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Abstract. Structured learning algorithms usually require inferethweng the train-
ing procedure. Due to their exponential size of output spesparameter update is
performed only on a relatively small collection built frolet“best” structures. The
k-best MIRA is an example of an online algorithm which seeksog parameters
by making updates oh structures with the highest score at a time. Following the
idea of usingk-best structures during the learning process, in this pageintro-
duce four newk-best extensions of max-margin structured algorithms. 8euds
their properties and connection, and evaluate all algmston two sequence label-
ing problems, the shallow parsing and named entity recimgmifhe experiments
show how the proposed algorithms are affected by the chasfges terms of the
F-measure and computational time, and that the proposedtalgs can improve
results in comparison to the single best case. Moreovergstection to the single
best case produces a comparison of the existing algorithms.

Keywords: structured learning, sequence labelikghest approach, max-margin
training

1. Introduction

Structured classification is a problem of learning a mapfiag the input to the output

structured objects, where the output structures incotpatiferent relationships among
its classes. Its algorithms have been widely applied forisglsequence labeling prob-
lems where we need to assign a single label to each membee obgerved sequence.
Popular sequence labeling problems in natural languageepsing are part-of-speech
tagging (assigning a linguistic category to each word)llstvgparsing (detecting syntac-
tic chunk labels) and named entity recognition (detectimifies in sentences).

The general idea of the-best approach is to restrict the learning process from the
structured space to its subset constructed only of eéements with the highest scores,
since considering all elements from the original space dtedd to an intractable learn-
ing process in real time. While the influence of the paramktier the learning process
is not yet explored in theory, empirically it is shown thatahvalues ofk contribute
to the learning process, with slight degradation of perfamoe for larger values. Far
equal to one, different learning methods are developedevidii higher values there is-
best Margin Infused Relaxed Algorithm (MIRA). Followingeladvantages of thie-best
MIRA presented in [2], [8], [19], our motivation for the papis to investigate different
possibilities of incorporating-best structures into the learning process with the aim to
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get better results than the corresponding single bestorerand to provide the theoret-
ical analysis of the introduced algorithms. Thus, we introelfour newk-best versions

to train the structural SVM as extensions of the popularlsibgst algorithms: LaRank,
SDM, passive-aggressive and perceptron algorithm.

The main contributions of the paper are:

¢ Introducing four newk-best extensions of max-margin structured classifiers with
discussion of their properties and connections.

¢ Providing theoretical analysis for thiebest versions. The restricted version of the
k-best passive-aggressive algorithm is introduced in dadsatisfy theoretical guar-
antees in terms of cumulative prediction loss similar togimgle best case.

¢ Providing empirical evaluation of the introduckdest versions on different datasets.
Also, the restriction to the single best case provides a eoisgn of the existing
algorithms.

The paper is organized as follows: we first discuss the mklatak, and then in Sec-
tion 3, we define the basic notation and the primal-dual gnoldf max-margin structural
classifiers. After reviewing-best MIRA, in Section 4, we introduce nelwbest exten-
sions for structured classification. In Section 5, we pregenresults ok-best extensions
on two sequence labeling tasks and conclude the paper inghsdction.

2. Related work

Sequence labeling problems have been traditionally soi#tdhidden Markov models
(HMMs) [9] by learning transition and emission probabdgiand finding the optimal
sequence by dynamic programming. The limitation of the hef@ature representation
in HMMs is overcome by its discriminative training such asxitaum entropy Markov
models (MEMMS) [24] and conditional random fields [25], winialso further avoid the
label-bias problem in MEMMs. The combination of maximum giardiscriminative
training and the HMMs results in the Hidden Markov SVM [3], ialn is later gener-
alized to the structured SVM [1]. All these discriminativaihing algorithms can be seen
as a minimization of a differently chosen regularized las¥ction.

Since the size of the output space in structured data islysigdonential, a full opti-
mization with exponentially many constraints is not polesib real time. There are sev-
eral approaches to dealing with such optimization. Taskat. ¢5] present an equivalent
polynomial-size formulation in the maximum margin Markostwork (M*N) by intro-
ducing marginal variables. Joachims et al. [4] use thermgiiane method on the equiv-
alent formulation with one slack shared across all data &odghat the dual problem
has a sparse solution. Finding a small set of constraintdgtsafficient to approximate
a solution is usually done by increasing the working set ofst@ints through iterations.
Balamurugan et al. [13] present the sequential dual metBbdA) for structural SVMs in
which they sequentially add the constraint generated fb#st structure and apply the
sequential minimal optimization (SMO) [14] with additidreeuristics to increase speed.
Jaggi et al. [31] propose a block-coordinate version of kfflfe optimization as an
online algorithm with an efficiently computed optimal steépeswhich has a duality gap
guarantee. Chang et al. [35] suggest a dual coordinate mtesgoplied onl, loss which
allows updating only one dual variable at a time. Bordes .22l present the LaRank
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algorithm adapted to structured problems. After procesaimew training example and
adding the corresponding constraint, it goes back and cepses the old examples by
optimizing them with the possibility of further increasitigeir working set of constraints,
in order to get training through the data in one pass. Therealo online algorithms
adapted to the structured version, such as the perceptr¢antl the passive-aggressive
algorithm [7], suitable for large-scale problems.

