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Abstract. Structured learning algorithms usually require inferenceduring the train-
ing procedure. Due to their exponential size of output space, the parameter update is
performed only on a relatively small collection built from the “best” structures. The
k-best MIRA is an example of an online algorithm which seeks optimal parameters
by making updates onk structures with the highest score at a time. Following the
idea of usingk-best structures during the learning process, in this paperwe intro-
duce four newk-best extensions of max-margin structured algorithms. We discuss
their properties and connection, and evaluate all algorithms on two sequence label-
ing problems, the shallow parsing and named entity recognition. The experiments
show how the proposed algorithms are affected by the changesof k in terms of the
F-measure and computational time, and that the proposed algorithms can improve
results in comparison to the single best case. Moreover, therestriction to the single
best case produces a comparison of the existing algorithms.
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1. Introduction

Structured classification is a problem of learning a mappingfrom the input to the output
structured objects, where the output structures incorporate different relationships among
its classes. Its algorithms have been widely applied for solving sequence labeling prob-
lems where we need to assign a single label to each member of the observed sequence.
Popular sequence labeling problems in natural language processing are part-of-speech
tagging (assigning a linguistic category to each word), shallow parsing (detecting syntac-
tic chunk labels) and named entity recognition (detecting entities in sentences).

The general idea of thek-best approach is to restrict the learning process from the
structured space to its subset constructed only of itsk elements with the highest scores,
since considering all elements from the original space would lead to an intractable learn-
ing process in real time. While the influence of the parameterk to the learning process
is not yet explored in theory, empirically it is shown that small values ofk contribute
to the learning process, with slight degradation of performance for larger values. Fork
equal to one, different learning methods are developed, while for higher values there isk-
best Margin Infused Relaxed Algorithm (MIRA). Following the advantages of thek-best
MIRA presented in [2], [8], [19], our motivation for the paper is to investigate different
possibilities of incorporatingk-best structures into the learning process with the aim to
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get better results than the corresponding single best version, and to provide the theoret-
ical analysis of the introduced algorithms. Thus, we introduce four newk-best versions
to train the structural SVM as extensions of the popular single best algorithms: LaRank,
SDM, passive-aggressive and perceptron algorithm.
The main contributions of the paper are:

• Introducing four newk-best extensions of max-margin structured classifiers witha
discussion of their properties and connections.
• Providing theoretical analysis for thek-best versions. The restricted version of the
k-best passive-aggressive algorithm is introduced in orderto satisfy theoretical guar-
antees in terms of cumulative prediction loss similar to thesingle best case.
• Providing empirical evaluation of the introducedk-best versions on different datasets.

Also, the restriction to the single best case provides a comparison of the existing
algorithms.

The paper is organized as follows: we first discuss the related work, and then in Sec-
tion 3, we define the basic notation and the primal-dual problem of max-margin structural
classifiers. After reviewingk-best MIRA, in Section 4, we introduce newk-best exten-
sions for structured classification. In Section 5, we present the results ofk-best extensions
on two sequence labeling tasks and conclude the paper in the last section.

2. Related work

Sequence labeling problems have been traditionally solvedwith hidden Markov models
(HMMs) [9] by learning transition and emission probabilities and finding the optimal
sequence by dynamic programming. The limitation of the reach feature representation
in HMMs is overcome by its discriminative training such as Maximum entropy Markov
models (MEMMs) [24] and conditional random fields [25], which also further avoid the
label-bias problem in MEMMs. The combination of maximum margin discriminative
training and the HMMs results in the Hidden Markov SVM [3], which is later gener-
alized to the structured SVM [1]. All these discriminative training algorithms can be seen
as a minimization of a differently chosen regularized loss function.

Since the size of the output space in structured data is usually exponential, a full opti-
mization with exponentially many constraints is not possible in real time. There are sev-
eral approaches to dealing with such optimization. Taskar et al. [5] present an equivalent
polynomial-size formulation in the maximum margin Markov network (M3N) by intro-
ducing marginal variables. Joachims et al. [4] use the cutting plane method on the equiv-
alent formulation with one slack shared across all data and show that the dual problem
has a sparse solution. Finding a small set of constraints that is sufficient to approximate
a solution is usually done by increasing the working set of constraints through iterations.
Balamurugan et al. [13] present the sequential dual method (SDM) for structural SVMs in
which they sequentially add the constraint generated for the best structure and apply the
sequential minimal optimization (SMO) [14] with additional heuristics to increase speed.
Jaggi et al. [31] propose a block-coordinate version of Frank-Wolfe optimization as an
online algorithm with an efficiently computed optimal step size which has a duality gap
guarantee. Chang et al. [35] suggest a dual coordinate descent applied onL2 loss which
allows updating only one dual variable at a time. Bordes et al. [22] present the LaRank
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algorithm adapted to structured problems. After processing a new training example and
adding the corresponding constraint, it goes back and reprocesses the old examples by
optimizing them with the possibility of further increasingtheir working set of constraints,
in order to get training through the data in one pass. There are also online algorithms
adapted to the structured version, such as the perceptron [17] and the passive-aggressive
algorithm [7], suitable for large-scale problems.

While all previously mentioned approaches make a single increment to their working
set of constraints or just restrict the optimization to onlyone constraint, Crammer et al.
[2] first proposed thek-best version of the Margin Infused Relaxed Algorithm (MIRA) as
an online algorithm which restricts optimization not only to one but tok-best constraints.
The algorithm is designed to traverse through training examples, find thek-best structures
inside the example with the current parameters and then use these structures to update the
parameters before moving to the next example. The idea is to adjust the parameters us-
ing new structures, but keep the changes as small as possiblein order to hold previously
obtained knowledge. At each example, after findingk outputs with the highest score, the
algorithm minimizes the norm of parameter change while satisfying constraints on gen-
erated outputs. Even though the algorithm traverses onlinethrough examples, inside each
example it performs full optimization subject to generatedk constraints. The algorithm
was tested on different problems. Crammer et al. [2] presentthe results on handwriting
recognition, noun phrase chunking and named entity recognition (NER), showing that
k-best MIRA performs as well as batch methods such as CRFs and M3N, but converges
more quickly after a few iterations. McDonald et al. [8] usek-best MIRA for dependency
parsing, testing different values ofk, and state that even small values ofk are sufficient
to achieve close to best performance. Gimpel and Cohen [19] also testk-best MIRA on
NER and achieve similar results to the perceptron algorithmthat were slightly better than
the CRF, while MIRA gave better results on the part-of-speech (POS) tagging than per-
ceptron for a reasonably small parameterk. Other related works include using a primal
sub-gradient method for the averaged sum loss [20] optimization, which is closely related
to thek-best variant of the Pegasos algorithm [34]. Thek-best approach is also applied
in confidence weighted methods [32] and used for confidence incommittee organization
[33], wherek-best paths are used to extract the confidence of a particularlabel which is
included in the learning process to improve the results.

