specific meaning and connects a pair of words. In

order to extract such links it uses a syntactic parser called Link grammar.

Furlan et al. [19] described a knowledge-based algorithm that employs a semantic net

called ConceptNet as the word data model. They use a semantic role labeling module to

extract subject-verb-object tuples from each sentence. Achananuparp et al. [26]

proposed a way to address the syntactic variability of language expression by measuring

the similarity of sentences via verb-argument structures. Such structures are obtained

through semantic role labeling and the final similarity score is calculated as a sum of the

similarities of verbs, determined by using WordNet, and their corresponding arguments.

Several structural solutions employ a weighting scheme of some kind, in which the

similarities of different constituents are given different weights. This is accomplished by

weighting according to semantic roles ([19], [23]), phrase types [21], or a combination

of phrase types and word types [22]. In some methods weighting is an optional

component whose effects were not explored [24]. Other authors concluded that their

methods perform best when equal weighting is utilized [26].

3. Proposed Method

The central idea of our proposed method is that certain parts of speech and certain

relationships between different parts of speech are semantically more important than

others, not only inherently, but also due to the roles they commonly play within a

sentence. By taking account of this notion, our STSS system is able to utilize POS tag

information as an indicator of the deeper underlying syntactic structure.

3.1. Motivation

It is rather intuitive that not all elements of a sentence carry the same amount of

semantic information. For instance, let us consider the following sentences:

1. I drank some coffee.

2. I drank some milk.

3. I bought some milk.

Most people would agree that the semantic distance between the first and the second

sentence is smaller than the one between the second and the third. This is because

human similarity is strongly affected by verb similarity and less so by object similarity

[27]. This difference in semantic salience also exists between other constituents.

6 Vuk Batanović and Dragan Bojić

Hence, the use of weighting strategies in some of the existing STSS systems does

have a sound justification. However, such a strategy has, so far as we know, never been

implemented solely on the part-of-speech level. All existing STSS systems that employ

weighting are structural ones. They use advanced syntactic tools – parsers and semantic

role labelers – to delineate constituents by harnessing deeper syntactic information.

As far as the existing bag-of-words methods are concerned, almost all of them either

do not utilize POS tags at all, or they do so rather superficially and usually in order to

prevent the pairing of words belonging to different parts of speech. This usage, though

logical at first glance, can in fact easily lead to errors. Let us consider, for example, the

following sentence pair:

– He is a diligent worker.

– He works diligently.

Although these two sentences carry the same meaning, the combination of an

adjective and a noun from the first sentence (diligent worker) is replaced by a

combination of a verb and an adverb in the second (works diligently). In such cases, it

would be a mistake to forbid the pairing of words (worker, works) and (diligent,

diligently), even though the words comprising those pairs belong to different parts of

speech. Similar examples can be found in pairs of sentences where one sentence is in the

active and the other in the passive voice:

– They finished constructing the bridge.

– The construction of the bridge was finished.

The words constructing and construction do not belong to the same part of speech,

but it is clear that the pairing of those words is appropriate and should not be prohibited.

3.2. POST STSS

Our method, which we call POST STSS (POS-tag-supported STSS), combines a

weighting strategy based on POS tags with a bag-of-words approach. Although POS tags

offer only a shallow representation of sentence structure, we argue that through their use

it is possible to obtain much of the information usually provided by the more complex,

but also more error-prone NLP tools. In addition, we recognize the merits of allowing

the coupling of certain parts of speech and disallowing the pairing of others, but we

handle such rules much more carefully than did the previous STSS solutions.

Since we aimed at creating a general STSS method that could be applied even to

languages with scarce NLP resources, we opted for a statistical similarity model. We

chose to base our method on the approach proposed by Islam and Inkpen [18], since the

string similarity measure which they included in the final similarity score allows their

model to perform better when dealing with different forms of infrequent proper nouns.

Furthermore, we decided to utilize the COALS algorithm for determining the word-to-

word semantic similarity, as suggested by Furlan et al. [19], since it is able to better

predict human similarity judgments than older algorithms like LSA [28]. An integral

part of COALS is an algebraic operation called SVD (Singular Value Decomposition)

which, through matrix factorization and decomposition, is able to reduce the generated

semantic space to a lower dimension, rendering the whole algorithm more scalable. We

Using Part-of-Speech Tags as Deep-Syntax Indicators 7

utilized the algorithm implementation provided by the S-Space package [29], with the

default setting of 14000 for the initial size of the co-occurrence matrix. Its

dimensionality is then reduced to 800 through SVD.

For text preprocessing we used the Stanford CoreNLP package [30]. This suite

encompasses many NLP tools, including a tokenizer, a sentence splitter, a lemmatizer, a

POS tagger, a named entity recognizer, a dependency parser, and a coreference

resolution tool. They are all tied together in a modular fashion, making it easy to take

advantage of the more advanced functions, if needed. In our system we utilized only the

tokenizer, the sentence splitter, the lemmatizer, and the POS tagger. The POS tagger is

based on a log-linear approach and achieves an accuracy of over 97% [31].

4. Corpus Processing

The text corpus chosen for the creation of the POST STSS system needed to be

sufficiently large, topically diverse, and publicly available, which is why we selected the

English Wikipedia abstract corpus. This corpus contains short text summaries of all the

articles present in the English Wikipedia. Its size, at the time, was around 3.7 GB. Since

the corpus is available as an XML file which, aside from the abstracts, also includes

other irrelevant information, we had to scan through the file to extract the useful data.

We then cleaned the text by eliminating all numbers and words that contain numbers, by

removing all punctuation marks, and by normalizing all letters into lower case.

We tested two text preprocessing procedures on our system: stemming and

lemmatization. Stemming is a transformation in which a given word is stripped of its

suffixes, thereby reducing it to its stem. In this manner, multiple different words can be

normalized into a single morphological form, thus reducing the overall number of

different words. Hence, the application of stemming to a text corpus ultimately leads to

the creation of a smaller semantic space. This can, in effect, reduce the overall

computational costs. In our system we utilized the standard Porter stemmer [32].

Despite their advantages, stemmers also have their drawbacks, like their inability to

cope with prefixes. However, the biggest issue concerning stemmers is their propensity

to make mistakes. For instance, the words animal, animation, and animism, although

semantically diverse, will all be reduced to a single stem – anim. While such errors are

the exception rather than the rule, numerous other examples can be found. In a semantic

space, these mistakes can trigger the merger of words which have completely unrelated

meanings, consequently having a detrimental effect on system performance. These

problems are further exacerbated when working with highly inflectional languages.

That is why we also considered lemmatization, a more advanced word

transformation. Lemmatization is the process of determining the lemma, or dictionary

form, of a given word. This allows different inflected forms of a word to be treated like

a single item. For example, lemmatization reduces the past participle, present participle,

and all other inflected forms of a verb to its base form. This can be of particular value

when dealing with words with irregular inflections, like the verb to be, for which a

stemmer would generate multiple stems. Due to their different approach, lemmatizers

are not limited to dealing with suffixes, and do not lead to the merger errors that

stemmers can produce.

8 Vuk Batanović and Dragan Bojić

Still, unlike stemmers, which operate on individual words with no knowledge of the

surrounding context, lemmatizers have to be able to discriminate between words that can

have different meanings depending on their part of speech. Thus, a POS tagger is

required for their operation. Since we devised our STSS model around using POS tags,

it was simple to add lemmatization to it, via the appropriate Stanford CoreNLP module.

After stemming or lemmatizing our text corpus, we created the semantic space by

supplying the processed corpus to the COALS algorithm. The produced semantic space

was saved to the hard drive in the Sparse Text format, defined in the S-Space package.

5. System Operation

The POST STSS approach employs the method proposed in [18] of matching each word

in the shorter text P to its most similar counterpart in the longer text R, and then adding

up the individual similarity scores, based on both the string and the semantic similarity,

into a unified measure. We improve this method by weighting word similarity scores

using values determined on the basis of both words’ POS tags.

Determining the semantic similarity of two short texts begins by creating annotation

modules from the Stanford CoreNLP package for tokenizing, sentence splitting, part-of-

speech tagging, and lemmatizing, and applying them to both texts. Properly identifying

the placement of sentence boundaries in a given short text is important for the proper

functioning of POS tagging. Words are tokenized, and POS tagging is subsequently

performed. Tokens are then either stemmed or lemmatized. Finally, all tokens containing

numbers or other non-alphabetic characters are excluded from further consideration,

thus generating the processed texts and their POS tag sequences. The number of tokens

in the shorter text P will hereafter be referred to as m, while the number of tokens in the

longer text R will be n.

