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Abstract. In our paper we compare two centrality measures of netwbisyeen-
ness and Linerank. Betweenness is widely used, howevenritputation is expen-
sive for large networks. Calculating Linerank remains nggaédole even for graphs
of billion nodes, it was offered as a substitute of betwesarie [12]. To the best
of our knowledge the relationship between these measusasdvar been seriously
examined. We calculate the Pearson’s and Spearman’s atiwretoefficients for
both node and edge variants of these measures. For edgesrtlation tends to
be rather low. Our tests with the Girvan-Newman algorithg] @lso underline that
edge betweenness cannot be substituted with edge Lindraekesults for the node
variants are more promising. The correlation coefficienéscdose tol. Notwith-
standing, the practical application in which the robustrefsocial and web graphs
is examined node betweenness still outperforms node Like¥de also clarify how
Linerank should be computed on undirected graphs.

Keywords: big data, networks, centrality measures, betweennessrarik.

1. Introduction

As part of the ever more important big data analysis [19] stiuely of network centrality
measures offers unique challenges [10, 18]. In a networka&éy measures indicate the
importance, interestingness of the nodes and the edgeshapdglay a crucial role in
many solutions to practical problems e.g. who are the mdkteintial opinion-shapers
in a community, which web pages contain the most relevantinétion about a certain
topic [17] or which nodes should be deleted from a networkrdeoto make the system
to fall to pieces [3].

In our paper we compare different centrality measures, hanmde and edge be-
tweenness with node and edge Linerank respectively froferdifit aspects. First, the
Pearson’s and Spearman'’s correlation coefficients arelleééd both on real world and
generated graphs. It turns out that the correlation betweda Linerank and betweenness
is higher thar0.9 almost in all cases, whereas for the edge versions it ramgeg)t2 to
0.7. These results suggest that node Linerank is a very prognésindidate for substitut-
ing node betweenness, while this interchangeability isrfare questionable for the edge
variants. To further assess the applicability of Linerargkpvesent the same correlation
measures for approximates of betweenness, where instehd Gf nm) runtime of we
perform a sampling i©®(,/nm) or as low as?(log(n)m) runtime.

After these initial results we study two practical applioas of the betweenness mea-
sure and examine whether it can be substituted with Linendtilout significantly wors-
ening the performance of these methods. Firstly, we consim@munity detection using
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the Girvan-Newman algorithm. In our experiment insteadatfleenness we calculated
the Linerank value of the edges. In the comparison we useshtine random benchmark
graphs as in the calculation of the correlation coefficiefite results clearly show that
the betweenness version significantly outperforms theraimeversion. On the one hand,
this is not surprising since we have already observed tlatdhrelation between these
two measures is varying and it is never too strong. On therdtard, in their original
paper Girvan and Newman tried three different variants efttbtweenness measure and
they found that the quality of the clusterings was not affdatoticeably by the choice of
the centrality measure. Our analysis reveals that this iemger the case in the case of
Linerank.

Secondly, we repeated the experiments of Boldi et al. in vtiiey examined which
nodes have the strongest impact in determining the steicfia network [3]. Or, in
other words, which node-removal order influences this treche most. They consid-
ered several centrality measures including Pagerank, drdcntentrality and between-
ness. They removed the nodes in decreasing order accoadihgde measures. Contrast
to the Girvan-Newman algorithm however, in this case theoofthe removal was fixed
in the first step, which means that the aforementioned val@ee not recalculated after
each deletion. The authors reported that in several case®dmeness outperformed the
rest of the candidates. In our research instead of takirantount several centrality
measures we focused solely on node betweenness and Linghalike in the previous
case the difference between the performance of these twsuresawas unnoticeable for
the generated benchmark graphs. However, in the case ofoelal graph networks be-
tweenness outperformed Linerank again. This indicatesrtmaactice one should still be
careful when node betweenness is to be substituted with lnodeank.

The paper is organized as follows. In Section 2 the relatedt vegresented. In Sec-
tion 3 the algorithm used for approximating betweennessianekpected behaviour is
described. In Section 4 the computation of Linerank is eérpldiin more detail. Next, in
Section 5 the results of our experiments are delineatedettich 5.1 the Pearson’s and
Spearman’s correlation coefficients are calculated. TheSgection 5.3 edge between-
ness is compared to edge Linerank by using the Girvan-Nevaigamithm. Afterwards,
in Section 5.4 the node variants are considered in ordertermée the node removal
order in networks and then to assess the influence of thesavatmrders. Finally, in
Section 6 we conclude by summarizing our work. This papenisxended version of
the paper of the same name published at ICCCI 2014 [1].