3. Structural support vector machines

Let X be an input alphabet andD = ((xn,yn))
N

n=1 a training set, where eachxn ∈
X Tn represents an input sequence of lengthTn with the corresponding structureyn. The
set of all possible structures over the sequencexn is denoted byY (xn) andY−n =
Y (xn) \ yn. In further discussion, we focus on the sequence labeling problem where
Y (xn) = YTn andY represents a set of possible labels for an element ofX . However,
everything presented in this paper, except for the discussion of the inference problem, will
hold for a general case ofY (xn). The linear classification problem is to learn a function
hw from the dataD , which maps every sequencex over the alphabetX to an element of
Y (x) in the following form

hw(x) = argmax
y∈Y (x)

w
T
F(x,y), (1)
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whereF(x,y) represents aglobal feature vectormeasuring the compatibility ofx andy.
One way of finding such a function is to estimatew via the max-margin approach, which
minimizesL2-regularized empirical risk onD [15] leading to the following formulation
of the structural support vector machine in the primal space

min
w,ξ

1

2
‖w‖2 + C

N∑

n=1

ξn (2)

s.t.wT∆Fn(y) ≥ L(yn,y)− ξn, ∀n, ∀y ∈ Y (xn) (3)

where∆Fn(y) = F(xn,yn) − F(xn,y). According to the constraints, the original
sequenceyn should produce a greater scorewT

F(xn,yn) then any other sequence at
least for the size of the margin for that sequence. The cost functionL(yn,y), used for
margin scaling, represents the cost of labeling the sequencexn with y instead ofyn. To
handle a non-separable case, for each examplexn we assign non-negative slack variables
ξn which control the penalty for its misclassification and the whole problem refers toN -
slack formulation with margin scaling. SinceL(yn,yn) is equal to zero, the constraint
for the sequenceyn in (3) producesξn ≥ 0. The parameterC ∈ R

+ controls the trade-off
between the slack variable penalty and the size of the margin. As the cardinality ofY (xn)
is exponential, the direct optimization is untraceable. A straightforward transformation of
the primal problem (2)-(3), by introducing Lagrange multipliers λ = [λn,y]n,y∈Y (xn),
leads to the dual optimization problem

min
λ

1

2
λ
T
Kλ− λ

T
L (4)

s.t.
∑

y∈Y (xn)

λn,y = C, ∀n, λn,y ≥ 0, ∀n, ∀y ∈ Y (xn) (5)

whereK is a kernel matrix defined with elementsKn,y,m,y′ = ∆Fn(y)
T∆Fm(y′) for

everyy ∈ Y (xn), y′ ∈ Y (xm) andL is a vector with elementsLn,y = L(yn,y). The
primal parameters are expressed in terms of dual ones as

w =
N∑

n=1

∑

y∈Y (xn)

λn,y∆Fn(y). (6)

The constraints in (5) allow us to perform the optimization restricted to a single example
at a time [23]. Letαn denote changes inλn during the processing of thenth example,
i.e. let the change of parameters be made according to the updateλ′

n,y ← λn,y +αn,y. In
order for new dual parametersλ′

n to be feasible, the sum ofαn,y should be zero as well
asλ′

n,y ≥ 0. By dropping all terms in (4)-(5) which do not depend onαn, we can rewrite
this optimization restricted to thenth example with respect to the parameter change

min
αn

1

2
αT

nKnαn −αT

nℓn (7)

s.t.
∑

y∈Y (xn)

αn,y = 0, λn,y + αn,y ≥ 0, ∀y ∈ Y (xn) (8)
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where the vectorℓn = [ℓ(w; (xn,y))]y∈Y (xn) is defined withℓ(w; (xn,y)) = L(yn,y)−
w

T∆Fn(y) andKn is the block of the kernel matrixK corresponding to thenth exam-
ple. Note thatℓn depends onw, which corresponds to parametersλn,y according to (6),
and thus the parameters after the update will be

w
′ = w +

∑

y∈Y (xn)

αn,y∆Fn(y). (9)

The gradient of the dual function (7) isg(α) = [gn,y(α)], with elements

gn,y(α) =
∑

z∈Y (xn)

αn,zKn,y,z − ℓ(w; (xn,y)), (10)

which is used to express the violation of Karush-Kuhn-Tucker (KKT) conditions [11] for
the problem (7)-(8) as

max
y∈I0

gn,y(α) > min
y∈Y (xn)

gn,y(α) (11)

whereI0 = {y ∈ Y (xn) : αn,y > −λn,y}. Again, the dual problem has exponentially
many constraints.

4. k-best extensions

In this section we will describe extensions to thek-best case of popular algorithms. We
start with reviewing thek-best MIRA from [2] and then introduce thek-best version of the
perceptron, LaRank algorithm, sequential dual method, andpassive-aggressive algorithm.
We also introduce the restricted version of the passive-aggressive algorithm for which the
cumulative prediction loss is bound in a similar way as in single best version.

4.1. k-best MIRA

Crammer et al. [16] propose the Margin Infused Relaxed Algorithm (MIRA) originally
for multiclass problems, which was later extended to structured classification [2]. MIRA
is defined in an online manner. After receiving a new example(xn,yn), starting from
parameterswn, the algorithm is searching for new parametersw in order to keep the
norm of changing parameters as small as possible during the satisfaction of particular
constraints on the received example. In a special case, the constraints on the example can
be restricted to only one constraint corresponding to the predicted structurẽy with the
involved cost function. This is known as 1-best variant of MIRA, which is also called
the online passive-aggressive (PA) algorithm [7]. The bestsequence forxn is found with
respect to the loss function as

ỹ = argmax
y∈Y (xn)

ℓ(w; (xn,y)) = argmax
y∈Y (xn)

w
T
F(xn,y) + L(yn,y). (12)

MIRA was primarily designed for multiclass classification.In that case it belongs to
the family of ultraconservative online algorithms [16], which consider only the updates
of parameters corresponding to violated examples, i.e. to those examples that produce a
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Algorithm 1: k-best MIRA