We then identify the words which appear in both texts, whose count we will refer to

as d. Since those words are identical in both P and R, both their string and semantic

similarities are maximal. Hence, their final similarity measures depend only on their

POS tags. We describe the precise manner of POS weighting in Section 5.3. The scores

of all of the words appearing in both texts are added up into a similarity sum Ssame.

The remaining m – d and n – d words from both texts are used to construct three (m –

d) × (n – d) matrices in which the remaining words from the shorter text P are assigned

to the rows of the matrix, whereas the columns of the matrix represent words from the

longer text R. These matrices are:

1. The string similarity matrix;

2. The semantic similarity matrix;

3. The POS weighting matrix.

5.1. String Similarity

In the string similarity matrix each cell has a value between zero and one that represents

the level of string similarity between the row-word and the column-word, where zero

indicates completely different string contents, and one full string equality. In the same

Using Part-of-Speech Tags as Deep-Syntax Indicators 9

way as [18], we calculate this similarity score by combining the following three

modifications of the LCS (Longest Common Subsequence) metric:

– NLCS – Normalized Longest Common Subsequence;

– NMCLCS1 – Normalized Maximal Consecutive Longest Common Subsequence

starting at character 1;

– NMCLCSN – Normalized Maximal Consecutive Longest Common Subsequence

starting at character N.

Unlike the LCS where consecutiveness is not required, the second and the third

modification only search for the longest consecutive common subsequence. The second

algorithm searches for the maximal consecutive portion of the shorter string that

consecutively matches with the longer string, where matching starts from the first

character in both strings. The third algorithm does the same, but allows the matching to

start at any character in both strings. In all three modifications the basic similarity value

is divided by the length of both strings compared, thereby normalizing the score. The

final string similarity score is gained by summing the individual scores of these three

metrics, while giving each an equal weight.

5.2. Semantic Similarity

In the semantic similarity matrix each cell has a value that represents the level of

semantic similarity between the row-word and the column-word. We obtain this score by

taking the context vectors of the two words being compared and calculating their cosine

similarity. The context vectors are extracted from the semantic space generated by

COALS. A score of zero indicates total semantic dissimilitude while a score of one

signifies a complete semantic match. COALS can also produce negative similarity

scores for certain vector pairs, as a side effect of the SVD operation, but this occurs

relatively rarely [28]. As far as we have noticed, such scores tend to have low absolute

values. We experimented with setting those scores to zero, but found no performance

benefit from doing so and, hence, we ultimately retained them.

5.3. POS Weighting

In the POS weighting matrix each cell has a value given by our POS weighting method

to the POS tags of the word pair which consists of the row-word and the column-word.

This value reflects the relative importance/unimportance of the given parts of speech, as

well as the significance of their interaction in determining short-text semantic similarity.

Given the number of POS tags used in English, as well as the considerably higher

number of combinations of interactions between them, it is infeasible to manually

compile an optimal list of such values. Although a solution based on certain linguistic

intuitions and general approximations could be constructed, a set of training data is

required in order to optimize system performance on a given task. This learning process

is described in detail in Section 6.

10 Vuk Batanović and Dragan Bojić

Our POS weighting method uses a set of weights for different POS tags and a POS

interaction matrix. The POS interaction matrix is a symmetric matrix which consists of

binary values specifying for any two diverse tags whether the coupling of words that

have those tags assigned to them should be allowed or not. In other words, the POS

interaction matrix determines which diverse part-of-speech couplings are allowed and

which are forbidden.

When comparing two words that belong to the same part of speech we simply place

the weight for that part of speech in the appropriate cell of the POS weighting matrix.

On the other hand, in situations when the words being compared belong to different

parts of speech, a lookup is performed within the POS interaction matrix. If the binary

value assigned to a given coupling is zero, a zero weight is written to the appropriate

cell of the POS weighting matrix, which effectively prohibits that coupling. Conversely,

if the binary value is one, the POS weighting matrix cell is given a value determined by

a POS weighting function which uses the respective POS weights. We experimented

with the following five forms of this function:

1. Choosing the higher POS weight of the two;

2. Choosing the lower POS weight of the two;

3. Calculating the arithmetic mean of the two POS weights;

4. Calculating the geometric mean of the two POS weights;

5. Calculating the harmonic mean of the two POS weights.

The exact form of this function is chosen during the training process. This selection is

elaborated upon in Section 6.3.

The same method of POS weighting is also applied to words that appear in both given

texts. However, in their case the POS weighting score is not written to a matrix cell but

instead represents their final similarity score.

5.4. Final Similarity Calculation

The string similarity, the semantic similarity, and the POS weighting matrices are then

combined into one as follows: We first combine the string and the semantic similarity

matrices by multiplying their values with the relative weights given to the word-to-word

string and semantic similarities and then adding them up. These relative weights are

global, i.e. not word-specific, they add up to one, and their optimal values are

determined during the training phase. Afterwards, we multiply each cell of this new

matrix with its corresponding cell in the POS weighting matrix. Thus, we gain a

similarity measure for each word pair according to the following expression:

),()),(),((),(jiPOSjiSemanticwjiStringwjiSim semstr (1)

where String (i, j) represents the string similarity score of the words in the i-th row and

the j-th column, Semantic (i, j) stands for their semantic similarity score, and POS (i, j)

represents the POS weighting score assigned to them based on their respective POS tags.

The relative weights wstr and wsem are given to the word-to-word string and semantic

similarities, where wstr + wsem = 1.

Using Part-of-Speech Tags as Deep-Syntax Indicators 11

Once we have created the final similarity matrix, we proceed to extract the best word

pairs on the basis of it. We do so by finding the matrix cell with the highest score and

adding it to a similarity sum Sdifferent. We then pair the row-word and the column-word of

that cell, after which we discard the entire row and column from the matrix. By doing

this, we remove from further consideration all other word pairs in which words from the

chosen pair appeared. Hence, we only allow a word from text P to be paired with a word

from text R once. We repeat this procedure until there are no more matrix rows left.

To obtain the final similarity score of texts P and R we add up the scores Ssame and

Sdifferent. As in [18], we then normalize them by using the reciprocal harmonic mean of m

and n, the lengths of the two texts:

In addition, in order to gain a final similarity between zero and one, we place an

upper limit on the score value. We do this because the similarity score can theoretically

exceed the value of one if we are comparing texts containing only those words whose

POS weights are higher than one. However, no such instances occurred in practice

during our evaluation since real-life examples always include function words and other

word types whose lower POS weights decrease the similarity score.

5.5. Example

We will demonstrate the functioning of the POST STSS method on a pair of sentences

from the Microsoft Research Paraphrase Corpus [33]. Table 1 contains the original

sentences, their preprocessed and lemmatized forms, and their POS tag sequences.

Table 1. An example sentence pair from the Microsoft Research Paraphrase Corpus

1

Houston fourth-graders also performed similarly

houston fourth grader also perform similarly

NNP JJ NNS RB VBD RB

to national peers in writing

to national peer in write

TO JJ NNS IN VBG

2

New York City and Houston

new york city and houston

NNP NNP NNP CC NNP

fourth-graders were at the national

fourth grader be at the national

JJ NNS VBD IN DT JJ

average in writing

average in write

NN IN VBG

 1 ,

2
)(max),(

mn

nm
SSRPS differentsame (2)

12 Vuk Batanović and Dragan Bojić

These sentences were classified by human annotators as semantically different. Their

meanings are actually rather similar, though worded differently, but the second sentence

includes information about New York City students, which is not present in the first one.

All system parameters used in this example are the ones gained by training our model

on the training part of the Microsoft Research Paraphrase Corpus. We describe this

training process in detail in Section 6.

For the sake of convenience, we listed all POS weights used in this example and their

respective POS interaction values in Table 2. The entire list of POS weights that our

trained model utilizes is shown in Table 11, Section 7.3, while the entire configuration

of the POS interaction matrix is given in Figure 1, in the same section. The chosen POS

weighting function is the calculation of the arithmetic mean of the two POS weights.