While all previously mentioned approaches make a singleement to their working
set of constraints or just restrict the optimization to oohe constraint, Crammer et al.
[2] first proposed th&-best version of the Margin Infused Relaxed Algorithm (MIRa#s
an online algorithm which restricts optimization not ordyane but td:-best constraints.
The algorithm is designed to traverse through training edas) find thek-best structures
inside the example with the current parameters and therhese structures to update the
parameters before moving to the next example. The idea idjtstathe parameters us-
ing new structures, but keep the changes as small as possitniger to hold previously
obtained knowledge. At each example, after findimmutputs with the highest score, the
algorithm minimizes the norm of parameter change whilesgatig constraints on gen-
erated outputs. Even though the algorithm traverses otiimoeigh examples, inside each
example it performs full optimization subject to generatecbnstraints. The algorithm
was tested on different problems. Crammer et al. [2] preentesults on handwriting
recognition, noun phrase chunking and named entity retiogn{NER), showing that
k-best MIRA performs as well as batch methods such as CRFs &h{ Mit converges
more quickly after a few iterations. McDonald et al. [8] usbest MIRA for dependency
parsing, testing different values &#f and state that even small valuesioére sufficient
to achieve close to best performance. Gimpel and Cohen [48]tastk-best MIRA on
NER and achieve similar results to the perceptron algorttrahwere slightly better than
the CRF, while MIRA gave better results on the part-of-spg@OS) tagging than per-
ceptron for a reasonably small paraméteOther related works include using a primal
sub-gradient method for the averaged sum loss [20] optiimizavhich is closely related
to the k-best variant of the Pegasos algorithm [34]. ®hbest approach is also applied
in confidence weighted methods [32] and used for confidencerimmittee organization
[33], wherek-best paths are used to extract the confidence of a partiatiarwhich is
included in the learning process to improve the results.

3. Structural support vector machines

Let X be an input alphabet and = ((m”,y”))i\;l a training set, where eactf* €
XT» represents an input sequence of lerifj{twith the corresponding structugg’. The
set of all possible structures over the sequentds denoted by? (x") and%_,, =

% (™) \ y™. In further discussion, we focus on the sequence labelinglem where

@ (x") = YT and) represents a set of possible labels for an eleme#t.dflowever,
everything presented in this paper, except for the disongsithe inference problem, will
hold for a general case & (™). The linear classification problem is to learn a function
hw from the data?, which maps every sequengeover the alphabet’ to an element of

% () in the following form

hw(x) = argmax w'F(z,y), 1)
ye¥ ()
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whereF (x, y) represents global feature vectomeasuring the compatibility of andy.
One way of finding such a function is to estimatevia the max-margin approach, which
minimizesL,-regularized empirical risk oty [15] leading to the following formulation
of the structural support vector machine in the primal space

N
o1
131?§|‘W|‘2+CZ€11 (2)
’ n=1
stwlAF,(y) > L(y™,y) — &, Vn, Yy € ¥ (") 3)

where AF,,(y) = F(z",y") — F(a«",y). According to the constraints, the original
sequencey™ should produce a greater scosd F(z",y") then any other sequence at
least for the size of the margin for that sequence. The costtion L(y™, y), used for
margin scaling, represents the cost of labeling the seguehaevith y instead ofy™. To
handle a non-separable case, for each exaniplge assign non-negative slack variables
&, which control the penalty for its misclassification and theole problem refers tdv-
slack formulation with margin scaling. Sindgy™, y™) is equal to zero, the constraint
for the sequencg™ in (3) produces,, > 0. The parametef’ € R controls the trade-off
between the slack variable penalty and the size of the makgithe cardinality of? (x™)

is exponential, the direct optimization is untraceabletrAightforward transformation of
the primal problem (2)-(3), by introducing Lagrange muiés A = [\ yln yew (@n),
leads to the dual optimization problem

1
min §ATKA -A"L (4)

St Ay =C,Vn, Ay >0, n, Yy € ¥ (x") (5)
yew (")

whereK is a kernel matrix defined with elemems, , ,, ., = AF,(y)TAF,,(y') for
everyy € # ("), y' € #(x™) andL is a vector with elements,, , = L(y",y). The
primal parameters are expressed in terms of dual ones as

N
w=> > AyAF,(y). (6)

n=1ye# (xm)

The constraints in (5) allow us to perform the optimizatiestricted to a single example
at a time [23]. Letx,, denote changes i&,, during the processing of theth example,
i.e. let the change of parameters be made according to treexid, < Ay y +any- In
order for new dual parameteds, to be feasible, the sum af, ,, should be zero as well
as\;, ,, > 0. By dropping all terms in (4)-(5) which do not depend@p, we can rewrite
this optimization restricted to theth example with respect to the parameter change

1
min §alKnan — alﬂn (7

Qn

s.t. Z Ony =0, Ayy+any >0 Vye&(z") (8)
ye& (=)
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where the vectot,, = [{(w; (2", Y))]ycw (=) IS defined with(w; (x",y)) = L(y",y)—
w! AF, (y) and K, is the block of the kernel matrik corresponding to theth exam-
ple. Note that,, depends orw, which corresponds to parametevs,, according to (6),
and thus the parameters after the update will be

w=w+ > gy AF,(y). (9)
yeF (z™)

The gradient of the dual function (7) i§a) = [gn 4 ()], with elements

Iny(or) = Z oz Ky 2 — L(W; (", Y)), (10)
zZeY (xn)

which is used to express the violation of Karush-Kuhn-Tu¢Ke&T) conditions [11] for
the problem (7)-(8) as
n, > i n 11
max gn,y () i g (@) (11)
wherely = {y € #(z") : any > —Any}. Again, the dual problem has exponentially
many constraints.

4. k-best extensions

In this section we will describe extensions to #hé&est case of popular algorithms. We
start with reviewing thé&-best MIRA from [2] and then introduce tiebest version of the
perceptron, LaRank algorithm, sequential dual methodpaisdive-aggressive algorithm.
We also introduce the restricted version of the passiveeasgiye algorithm for which the
cumulative prediction loss is bound in a similar way as irgkrbest version.