Input : Training data:D = ((xn,yn))N
n=1, parameterC ∈ R

+, k ∈ N

Number of iterations:P
Output : Model parameters:w

w← 0;
for p← 1 to P do

foreach (xn,yn) in D do
Sn ← B

k
w

; /* find k-best sequences */
Findv as a solution of the optimization problem:

min
v,ξ

1

2
‖v −w‖2 + C

∑
y∈Sn

ξn,y

s.t.vT∆Fn(y) ≥ L(yn,y)− ξn,y, ξn,y ≥ 0, ∀y ∈ Sn

w ← v;

higher score than the original one. Working with the ultraconservative property in the case
of online structured classification leads to problems in optimization, due to the possibility
of a large number of violated constraints. This produces theneed to consider the opti-
mization restricted only to the constraints for the firstk sequences with the highest score,
leading to the following optimization problem1

min
w,ξn

1

2
‖w −wn‖2 + C

∑

y∈B
k
wn

ξn,y (13)

s.t.wT∆Fn(y) ≥ L(yn,y)− ξn,y, ξn,y ≥ 0, ∀y ∈ B
k
wn

(14)

whereBk
wn

represents thek-best set, formally defined as the setBk
wn
⊂ Y (xn) that sat-

isfies∀y′ ∈ Bk
wn

, ∀y′′ /∈ Bk
wn

=⇒ ℓ(wn; (x
n,y′)) ≥ ℓ(wn; (x

n,y′′)) and|Bk
wn
| =

min{k, |Y (xn)|}. Note that with this formulation the set is not uniquely defined. The
k-best MIRA is a general method which incorporates thek-best search in an online man-
ner through examples without any specification for solving the optimization problem (13)-
(14) inside the example. The pseudocode is presented in Algorithm 1.

4.2. k-best SDM for structural SVMs

In order to deal with a large dimensional problem (4)-(5), the sequential dual method
(SDM) for structuralSVMs[13] makes an assumption that at optimum only a small num-
ber of constraints inside one example is active. It considers the scaled version of the
following sub-problem

min
αn

1

2
αT

nKnαn −αT

nℓn (15)

s.t.
∑

y∈Sn

αn,y = 0, αn,y ≥ −λn,y, ∀y ∈ Sn (16)

1 Crammer et al. in [2] definek-best MIRA for a linear separable problem and it is a straightfor-
ward extension to the linear non-separable case done by introducing slack variablesξn,y, which
we used here and also referred to it ask-best MIRA.
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where the set of examplesSn = {y ∈ Y (xn) : λn,y > 0} is incrementally built by
adding the sequencẽy according to (12) that violates the margin the most on the current
nth example andKn denotes a block of matrixK which corresponds to thenth example.
Specific heuristics are employed to control the growth of thesetSn in order to keep
the number of optimization constraints at a reasonable size. After reaching the desired
precision inside one example, the procedure continues to the next example to optimize,
where the optimization is performed by the sequential minimal optimization (SMO) [14].

Now we will describe the SDM extension to thek-best case. The algorithm traverses
through training examples and, at thenth example, its working setSn is extended with
currentk-best sequences including the original sequenceyn. Then the SMO is applied
to optimize dual variables associated with sequences inSn. It selects a pair of sequences
from Sn based on the ’maximum violating pair’ strategy and performsthe optimization
until the KKT conditions become satisfied onSn. The test of the KKT condition violation,
up to the precisionτ , is

gn,y′′(α) > gn,y′(α) + τ, (17)

y′ = arg min
y∈Sn

gn,y(α), y′′ = argmax
y∈I′

0

gn,y(α), (18)

whereI ′0 = {y ∈ Sn : αn,y > −λn,y}. The gradient of the dual function is expressed
by (10), where the sum over all elements ofY (xn) can be reduced for the sub-problem
(15)-(16) to the sum over the elements fromSn as

gn,y(α) =
∑

z∈Sn

αn,zKn,y,z − ℓ(w; (xn,y)) (19)

sinceαn,y is equal to zero ify does not belong toSn. After selecting sequencesy′ and
y′′ which violate KKT conditions the most using (18), we consider the updates of the
corresponding alpha parameters asαn,y′ ← αn,y′ + δ andαn,y′′ ← αn,y′′ − δ. The
optimization, now restricted to a single variableδ which must change the parameters so
that they remain feasible, can be expressed in the analytical form as

δ = max

(
−λn,y′ − αn,y′ ,min

(
λn,y′′ + αn,y′′ ,

gn,y′′(α)− gn,y′(α)

‖∆Fn(y′)−∆Fn(y′′)‖2
))

.

(20)
Note that after satisfying the KKT conditions for the setSn and leaving that example,

unsatisfied conditions inside the example could still be possible, sincey′ is found by min-
imization overSn instead ofY (xn). As a time consuming operation, the minimization
over wholeY (xn) is done only when we extend the current setSn by k new sequences.
These are the sequences corresponding to the lowest elements of the gradient of the dual
function. SinceSn is extended when we start processing thenth example, allαn,y will be
zero and thus these sequences are those with the highestℓ(w; (xn, y)), e.i. the sequences
from Bk

w
.

In the end of the section, let us consider the difference betweenk-best MIRA op-
timized in dual space with the SMO andk-best SDM. As a consequence of a different
primal formulation, when it returns to an earlier examplek-best MIRA will create a new
working setSn while k-best SDM will update its previous set with new sequences (see
Algorithm 2). Thus only the first epoch will be the same. However, if we consider the



472 Dejan Mančev and Branimir Todorović

1-best version of these algorithms, MIRA will be equivalentto the PA algorithm, while
the SDM will have the first epoch through the data equivalent to MIRA and thus to the PA
algorithm. These equivalents can also be observed because 1-best SDM in the first pass
will choose sequencesy′ = ỹ andy′′ = yn on thenth example to optimize, and as all
αn,y are zero at that moment and allλn,y are zero, except forλn,yn = C, the stepδ in
(20) will be reduced to the step from (21). However, note thatthis equivalence consid-
ers settingτ to zero, but in practical applicationτ is set to be a small positive tolerance
because of numerical errors and the runtime of the algorithm.

4.3. k-best LaRank algorithm

The LaRank algorithm [21], introduced for multi-class problems, is a batch algorithm
which uses the SMO with specific operations describing how toselect a pair of coefficients
for optimization. The algorithm has also been used for a structured output with a simpler
scheduling for selecting a pair for optimization in an online manner and this version is
called OLaRank [22]. We adopt the following notation: if an example[(xn,y)]y∈Y (xn)

has all dual variablesλn,y = 0 equal to zero we will call itnew example, otherwise we
will refer to it as anold exampleor support pattern. The algorithm with the exact inference
is used to solve the dual problem (4)-(5) by applying three basic operations:

PROCESSNEW Pick a new example[(xn,y)] and choose the pair of coefficientsλn,yn

andλn,ỹ to optimize, wherẽy is found by (12),
PROCESSOLD Random pick a support pattern[(xn,y)] and choose the best pair of coef-

ficientsλn,z andλn,ỹ to optimize according to the gradient vector,
OPTIMIZE Random pick a support pattern and choose the best pair of non-zero coeffi-

cients to optimize according to the gradient vector.