Table 2. POS weights and POS interaction values used in this example

 CC DT IN JJ NN NNS NNP RB TO VBD VBG

 0.7 0.7 0.7 0.7 0.8 1.0 0.8 1.3 0.8 1.2 1.1

CC 1 1 0 0 0 0 0 0 1 1 1

DT 1 1 0 1 0 0 0 0 1 1 0

IN 0 0 1 0 1 0 0 1 1 1 0

JJ 0 1 0 1 0 0 0 1 0 1 1

NN 0 0 1 0 1 0 1 1 0 1 1

NNS 0 0 0 0 0 1 1 1 0 1 1

NNP 0 0 0 0 1 1 1 1 0 1 1

RB 0 0 1 1 1 1 1 1 0 0 0

TO 1 1 1 0 0 0 0 0 1 1 1

VBD 1 1 1 1 1 1 1 0 1 1 1

VBG 1 0 0 1 1 1 1 0 1 1 1

After preprocessing and lemmatization, the first sentence contains 11 tokens and the

second 14. Hence, n = 14 and m = 11. There are 6 identical tokens in both sentences –

houston, fourth, grader, national, in, write. Therefore, d = 6.

The scores of these words depend only on their POS tag weights. If such a word has

the same POS tag in both sentences, then its score is equivalent to the weight of its tag.

Otherwise, its score is either equal to zero, if the pairing of the two different tags

assigned to the word is prohibited, or is equal to the POS weighting function of its two

tags, if the pairing of those tags is permitted.

To illustrate, the score of the word write is 1.1, since it appears in both sentences with

a VBG tag, whose weight is 1.1. On the other hand, it could have been the case that in

one of the sentences the word write appeared as a verb in the past tense (tag VBD), and

in the other as a gerund/present participle (VBG). The POS interaction value for these

two tags is one, meaning that their coupling is permitted. Since the weight of the VBD

tag is 1.2 and the weight of the VBG tag is 1.1, the score of the word write would have

been calculated as the arithmetic mean of these two values, which is 1.15.

The scores of all the words appearing in both sentences are then added up into a

similarity sum Ssame. In this example, that sum would be Ssame = 5.0.

For the remaining words in both sentences we create three 5 × 8 matrices in which

the words from the shorter sentence are assigned to the rows of the matrix, whereas the

Using Part-of-Speech Tags as Deep-Syntax Indicators 13

columns of the matrix represent words from the longer sentence. These matrices are: the

string similarity matrix, shown in Table 3; the semantic similarity matrix, shown in

Table 4; and the POS weighting matrix, shown in Table 5. The actual values in the

matrices always depend on the particular words being considered. The semantic

similarity scores also depend on the text corpus chosen to create the semantic space.

These matrices are then combined into a final similarity matrix, shown in Table 6.

The values in each cell of the final matrix are calculated according to formula (1). Our

trained model utilizes the same weight of 0.5 for both the string and the semantic

similarity, which is also the value used in this example.

Table 3. The string similarity matrix

 new york city and be at the average

also 0.000 0.041 0.000 0.083 0.000 0.124 0.000 0.035

perform 0.031 0.094 0.000 0.000 0.047 0.000 0.031 0.054

similarly 0.000 0.018 0.046 0.024 0.000 0.037 0.000 0.026

to 0.000 0.083 0.083 0.000 0.000 0.165 0.165 0.000

peer 0.055 0.041 0.000 0.000 0.083 0.000 0.055 0.094

Table 4. The semantic similarity matrix

 new york city and be at the average

also -0.033 0.023 0.052 0.100 0.240 0.018 -0.003 -0.058

perform -0.097 -0.045 -0.031 0.225 0.031 0.106 -0.010 0.074

similarly -0.051 -0.070 -0.032 0.081 0.018 0.047 0.006 0.080

to -0.053 -0.142 -0.085 0.170 0.067 0.016 0.007 0.152

peer -0.052 -0.056 -0.101 0.149 0.071 -0.003 -0.063 0.025

Table 5. The POS weighting matrix

 new york city and be at the average

 NNP NNP NNP CC VBD IN DT NN

also RB 1.05 1.05 1.05 0.00 0.00 1.00 0.00 1.05

perform VBD 1.00 1.00 1.00 0.95 1.20 0.95 0.95 1.00

similarly RB 1.05 1.05 1.05 0.00 0.00 1.00 0.00 1.05

to TO 0.00 0.00 0.00 0.75 1.00 0.75 0.75 0.00

peer NNS 0.90 0.90 0.90 0.00 1.10 0.00 0.00 0.00

Table 6. The final similarity matrix

 new york city and be at the average

also -0.017 0.034 0.027 0.000 0.000 0.071 0.000 -0.012

perform -0.033 0.024 -0.016 0.107 0.047 0.050 0.010 0.064

similarly -0.027 -0.027 0.008 0.000 0.000 0.042 0.000 0.056

to 0.000 0.000 0.000 0.064 0.033 0.068 0.064 0.000

peer 0.001 -0.007 -0.045 0.000 0.085 0.000 0.000 0.000

14 Vuk Batanović and Dragan Bojić

We extract the best word pair from the final similarity matrix by finding the

maximum-valued matrix element. We add the value of that element to a similarity sum

Sdifferent and then we remove the entire row and the entire column of that element from

the matrix. The process is repeated as long as there are matrix rows left. The values

extracted from the final similarity matrix are marked in bold script. The Sdifferent sum

would in this case be Sdifferent = 0.383.

Our approach is based on a bag-of-words model, so it is incapable of pairing entire

phrases, such as “similarly to national peers” and “at the national average”. However,

since our trained model mostly allows the pairings of words belonging to different parts

of speech, it is able to pair the adverb “similarly” in the first phrase with the noun

“average” in the second phrase, which is, arguably, the most appropriate choice here.

The final similarity score is found by using the formula (2) and its value is S (P, R) =

0.437. Our trained model utilizes a paraphrase detection threshold of 0.5, which means

that this sentence pair has correctly been identified as one in which sentences are highly

related, but not to the extent that they could be viewed as paraphrases. As an illustration,

the score of this sentence pair would have been 0.519 had POS weighting not been used,

leading to its misclassification by the system. This highlights the importance of POS

weighting in giving a more realistic assessment of semantic similarity.

6. Parameter Optimization

In order to obtain an optimal configuration of parameters for a given task, it is necessary

to train the POST STSS model on a particular dataset. The optimization procedure must

be performed only once for any given task, after which the system can function

indefinitely using the obtained optimal parameters. Our training algorithm optimizes

three types of parameters:

1. POS weights;

2. POS interaction matrix values;

3. Relative weights of the string and the semantic similarities.

We sought to keep the average similarity score around the mean value of 0.5 in an

effort to prevent the general distribution of scores from becoming unbalanced. Since our

model multiplies a similarity score by a weighting value, we used a POS weight range of

[0.7, 1.3], which is both centered on the neutral value of one and symmetrical with

regard to it. In effect, our POS weighting can increase or decrease the similarity score of

a word pair by 30% at most. This particular choice was a trade-off between the

preference for a broad range of weights and the need to keep the length of the training

process manageable.

The relative weights of the string and the semantic similarities always add up to one.

As a result, they can actually be optimized in terms of a single value in the range of [0,

1]. We chose to optimize the string similarity weight wstr while the semantic similarity

weight wsem was calculated as wsem = 1 – wstr.

In order to avoid overfitting to the training data we decided to utilize a relatively

coarse step value of 0.1 in altering both the POS weights and the string similarity

weight. This step value is used throughout our algorithm.

Using Part-of-Speech Tags as Deep-Syntax Indicators 15

6.1. Dimensionality

The main problem in optimizing our model lies in its dimensionality. The Penn

Treebank Project defined 36 different POS tags for the English language, which means

that the POS interaction matrix contains 36 × 36 = 1296 cells. However, since semantic

similarity is a symmetric relation, the POS interaction matrix is symmetric as well.

Furthermore, it is logical to always permit the coupling of words belonging to the same

part of speech, rendering the values along the main diagonal irrelevant. Consequently,

there are 630 distinct binary values within the POS interaction matrix that ought to be

determined. Taking into account the number of variables and their respective ranges of

values, the size of the search space is given by the following expression:

1127 63036 SizeSpaceSearchFull (3)

Clearly, an exhaustive search is impossible, given the enormous number of

combinations. We tackled this problem by partially optimizing the parameters in a

lower-dimensional search space and then continuing on from that semi-optimized point

in the full-sized search space.