2. Related Work

In [12] centrality measures are divided into three familigse first group is constituted by
thedegree related measurghe second group consists of tiameter related measures
while the third group contains tHfeow based measureg/e focus on the last group in our
paper. Here, flow refers to the amount of information that pess through a node or an
edge. The most important member of this group, betweenreegsatity, was proposed

! This work was partially supported by the European Union &edGuropean Social Fund through
project FuturlCT.hu (grant no.: TAMOP-4.2.2.C-11/1/KOXJ12-0013
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by Freemaf For a given node, it measures the ratio of those shortest paths that go
throughv. Formally,v®¢* = Zu,w b;;;”;“ , whereb,, ,, andb,, ,, ,, respectively denote the
number of the shortest paths between nadas and the number of those shortest paths
from the previous ones that pass througiThe definition of this measure on edges can

be formulated in a similar way.

Unfortunately, the computation of the exact values of betwess is prohibitively
expensive for large networks. For the 'node-variant’ thettk@own algorithms work in
time O(nm), wheren denotes the number of nodes, whilethe number of edges in
a graph [12]. For this reason several attempts have been toatimate the value of
betweenness by using a carefully selected sample. As angantial direction in [12] a
new flow based centrality measure, Linerank, was introdutegse computation remains
practically manageable even for graphs of billion nodesit&\mame suggests the defi-
nition of Linerank was greatly inspired by Pagerank [17]uBbly speaking, in the first
step the original graph is transformed into the correspumiiine graphon which the
Pagerank values of the nodes are calculated. Since in afdaghdhe nodes represent
the edges of the original graph by accomplishing the pres/gtep one gains values mea-
suring the importance of edges in a similar way as Pageramisunes the importance of
nodes. However, we want to emphasize that in [12] this measnredges has not been
introduced, Linerank has been only defined on nodes. Oultsdslow confirm that this
was a wise decision indeed in the sense of the use case oitstihgthetweenness with
Linerank. Nevertheless, in what follows we will refer toghmeasure asdge Linerank
In order to obtain a measure on nodes the previous scores ofdiient edges of a node
should be aggregated. The details will be given in Section 4.

Of the many approaches that exist for community detectiooh sas leader-driven
community detection [20, 11] or mixed graph models [13], @irzan-Newman commu-
nity detection algorithm [16] is one of the most well-knowihere, edges are removed
from the graph according to the decreasing order of theiwdetness values. However,
after the removal of the edge with the highest betweennesg she betweenness val-
ues of the remaining edges should be recalculated in egghStener or later the graph
falls to pieces and the resulting components are to be ceregidas communities. Of
course, later these clusters may also be broken into to gi@te hierarchy of commu-
nities is depicted by means of a dendrogram. Each level stteé represents a possible
clustering. In the last step the one with the highest modyla chosen to be the final
solution. In order to evaluate the performances of the betmess and Linerank versions
of the Girvan-Newman algorithm we appliedrmalized mutual informatigrsince it is a
widely used measure for testing the effectiveness of ndteloistering algorithms [8].

To generate random graphs, the model in [14] was used. Thiehgenerates graphs
with communities, whose sizes vary according to a power lstvidution with exponent
3. The degree distribution is also assumed to be power lawexiponenty. Beside these
parameters one can specify a mixing parametet. each node shares a fraction 1, of
its edges with the nodes of its cluster and a fracjiomith the other nodes of the graph.
The number of nodes is also given as a parameter.