OLaRank applies the PROCESSNEW step followed by a specific number ofnR REPRO-
CESSoperations, where REPROCESSmeans applying ten OPTIMIZE steps after one PRO-
CESSOLD step. Note thatnR = 0 reduces OLaRank to the previously described SDM for
the first epoch.

We introduced thek-best version of the previous algorithm, calling itk-best LaRank,
which optimizes the same dual problem with the SMO, which in aspecial case reduces to
the k-best SDM (see Fig. 1).k-best LaRank uses the followingk-best variants (kBVs) of
operations:

kBV-PROCESSNEW Pick a new example[(xn,y)] and optimize coefficients which cor-
respond to itsk-best sequences together with the original sequenceyn.

kBV-PROCESSOLD Random pick a support pattern and optimize non-zero coefficients
together with new coefficients fromk-best sequences.

kBV-OPTIMIZE Random pick a support pattern and perform the optimization inside this
pattern among non-zero coefficients,

with the same scheduling as in OLaRank. Let the optimizationbe performed inside a
pattern while the KKT conditions are violated more thanτ , as in (17)-(18), by choosing
the sequencey′′ among theys for whichαn,y > −λn,y + κ, whereτ andκ are small
positive tolerances. Similar to the single best case, we canbound the number of support
vectors thatk-best LaRank will add during the training procedure.
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LaRank SDM PA Perceptron

k-best LaRank k-best SDM k-best PA k-best Perceptron

1) 2) 3)

4) 5) 6)

Fig. 1. Connections between learning algorithms and theirk-best extensions for the first epoch.
1) and 4)nR = 0. 2) Described in the end of Section 4.2.
3) and 6) No cost (L = 0), fixed step size (δ = 1). The connection holds for more than one epoch.
5) Performs one SMO step on eachk-best sequence inside an example in sequential order.

Proposition 1. During the first pass through the data withN examples, thek-best LaRank
will add no more than

min

{
N((nR + 1)k + 1),max{2ρNC

τ2
,
2NC

κτ
}
}

support vectors, whereρ = maxn,y∈Y (xn)‖∆Fn(y)‖2.

Proof. The first term follows directly from scheduling because eachof kBV-PROCESSNEW

operations can add up tok + 1 support vectors,kBV-PROCESSOLD up tok support vec-
tors,nR times after each new example, whilekBV-OPTIMIZE cannot add new support
vectors. No matter whatk we choose, in three basick-best LaRank operations all SMO
steps are performed only along theκτ -violation direction. Thus thek-best version also
belongs to the Approximate Stochastic Witness Direction Search (see appendix in [26]),
which reaches theκτ -optimality solution with no more thanmax{ 2ρNC

τ2 , 2NC
κτ
} SMO

operations [22] [21], i.e. support vectors.

Bordes et al. [22] express the regret bound of LaRank PROCESSNEW operation through
the data with the same value as the bound for the passive-aggressive algorithm. As nei-
ther PROCESSOLD nor OPTIMIZE operation can decrease the dual function, the same
bound is stated for the whole LaRank algorithm. Since the previous two operations are
not considered, the true regret should be much smaller. Similar results can be stated for
thek-best version. As the first SMO step inkBV-PROCESSNEW will increase the dual
function by the same value as PROCESSNEW, and as other SMO steps cannot decrease
the dual function, as well askBV-PROCESSOLD andkBV-OPTIMIZE operations, thek-
best LaRank holds the same regret bound as the passive-aggressive algorithm. The pseudo
code is presented in Algorithm 3.
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Algorithm 2: k-best SDM

Input : Training data:D = ((xn,yn))
N

n=1, parameter:C ∈ R
+, k ∈ N

Number of iterations:P
Output : Model parameters:w

w← 0; λ← 0;
Sn ← {yn}, λn,yn ← C, ∀n = 1, . . . , N ;
for p← 1 to P do

for n← 1 to N do
kBV-PROCESSNEW(n, Sn, w, λ);

Algorithm 3: k-best LaRank

Input : Training data:D = ((xn,yn))
N

n=1, parameter:C ∈ R
+, k ∈ N

Output : Model parameters:w

w← 0; λ← 0;
Sn ← {yn}, λn,yn ← C, ∀n = 1, . . . , N ;
for n← 1 to N do

kBV-PROCESSNEW(n, Sn, w, λ);
for k ← 1 to nR do

kBV-REPROCESS((S1, . . . , Sn), w, λ);

ProcedurekBV-ProcessNew(n, Sn, w, λ)

Sn ← Sn ∪Bk
w

; /* find k-best sequences of the nth example

*/
SMO(n, Sn, w, λ);

ProcedurekBV-Reprocess((S1, . . . , Sn), w, λ)

kBV-PROCESSOLD((S1, . . . , Sn), w, λ);
for i← 1 to maxIter do

kBV-OPTIMIZE((S1, . . . , Sn), w, λ);

ProcedurekBV-ProcessOld((S1, . . . , Sn), w, λ)

m← Random[1, n];
Sm ← Sm ∪Bk

w
; /* find k-best sequences of the mth

example */
SMO(m, Sm, w, λ);

ProcedurekBV-Optimize((S1, . . . , Sn), w, λ)

m← Random[1, n];
SMO(m, Sm, w, λ);
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4.4. Passive-aggressive algorithms fork-best structural learning

The passive-aggressive (PA) is an online algorithm introduced in [7] and it solves the
optimization problem (13)-(14) fork = 1, i.e. by using only the constraint generated
from the best structure. We will refer to this algorithm as 1-best passive-aggressive or
1-best MIRA. Let us define the set of misclassified sequences with given parameters
Errwn

= {y ∈ Y−n : ℓ(wn; (x
n,y)) > 0}. This set will be used to decide weather

or not the sequence should be used for parameter change. In order to calculate the step
size, Crammer et al. [7] used the method of Lagrange multipliers on the problem (13)-
(14), which for the single best version has only two constraints: the constraint for the
structure with the highest scorẽy and the one for the original structureyn. The optimal
step size is then found in the closed form as

δ = min

{
max{0, ℓ(wn; (x

n, ỹ))}
‖∆Fn(ỹ)‖2

, C

}
. (21)

The 1-best passive-aggressive algorithm considers updating the parameters only for the
best sequence with the following behaviors as described in [7]:
i) passive behaviorif the constraint in (14) for the best sequence of the currentexample
is satisfied, the algorithm is passive, making no update;
ii)aggressive behaviorif it is not a case, the algorithm makes an aggressive update

w = wn + δ∆Fn(ỹ)

on thenth example in order to satisfy the single constraint on the best sequencẽy ∈
Y (xn) found by (12).