The lower-dimensional search space we used was based on aggregating several

related POS tags into broader classes. We utilized six such categories:

1. Nouns – includes common nouns in the singular (NN) and the plural (NNS), as well

as proper nouns in the singular (NNP) and the plural (NNPS). We also put nouns

tagged as numerals (CD) in this category. Still, this does not include numeric tokens,

since they are discarded in the preprocessing steps.

2. Verbs – includes verbs in their base form (VB), the past tense (VBD), and the present

tense (VBP, VBZ), as well as present participles/gerunds (VBG), past participles

(VBN), modals (MD), and particles (RP).

3. Adjectives – includes adjectives in their base (JJ), comparative (JJR), and

superlative (JJS) forms.

4. Adverbs – includes adverbs in their base (RB), comparative (RBR), and superlative

(RBS) forms, as well as Wh-adverbs (WRB).

5. Pronouns – includes personal (PRP) and possessive pronouns (PRP$), as well as

their Wh- counterparts (WP, WP$).

6. Others – includes the remaining 12 tags (CC, DT, EX, FW, IN, LS, PDT, POS, SYM,

TO, UH, WDT).

The reasoning behind this approach is that the model should first be allowed to learn

the relative importance of and interactions between general word classes. Only then

should the focus shift toward the specificities of individual POS tags. For instance, it

ought to be possible to detect whether, generally speaking, nouns are semantically more

salient than adjectives and whether the pairing of these word classes in the context of

STSS is sensible. These general conclusions can then be particularized with regard to

the individual tags within these broader categories.

Our lower-dimensional search space uses 6 different POS weights instead of 36, and

its POS interaction matrix contains 15 distinct binary values that ought to be optimized.

Hence, the size of the reduced search space is as follows:

16 Vuk Batanović and Dragan Bojić

1127 156 SizeSpaceSearchReduced (4)

Although this reduction significantly contains the combinatorial explosion, an

exhaustive search still remains intractable. Therefore, our training procedure consists of

the following two phases:

1. Pseudo-exhaustive searching in the lower-dimensional search space;

2. Steepest ascent hill climbing with momentum in the full-sized search space.

6.2. Pseudo-exhaustive Search

The idea of pseudo-exhaustive searching is to search exhaustively only among those

parameter values which have some likelihood of being the optimal ones. We begin by

choosing a single initial value for all POS weights, as well as a starting binary value for

all the cells within the POS interaction matrix. An initial string similarity weight is also

chosen. Finally, we select a POS weighting function among the five described in Section

5.3. We note the performance of the system on the training data with these initial

settings, via a chosen metric.

We then explore all possible pairings of POS categories. We sequentially select a

pairing and iterate over all combinations of POS weights for the word classes in the pair.

While doing this, we fix to their initial values the weights of other word classes, the POS

interaction matrix contents, and the string similarity weight. We then invert the POS

interaction matrix bit of the pair that is being considered and repeat the process. In other

words, we freeze the model in its initial state and only iterate over the changes of POS

weights of the two given word classes and the changes of their respective POS

interaction bit. Once a word class pairing has been explored, we reset the model to its

initial state and start exploring another one. We do this for all possible pairings.

While iterating, we evaluate the model on the training data. For each pairing we note

the POS weights and the respective POS interaction bit that maximized system

performance. Since there are 15 different pairings possible in our lower-dimensional

model, the size of the search space is quite manageable:

15272 e Sizeearch Spac Pairing SWord Class (5)

The motivation for this procedure is to observe in isolation the interplay between any

two word classes and the relative importance of one with regard to the other. If a

particular POS weight for a particular word class was not detected as optimal in any of

the pairings, then it is highly unlikely that such a value would ultimately lead to optimal

system performance. Consequently, we discard it from further consideration, thereby

reducing the number of combinations to explore in the next step of the search process.

Similarly, if a certain POS interaction value leads to worse performance than the other,

we simply remove it from further consideration. Still, there can be more than one

optimal combination of parameters for many pairings. For instance, a {0.7, 1.1}

combination of POS weights with a POS interaction value of zero might perform just as

well as a {0.8, 1.0} combination with a POS interaction value of one.

Using Part-of-Speech Tags as Deep-Syntax Indicators 17

This approach presupposes that it is possible to accurately observe the interaction

between two word classes in isolation. In effect, we assume that the choice of optimal

weights and POS interaction bits for the entire model can be divided into a number of

entirely separate decisions for each word class pairing. This assumption is obviously

problematic, but it allows us to significantly reduce the search space and, ultimately,

leads to promising results.

We then compile a list of candidate weights for each word class by going through the

pairings in which it participated and collecting its optimal weights. The candidate values

for each POS interaction matrix cell are simply the optimal POS interaction bit(s) from

the respective word class pairing.

We exhaustively iterate over all combinations of candidate values for all POS weights

and POS interaction bits. We do this while still keeping the string similarity weight fixed

to its initial value. In each iteration we evaluate the model on the training data. At the

end of the search we select those POS parameters which maximized system

performance. The exact size of the search space in this stage is impossible to determine

in advance, since it depends on the results of the previous step, but in our experience it

can range from as low as 50 to as high as a couple of thousand. Nevertheless, this is still

much smaller than the entire reduced search space whose size is on the order of ~10
10

.

In the final step of our pseudo-exhaustive search, we iterate over all possible values

of the string similarity weight (from zero to one, with a step of 0.1) for each of the best-

performing POS parameter sets from the previous stage. Since there are usually only one

or two of them, this process is executed quickly. Again, in each iteration we evaluate the

model on the training data. The full parameter combination(s) which maximized system

performance is/are presented as the output of the pseudo-exhaustive search and is/are

used as a starting point in the second phase of our training procedure – hill climbing.

We also experimented with applying a value minimization process to that output

before starting the climb. The idea is that, depending on the set of initial conditions used

in the search, certain POS weights might remain needlessly high and certain POS

interactions might remain needlessly permitted, thereby obscuring the truly relevant POS

interactions and weight values. To remedy this, our value minimization iterates over all

POS weights and attempts to lower their values, if they are not already at the 0.7

minimum and if such changes do not diminish system performance on the training data.

It also iterates over all bits of the POS interaction matrix and attempts to set them to

zero, prohibiting the pairing of the respective word classes, if such modifications do not

diminish system performance. The decision whether to use value minimization was one

of the hyperparameters, which are described in the following subsection.

6.3. Hyperparameters

Our pseudo-exhaustive search relies on several hyperparameters – parameters that have

an impact on the functioning of the process but cannot be optimized by the training

algorithm itself. Instead, they must be manually set in advance. In order to both

determine the optimal configuration of these hyperparameters and to avoid overfitting

our model to the training data we used a three-fold stratified cross-validation. The more

usual choice of a ten-fold cross-validation could have, perhaps, yielded even better

results. Still, due to the time constraints, we opted for a lower number of folds.

18 Vuk Batanović and Dragan Bojić

Hence, we divided the training data into three folds and repeatedly trained our model

via a pseudo-exhaustive search on two of them and tested its final performance on the

third while cyclically switching which fold is used for testing. We executed this

procedure for all hyperparameter combinations. Finally, we adopted the combination

that led to the best average test result on all three folds. In Table 7 we present a list of all

hyperparameters, the different options we considered, and the optimal options that were

chosen as final. The cross-validation was performed on the training portion of the

Microsoft Research Paraphrase Corpus [33], which is described in detail in Section 7.

The selected POS weighting function is used not only during the pseudo-exhaustive

search, but in the remainder of the training process and in the general functioning of the

POST STSS method as well. Therefore, it can be regarded as a hyperparameter of the

entire POST STSS model.