2 Strictly speaking, Anthonisse introduced this measurkegahan Freeman in a technical report,
however, this work has never been published [16].
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3. The Algorithm of Estimating Betweenness

The algorithm, which we have used in our comparisons [5]r@xdmate the exact be-
tweenness values by using a sample of sizeor as low adog(n), wheren denotes the
number of nodes in the graph. In the paper, where the state afrt method of computing
the betweenness values is presented [4], the formula ofdatvedlenness value of node

is rewritten in the following way:

pbet — buvw = Zd(u,w,v) = Zd(u,v), Wherez d(u,w,v) = 6(u,v).

ww bu,w

Here,d(u, v) is called theone-sided dependency ofon v. Basically, in [4] these one-
sided dependencies are calculated for each mdaleusing a breadth-first search to find
the shortest paths fromand then applying a cunning bottom-up labelling stratedyctv
results the desired betweenness values. In the estimdtjbhanly a subset of the nodes
are selected to calculate the one-sided dependenciesh&beetical justification of the
method is provided by a result of Hoeffding [9], who has proteat for independent,
identically distributed random variablés,, ..., X, with0 < X; < M (0 <¢ < k) and
an arbitrary¢ > 0:

p (’Xl +k + X B (Xl +k +Xk)’ > 5) < e 2k,

In our case, for a randomly selected ngde

Xi(v) = §(pi,v)

n—1

is used as a single estimate. Setting

M:n’il(n_z),g:a(n_z)

Hoeffding’s bound can be applied. Namely, since the expiectaf estimatet (X1 (v) +

...+ X (v)) is equal to the betweenness valuevdfioeffding’s bound guarantees that

the error of the approximation is bounded from above (ay— 2) with probability at least
e(n—2)

e*2k< n’iﬂ"”)) , which ise=2k(=57)% [5].

In [5] several strategies for random selection had been epedpand it turned out that
in overall the method of selecting the nodes based on thewmiistribution outperforms
the rest of the strategies. Thus, in our paper we also impiedehis version. In [7] it is
stated that € O(log(n)) samples are sufficient for approximating closeness céytral
To benchmark our results with Linerank we measured the pegoce of betweenness
and edge betweenness with bdiog(n)) andO(y/n) samples.

4. The Computation of Linerank

As it has already been outlined in the introduction for a gr@d_inerank is calculated by
first constructing the line graph &f denoted by (G). In a line graph each edge of the
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Fig. 1. (a) A graphG with weights. (b)L(G). (c) An undirected grapfi. (d) H. (e)
L(H). (f) The result of substituting the undirected edgeglofvith bidirected edges. (g)
The line graph of the graph on (f). (h) The matrix used in thepotation of Pagerank
values (proof of Corollary 1).
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original graph is represented by a node. Gebe a directed graph and let = (uq,v1),
es = (ug,v2) be edges o6 In L(G) there is an edge from the node representintp
the node representing, if and only if v; coincides withus, i.e., the target node af; is
the same as the source nodegfAn example can be seen in Fig. 1. (a) and (b).

On the line graph a random walker at the current step eitheemtw a neighbouring
node with probability3, or jumps to a random node with probability- 3. If the walker
moves to a neighbouring node, then she decides among th&ateslaccording to the
weights of the joining edges. We seek the stationary prditiabiof this random walk.
Or, to put in other words Pagerank is to be computed on theliaph. However, the size
of the line graph can be much larger than that of the originably which may render the
explicit construction of the adjacency matrix unfeasibleerefore, in [12] this adjacency
matrix is decomposed into two sparse matrices by means afhwhe stationary proba-
bilities can be computed efficiently. In the last step forteaade of the original graph the
scores of its incident edges are aggregated.

The original paper does not detail how Linerank should beutated over undirected
graphs. It is tempting to substitute each undirected eddle tmwio oppositely directed
edges. However, this approach would result in completedyass Linerank values. To be
specific for graphG denoteG the result of the previous construction. Then the following
statement can be proven.

Proposition 1 Let G be an undirected graph. For each nodeof L(G) the outdegree
of each of the in-neighbours afis the same as the indegreewf(An in-neighbour is
defined to be the source node of an ingoing edge )of

Proof. First, note that if the indegree of a nodén G is k, then the outdegree ofis also

k, which is a straightforward consequence of the definitiof o he statement obviously
follows from this observation, since in this case the inéegf the representative of an
outgoing edge — denoteiit— of v in L(G) is alsok. What is more, the outdegree of each
of the in-neighbours of, is alsok as they correspond to the ingoing edges.afonsider

an example in Fig. 1. (c)-(e).

Corollary 1 For an arbitrary undirected, uniformly weighted gragh the stationary
probabilities — Pagerank values — are the same for each n6d€@).