4.1. k-best MIRA

Crammer et al. [16] propose the Margin Infused Relaxed Atgor (MIRA) originally
for multiclass problems, which was later extended to stmazt classification [2]. MIRA
is defined in an online manner. After receiving a new exaniple y™), starting from
parametersw,,, the algorithm is searching for new parametersn order to keep the
norm of changing parameters as small as possible duringatisfestion of particular
constraints on the received example. In a special caseptigtraints on the example can
be restricted to only one constraint corresponding to tleelipted structurgy with the
involved cost function. This is known as 1-best variant ofRAl which is also called
the online passive-aggressive (PA) algorithm [7]. The bequence fog™ is found with
respect to the loss function as

¥ = argmax £(w; (z",y)) = argmax w' F(z",y) + L(y",y). (12)
yeX (x™) yeX (x™)
MIRA was primarily designed for multiclass classification.that case it belongs to
the family of ultraconservative online algorithms [16], it consider only the updates
of parameters corresponding to violated examples, i.dndse examples that produce a
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Algorithm 1: k-best MIRA

Input : Training data:z = ((z",y™))}_,, parameteC € R™, k € N
Number of iterationsP
Output: Model parametersw
w <+ 0;
for p+ 1to P do
foreach (™, y™) in 2 do
Sy — BE; [+ find k-best sequences =*/
Find v as a solution of the optimization problem:
1
min S|V = wl* + C ¥y cs,

StVIAF.(y) > L(Y",y) — &y, Eny >0, Yy € Sy
W <V,

higher score than the original one. Working with the ultreszrvative property in the case
of online structured classification leads to problems irirojz&tion, due to the possibility
of a large number of violated constraints. This producesed to consider the opti-
mization restricted only to the constraints for the firstequences with the highest score,
leading to the following optimization problém

1
5&2{}5”“’_“’””2+ng”4’ (13)
ye@"j‘v“
Stw AF,(y) > L(y",y) — &ny, ény =0, Yy € B, (14)

where#¥, represents the-best setformally defined as the se#%, C % (z") that sat-
isfiesvy’ € B Yy ¢ B = L wn; (x",y')) > L(w,; (x",y")) and| 5%,
min{k, |% (x™)|}. Note that with this formulation the set is not uniquely definThe
k-best MIRA is a general method which incorporateskHgest search in an online man-
ner through examples without any specification for solviregdptimization problem (13)-

(14) inside the example. The pseudocode is presented irri&kigol.

4.2. k-best SDM for structural SVMs

In order to deal with a large dimensional problem (4)-(5& #equential dual method
(SDM) for structuralSVMs[13] makes an assumption that at optimum only a small num-
ber of constraints inside one example is active. It considiee scaled version of the
following sub-problem

1

min §alKnan — alﬂn (15)

SEY any =0, ony>-Ay YYES, (16)
yeSn

! Crammer et al. in [2] defing-best MIRA for a linear separable problem and it is a strdayht
ward extension to the linear non-separable case done logirting slack variable$, ., which
we used here and also referred to italsest MIRA.
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where the set of examples, = {y € #(z") : \,, > 0} is incrementally built by
adding the sequenagaccording to (12) that violates the margin the most on thescitir
nth example and<,, denotes a block of matrik which corresponds to theh example.
Specific heuristics are employed to control the growth ofgBES,, in order to keep
the number of optimization constraints at a reasonable siter reaching the desired
precision inside one example, the procedure continuesstoditt example to optimize,
where the optimization is performed by the sequential méioptimization (SMO) [14].

Now we will describe the SDM extension to thebest case. The algorithm traverses
through training examples and, at thth example, its working sef,, is extended with
currentk-best sequences including the original sequeyiteThen the SMO is applied
to optimize dual variables associated with sequencés int selects a pair of sequences
from S,, based on the 'maximum violating pair’ strategy and perfothesoptimization
until the KKT conditions become satisfied 8. The test of the KKT condition violation,
up to the precision, is

In,y (@) > Gny (@) + 7, (17)
y' = arg min g, 4(a), ¥y’ =argmaxg,4(a), (18)
YESn yerl]

wherely = {y € S, : oy > —\py}. The gradient of the dual function is expressed
by (10), where the sum over all elements?fx™) can be reduced for the sub-problem
(15)-(16) to the sum over the elements frénas

Gny(@) =Y oKy —l(w;(z",y)) 19)

zeS,

sincea, 4 is equal to zero ify does not belong t&,,. After selecting sequenceg and

y”" which violate KKT conditions the most using (18), we consittee updates of the
corresponding alpha parametersaas, < an v + 0 andoy, 47 < @,y — 0. The
optimization, now restricted to a single variablevhich must change the parameters so
that they remain feasible, can be expressed in the andlidira as

Gn,y" (a) — On,y’ (a) >)
|AF,.(y') — AF.(y")II?) )
20)

Note that after satisfying the KKT conditions for the $gtand leaving that example,
unsatisfied conditions inside the example could still besfids, since)’ is found by min-
imization oversS,, instead of?% (x™). As a time consuming operation, the minimization
over wholeZ (z™) is done only when we extend the current Sgtby k£ new sequences.
These are the sequences corresponding to the lowest ekeaféhe gradient of the dual
function. SinceS,, is extended when we start processingsttieexample, alty,, ,, will be
zero and thus these sequences are those with the hiifeestc™, y)), e.i. the sequences
from 2% .

In the end of the section, let us consider the difference éetvk-best MIRA op-
timized in dual space with the SMO artdbest SDM. As a consequence of a different
primal formulation, when it returns to an earlier exampibest MIRA will create a new
working setS,, while k-best SDM will update its previous set with new sequences (se
Algorithm 2). Thus only the first epoch will be the same. Hoem\vf we consider the

0 = max <_)\n,y’ — an,y/,min <>\n,y” + an .y,
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1-best version of these algorithms, MIRA will be equivalemthe PA algorithm, while
the SDM will have the first epoch through the data equivaleMIRA and thus to the PA
algorithm. These equivalents can also be observed becdosst EDM in the first pass
will choose sequencag = y andy” = y™ on thenth example to optimize, and as all
a4 are zero at that moment and all ,, are zero, except fak, ,» = C, the step in
(20) will be reduced to the step from (21). However, note thi& equivalence consid-
ers settingr to zero, but in practical applicationis set to be a small positive tolerance
because of numerical errors and the runtime of the algorithm

4.3. k-best LaRank algorithm

The LaRank algorithm [21], introduced for multi-class plerbs, is a batch algorithm
which uses the SMO with specific operations describing haselect a pair of coefficients
for optimization. The algorithm has also been used for actitred output with a simpler
scheduling for selecting a pair for optimization in an oalimanner and this version is
called OLaRank [22]. We adopt the following notation: if amenple[(x", y)]ycz (»n)
has all dual variables,, , = 0 equal to zero we will call inew exampleotherwise we
will refer to it as arold exampler support patternThe algorithm with the exact inference
is used to solve the dual problem (4)-(5) by applying thresdaperations:

PROCESNEW Pick a new examplgz”,y)] and choose the pair of coefficients .-
and),, 3 to optimize, whergy is found by (12),

PROCES®OLD Random pick a support patteffx™, y)] and choose the best pair of coef-
ficients\,, . and),, 3 to optimize according to the gradient vector,

OpTIMIZE Random pick a support pattern and choose the best pair oz@aneoeffi-
cients to optimize according to the gradient vector.