Table 7. Hyperparameters used in the pseudo-exhaustive search

Hyperparameter Options considered Optimal option

Initial POS weights 0.7 / 1.0 / 1.3 0.7

Initial POS interaction values 0 / 1 0

Initial string similarity weight 0.3 / 0.4 / 0.5 / 0.6 / 0.7 0.5

Usage of the value

minimization process
Yes / No No

POS weighting function

Choose the higher weight

Choose the lower weight

Arithmetic mean of the two

Geometric mean of the two

Harmonic mean of the two

Arithmetic

mean of the two

weights

6.4. Steepest Ascent Hill Climbing

The task of the second phase of our training process is to take the parameter set

produced by the first phase and fine-tune it within the full-sized search space. We

expand the parameter set from the lower-dimensional search space into the full-sized

one as follows: each individual part of speech in the full-sized space is assigned a weight

according to its broader category in the lower-dimensional space. For instance, the

weight given to the class of adjectives is copied onto the specific POS weights for

adjectives in their base (JJ), comparative (JJR), and superlative form (JJS). Moreover,

the POS interaction matrix is expanded so that all relations between parts of speech stay

the same. For example, if the pairing of adverbs and adjectives was permitted in the

lower-dimensional space, then the pairing of adjectives in their base form (JJ) and

adverbs in their comparative form (RBR) would remain permitted in the full-sized space.

The same would be true for all other combinations of individual parts of speech from

these two word classes. The interactions among the individual parts of speech within a

single, broader category are all allowed. For instance, all specific adjective forms can be

freely paired with all the others. Finally, as in the lower-dimensional space, we

automatically allow the pairing of words belonging to the same part of speech. The only

Using Part-of-Speech Tags as Deep-Syntax Indicators 19

difference is that now this rule refers to individual parts of speech instead of broader

word classes. Regardless, in such instances the POS interaction matrix is not consulted.

In the second phase of the training procedure we utilize a variation of the steepest

ascent hill climbing algorithm. As the full-sized space is so large, hill climbing is one of

the few viable options. We employ three kinds of moves:

1. An increase/decrease of a single POS weight;

2. An inversion of a single bit within the POS interaction matrix;

3. An increase/decrease of the string similarity weight.

In each step of the climb we evaluate the effect of every possible move on the entire

training data. The typical steepest ascent reasoning would be to select the move which

leads to the largest increase in system performance. Instead of always following this

logic, we add a momentum to each move which alters the string similarity weight or a

POS weight. If a certain weight change has the largest positive impact on system

performance, then it is perpetuated as long as the performance keeps increasing, even if,

at some point, there appears another move which would lead to a greater performance

increase. The momentum feature allows our algorithm to escape from certain local

maxima and not only leads to better final results, but speeds up the hill climb as well.

Once the repeated weight increase/decrease no longer improves system performance, we

resume the climb using the standard steepest ascent method.

To speed up the climb, we allow a move which alters a POS weight to simultaneously

invert one POS interaction bit. This added inversion is permitted only on the bits that

pertain to the POS whose weight is being modified. Furthermore, we allow the climb to

include jumps – moves in which a weight is changed not by the usual step of 0.1, but by

twice as much. We also let the POS weight jumps to invert a related POS interaction bit.

If multiple moves lead to the same level of performance improvement, our algorithm

randomly picks one of them. Thus, each run of the climb can produce different results.

This allows multiple runs of our algorithm to explore a larger portion of the search space

than would have otherwise been the case.

The hill climbing can be sustained as long as there are moves which lead to better

performance on the training data. However, this would likely result in an overfitted

model. To prevent this, we used a simple heuristic – we first ran the hill climbing

algorithm several times, finishing the climb only when all the moves leading to superior

system performance are exhausted. In each run we noted how many moves it took to

reach that final stage. Our analysis showed that the maximum length of this process is

around 50 moves. We chose to stop the climb after 25 moves, i.e. half of the maximum.

Although this heuristic is rather crude, it actually performed quite well in practice.

Therefore, the parameters acquired after 25 moves are the ones we adopt as final. They

are used in the evaluation of the POST STSS method described in Section 7.

If a certain hyperparameter combination leads to multiple starting points for the hill

climb, we can simply repeat the climb from each point. Then we can pick the final

parameter combination which performs best on the training data. However, this situation

did not occur with our optimal hyperparameter options.

In principle, the aforementioned value minimization can also be applied to the

parameters obtained through hill climbing. Since the cross-validation already showed

that such a technique does not improve performance in the lower-dimensional space, we

did not employ it in the full-sized space either.

20 Vuk Batanović and Dragan Bojić

Although our training procedure is not guaranteed to find the global optimum, it still

leads to good results. One of main strengths of the proposed training algorithm is that

almost all of its stages can be effectively parallelized, leading to a significant reduction

in the length of the procedure.

7. Evaluation

We evaluated our model by using a paraphrase recognition test on the Microsoft

Research Paraphrase Corpus (MSRPC) [33]. The MSRPC is a corpus containing 5801

pairs of sentences which are all semantically related to some extent. However, only

some sentence pairs are paraphrases, i.e. semantically equivalent, while others have only

partly overlapping semantic information. The entire corpus was hand-annotated with

binary scores indicating for each pair if it is a paraphrase or not. 3900 pairs (67%) were

deemed semantically equivalent, while the remaining 1901 (33%) were classified as

semantically diverse. Two human raters examined each pair, while a third cast the

deciding vote in cases of disagreements. The average inter-rater agreement was 83%,

which is therefore the maximum accuracy an STSS system can reach.

The task of STSS systems is to match the sentence-pair scores of human annotators,

thereby testing the systems’ ability to accurately assess the level of semantic similarity

between two sentences. To do so, a threshold between zero and one has to be chosen, so

that any score above it is treated as recognition of semantic equivalence and any below it

as indication of semantic divergence.

The MSRPC dataset was originally split into a training portion consisting of 4076

sentence pairs, and a test portion encompassing 1725 pairs. The training part is used to

determine the optimal threshold value, while the evaluation is performed on the testing

part. We changed the threshold in 0.1 increments in order to limit the possibility of

overfitting to the training data. In addition, we used the training set in the parameter

optimization process described in the previous section. During training, a new optimal

threshold value was determined whenever a performance evaluation was required. This

was done so as to maximize system performance at each point in the process.

7.1. Performance Metrics

The most important metric used to determine a system’s performance is system

accuracy, which is defined as the ratio of the number of correctly identified sentence

pairs and the total number of pairs in the corpus. By definition, accuracy is calculated as

the sum of true positives and true negatives divided by the sum of all positives and

negatives. True positives (TP) are sentence pairs which are paraphrases and are

correctly identified by an algorithm as such. False positives (FP) are sentence pairs that

are semantically diverse, but are misclassified as semantically equivalent. False

negatives (FN) represent the reverse case – sentence pairs which are paraphrases but are

mistakenly labeled as semantically different. Finally, true negatives (TN) are properly

recognized pairs of semantically dissimilar sentences.

Using Part-of-Speech Tags as Deep-Syntax Indicators 21

However, there are other metrics, taken from the information retrieval theory, which

are also frequently employed. Precision is the ratio of true positives and all pairs

classified as paraphrases. Therefore, precision reflects the level of false positive errors,

while ignoring false negative ones. Recall is calculated as the ratio of true positives and

all paraphrase pairs from the corpus. Recall measures the level of false negatives, but

ignores the false positive errors. This is why it is easy to optimize a system to have

either high precision or high recall, at the expense of the other. The F-measure was

introduced as a standard way of combining these measures into a unified, balanced

score, and is defined as the harmonic mean of precision and recall. The mathematical

formulas for calculating all these metrics are given by the following expressions:

FNTNFPTP

TNTP
A

 (6)

FPTP

TP
P

 (7)

FNTP

TP
R

 (8)

RP

PR
F

2
 (9)

As shown in expressions 7–9, the F-measure fails to take into account the level of

true negatives an STSS system produces. This makes accuracy the predominant

parameter of system evaluation since it measures not only false positive and false

negative types of errors, but also the level of performance on both true positives and true

negatives. Such a broad scope of evaluation is essential for problems in which the level

of true negatives is not to be ignored. This is the case in all situations where measuring

semantic dissimilarity is important (e.g. in extractive text summarization STSS is used to

calculate semantic dissimilarity between the already selected summary sentences and a

set of potential candidates). Thus, we decided to train the model and to pick the optimal

threshold value according to the maximal system accuracy.

7.2. Results

An overview of POST STSS behavior on the MSRPC paraphrase recognition test with

regard to different threshold values is given in Table 8. As shown, the optimal threshold

value for our system is 0.5.

Table 9 shows a comparison between the results of the existing STSS solutions and

our proposed method. Solutions which require both a knowledge base and a text corpus,

such as the ones proposed by Mihalcea et al. [11] or Ramage et al. [16], were listed as

topological, since a suitable knowledge base is much harder to find. We sorted the

results in each category in increasing order according to their accuracies.