Proof. (Sketch.Lonsider the matrix used in the computation of the Pagerahles of

the nodes of.(G). From Proposition 1 it follows that the values of a tuple a$ tmatrix

are eithe0’s or 1.’s, wherek is the indegree of the represented node by this tuple. What is
more the sum of thesg values is equal ta. Hence, when the product of this matrix and
vector(% - %) is calculated at the first step of the computation, then thelrés equal

to the same{% . %) vector (Fig. 1. (h)), thus the computation terminates tesylthe
same Pagerank values (stationary probabilites) for aleaod

Thus, instead of adding extra edges the line graph shouldbbstreicted as if the
original undirected edges were bidirected. An example egfiobnd in Fig. 1. (c), (f)-(9).
Our experiments have shown that this construction avoidpthceding anomaly. What
is more, it also saves a considerable amount of memory space.
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5. Experiments

5.1. The Correlation between Linerank and Betweenness

As a first step in our investigation we calculated the betwees and Linerank values of
the nodes and the edges of real world graphs. In all cases#tieisplots suggested a
strong correlation between the node Linerank and betwessnvedues, whereas for the
edge variants the relationship remained somewhat blufea typical example in Fig-
ure 2 (a) and (b) we have included the plots belonging to tHblggs dataset [2], a
directed network of hyperlinks between weblogs on US prlitecorded in 2005 with
1490 nodes and 9090 edges. Beside the aforementioned real world graphs we aiso ¢
ducted the same experiment on random graphs described inttbduction. Owing to
the costly computation of the exact betweenness values aggraphs of rather smaller
sizes, namely wit 000 and5000 nodes. They exponent of the power law distribution
of the degrees was set &y while the 5 exponent of the power law distribution of the
sizes of the clusters was chosen tolb&Ve further distinguished two cases. In the first
case we worked with rather large clusters whose size ranggeeler20 and100 nodes,
while in the second case this size ranged betwi®and50. The mixing parameter varied
betweernD.1 and0.6 with steps of0.1. The plots revealed the same connection between
the Linerank and betweenness values as in the case of theoddlgraphs.

Next, to quantify this relationship we calculated the Pealsand Spearman’s corre-
lation coefficients of the two measures. For the polblogaskitthese values were high
for the node variants of the centrality measures: Pears®®® Spearman’s).89; while
for the edge variants the correlation turned out to be muakee Pearson’s).15 Spear-
man’s:0.26. In the case of the random benchmark graphs we genetatgdaphs for
every parameter settings and took the average of the rebulsgure 2 (c) and (d) the
relevant diagrams can be found for graphs w0 nodes. The curves for the graphs
with 1000 nodes look like almost exactly the same.

Interestingly, both for the node and edge variants the tadios between the centrality
measures increases as the boundaries among the clustensdseiolurred. However, for
the node versionsiitis very highin all cases and as the vdlihe onixing parameter grows
the correlation approaches t¢ whereas for the edge variants the correlation becomes
higher only when the clusters literally disappear from trepd.

5.2. Correlation between Betweenness and its approximats

Another possible route for providing feasible approxiroas of the algorithms described
in Subsection 5.3 and 5.4 would be to approximate the meaduretweenness itself

instead of substituting it as suggested in [5]. Compare8j}tavg use different indicators

to assess the results, a namely Spearman’s and Pearsoglatornr coefficients as in

Section 5.1.

To demonstrate the efficiency of the approximation we hawtqd the results for the
polblogs dataset [2], that has also been used for the expetinin Subsection 5.1. The
correlation coefficents were measured as presented in Table

The node betweenness approximating algorithms perforxespéionally well from
v/n samples and decently frotng(n) samples. The performance of Linerank shown in
Subsection 5.1 is between these solution, however for lgrgphs Linerank has even
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Fig. 2. (a) Node betweenness and Linerank values for the polblagseta (b) Edge
betweenness and Linerank for the same dataset. (c) Peacsorelation coefficients for
the benchmark graphs with 5000 nodes. (d) Spearman’s abarekoefficients for the

same set of benchmark graphs.