OLaRank applies theBbCESINEW step followed by a specific number af; REPRO-
CESsSoperations, where BPROCESSMeans applying ten ©rimMizE steps after one Ro-
CESLD step. Note thatz = 0 reduces OLaRank to the previously described SDM for
the first epoch.

We introduced thé-best version of the previous algorithm, calling:ibest LaRank,
which optimizes the same dual problem with the SMO, whichspecial case reduces to
the k-best SDM (see Fig. 13-best LaRank uses the followirigbest variantskBVs) of
operations:

kBV-PROCESINEW Pick a new examplgx™, y)] and optimize coefficients which cor-
respond to itg-best sequences together with the original sequgfice

kBV-PROCES®LD Random pick a support pattern and optimize non-zero coefiisi
together with new coefficients frodbest sequences.

kBV-OPTIMIZE Random pick a support pattern and perform the optimizatiside this
pattern among non-zero coefficients,

with the same scheduling as in OLaRank. Let the optimizatierperformed inside a
pattern while the KKT conditions are violated more tharas in (17)-(18), by choosing
the sequencg” among theys for whicha,, , > —\,, 4 + &, wherer andx are small
positive tolerances. Similar to the single best case, webcammd the number of support
vectors thak-best LaRank will add during the training procedure.
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1) 2)

3)
[Caftnte] —— (SO ] ——> [ PA_] ——> [Fercepron]

P I P

| k-best LaRank | > | k-best SDM | = | k-best PA |=> | k-best Perceptron |

Fig. 1. Connections between learning algorithms and thddest extensions for the first epoch.

1) and 4)nr = 0. 2) Described in the end of Section 4.2.

3) and 6) No costl; = 0), fixed step sizeq{ = 1). The connection holds for more than one epoch.
5) Performs one SMO step on edctbest sequence inside an example in sequential order.

Proposition 1. During the first pass through the data withexamples, thé-best LaRank
will add no more than

min {N((nR + 1)k + 1), max{ 2pNC ZNC}}

T2 7 KT

support vectors, wherg = max,, yea (o) || AF, (y)]2.

Proof. The first term follows directly from scheduling because aafdtBV-PROCESNEW
operations can add up to+ 1 support vectors;BV-PROCES®LD up tok support vec-
tors,ngk times after each new example, whi®V-OPTIMIZE cannot add new support
vectors. No matter whdt we choose, in three baslebest LaRank operations all SMO
steps are performed only along the-violation direction. Thus thé-best version also
belongs to the Approximate Stochastic Witness Directicaxr&8e (see appendix in [26]),
which reaches ther-optimality solution with no more thamax{223¢ 2¥¢1 SMO
operations [22] [21], i.e. support vectors.

Bordes et al. [22] express the regret bound of LaRam&EESINEW operation through
the data with the same value as the bound for the passivessige algorithm. As nei-
ther RROCES®OLD nor OPTIMIZE operation can decrease the dual function, the same
bound is stated for the whole LaRank algorithm. Since th&ipus two operations are
not considered, the true regret should be much smallerl&imgisults can be stated for
the k-best version. As the first SMO step #BV-PROCESNEW will increase the dual
function by the same value aRBCcESNEW, and as other SMO steps cannot decrease
the dual function, as well dsBV-PROCES®OLD andkBV-OPTIMIZE operations, thé-
best LaRank holds the same regret bound as the passivesaygralgorithm. The pseudo
code is presented in Algorithm 3.
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Algorithm 2: k-best SDM

N
n=1’

Input : Training data:D = ((x™,y™))
Number of iterationsP
Output: Model parametersy

parameterC € R™, k€ N

w <+ 0; A < 0;
Sp—{y " Ay < C,Vn=1,...,N;
for p«+ 1to P do
for n «+ 1toNdo
L | kBV-PROCESNEW(n, Sy, W, A);

Algorithm 3: k-best LaRank

N
n=1’

Input : Training data:D = ((x™,y™))
Output: Model parametersy

parameterC € R™, k€ N

w < 0; A+ 0;
Sp—{y " Ay < C,Vn=1,...,N;
for n + 1toNdo
kBV-PROCESNEW(n, S,,, w, A);
for k< 1tongdo
L kBV-REPROCES$(S1, ..., S,), w, A);

Procedure kBV-ProcessNewt, S,,, w, A)

S, S, U%BE; |+ find k-best sequences of the nth exanple
*/
SMO(@n, Sy, w, A);

ProcedurekBV-Reprocess{, ..., Sn), w, A)

kBV-PROCES®OLD((S1,...,S50), W, A);
for i < 1to maxIter do
| kBV-OPTIMIZE((S1, ..., Sn), W, A);

ProcedurekBV-ProcessOIld(§y, . . ., S»), w, A)

m < Randonil, n[;

S < Sy U BE I+ find k-best sequences of the mth
exanpl e */

SMO(m, S, W, A);

Procedure kBV-Optimize((S1, - - ., Sn), W, A)

m <+ Randonfl, nJ;
SMO(@m, Sim, W, A);
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4.4. Passive-aggressive algorithms fde-best structural learning