22 Vuk Batanović and Dragan Bojić

Some previously devised methods were presented in a number of variants. In such

cases, the version with the highest accuracy was chosen for comparison. Lintean and

Rus [13] presented both a topological and a statistical similarity variant of their

approach, so we included both in the table.

In addition, we implemented a slight modification of the LInSTSS approach of Furlan

et al. [20] which does not use stop-word removal. This was done in order to compare

that algorithm to our own on equal terms, since our model does not use a stop-word list.

The LInSTSS implementation utilized the same text corpus and stemming technique

described in Section 4.

Table 8. An overview of POST STSS performance on the MSRPC paraphrase recognition test

with regard to different threshold values

Threshold Accuracy Precision Recall F-measure

Training set

0 67.54% 67.54% 100.00% 80.63%

0.1 67.54% 67.54% 100.00% 80.63%

0.2 67.57% 67.56% 100.00% 80.64%

0.3 67.62% 67.61% 99.93% 80.65%

0.4 69.09% 69.01% 98.44% 81.14%

0.5 74.34% 75.87% 90.92% 82.72%

0.6 68.40% 82.69% 67.31% 74.21%

0.7 53.70% 92.62% 34.18% 49.93%

0.8 36.21% 97.52% 5.70% 10.78%

0.9 32.56% 100.00% 0.15% 0.29%

1.0 32.46% NaN 0% NaN

Test set

0 66.49% 66.49% 100.00% 79.87%

0.1 66.49% 66.49% 100.00% 79.87%

0.2 66.49% 66.49% 100.00% 79.87%

0.3 66.55% 66.53% 100.00% 79.90%

0.4 68.87% 68.46% 98.61% 80.81%

0.5 74.09% 75.74% 89.80% 82.17%

0.6 66.78% 81.89% 64.25% 72.01%

0.7 51.42% 88.92% 30.78% 45.73%

0.8 36.93% 96.83% 5.32% 10.08%

0.9 33.51% NaN 0% NaN

1.0 33.51% NaN 0% NaN

The results of our POST STSS method are presented stepwise, in four variants. The

first one is the direct application of COALS, with no stemming, lemmatization, or POS

weighting performed. The results of this version can be considered a baseline for

evaluating the proposed improvements. The second and the third variation depict the

changes in system performance when either stemming or lemmatization is used. The

fourth variant shows the results of our final POST STSS model, obtained by utilizing the

proposed POS weighting strategy in conjunction with lemmatization as the

preprocessing step.

Using Part-of-Speech Tags as Deep-Syntax Indicators 23

The POST STSS method outperforms the current state-of-the-art statistical similarity

algorithms in terms of accuracy. Its F-measure is also higher than most other statistical

solutions. Only TBS [15], a topic modeling approach, performs slightly better in terms

of the F-measure, but with a considerably lower accuracy. The topological similarity

measures of Fernando and Stevenson [12] and Lintean and Rus [13] attain similar or

better results than we do, but at the cost of having to use a hand-crafted knowledge base

in the form of WordNet. This makes their solutions unsuitable for a broad range of

languages in which such resources are nonexistent. Moreover, the POST STSS method

achieves a significantly better accuracy than all structural models, including the

algorithms ([19], [21], [22], [23]) which employ a weighting mechanism in conjunction

with (shallow) parsing and/or semantic role labeling to detect constituents. This result

validates our view that POS tags are well suited to be used in such weighting schemes as

indicators of the deeper syntactic information.

Table 9. A comparison between the results of the existing STSS solutions and our proposed

method on the MSRPC paraphrase recognition test

Algorithm Accuracy Precision Recall F-measure

Topological similarity

Lee et al. [24] / 75.30% 55.60% 63.90%

Achananuparp et al. [26] 67.56% 67.53% 97.58% 79.82%

Furlan et al. [19] – ConceptNet 68.23% / / /

Mihalcea et al. [11] 70.30% 69.60% 97.70% 81.30%

Ramage et al. [16] 70.80% / / 80.10%

Li et al. [21] 70.80% 70.30% 97.40% 81.60%

SyMSS [23] 70.87% 74.47% 84.17% 79.02%

Lee et al. [25] 71.02% 73.90% 91.07% 81.59%

Li et al. [22] 72.10% 71.30% 97.30% 82.30%

Fernando and Stevenson [12] 74.10% 75.20% 91.30% 82.40%

Lintean and Rus [13] – LCH 75.70% 78.30% 87.90% 82.80%

Statistical similarity

TBS [15] 69.90% 100% 69.90% 82.30%

LInSTSS [20] 70.03% 78.43% 75.76% 77.07%

Furlan et al. [19] – COALS 70.32% / / /

WTMF [17] 71.51% / / /

Islam and Inkpen [18] 72.64% 74.70% 89.10% 81.30%

Lintean and Rus [13] – LSA 73.00% 77.30% 84.00% 80.50%

Rus et al. [14] 73.56% 75.34% 89.53% 81.83%

Our proposed method

Plain COALS 71.77% 74.02% 88.67% 80.68%

COALS + Stemming 72.17% 73.64% 90.58% 81.24%

COALS + Lemmatization 72.87% 74.23% 90.67% 81.63%

POST STSS 74.09% 75.74% 89.80% 82.17%

When compared to the existing solutions of Islam and Inkpen [18] and Furlan et al. –

COALS [19], which were a foundation for our approach, is it evident that the POST

STSS method outperforms them by all standards. More detailed statistics of this

24 Vuk Batanović and Dragan Bojić

comparison, alongside our Plain COALS baseline, are shown in Table 10. We also

included the LInSTSS algorithm [20] in the comparison, because it is a modification of

the same two methods we used as our starting point. We presented the error rates of all

algorithms, given that the maximal possible accuracy on the task is 83%. In addition, we

calculated the relative error reduction of our approach, when compared to the existing

solutions and our baseline. The relative error reduction is computed as:

ES

STSSPOSTES

Error

ErrorError
RER

 (10)

where Error ES is the error rate of one of the existing solutions or the baseline, and Error

POST STSS is the error rate of the POST STSS method.

Table 10. Improvements of the POST STSS method with regard to related methods and the

existing solutions which were used as a starting point for our approach

Algorithm Accuracy Error rate RER

Furlan et al. – COALS 70.32% 12.68% 29.73%

Islam and Inkpen 72.64% 10.36% 14.00%

LInSTSS 70.03% 12.97% 31.30%

Plain COALS baseline 71.77% 11.23% 20.66%

POST STSS 74.09% 8.91% /

Surprisingly, the LInSTSS approach actually performed the worst. We found several

factors which could have had a detrimental effect on it. To begin with, in order to avoid

overfitting to the training data we had decided to use a 0.1 increment when searching for

the optimal threshold. This did not degrade the performance of POST STSS since the

values of the POS weights it uses also change in steps of 0.1, i.e. rather coarsely. On the

other hand, the method of term frequency weighting implemented in LInSTSS uses a

finely differentiated range of weights between 0.5 and 1.0. This means that the 0.1 step

is much too coarse for choosing a threshold in LInSTSS. We tested this hypothesis by

lowering the threshold step to 0.001, as was suggested by Furlan et al. [20]. The results

validated our finding since the accuracy rose to 71.48%.

Nonetheless, even this result is still slightly below our COALS baseline. In fact, it

would be more appropriate to compare LInSTSS to our COALS + Stemming variant,

since LInSTSS uses stemming as a text preprocessing step. This comparison is even

worse for LInSTSS and indicates that term frequency weighting decreased system

performance instead of increasing it, as was the case in the original system constructed

for Serbian. The precise cause of this effect in English is somewhat unclear, but it has

been previously detected by other researchers ([12], [13]). It is possibly linked to the

size of the corpus used to create a semantic space and generate term frequencies. The

English-language corpus is significantly larger than the Serbian one, leading to generally

lower min-max TF weights for frequently found words. Hence, all sentence pairs which

contain a number of such words will have their similarity score noticeably reduced,

lowering the overall system accuracy.