Table 1. Correlation for approximating betweenness values on titdquys dataset

Coeff. Node appr.,/n  Node appr.jog(n)

Edge appr.,/n  Edge appr.log(n)

Pearson 0.87
Spearman 0.97

0.75
0.71

0.34 0.16
0.81 0.66
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lower runtime than the one usirigg(n) sample vertices. The edge variant of the mea-
sure is significantly less promising. The approximatioalfté&s not on par with its node
counterpart, but still outperforms edge Linerank in botbesa

We have also conducted experiments on the benchmark grapbsetlaescribed in
Subsection 5.1. The baseline for the result were the regiviés by the exact between-
ness computation, the results for the graphs &0 nodes summarized in Figure 5 also
suggest that node Linerank can be a strong candidate in csopavith the approximate
versions of node betweenness. Interestingly enough iaioetases edge Linerank out-
performed the appoximations of edge betweenness, but thelation tended to be rather
low in almost all cases for the edges.
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5.3. Edge Betweenness versus Edge Linerank, the Girvan-Nevan Algorithm

In order to assess the applicability of the edge Linerankatfice we implemented two
versions of the well-known Girvan-Newman algorithm [16] fiztecting communities in
a network. The first version uses edge betweenness for fitdingext edge to remove
from the graph as in the original paper, whereas the secaulkagdge Linerank for this
purpose. To compare the performance of the two variants waogiednormalized mu-
tual information[6], which is a frequently used measure for testing comnyohétection
algorithms.
For two partitionsY’, ) define two random variable¥ andY s.t.

\ i N
P(X =i)=—+andP(Y =j) = -,
n n

whereP(X = i), P(Y = j) denote the probability that a node belongs toitfieandj*"
cluster in partitionst and)’ respectively, whilen:*, ng’ denote the number of nodes in
thesei* and;*" clusters, finally» is the overall number of nodes. Accordingly, the joint
distribution of these variables is defined as

T4

PX =4Y =j)=—,
n

wheren,;; denotes the number of nodes in the intersection of the afeméonedi’” and
4" clusters. Thenutual informatiorof two random variables is defined as

I(X,Y) = H(X) - H(X]Y),

whereH (Z) denotes the Shannon entropy of random variabl&hus, this measure tells
how much the knowledge &f reduces the uncertainty of. As it is noted in [8] mutual
information is not an ideal similarity measure, since fésabpartitionsz’ of partition Z
the mutual information of the derived random varialifeand Z’ will be always the same,
even though these subpartitions may substantially diffenfeach other. Therefore, in [6]
normalized mutual informatiois introduced

2I(X,Y)

Inorm(Xa Y) = Wa

which equald, if the two partitions are the same, while for independemdicam variables
its expected value i&[8]. This observation at least partially explains the paypity of this
measure for comparing community detection algorithms.

In our experiments we used the same set of random benchnegkgas in the pre-
vious case. Again, we generatéd graphs with every parameter setting and we took
the average of the normalized mutual information valueg Bé&haviour on graphs with
1000 and 5000 nodes was indistinguishable, therefore we only includeddiagrams
related to the graphs with000 nodes. As the plots in Fig. 6. (a) and (b) clearly show
the betweenness version of the Girvan-Newman algorithmifgigntly outperforms the
Linerank version. Indeed, the scores of the latter are ewhe low, which indicates the
unusability of this method in practice. Of course, one majcgate this result from the
observations of the previous subsection, however, thedoerperiments only revealed
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Fig. 6. (a) Effectiveness of GN algorithm versions on the benchrgeabhs with larger
clusters. (b) The same information for the benchmark graptissmaller clusters.

that the correlation between the edge Linerank and betvessrvalues was rather low
especially when the graphs contained quite definite clsiskert they did not foretell the
superiority of betweenness. What is more, although thesdtsesuggest the inapplica-
bility of edge Linerank for detecting clusters, since theretation in the case of more
scattered graphs was higher, the measure may still provetigdful in certain scenarios,
where the presence of clusters is not so remarkable.

5.4. Node Betweenness versus Node Linerank, the RobustnesdNetworks to
Node Removal

After testing the applicability of edge Linerank we triedfiod out to what degree node
betweenness can be substituted with node Linerank in aigaheipplication. For this
purpose using node Linerank and betweenness we conduetedpleriment of Boldi et
al. again in which they tested to what extent the node rensmaat disrupt the structure
of the web and social networks [3]. More precisely, in thersewf node removatm
edges are deleted, where denotes the number of edges ahdl ¢ < 1. In the first
step one defines an order among the nodes by using a measuteearabnsidering the
nodes in decreasing order starts to remove their incideggedAs soon as the number
of the deleted edges becomes greater than or equahtdhe process stops. The authors
were interested in how the node removal orders based ornratiffeneasures influence
the fraction of reachable pairs @sncreases. They also wanted to assess the divergence
between the distance distributions of the old and new graftey tried several different
approaches to measure these changes and they have fourtlethelaitive harmonic-
diameter changeeflects the differences the best.