The passive-aggressive (PA) is an online algorithm inteeduin [7] and it solves the
optimization problem (13)-(14) fok = 1, i.e. by using only the constraint generated
from the best structure. We will refer to this algorithm abéest passive-aggressive or
1-best MIRA. Let us define the set of misclassified sequendds given parameters
Erry, = {y € %_,, : {(wyn;(x™,y)) > 0}. This set will be used to decide weather
or not the sequence should be used for parameter changealdntorcalculate the step
size, Crammer et al. [7] used the method of Lagrange muétiplon the problem (13)-
(14), which for the single best version has only two constgithe constraint for the
structure with the highest scofeand the one for the original structugg. The optimal
step size is then found in the closed form as

_ min max{0, {(wp; (™, 9))}
0= { 1AF, () ’C}' )

The 1-best passive-aggressive algorithm considers uygdtite parameters only for the
best sequence with the following behaviors as describetiin [

i) passive behavioif the constraint in (14) for the best sequence of the cureatnple
is satisfied, the algorithm is passive, making no update;

il) aggressive behaviafit is not a case, the algorithm makes an aggressive update

w =w, + IAF,(y)

on thenth example in order to satisfy the single constraint on th& bequencg €
% (x™) found by (12).

Involving more than one constraint leadsitdoest MIRA, where the optimization is
performed over correspondigbest constraints. We define the sequence of optimization
problems inside one example in the online manner, where@ablem is subject to only
one of k-best constraints. Since only one constraint is considateal time, each one
can be solved analytically. Thus, we will sequentially &nase througlt-best sequences,
optimize the sub-problem restricted to only one of the seges

i - wl g 22)
stwitlT AR, (y™)) > Ly, y™)) — ¢, €>0, (23)

forj =1,...,k and perform passive-aggressive updates
Wit = wi, 4+ 6, AF(y"Y), j=1,..0k, (24)

where each step can be found in the closed form as

[ max{0, £(wis (2", y "))} }
On.; = min n . ,C b 25
; { 1AF, (3|2 (23)

With previous two formulas we defirebest passive-aggressive updatagposing that
we start processing theth example with parametess,,, which are used to produde
best sequencdg ™), ... y(™*) = B~ . The parameters’, denote the intermediate
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states of parameters through the iterations betweenrgjgstirametersv, = w. and
parameters after the optimization on thté examplew,, 1 = w**!. While k-best MIRA
can be seen as a semi-online algorithm (online through ebeangmd batch inside one
example) the&-best passive-aggressive algorithm is defined in a comptdiee manner
through the examples and also inside one example.

Cramer et. al [7] provide a cumulative prediction loss bofandhe passive-aggressive
algorithm for cost-sensitive multiclass classificatiomjet can also be applied to 1-best
PA algorithm for a structured output. Here, we will providsimilar bound for the:-best
case with a slightly different assumptions, where updatesdditionally restricted from
k-best sequences. Let’s first define firediction sequencg,, found by parameters,,
on thenth example as

U = argmax w,F(z" y). (26)
" yew (z)
This sequence is also considered in Crammer et. al [7] foirue PA approach, where
steps corresponding @ andy are called the prediction-based and the max-loss step,
respectively. We use this sequence to define the auxiliary se

Aw, ={y € W : l(wn; (x",y)) 2 {(Wn; (", Yy, )} (27)
which we need to define thestrictedk-best passive-aggressiparameter updates as

, I 4 8, AR, (y™9)) [ if y(™i) € A_,
41 _ W’I"L + n,J n\Y ) Yy i W, -
Wi {Wﬁ , if y(nJ) ¢Aw{7 y J ]-a"'vka (28)

and use it fork-best restricted passive aggressive (RPA) algori(eee Algorithm 4). Let

all sequences frorﬁﬁ;,n on which we make a non-zero update according to updates (28)
beS, = (y™), ... yMis.)), for some indiced < iy < ... < i5, < k where the
length of vectorsS,, is denoted withS,,|. Further in this section, just for simplicity, we
will refer to these sequences s = (y(™1), ..., y™I5D),

Lemma 1. Let(z!,y'),..., (=", y") be a sequence of examples andddie any pa-
rameter vector. For the restrictekbest PA update defined by (28), it follows

N [Shl
DD o (26(Whs @,y ™)) = | ARy )2 = 260w (27, 5" )) < ul?,

n=1j=1

whereS,, = (y™V, ... y™I9:D) contains all sequences from”, on which we make
a non-zero update according to (28).

Proof. Defining~? as||w? — ul|? — |[w’*! — u/|? and summing it over alk and; we
get

D> m=2> (Iwh —ul>— [wi —ul?)
n=1j =1 n=1j=1
= llwi —ul? = [lw™"*! =l < wi —ul? = ul*  (29)
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becausev{ = 0 andw;.,, = w1 According to the definition of? and the param-
eter change (28), we get that
7% = W), — ul* — [l — ul?

= [|wj, —ul]® = [w}, = u+ 8, ;AF, (y ™))

= —20, (W), —w)TAF, (y ") — 67 ;|| AF, (y™9)|?

= =265 (Wi ARy ) = Liy™ ), y™)

+ 20,5 (uT AR (™) = Ly, y™)) = 62 | AF, (3" 9)

= by (26wl (@", y ")) = 60 3| AR (y )2 = 20(us (2", y ") )

which after summing and using (29) provides the desireduakty.

Theorem 1. Let(z!,y'),..., (=", y") be a sequence of examples whipdF, (y)|| <
landL(y™,y) < Cforally € S,,n=1,...,N. Then for any parameter vectarand
the restrictedk-best update defined by (28), it follows

N \Sn| N ‘Sn|
DD LW G <l +20) Y lu; (", y ™)), (30)
n=1j=1 n=1j=1
whereS,, = (y™Y,...,y™ISD) contains all sequences frog@* , on which we make

a non-zero update according to (28).