Using Part-of-Speech Tags as Deep-Syntax Indicators 25

7.3. Optimal Parameters

The final results of the POST STSS method were achieved by using the POS weights

shown in Table 11. Entries in the table are sorted alphabetically according to their POS

tag [8]. We obtained these specific weights by training the model on the MSRPC

training set in the manner described in Section 6. The final optimal weights for the string

and the semantic similarities were both 0.5.

Table 11. Optimal part-of-speech weights

Part of speech Tag Weight

Coordinating conjunction CC 0.7

Cardinal number CD 0.8

Determiner DT 0.7

Existential there EX 0.7

Foreign word FW 0.7

Preposition or subordinating conjunction IN 0.7

Adjective JJ 0.7

Adjective, comparative JJR 0.7

Adjective, superlative JJS 0.8

List item marker LS 0.7

Modal MD 1.2

Noun, singular or mass NN 0.8

Noun, plural NNS 1.0

Proper noun, singular NNP 0.8

Proper noun, plural NNPS 0.8

Predeterminer PDT 0.7

Possessive ending POS 0.7

Personal pronoun PRP 0.7

Possessive pronoun PRP$ 0.7

Adverb RB 1.3

Adverb, comparative RBR 1.2

Adverb, superlative RBS 1.0

Particle RP 1.2

Symbol SYM 0.7

To TO 0.8

Interjection UH 0.7

Verb, base form VB 1.2

Verb, past tense VBD 1.2

Verb, gerund or present participle VBG 1.1

Verb, past participle VBN 0.8

Verb, non-3rd person singular present VBP 1.2

Verb, 3rd person singular present VBZ 1.2

Wh-determiner WDT 0.7

Wh-pronoun WP 0.7

Possessive wh-pronoun WP$ 0.7

Wh-adverb WRB 1.3

26 Vuk Batanović and Dragan Bojić

Our system gives the highest weight to verbs and adverbs, reflecting the claim of

Wiemer-Hastings that humans are more strongly affected by the similarities of verbs

than that of the other constituents [27]. This also corresponds to the findings of other

researchers ([19], [23]) who showed that actions, i.e. verbs, are semantically more

salient than subjects/objects involved in them. Interestingly, it is two of the adverb tags

(RB and WRB) that actually have the highest weight assigned to them. Apart from the

inherent importance of adverbs as modifiers of verbs, this effect likely stems, at least in

part, from the distribution of examples in the paraphrase corpus. The MSRPC contains

numerous instances where both sentences in a pair describe the same basic action but

performed in different manners. In such situations giving more weight to adverbs is an

elegant way of detecting these dissimilarities.

In addition to verbs and adverbs, nouns are also given higher weights than most other

parts of speech. This showcases their syntactic significance since nouns often play the

roles of subjects and objects in a sentence. The remaining parts of speech are mostly

given lower weights, indicating their reduced impact on STSS due to the limited amount

of semantic information they carry.

The optimal POS interaction matrix configuration is depicted in Figure 1. Values

within it are ordered according to the alphabetical ordering of tags in both the left-to-

right and the top-to-bottom direction [8]. Therefore, the first row and the leftmost

column correspond to the tag CC, while the last row and the rightmost column

correspond to the tag WRB. A value of one means that the pairing of the parts of speech

that correspond to a particular row and column is permitted. A value of zero means that

such a coupling is forbidden.

Even though the starting value of all matrix cells was zero, as set via a

hyperparameter described in Section 6.3, the final matrix mainly contains values of one.

This means that disallowing the pairing of words with different POS tags can be

beneficial only in a limited number of situations. Hence, the impact of POS weights is

even larger, since most POS interactions are allowed.

Most values are grouped in uniform rectangular portions of the matrix, since they

were chosen jointly, by allowing/disallowing pairings on the level of broader word

classes. Many groupings have a linguistically understandable backing, if considered

within a bag-of-words model. For instance, verbs can be paired with any word class

except for adverbs. Nouns can, in general, only be paired with verbs and adverbs. Most

adjectives cannot be paired with nouns and words in the “other” category. It is permitted

to pair adverbs with adjectives, nouns, and pronouns, but not with verbs and words in

the “other” category. There are also certain matrix values that are somewhat surprising.

For example, pronouns can be paired with any word class, except for nouns. Since nouns

and pronouns often have similar syntactic roles, this indicates that aligning words solely

on the basis of their syntactic properties might not be the correct choice for STSS, at

least within a bag-of-words model. Finally, words in the “other” category can be paired

with pronouns and verbs. Of course, words within a broader word class can, by and

large, be paired with other words in the same class.

Still, there are exceptions to these general rules which break the rectangular patterns

in the POS interaction matrix. For instance, the system found that disallowing the

pairing of common nouns in the singular and common nouns in the plural leads to better

Using Part-of-Speech Tags as Deep-Syntax Indicators 27

performance. Such fine-grained decisions are made during the hill-climbing part of the

training process, described in Section 6.4.

1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1

1 0 1 1 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0

1 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1

0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1

0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1

0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1

0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0

1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 1

0 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Fig. 1. The optimal configuration of the POS interaction matrix

28 Vuk Batanović and Dragan Bojić

8. Conclusion

In this paper we have presented POST STSS, a bag-of-words approach to measuring the

semantic similarity of short texts based on using part-of-speech tags as indicators of the

deeper syntactic information. We have described our proposed system’s operation,

including the central POS tag weighting technique, as well as the parameter optimization

procedure. We have trained the model and evaluated its performance by using a

paraphrase corpus. We have concluded that our method achieves a higher accuracy than

current state-of-the-art statistical similarity algorithms. In this respect it also outperforms

the methods which utilize more advanced syntax-processing tools. Since our approach

does not require either hand-crafted knowledge bases or advanced syntactic tools like

parsers and semantic role labelers, it is more easily applicable to languages with scarce

natural language processing resources.

A potential avenue of future research could focus on integrating our POS weighting

strategy with shallow parsing, which groups several words/POS tags into noun, verb, or

preposition phrases. By weighting both the phrases and the POS tags within them, it may

be possible to develop an even better representation of the relative semantic importance

of different constituents.

An alternative research direction would be the verification of our approach on

another language. Serbian is an interesting potential candidate since it differs from

English in many respects, particularly morphosyntactic ones. Despite the scarcity of

NLP resources for Serbian, there are existing corpora in this language in which every

word has been annotated with a POS tag and a lemma ([34], [35], [36]). Research has

shown that these corpora can be successfully utilized to create POS taggers and

lemmatizers for Serbian ([35], [37]).

Still, the usefulness of our STSS method largely depends on the cardinality of the

utilized set of POS tags and the accuracy of the tagging process. If there are too many

different tags our method becomes essentially inapplicable since it is not possible to

learn the relative importance of each part of speech from the usually limited amount of

training data. A large tag set also has a negative impact on tagger accuracy, which could

render our POS weighting mechanism much less effective. Earlier annotation schemes

for Serbian are especially problematic in this respect since they use hundreds of different

morphosyntactic labels, due to the complexity of the language itself [34]. Nevertheless,

the need for a more compact and practical set of tags has been recognized in the recently

developed corpora where sets of 16 [35] or 45 [36] POS tags are employed. These

figures are on a par with the number of tags used in the Penn Treebank Project [8].

Taggers trained on these corpora achieve accuracies comparable to those of the English-

language taggers, which should therefore enable the implementation and proper

functioning of our STSS method.

Acknowledgement. This work was partially supported by the TR 32047 research project of the

Ministry of Education, Science and Technological Development of the Republic of Serbia.

Using Part-of-Speech Tags as Deep-Syntax Indicators 29

References

1. Barzilay, R., McKeown, K.R.: Sentence Fusion for Multidocument News Summarization.

Computational Linguistics, Vol. 31, No. 3, 297–328. (2005)

2. Harabagiu, S.M., Maiorano, S.J., Paşca, M.A.: Open-Domain Textual Question Answering

Techniques. Natural Language Engineering, Vol. 9, No. 3, 231–267. (2003)

3. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM, Vol.

38, No. 11, 39–41. (1995)

4. Bond, F., Paik, K.: A Survey of WordNets and Their Licenses. In Proceedings of the Sixth

International Global WordNet Conference (GWC 2012). Tribun EU, Matsue, Japan, 64–71.