Involving more than one constraint leads tok-best MIRA, where the optimization is
performed over correspondingk-best constraints. We define the sequence of optimization
problems inside one example in the online manner, where eachof them is subject to only
one ofk-best constraints. Since only one constraint is consideredat a time, each one
can be solved analytically. Thus, we will sequentially traverse throughk-best sequences,
optimize the sub-problem restricted to only one of the sequences

min
ξ,w

j+1
n

1

2
‖wj+1

n −w
j
n‖2 + Cξ (22)

s.t.wj+1
n

T

∆Fn(y
(n,j)) ≥ L(yn,y(n,j))− ξ, ξ ≥ 0, (23)

for j = 1, . . . , k and perform passive-aggressive updates

w
j+1
n = w

j
n + δn,j∆Fn(y

(n,j)), j = 1, . . . , k, (24)

where each step can be found in the closed form as

δn,j = min

{
max{0, ℓ(wj

n; (x
n,y(n,j)))}

‖∆Fn(y(n,j))‖2 , C

}
. (25)

With previous two formulas we definek-best passive-aggressive updates, supposing that
we start processing thenth example with parameterswn, which are used to producek-
best sequences(y(n,1), . . . ,y(n,k)) = Bk

wn
. The parameterswj

n denote the intermediate
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states of parameters through the iterations between starting parameterswn = w
1
n and

parameters after the optimization on thenth examplewn+1 = w
k+1
n . Whilek-best MIRA

can be seen as a semi-online algorithm (online through examples and batch inside one
example) thek-best passive-aggressive algorithm is defined in a completeonline manner
through the examples and also inside one example.

Cramer et. al [7] provide a cumulative prediction loss boundfor the passive-aggressive
algorithm for cost-sensitive multiclass classification, which can also be applied to 1-best
PA algorithm for a structured output. Here, we will provide asimilar bound for thek-best
case with a slightly different assumptions, where updates are additionally restricted from
k-best sequences. Let’s first define theprediction sequencêy

wn
found by parameterswn

on thenth example as
ŷ
wn

= argmax
y∈Y (xn)

w
T

nF(x
n,y). (26)

This sequence is also considered in Crammer et. al [7] for usein the PA approach, where
steps corresponding tôy and ỹ are called the prediction-based and the max-loss step,
respectively. We use this sequence to define the auxiliary set

Awn
= {y ∈ Y−n : ℓ(wn; (x

n,y)) ≥ ℓ(wn; (x
n, ŷ

wn
))}, (27)

which we need to define therestrictedk-best passive-aggressiveparameter updates as

w
j+1
n =

{
w

j
n + δn,j∆Fn(y

(n,j)) , if y(n,j) ∈ A
w

j
n

w
j
n , if y(n,j) /∈ A

w
j
n

, j = 1, . . . , k, (28)

and use it fork-best restricted passive aggressive (RPA) algorithm(see Algorithm 4). Let
all sequences fromBk

wn
on which we make a non-zero update according to updates (28)

beSn = (y(n,i1), . . . ,y(n,i|Sn|)), for some indices1 ≤ i1 < . . . < i|Sn| ≤ k where the
length of vectorSn is denoted with|Sn|. Further in this section, just for simplicity, we
will refer to these sequences asSn = (y(n,1), . . . ,y(n,|Sn|)).

Lemma 1. Let (x1,y1), . . . , (xN ,yN) be a sequence of examples and letu be any pa-
rameter vector. For the restrictedk-best PA update defined by (28), it follows

N∑

n=1

|Sn|∑

j=1

δn,j

(
2ℓ(wj

n; (x
n,y(n,j)))− δn,j‖∆Fn(y

(n,j))‖2 − 2ℓ(u; (xn,y(n,j)))
)
≤ ‖u‖2,

whereSn = (y(n,1), . . . ,y(n,|Sn|)) contains all sequences fromBk
w

1
n

on which we make
a non-zero update according to (28).

Proof. Definingγj
n as‖wj

n − u‖2 − ‖wj+1
n − u‖2 and summing it over alln andj we

get

N∑

n=1

|Sn|∑

j=1

γj
n =

N∑

n=1

|Sn|∑

j=1

(
‖wj

n − u‖2 − ‖wj+1
n − u‖2

)

= ‖w1
1 − u‖2 − ‖w|SN |+1

N − u‖2 ≤ ‖w1
1 − u‖2 = ‖u‖2 (29)
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becausew1
1 = 0 andw1

n+1 = w
|Sn|+1
n . According to the definition ofγj

n and the param-
eter change (28), we get that

γj
n = ‖wj

n − u‖2 − ‖wj+1
n − u‖2

= ‖wj
n − u‖2 − ‖wj

n − u+ δn,j∆Fn(y
(n,j))‖2

= −2δn,j(wj
n − u)T∆Fn(y

(n,j))− δ2n,j‖∆Fn(y
(n,j))‖2

= −2δn,j
(
w

j
n

T

∆Fn(y
(n,j))− L(y(n,j),yn)

)

+ 2δn,j

(
u
T∆Fn(y

(n,j))− L(y(n,j),yn)
)
− δ2n,j‖∆Fn(y

(n,j))‖2

= δn,j

(
2ℓ(wj

n; (x
n,y(n,j)))− δn,j‖∆Fn(y

(n,j))‖2 − 2ℓ(u; (xn,y(n,j)))
)

which after summing and using (29) provides the desired inequality.

Theorem 1. Let(x1,y1), . . . , (xN ,yN ) be a sequence of examples where‖∆Fn(y)‖ ≤
1 andL(yn,y) ≤ C for all y ∈ Sn, n = 1, . . . , N . Then for any parameter vectoru and
the restrictedk-best update defined by (28), it follows

N∑

n=1

|Sn|∑

j=1

L(yn, ŷ
w

j
n
)2 ≤ ‖u‖2 + 2C

N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))), (30)

whereSn = (y(n,1), . . . ,y(n,|Sn|)) contains all sequences fromBk
w

1
n

on which we make
a non-zero update according to (28).