Proof. In proof we use abbreviations,, ; = L(y", Y, ), Yp; = Yy andély,; =
¢(wi: (™, y™7))). According to the definition (26) of the prediction sequeiidfellows
w), F(@".3,,) = W) F@@"y), Vye¥ (")

which leads to inequality
Lo, <wi F(@", ;) — Wi F@",y") + Ln; = ((wh; (@",§,,)) < ln; (31)

where the last inequality in (31) comes from the definitionthef setS,,, i.e. because of
y(i) e A, - For each non-zero step ; it follows that/,, ; > 0 and according to the

condition||AF,, (y™))|| < 1,5 =1,...,|S.|, we get
, max{0, £, ;} } _
Op.; =min{ ———— I 'L > min{l, ., C
=i tns €}
which leads to

(31)
On,jLm,; > min{ly, ;L j,CLy;} > min{L} ;,CLy;} > L (32)

n,jo

sinceL, ; < C. Summing (32) for all example3:, j) on which we made the non-zero
update and using the inequality from (31) we get

N [Snl N [Snl N |Sn]

SIS <3S 0L <30 bl (33)

n=1j =1 n=1j =1 n=1j=1
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According to the definition of step sizg ;, it is upper bound by the parametér which
allows us to rewrite the inequality from Lemma 1 as

N |Snl N |Snl
S 00 (205 = ng | ARy ™) 2) < Juf2 420 30D b(us (@, y ™)),
n=1j=1 n=1j=1

Also, the definition of),, ; for every non zero step gives ;|| AF,,(y™)||> < ¢, ; and
thus the previous inequality becomes

N S| N S| ‘
SO nilng < [l +20> 0> t(w; (@, y ™)), (34)
n=1 j:l n=1 j:l

which in combination with (33) provides the desired bound.

Corollary 1. Let the conditions from the previous theorem be satisfiexsh ithfollows

N |Sn]
SN Ly" 2 < ||u|\2+202|5 10, (w). (35)
n=1 j=1 n=1

wherel,, (1) = maxycay o) £(u; (2", y)).

In case of using only the best sequence,$,.= (y), the bound from Corollary 1
reduces to the bound for 1-best case proved by Crammer &t alfe proof of 1-best
case uses a properyw,,; (z",y)) > £(wy; (z",y)) which is needed for inequality
(32). However, this inequality does not hold if we changwith an arbitrary sequence
from k-best ones. In order to get a similar bound, updates mustisirécted only to those
examples which belong to the sdt, . Nevertheless, checking if a sentence belongs to
this set implies findingy every time we change the parameters (see Algorithm 4) which
is computationally expensive. In the experiment sectiamyill consider both restricted
k-best PA and:-best PA updates, even though for latter the previouslyguigrediction
loss bound will not be satisfied.

4.5. k-best Perceptron

In case of not using a cost function, i.e. whB(y™,y) = 0 for all y € # (™), the
passive-aggressive algorithm reduces to perceptronitdgof17] with the fixed step

size for the best sequence. To keep the spirit of the onlineneraof the single best
perceptron, thé&-best version should involve online traversing througbest structures
(ymb, ... ,yk)) = % and sequential changes of parameters with the constant step
size for each structure which belongs to the error setdredch structure which produces

a higher score than the original structure. After findingkHeest structure, the following
series of parameter change is applied

j+1 {W% + AFn(y(n,])) , |f ,y(’ﬂ,]) c E?"T‘wj
W, =

wi if y(md) ¢ Errw_z o J= Lk (36)

whereErry, = {y € #(z") : w] AF,(y) < 0}. The condition under which thebest
perceptron converges is the same as for 1-best case.
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Theorem 2. Let2 = ((z", y"))n]\;1 be a training set and let's suppose that there exist
avectoru andvy > 0 such thatju|| = 1 andu" AF,,(y) > ~ for all training examples:
and for ally € #_,,. For thek-best perceptron from Algorithm 4, it follows that

R2
Number of mistakes< —-
v

whereR is a constant such thatn, Vy € #_,,, | AF,(y)| < R.

The proof is given in the Appendix and it is very similar to standard structured per-
ceptron [17] since the property of the best sequence is mat insthe proof.

In the case of inseparable data, there is also a theorem dhiatdb the number of
mistakes, proven in [18] for the online perceptron and exéelin [17] for the structured
perceptron. The same bound holds febbest variant.

Theorem 3. Let 2 = ((x", y"))ﬁ;1 be a training set, let be any vector withu|| = 1
and~y > 0. Define

m, =u F(z",y") — max u'F(z",y), e, =max{0,y—m,}
YyeY _n

andD = \/ZnNzl €2 . For the first pass over the training set bfbest perceptron from
Algorithm 4,

Number of mistakes< <R + D> ,

Y
whereR is a constant such thatn, Vy € #_,,, | AF,,(y)| < R.

The idea of the proof is to transform an inseparable caseaistparable one, then apply
the theorem for a separable case to get the bound, and atdishew that the prediction
with the original parameters is the same as with the transfdrparameters. The proof
is identical as in [17], where the only difference is that vpplg Theorem 2 fork-best
perceptron when we get a separable case. For completergepsatif is given in the
Appendix.

5. Results and discussion

We present experimental results on two sequence labelakg,tahallow parsing [6] on
CONLL-2000 corpudand named entity recognition in Spanish on CONLL-2002 cstpu
[27] and in English on MUC-7 corpt$28]. In further text, we will address algorithms
by their names removing the:*best” prefix, and where needed, specifying the exact
parameter.