(2012)

5. Ethnologue: Languages of the World [Online], Available:

http://www.ethnologue.com/statistics/size

6. Harris, Z.: Distributional Structure. Word, Vol. 10, 146–162. (1954)

7. Blei, D.M.: Probabilistic Topic Models. Communications of the ACM, Vol. 55, No. 4, 77–

84. (2012)

8. Marcus, M.P., Marcinkiewicz, M.A., Santorini, B.: Building a Large Annotated Corpus of

English: The Penn Treebank. Computational Linguistics, Vol. 19, No. 2, 313–330. (1993)

9. Wan, S., Dras, M., Dale, R., Paris, C.: Using Dependency-Based Features to Take the “Para-

farce” out of Paraphrase. In Proceedings of the Australasian Language Technology

Workshop (ALTW 2006). Sydney, Australia, 131–138. (2006)

10. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining Machine Translation Metrics for

Paraphrase Identification. In Proceedings of the 2012 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies

(NAACL HLT 2012). Association for Computational Linguistics, Montreal, Canada, 182–

190. (2012)

11. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and Knowledge-based Measures of

Text Semantic Similarity. In Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI 2006). AAAI Press, Boston, Massachusetts, USA, 775–780. (2006)

12. Fernando, S., Stevenson, M.: A Semantic Similarity Approach to Paraphrase Detection. In

Proceedings of the 11th Annual Research Colloquium of the UK Special-interest Group for

Computational Linguistics (CLUK 2008). Oxford, UK, 45–52. (2008)

13. Lintean, M., Rus, V.: Measuring Semantic Similarity in Short Texts through Greedy Pairing

and Word Semantics. In Proceedings of the 25th International Florida Artificial Intelligence

Research Society Conference (FLAIRS 2012). AAAI Press, Marco Island, Florida, USA,

244–249. (2012)

14. Rus, V., Niraula, N., Banjade, R.: Similarity Measures based on Latent Dirichlet Allocation.

In Proceedings of the 14th International Conference on Intelligent Text Processing and

Computational Linguistics (CICLing 2013). Springer Berlin Heidelberg, Samos, Greece,

459–470. (2013)

15. Quan, X., Liu, G., Lu, Z., Ni, X., Wenyin, L.: Short text similarity based on probabilistic

topics. Knowledge and Information Systems, Vol. 25, No. 3, 473–491. (2010)

16. Ramage, D., Rafferty, A.N., Manning, C.D.: Random Walks for Text Semantic Similarity. In

Proceedings of the 2009 Workshop on Graph-based Methods for Natural Language

Processing (TextGraphs-4). Association for Computational Linguistics, Suntec, Singapore,

23–31. (2009)

17. Guo, W., Diab, M.: Modeling Sentences in the Latent Space. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics (ACL 2012). Association

for Computational Linguistics, Jeju Island, South Korea, 864–872. (2012)

18. Islam, A., Inkpen, D.: Semantic Text Similarity Using Corpus-Based Word Similarity and

String Similarity. ACM Transactions on Knowledge Discovery from Data, Vol. 2, No. 2,

Article No. 10. (2008)

30 Vuk Batanović and Dragan Bojić

19. Furlan, B., Sivački, V., Jovanović, D., Nikolić, B.: Comparable Evaluation of Contemporary

Corpus-Based and Knowledge-Based Semantic Similarity Measures of Short Texts. Journal

of Information Technology and Applications, Vol. 1, No. 1, 65–71. (2011)

20. Furlan, B., Batanović, V., Nikolić, B.: Semantic similarity of short texts in languages with a

deficient natural language processing support. Decision Support Systems, Vol. 55, No. 3,

710–719. (2013)

21. Li, L., Zhou, Y., Yuan, B., Wang, J., Hu, X.: Sentence Similarity Measurement based on

Shallow Parsing. In Proceedings of the Sixth International Conference on Fuzzy Systems

and Knowledge Discovery (FSKD 2009). IEEE, Tianjin, China, 487–491. (2009)

22. Li, L., Hu, X., Hu, B.-Y., Wang, J., Zhou, Y.-M.: Measuring Sentence Similarity from

Different Aspects. In Proceedings of the Eighth International Conference on Machine

Learning and Cybernetics. IEEE, Baoding, China, 2244-2249. (2009)

23. Oliva, J., Serrano, J.I., del Castillo, M.D., Iglesias, Á.: SyMSS: A syntax-based measure for

short-text semantic similarity. Data & Knowledge Engineering, Vol. 70, No. 4, 390–405.

(2011)

24. Lee, M.C., Chang, J.W., Hsieh, T.C., Wang, T.I., Su, C.Y., Chen, H.H., Chen, C.H.: A

Syntactic Based Approach for Evaluating Semantics of Texts. International Journal of

Advancements in Computing Technology, Vol. 4, No. 21, 220–229. (2012)

25. Lee, M.C., Chang, J.W., Hsieh, T.C.: A Grammar-Based Semantic Similarity Algorithm for

Natural Language Sentences. The Scientific World Journal, Vol. 2014, Article ID 437162.

(2014)

26. Achananuparp, P., Hu, X., Yang, C.C.: Addressing the Variability of Natural Language

Expression in Sentence Similarity with Semantic Structure of the Sentences. In Proceedings

of the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD

2009). Springer Berlin Heidelberg, Bangkok, Thailand, 548–555. (2009)

27. Wiemer-Hastings, P.: All parts are not created equal: SIAM-LSA. In Proceedings of the 26th

Annual Conference of the Cognitive Science Society. Erlbaum, Chicago, Illinois, USA.

(2004)

28. Rohde, D.L.T., Gonnerman, L.M., Plaut, D.C.: An Improved Model of Semantic Similarity

Based on Lexical Co-Occurrence. Unpublished manuscript. (2005)

29. Jurgens, D., Stevens, K.: The S-Space Package: An Open Source Package for Word Space

Models. In Proceedings of the ACL 2010 System Demonstrations. Association for

Computational Linguistics, Uppsala, Sweden, 30–35. (2010)

30. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The

Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52nd Annual

Meeting of the Association for Computational Linguistics: System Demonstrations.

Association for Computational Linguistics, Baltimore, Maryland, 55–60. (2014)

31. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-Rich Part-of-Speech Tagging

with a Cyclic Dependency Network. In Proceedings of the 2003 Conference of the North

American Chapter of the Association for Computational Linguistics on Human Language

Technology (HLT-NAACL 2003). Association for Computational Linguistics, Edmonton,

Canada, 173–180. (2003)

32. Porter, M.: An algorithm for suffix stripping. Program, Vol. 14, No. 3, 130–137. (1980)

33. Dolan, B., Quirk, C., Brockett, C.: Unsupervised Construction of Large Paraphrase Corpora:

Exploiting Massively Parallel News Sources. In Proceedings of the 20th International

Conference on Computational Linguistics (COLING 2004). Association for Computational

Linguistics, Geneva, Switzerland, 350-356. (2004)

34. Krstev, C., Vitas, D., Erjavec, T.: MULTEXT-East Resources for Serbian. In Proceedings of

the Seventh International Information Society Multiconference - Fourth Language

Technologies Conference (IS-LTC 2004). Institut “Jožef Stefan,” Ljubljana, Slovenia, 108–

114. (2004)

Using Part-of-Speech Tags as Deep-Syntax Indicators 31

35. Utvić, M.: Annotating the Corpus of Contemporary Serbian. INFOtheca, Vol. 12, No. 2,

36a–47a. (2011)

36. Balvet, A., Stosic, D., Miletic, A.: TALC-Sef a Manually-revised POS-Tagged Literary

Corpus in Serbian, English and French. In Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC 2014). European Language

Resources Association (ELRA), Reykjavik, Iceland, 4105–4110. (2014)

37. Popović, Z.: Taggers Applied on Texts in Serbian. INFOtheca, Vol. 11, No. 2, 21a–38a.

(2010)

Vuk Batanović received the B.Sc. and M.Sc. in electrical engineering and computer

science from the University of Belgrade, Serbia. He is currently a PhD candidate at the

School of Electrical Engineering, Department of Software Engineering, of the

University of Belgrade. His research interests are mainly focused on computational

linguistics and natural language processing, particularly the processing of short texts.

Dragan Bojić received a PhD degree in electrical engineering and computer science

from the University of Belgrade in 2001. He is an assistant professor at the School of

Electrical Engineering, University of Belgrade. His research interests include software

engineering techniques and tools, and e-learning.

Received: November 27, 2013; Accepted: November 20, 2014