Proof. In proof we use abbreviationsLn,j = L(yn, ŷ
w

j
n
), ŷn,j = ŷ

w
j
n

and ℓn,j =

ℓ(wj
n; (x

n,y(n,j))). According to the definition (26) of the prediction sequence, it follows

w
j
n

T

F(xn, ŷn,j) ≥ w
j
n

T

F(xn,y), ∀y ∈ Y (xn)

which leads to inequality

Ln,j ≤ w
j
n

T

F(xn, ŷn,j)−w
j
n

T

F(xn,yn) + Ln,j = ℓ(wj
n; (x

n, ŷn,j)) ≤ ℓn,j (31)

where the last inequality in (31) comes from the definition ofthe setSn, i.e. because of
y(n,j) ∈ A

w
j
n
. For each non-zero stepδn,j it follows thatℓn,j > 0 and according to the

condition‖∆Fn(y
(n,j))‖ ≤ 1, j = 1, . . . , |Sn|, we get

δn,j = min

{
max{0, ℓn,j}
‖∆Fn(y(n,j))‖2 , C

}
≥ min{ℓn,j, C}

which leads to

δn,jLn,j ≥ min{ℓn,jLn,j, CLn,j}
(31)

≥ min{L2
n,j, CLn,j} ≥ L2

n,j (32)

sinceLn,j ≤ C. Summing (32) for all examples(n, j) on which we made the non-zero
update and using the inequality from (31) we get

N∑

n=1

|Sn|∑

j=1

L2
n,j ≤

N∑

n=1

|Sn|∑

j=1

δn,jLn,j ≤
N∑

n=1

|Sn|∑

j=1

δn,jℓn,j. (33)
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According to the definition of step sizeδn,j, it is upper bound by the parameterC, which
allows us to rewrite the inequality from Lemma 1 as

N∑

n=1

|Sn|∑

j=1

δn,j

(
2ℓn,j − δn,j‖∆Fn(y

(n,j))‖2
)
≤ ‖u‖2 + 2C

N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))).

Also, the definition ofδn,j for every non zero step givesδn,j‖∆Fn(y
(n,j))‖2 ≤ ℓn,j and

thus the previous inequality becomes

N∑

n=1

|Sn|∑

j=1

δn,jℓn,j ≤ ‖u‖2 + 2C
N∑

n=1

|Sn|∑

j=1

ℓ(u; (xn,y(n,j))), (34)

which in combination with (33) provides the desired bound.

Corollary 1. Let the conditions from the previous theorem be satisfied, then it follows

N∑

n=1

|Sn|∑

j=1

L(yn, ŷ
w

j
n
)2 ≤ ‖u‖2 + 2C

N∑

n=1

|Sn|ℓn(u). (35)

whereℓn(u) = maxy∈Y (xn) ℓ(u; (x
n,y)).

In case of using only the best sequence, i.e.Sn = (ỹ), the bound from Corollary 1
reduces to the bound for 1-best case proved by Crammer et al. [7]. The proof of 1-best
case uses a propertyℓ(wn; (x

n, ỹ)) ≥ ℓ(wn; (x
n, ŷ)) which is needed for inequality

(32). However, this inequality does not hold if we changeỹ with an arbitrary sequence
from k-best ones. In order to get a similar bound, updates must be restricted only to those
examples which belong to the setAwn

. Nevertheless, checking if a sentence belongs to
this set implies findinĝy every time we change the parameters (see Algorithm 4) which
is computationally expensive. In the experiment section, we will consider both restricted
k-best PA andk-best PA updates, even though for latter the previously proved prediction
loss bound will not be satisfied.

4.5. k-best Perceptron

In case of not using a cost function, i.e. whenL(yn,y) = 0 for all y ∈ Y (xn), the
passive-aggressive algorithm reduces to perceptron algorithm [17] with the fixed step
size for the best sequence. To keep the spirit of the online manner of the single best
perceptron, thek-best version should involve online traversing throughk-best structures
(y(n,1), . . . ,y(n,k)) = Bk

wn
and sequential changes of parameters with the constant step

size for each structure which belongs to the error set, i.e. for each structure which produces
a higher score than the original structure. After finding thek-best structure, the following
series of parameter change is applied

w
j+1
n =

{
w

j
n +∆Fn(y

(n,j)) , if y(n,j) ∈ Err
w

j
n

w
j
n , if y(n,j) /∈ Err

w
j
n

, j = 1, . . . , k (36)

whereErrwn
= {y ∈ Y (xn) : wT

n∆Fn(y) ≤ 0}. The condition under which thek-best
perceptron converges is the same as for 1-best case.
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Theorem 2. Let D = ((xn,yn))
N

n=1 be a training set and let’s suppose that there exist
a vectoru andγ > 0 such that‖u‖ = 1 anduT∆Fn(y) ≥ γ for all training examplesn
and for ally ∈ Y−n. For thek-best perceptron from Algorithm 4, it follows that

Number of mistakes≤ R2

γ2

whereR is a constant such that∀n, ∀y ∈ Y−n, ‖∆Fn(y)‖ < R.

The proof is given in the Appendix and it is very similar to thestandard structured per-
ceptron [17] since the property of the best sequence is not used in the proof.

In the case of inseparable data, there is also a theorem that bounds the number of
mistakes, proven in [18] for the online perceptron and extended in [17] for the structured
perceptron. The same bound holds fork-best variant.

Theorem 3. LetD = ((xn,yn))
N

n=1 be a training set, letu be any vector with‖u‖ = 1
andγ > 0. Define

mn = u
T
F(xn,yn)− max

y∈Y−n

u
T
F(xn,y), ǫn = max{0, γ −mn}

andD =

√∑N

n=1 ǫ
2
n. For the first pass over the training set ofk-best perceptron from

Algorithm 4,

Number of mistakes≤
(
R+D

γ

)
,

whereR is a constant such that∀n, ∀y ∈ Y−n, ‖∆Fn(y)‖ < R.

The idea of the proof is to transform an inseparable case intoa separable one, then apply
the theorem for a separable case to get the bound, and at the end show that the prediction
with the original parameters is the same as with the transformed parameters. The proof
is identical as in [17], where the only difference is that we apply Theorem 2 fork-best
perceptron when we get a separable case. For completeness the proof is given in the
Appendix.

5. Results and discussion

We present experimental results on two sequence labeling tasks, shallow parsing [6] on
CONLL-2000 corpus2 and named entity recognition in Spanish on CONLL-2002 corpus3

[27] and in English on MUC-7 corpus4 [28]. In further text, we will address algorithms
by their names removing the “k-best” prefix, and where needed, specifying the exact
parameter.