Relative harmonic-diametés defined as
n(n—1)
1
D utv Ty

)

whereu, v are nodesd(u, v) denotes their distance, i.e., the length of the shorteét pat
between them, and again denotes the number of nodes in the graph. Unreachaibde p
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Fig. 7. (a) The relative harmonic-diameter change for the benchgraphs with
increasing ratio of the deleted edges (the mixing paranefeted). (b) The same data
with varying mixing parameters (the ratio of the deletedestig fixed). (c) The relative
harmonic-diameter change for the CA-AstroPh network. (g $catter plot of the node
betweenness and Linerank values for the CA-AstroPh network
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contribute0 to the sum, hence this measure represents both discormectibdistance
distribution [3]. For graplt: denoteR(G) its relative harmonic-diameter, then the change
in this measure is calculated as

R(Q)

R(P)

whereP andQ respectively denotes the original graph and the graph aftée removal.

In our own experiments again we used both generated and ogldlgraphs. However,
in this case we increased the number of nodes of the randgrhgtal 0000 and50000.
Accordingly, the sizes of the clusters also were also sdtdrig-or the larger clusters
these values ranged betwefhand200, whereas for the smaller clusters betweémand
100. The rest of the parameters remained the same. As the diagnaRig. 7. (a) and
(b) show the results are indistinguishable for node Linkramd betweenness. We only
plotted the data belonging to the benchmarks graphsioiiho nodes and larger clusters,
however, the rest of the diagrams look exactly the samehBieihe changes of the mixing
parameter nor the increase in the ratio of deleted edge®irdes this behaviour.

Nonetheless, in the case of real world graphs the scenasmniewhat less straight-
forward. As one can see in Fig. 7. (c) for the CA-AstroPh deitfk5], which is the col-
laboration network from the e-print ArXiv in the Astro Phgsicategory (nodegl772,
edges:198110), the difference between the relative harmonic-diamdtange is more
significant. On the other hand, as the scatter plot in Figd)/siiggests the correlation be-
tween node Linerank and betweenness is still high. We expeeid the same phenomenon
for several real world graphs, which indicates that althotie correspondence between
the two measures seems to be strong, in practice one shdultbstareful, when node
betweenness is to be substituted with node Linerank.

6. Conclusions

In our paper we compared two flow based centrality measurtegebaness and Liner-
ank. We have found that in the case of edges the correlatibmebe these measures
varies but tends to be rather low. Our experiments with theadi-Newman algorithm
also underlined that edge betweenness cannot be sulastititteedge Linerank in prac-
tice. The results for the node variants are more promisimgur tests both Pearson’s and
Spearman’s correlation coefficients were closé io most of the cases. For the gener-
ated benchmark graphs this strong correspondence pdrisiskes practical application in
which we examined the robustness of social and web graphsde removal. However,
for real world graphs, although the correlation seemingipained high, node between-
ness outperformed node Linerank. This which shows that ieviais case the substitution
of the former with the latter remains problematic. Besidesthinvestigations we have also
clarified how Linerank should be computed on undirectedtgsap

References

1. Kobsa, B., Balassi, M., Englert, P., Kiss, A.: Betweermnersus Linerank. Computational Col-
lective Intelligence. Technologies and Applications. fuee Notes in Computer Science Vol-
ume 8733, pp. 424-433 (2014)



Betweenness versus Linerank 47

2. Adamic, L.A., Glance, N.: The political blogosphere ah@& 2004 u.s. election: Divided
they blog. In: Proceedings of the 3rd International Worksba Link Discovery. pp. 36—43.
LinkKDD '05, ACM (2005)

3. Boldi, P.,, Rosa, M., Vigna, S.: Robustness of social andd graphs to node removal. Social
Netw. Analys. Mining 3(4), 829-842 (2013)

4. Brandes, U.: A faster algorithm for betweenness cetyrdlburnal of Mathematical Sociology
25, 163-177 (2001)

5. Brandes, U., Pich, C.: Centrality estimation in largenweks. International Journal of Bifur-
cation and Chaos 17(07), 2303—-2318 (2007)