2 http://lwww.cnts.ua.ac.be/conll2000/chunking
3 http://www.cnts.ua.ac.be/conll2002/ner
4 https://catalog.ldc.upenn.edu/LDC2001T02
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Algorithm 4: k-best perceptrork-best PA and:-best restricted PA (RPA)

Input : Training data? = ((x", y”))le, paramete’ ¢ R*, k € N
Number of iterationsP
Output: Model parametersw

w <+ 0;
for p « 1to Pdo

foreach (™, y™) in 2 do
S« 2% update« true;
foreachy in S do
w'AF.(y) < L(y",y) (PA,RPA
Err < {WTAFn(y) <0 (Perceptroi
if updatethen
| ¥« argmaxyecow (on) W F(z",y); (RPA)
Err < Err andf(w; (™, y)) > {(w; (2",y)); (RPA)
if Errthen
‘ 5 [ min{t(w; (2", 1))/ |AF.(»)|>,C}  (PA,RPA)
1 (Perceptron)
w + w + 0 AF, (y); update« true;
else
| update« false;

5.1. Problem description and features

Shallow parsingr chunkings a task of identifying non-overlapping text segments Wwhic
correspond to certain syntactic units (chunks), such asia pbrase, verb phrase, preposi-
tional phrase, etc. The CONLL-2000 corpus contains arouebater of a million words
already split for training and testing. Each word has a apoading POS tag and a la-
bel. The labels are presented in BIO representation, whestalds for the beginning
of a chunk, | for the interior, and O means that a word does etiny to any chunk.
For each word we first detect its characteristics which weassa local feature. We ex-
tract standard features like the detection of special ctars, the detection of numbers,
the characteristic suffix of the word, belonging to a chanastic dictionary, whether the
word is capitalized or all caps. All bigrams are construdtec word and its local feature
(including the POS tag) for the current and previous pasjtighile unigrams are con-
structed only for the current position. These bigrams arigrams with the combination
of the current and previous label are used to create a featater at the current position.
The results are presented in terms of F-measure, as a harmean of a precision and
recall computed over tokens belonging to a chunk.

Named entity recognitioNER) is a task of detecting and classifying entities into
specified categories, such as names of persons, organgdtoations, times, dates, etc.
For NER in Spanish, the CoNLL-2002 corpus is divided intottlaéning, test and devel-
opment part containing four types of entities: person, oizgion, location and miscella-
neous, while for NER in English, the corpus has additionaf fentity types: date, time,
money and percent, instead of the miscellaneous type. Etertevectors are created in
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Fig. 2. Training time comparison for differert-best algorithms on shallow parsing. The left panel
shows time through iterations for different values of theapaeterk, where the algorithms are
denoted with colors, whilé is represented with a line stylé: = 1 with dots,k = 5 with a solid
line, andk = 10 with a dashed line. The right panel shows the F-measureghrtime fork = 1
(dashed line) anét = 5 (solid line), where the LaRank trained in one pass uses meanmz = 10.

In the supplementary material, this figure is broken intesaplots for better clarity.

the same way as in the shallow parsing problem. For NER in iSpathe algorithms
are evaluated without any additional external knowledgtheflanguage, while for En-
glish we used the same word characteristics for a local feats in the shallow parsing
problem.

5.2. Time and accuracy comparison

We have implemented all described algorithms in C++. Thedrgents are performed on
a computer with Intel Core 2 Duo CPU 2.33 GHz and 8 GB RAM. WeArsdecoding
with Viterbi scores for the heuristic function to find tkhebest paths [10, 12]. To avoid
oscillations during the learning process, we have appkedpeter averaging as described
in [17]. Such algorithms we will denote using the prefixg Fig. 2 shows the speed
comparison of the considered algorithms. All implementlpbdthms share the same
structures and operators when working with feature and lweigctors, thus the speed
comparison shown in Fig. 2 can be considered reliable. Theep&on as the simplest
method is slightly faster than the PA algorithm but on thétiganel we can see that the
other algorithm which incorporates the cost function pdegi better results. Recall that
the RPA algorithm needs an additional 1-best decoding, aadesult of the necessity for
additional decoding, for each its time deviates from the other algorithms with similar
time consumption, the PA, perceptron and MIRA. The SDM resgisignificantly more
time through iterations due to its continuously increasactive set of constraints. The
heuristics from [13], which control the set growth, can ha&gucing the training time.
Next, we tested the LaRank algorithm trained in one pass.réfidts are presented
in Fig. 3 for different values of parameteksandn . Since the selection of examples
in REPROCESSoperations is subject to random function, we presented thanmalue
of F-measure with the corresponding standard deviatioarder to select regularization
parameteiC for the shallow parsing problem and NER in English, we penf&-fold
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[ k=1 I k=2 [ k=5 [ k=10
T 71|

I

. [

n=1 n=2 n=5 =10 =15 n=20 nrt nr2 nrs nr1o nr1s nr20 1 =2 n=5 =10 =15 =20

Fig. 3. The results fok-best LaRank on shallow parsing (left), NER in Spanish (iefldnd NER
in English (right), for different: specified in legend and for different values of parameterEach
column height represents the mean value of F-measure ovap2ditions and the corresponding
error bar represents the standard deviation.

cross-validation. We select the highest mean value of Fsaoresover 20 repetitions, and
then we use this optimal parameter in a test scenario. For MEFpanish, we use the
development set to select the optimal parameter with the sagnario. The results on all
corpora suggest the advantagetebest versions over the single best version, especially
with the lower values of parameter;. Also, we can see that a higher numberngf has

a positive influence to the F-measure.

Further, for different values of parametewe present a single number for each algo-
rithm where the other parameters (regularization paranmaienber of training iterations)
are 5-fold cross-validated on the shallow parsing problachER in English, and esti-
mated on the development set for NER in Spanish. For shalémgiqg we select the best
combination of the regularization parametec {10-2,1071, 1,10} and the number of
training iterations from sef5, 10, 15, 20}. For that problem, algorithms require less iter-
ations to converge, while 30 iterations are also added tpté@ous set for NER, as the
results were still improving after 20 iterations. Results presented in Table 1. MIRA
was optimized with the SMO with the practical check of KKT ditions (17)-(18) by
setting tolerance = 1070 for all valuesk and thus fork = 1 its results do not match
the PA algorithm. Fok = 10 there is usually a degradation of results, possibly because
the inclusion of a lot of features into a training procedueeh+best sequences can raise
the problem of overfitting. Another problem with the higletan rise in algorithms such
as the PA, RPA and perceptron algorithm which are defined oanéine manner inside an
example, as opposite to MIRA and SDM which perform full optiation inside an ex-
ample. However, we can see that/albest versions of algorithms make an improvement
over the single best case and the best results are usualgvadhwith smaller values
k = 2 andk = 5. We tested the statistical significance of these improvesneihthe
results by running McNemar’s test [30] on all datasets. Withconfidence level 0.05 the
improvements of thé&-best version over the single best one are significant foP#re
ceptron, (R)PA algorithm and MIRA, while for the SDM they aret significant (more
details about this test in the supplementary file).
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Shallow parsing

k=1 k=2 k=5 k=10
Method| C # F-measureC # F-measureC # F-measureC # F-measure
Perc. |- 5 95.821 |- 5 95.802 |- 5 95924 |- 5  95.875
PA 1 10 96.093 (107215 96.097 107215 96.069 |1072 15 96.056
RPA |1 10 96.093 [1072 20 96.099 (107220 96.079 |1072 15 96.057
MIRA |1 10 96.066 |107' 10 96.053 |107! 5  96.071 [107220 96.061
SDM (107120 96.057 [107' 20 96.080 |10~! 20 96.075 [10~! 20 96.081