2 http://www.cnts.ua.ac.be/conll2000/chunking
3 http://www.cnts.ua.ac.be/conll2002/ner
4 https://catalog.ldc.upenn.edu/LDC2001T02
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Algorithm 4: k-best perceptron,k-best PA andk-best restricted PA (RPA)

Input : Training data:D = ((xn,yn))N
n=1, parameterC ∈ R

+, k ∈ N

Number of iterations:P
Output : Model parameters:w

w← 0;
for p← 1 to P do

foreach (xn,yn) in D do
S ← B

k
w

; update← true;
foreachy in S do

Err ←

{
w

T∆Fn(y) < L(yn,y) (PA, RPA)
w

T∆Fn(y) ≤ 0 (Perceptron)
if updatethen

ŷ ← argmaxy∈Y (xn) w
T
F(xn, y); (RPA)

Err ← Err andℓ(w; (xn,y)) ≥ ℓ(w; (xn, ŷ)); (RPA)
if Err then

δ ←

{
min

{
ℓ(w; (xn,y))/ ‖∆Fn(y)‖

2, C
}

(PA, RPA)
1 (Perceptron)

w← w + δ ∆Fn(y); update← true;
else

update← false;

5.1. Problem description and features

Shallow parsingor chunkingis a task of identifying non-overlapping text segments which
correspond to certain syntactic units (chunks), such as a noun phrase, verb phrase, preposi-
tional phrase, etc. The CONLL-2000 corpus contains around aquarter of a million words
already split for training and testing. Each word has a corresponding POS tag and a la-
bel. The labels are presented in BIO representation, where Bstands for the beginning
of a chunk, I for the interior, and O means that a word does not belong to any chunk.
For each word we first detect its characteristics which we useas a local feature. We ex-
tract standard features like the detection of special characters, the detection of numbers,
the characteristic suffix of the word, belonging to a characteristic dictionary, whether the
word is capitalized or all caps. All bigrams are constructedfor a word and its local feature
(including the POS tag) for the current and previous position, while unigrams are con-
structed only for the current position. These bigrams and unigrams with the combination
of the current and previous label are used to create a featurevector at the current position.
The results are presented in terms of F-measure, as a harmonic mean of a precision and
recall computed over tokens belonging to a chunk.

Named entity recognition(NER) is a task of detecting and classifying entities into
specified categories, such as names of persons, organizations, locations, times, dates, etc.
For NER in Spanish, the CoNLL-2002 corpus is divided into thetraining, test and devel-
opment part containing four types of entities: person, organization, location and miscella-
neous, while for NER in English, the corpus has additional four entity types: date, time,
money and percent, instead of the miscellaneous type. The feature vectors are created in
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Fig. 2. Training time comparison for differentk-best algorithms on shallow parsing. The left panel
shows time through iterations for different values of the parameterk, where the algorithms are
denoted with colors, whilek is represented with a line style:k = 1 with dots,k = 5 with a solid
line, andk = 10 with a dashed line. The right panel shows the F-measure through time fork = 1
(dashed line) andk = 5 (solid line), where the LaRank trained in one pass uses parameternR = 10.
In the supplementary material, this figure is broken into several plots for better clarity.

the same way as in the shallow parsing problem. For NER in Spanish, the algorithms
are evaluated without any additional external knowledge ofthe language, while for En-
glish we used the same word characteristics for a local feature as in the shallow parsing
problem.

5.2. Time and accuracy comparison

We have implemented all described algorithms in C++. The experiments are performed on
a computer with Intel Core 2 Duo CPU 2.33 GHz and 8 GB RAM. We useA* decoding
with Viterbi scores for the heuristic function to find thek-best paths [10, 12]. To avoid
oscillations during the learning process, we have applied parameter averaging as described
in [17]. Such algorithms we will denote using the prefixavg. Fig. 2 shows the speed
comparison of the considered algorithms. All implemented algorithms share the same
structures and operators when working with feature and weight vectors, thus the speed
comparison shown in Fig. 2 can be considered reliable. The perceptron as the simplest
method is slightly faster than the PA algorithm but on the right panel we can see that the
other algorithm which incorporates the cost function provides better results. Recall that
the RPA algorithm needs an additional 1-best decoding, and as a result of the necessity for
additional decoding, for eachk, its time deviates from the other algorithms with similar
time consumption, the PA, perceptron and MIRA. The SDM requires significantly more
time through iterations due to its continuously increasingactive set of constraints. The
heuristics from [13], which control the set growth, can helpreducing the training time.

Next, we tested the LaRank algorithm trained in one pass. Theresults are presented
in Fig. 3 for different values of parametersk andnR. Since the selection of examples
in REPROCESSoperations is subject to random function, we presented the mean value
of F-measure with the corresponding standard deviation. Inorder to select regularization
parameterC for the shallow parsing problem and NER in English, we perform 5-fold
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Fig. 3. The results fork-best LaRank on shallow parsing (left), NER in Spanish (middle) and NER
in English (right), for differentk specified in legend and for different values of parameternR. Each
column height represents the mean value of F-measure over 20repetitions and the corresponding
error bar represents the standard deviation.

cross-validation. We select the highest mean value of F-measure over 20 repetitions, and
then we use this optimal parameter in a test scenario. For NERin Spanish, we use the
development set to select the optimal parameter with the same scenario. The results on all
corpora suggest the advantage ofk-best versions over the single best version, especially
with the lower values of parameternR. Also, we can see that a higher number ofnR has
a positive influence to the F-measure.

Further, for different values of parameterk we present a single number for each algo-
rithm where the other parameters (regularization parameter, number of training iterations)
are 5-fold cross-validated on the shallow parsing problem and NER in English, and esti-
mated on the development set for NER in Spanish. For shallow parsing we select the best
combination of the regularization parameterC ∈ {10−2, 10−1, 1, 10} and the number of
training iterations from set{5, 10, 15, 20}. For that problem, algorithms require less iter-
ations to converge, while 30 iterations are also added to theprevious set for NER, as the
results were still improving after 20 iterations. Results are presented in Table 1. MIRA
was optimized with the SMO with the practical check of KKT conditions (17)-(18) by
setting toleranceτ = 10−10 for all valuesk and thus fork = 1 its results do not match
the PA algorithm. Fork = 10 there is usually a degradation of results, possibly because
the inclusion of a lot of features into a training procedure via k-best sequences can raise
the problem of overfitting. Another problem with the higherk can rise in algorithms such
as the PA, RPA and perceptron algorithm which are defined in anonline manner inside an
example, as opposite to MIRA and SDM which perform full optimization inside an ex-
ample. However, we can see that allk-best versions of algorithms make an improvement
over the single best case and the best results are usually achieved with smaller values
k = 2 andk = 5. We tested the statistical significance of these improvements of the
results by running McNemar’s test [30] on all datasets. Withthe confidence level 0.05 the
improvements of thek-best version over the single best one are significant for thePer-
ceptron, (R)PA algorithm and MIRA, while for the SDM they arenot significant (more
details about this test in the supplementary file).
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Shallow parsing
k = 1 k = 2 k = 5 k = 10