Named entity recognition (Spanish)

k=1 k=2 k=5 k=10
Method| C # F-measureC # F-measureC # F-measureC # F-measure
Perc. - 30 75.886 |- 30 76.019 |- 30 76.204 |- 30 76.122

PA 1071 30 76.349 [107! 30 76.436 |1 30 76.640 |10~ 30 76.549
RPA |107' 30 76.349 |1 30 76.636 |107' 30 76.741 |10~' 30  76.608
MIRA |1 30 76.262 [1 30 76.33¢ |1 30 76.312 |107' 30 76.328
SDM |1 30 75840 |1 30 76.028 |1 30 76.194 (1 30 76.145

Named entity recognition (English)

k=1 = =5 k=10
Method C # F-measureC # F-measureC # F-measureC # F-measure
Perc. 20  90.918 |- 15 90.966 |— 10 91.136 |- 20 91.122

PA 1 30 91307 |1 10 91.350 [10~' 10 91.247 |10~' 10 91.293
RPA |1 30 91.307 |1 10 91.343 |1 10 91.357 [107! 10 91.244
MIRA |1 10 91.324 {10230 91.393 [10°' 5 91.447 [1072 30 91.399
SDM |107!'30 91.377 |10 15 91.487 |10 10 91.415 [10 10 91.435
Table 1. Results for different algorithms and their correspondiagameters (regularization pa-
rameters, parametés, and the number of training epochs) obtained from 5-foldssrealidation
(shallow parsing and NER in English) and from the developnseh (NER in Spanish). For all
algorithms, the results are presented with averaged paessnso theavg prefix is omitted in the
algorithm name. The number of training iterations is dediatdéth # and the tolerance for KKT
conditionsr is set to10~1°.

6. Conclusion

In this paper, we have presented four newest extensions of structural max-margin
classifiers. Unlike the existing-best extension of MIRA, the proposéedbest passive-
aggressive (PA)k-best restricted passive aggressive (RPA) ksxkst perceptron algo-
rithm are completely defined in an online manner, throughrgtas and inside each ex-
ample as well. These algorithms perform well with small eslwf% on the presented
problems. They are easy to implement and, except for the Rgkitom, very fast and
suitable for large scale problems. Thdest RPA is presented in order to satisfy a cumu-
lative loss bound similar to the one in the single best PA rligm. On the other hand,
the k-best SDM performs full optimization inside each examplevehit collects support
vectors though iterations, making the algorithm highly porationally consuming. Even
though it remembers support vectors from previous epothigds not always achieve
better results than an online algorithm like MIRA. Finatlye extension of LaRank to the
k-best case provides notable improvements in comparisdretsihgle best case and the
algorithm is suitable for training in one pass through thada
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Appendix

(Proof of Theorem 2)}-or a sequencg € #_,, a mistake is made with parametevsf
wTAF, (y) < 0. Letw") be a vector before thieth mistake. Suppose that the mistake
is made on the-th example, on thg-th sequence taken frokbest sequences generated
from parametersv,,, i.e. on the sequengg™?) € % wherew” = wi. According to
the algorithm, it follows thaw!*!) = w()) + AF,, (y(™7)) and taking the inner product
of both sides with parametetsgives

u'w ) = uTw® + uTAF, (y™)) > uTw® + 4.

Sincew® = 0 andu™w?) = 0, it follows by induction thau:"w(*1) > [+, and using
u"w D < |ju| WD gives us|w D) || > 1. Further

W = WO + 2% TAR, (y ") + | AR, (y)|1* < [w0* + R

because parametéxs!) make a mistake og™7), i.e. w()TAF,, (y(™7)) < 0. By induc-
tion, we get|w(*+Y||> < IR%. Combining the bound$w(+1)|| > Iy and||w! V|2 <
IR? we get the upper bound for the number of mistakes

2
12,‘/2 < ||W(l+1)H2 < ZRQ S l§ R_2
Y

(Proof of Theorem 3)First, we extend the feature vecB(xz,y) € R? to F(x,y) €
RN such thatF;(z,y) = Fi(x,y),i = 1,...,d, andFq,(z,y) is equal toZ if

(z,y) = («™,y™) and equal to zero otherwise, far= 1,..., N. The vectoru is ex-
tended tou € RV in a similar way:w; = w;, i = 1,...,d andugy, = en/Z,
n=1,..., N. Transformed vectors hold following properties

=2 = Jlulf? + 2,0, €2/22 = 1+ D?/ 2
Vn,Vy € g—’n)ﬁT F(J}n, y'n) - ﬁT F(:I}n, y) Z v
Vn,Vy € Z_,, ||F(z",y") — F(z",y)| < R? + Z?

From the first two properties, it follows that parametey4u|| separate dat& with the
marginy/+/1 + D?/Z2. Now, we can apply Theorem 2 and get that the number of mis-
takes ofk-best perceptron running on extended space is at ﬁ(d%%JrZQ)(l + ?—2). The
valueZ = +/RD minimizes the bound, giving us the statement of the theoEsttended
parameters generated from the first pass of the algorithne theksame prediction as the
original parameters on test examples since the additicma@npeters affect only single
training data.
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