Method C # F-measureC # F-measureC # F-measureC # F-measure
Perc. – 5 95.821 – 5 95.892 – 5 95.924 – 5 95.875
PA 1 10 96.093 10−2 15 96.097 10−2 15 96.069 10−2 15 96.056
RPA 1 10 96.093 10−2 20 96.099 10−2 20 96.079 10−2 15 96.057
MIRA 1 10 96.066 10−1 10 96.053 10−1 5 96.071 10−2 20 96.061
SDM 10−1 20 96.057 10−1 20 96.080 10−1 20 96.075 10−1 20 96.081

Named entity recognition (Spanish)
k = 1 k = 2 k = 5 k = 10

Method C # F-measureC # F-measureC # F-measureC # F-measure
Perc. – 30 75.886 – 30 76.019 – 30 76.204 – 30 76.122
PA 10−1 30 76.349 10−1 30 76.436 1 30 76.640 10−1 30 76.549
RPA 10−1 30 76.349 1 30 76.636 10−1 30 76.741 10−1 30 76.608
MIRA 1 30 76.262 1 30 76.334 1 30 76.312 10−1 30 76.328
SDM 1 30 75.840 1 30 76.028 1 30 76.194 1 30 76.145

Named entity recognition (English)
k = 1 k = 2 k = 5 k = 10

Method C # F-measureC # F-measureC # F-measureC # F-measure
Perc. – 20 90.918 – 15 90.966 – 10 91.136 – 20 91.122
PA 1 30 91.307 1 10 91.350 10−1 10 91.247 10−1 10 91.293
RPA 1 30 91.307 1 10 91.343 1 10 91.357 10−1 10 91.244
MIRA 1 10 91.324 10−2 30 91.393 10−1 5 91.447 10−2 30 91.399
SDM 10−1 30 91.377 10 15 91.487 10 10 91.415 10 10 91.435
Table 1. Results for different algorithms and their corresponding parameters (regularization pa-
rameters, parameterk, and the number of training epochs) obtained from 5-fold cross-validation
(shallow parsing and NER in English) and from the development set (NER in Spanish). For all
algorithms, the results are presented with averaged parameters, so theavgprefix is omitted in the
algorithm name. The number of training iterations is denoted with # and the tolerance for KKT
conditionsτ is set to10−10.

6. Conclusion

In this paper, we have presented four newk-best extensions of structural max-margin
classifiers. Unlike the existingk-best extension of MIRA, the proposedk-best passive-
aggressive (PA),k-best restricted passive aggressive (RPA) andk-best perceptron algo-
rithm are completely defined in an online manner, through examples and inside each ex-
ample as well. These algorithms perform well with small values ofk on the presented
problems. They are easy to implement and, except for the RPA algorithm, very fast and
suitable for large scale problems. Thek-best RPA is presented in order to satisfy a cumu-
lative loss bound similar to the one in the single best PA algorithm. On the other hand,
thek-best SDM performs full optimization inside each example where it collects support
vectors though iterations, making the algorithm highly computationally consuming. Even
though it remembers support vectors from previous epochs, it does not always achieve
better results than an online algorithm like MIRA. Finally,the extension of LaRank to the
k-best case provides notable improvements in comparison to the single best case and the
algorithm is suitable for training in one pass through the data.
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Appendix

(Proof of Theorem 2).For a sequencey ∈ Y−n a mistake is made with parametersw if
w

T∆Fn(y) ≤ 0. Letw(l) be a vector before thel-th mistake. Suppose that the mistake
is made on then-th example, on thej-th sequence taken fromk-best sequences generated
from parameterswn, i.e. on the sequencey(n,j) ∈ Bk

wn
wherew(l) = w

j
n. According to

the algorithm, it follows thatw(l+1) = w
(l) +∆Fn(y

(n,j)) and taking the inner product
of both sides with parametersu gives

u
T
w

(l+1) = u
T
w

(l) + u
T∆Fn(y

(n,j)) ≥ u
T
w

(l) + γ.

Sincew(1) = 0 anduT
w

(1) = 0, it follows by induction thatuT
w

(l+1) ≥ lγ, and using
u
T
w

(l+1) ≤ ‖u‖ ‖w(l+1)‖ gives us‖w(l+1)‖ ≥ lγ. Further

‖w(l+1)‖2 = ‖w(l)‖2 + 2w(l)T∆Fn(y
(n,j)) + ‖∆Fn(y

(n,j))‖2 ≤ ‖w(l)‖2 +R2

because parametersw(l) make a mistake ony(n,j), i.e.w(l)T∆Fn(y
(n,j)) ≤ 0. By induc-

tion, we get‖w(l+1)‖2 ≤ lR2. Combining the bounds‖w(l+1)‖ ≥ lγ and‖w(l+1)‖2 ≤
lR2 we get the upper bound for the number of mistakes

l2γ2 ≤ ‖w(l+1)‖2 ≤ lR2 =⇒ l ≤ R2

γ2
.

(Proof of Theorem 3).First, we extend the feature vectorF(x,y) ∈ R
d to F(x,y) ∈

R
d+N such thatFi(x,y) = Fi(x,y), i = 1, . . . , d, andFd+n(x,y) is equal toZ if

(x,y) = (xn,yn) and equal to zero otherwise, forn = 1, . . . , N . The vectoru is ex-
tended tou ∈ R

d+N in a similar way:ui = ui, i = 1, . . . , d andud+n = ǫn/Z,
n = 1, . . . , N . Transformed vectors hold following properties

‖u‖2 = ‖u‖2 +
∑N

n=1 ǫ
2
n/Z

2 = 1 +D2/Z2

∀n, ∀y ∈ Y−n,u
T
F(xn,yn)− u

T
F(xn,y) ≥ γ

∀n, ∀y ∈ Y−n, ‖F(xn,yn)− F(xn,y)‖ < R2 + Z2

From the first two properties, it follows that parametersu/‖u‖ separate dataD with the
marginγ/

√
1 +D2/Z2. Now, we can apply Theorem 2 and get that the number of mis-

takes ofk-best perceptron running on extended space is at most1
γ
(R2+Z2)(1+ D2

Z2 ). The

valueZ =
√
RD minimizes the bound, giving us the statement of the theorem.Extended

parameters generated from the first pass of the algorithm make the same prediction as the
original parameters on test examples since the additional parameters affect only single
training data.
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