6. Danon, L., Duch, J., Arenas, A., D?-guilera, A.: Compgdommunity structure identification.
Journal of Statistical Mechanics: Theory and Experimei®89@9008 (2005)

7. Eppstein, D., Wang, J.: Fast approximation of centrallpurnal of Graph Algorithms and
Applications 8, 39—-45 (2004)

8. Fortunato, S., Lancichinetti, A.: Community detectidgogithms: A comparative analysis: In-
vited presentation, extended abstract. In: ProceedinglseoFourth International ICST Con-
ference on Performance Evaluation Methodologies and Tppls27:1-27:2. VALUETOOLS
‘09, ICST (Institute for Computer Sciences, Social-Infatios and Telecommunications En-
gineering) (2009)

9. Hoeffding, W.: Probability inequalities for sums of balen random variables. Journal of the
American Statistical Association 58(301), 13-30 (1963)

10. Jung, J.J.: Evolutionary Approach for Semantic-basedr®Sampling in Large-scale Infor-
mation Sources. Information Sciences. 182(1), 30—39 (2012

11. Jung, J.J.: Measuring Trustworthiness of Informati@fuBion by Risk Discovery Process in
Social Networking Services. Quality & Quantity. 48(3), 532336 (2014)

12. Kang, U., Papadimitriou, S., Sun, J., Tong, H.: Certealiin large networks: Algorithms and
observations. In: SDM. pp. 119-130. SIAM / Omnipress (2011)

13. Keszler, A., Sziranyi, T.: A mixed graph model for conmity detection. Int. J. Intell. Inf.
Database Syst. 6(5), 479—-494 (Sep 2012)

14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benelkngraphs for testing community detec-
tion algorithms. Phys. Rev. E 78(4) (2008)

15. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph ¢epiuDensification and shrinking diam-
eters. ACM Trans. Knowl. Discov. Data 1(1) (2007)

16. Newman, M.E.J., Girvan, M.: Finding and evaluating camity structure in networks. Phys.
Rev. E 69(2) (2004)

17. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagé&reitation ranking: Bringing order
to the web. In: Proceedings of the 7th International Worldi&#\Veb Conference. pp. 161-172
(1998)

18. Pham, X.H., Jung, J.J.: Recommendation System Basedutiilidgual Entity Matching on
Linked Open Data. Journal of Intelligent & Fuzzy Systems22,7%89-599 (2014)

19. Vossen, G.: Big data as the new enabler in business aadiotklligence. Vietham Journal of
Computer Science 1(1), 3—14 (2014)

20. Yakoubi, Z., Kanawati, R.: Licod: A leader-driven alglom for community detection in com-
plex networks. Vietnam Journal of Computer Science 1(4);-256 (2014)

Balazs Kosawas born in 1978. In 2002 he graduated (MSc) as applied maitigian

at Eotvos Lorand University, in Budapest. He defendediPiD in the field of semi-
structured and XML databases in 2013; his thesis title wasgtral Recursions on Edge-
labelled Graphs. He has been working at the InformationeBystDepartment of E6tvos
Lorand University since 2005. His scientific research ufing on database theory and



48 Balazs Kobsa et al.

practice, tree and graph transformers, semantic web, ltég datwork analysis and data
mining.

Marton Balassiwas born in 1990. In 2014 he graduated (MSc) with distincfimm
the Department of Information Systems of the Faculty of infatics at E6tvos Lorand
University. Currently he is pursuing a PhD at a group focusedata intensive and dis-
tributed algorithms at the Informatics Laboratory of thengarian Academy of Sciences,
Institue for Computer Science and Control. In addition hansactive committer and
project management committee member of Apache Flink, an-sparce framework for
efficient distributed data processing.

Péter Englert was born in 1990. Currently he is a Master’s student at theaBament of
Information Systems of the Faculty of Informatics at K\ orand University. He has
been involved in research from a wide range of areas, inotudcological simulations,
mathematical modeling and chemoinformatics. His curremtkwiocuses on distributed
algorithms and graph databases.

Attila Kiss was born in 1960. In 1985 he graduated (MSc) as mathematti&itvos
Lorand University, in Budapest. He defended his PhD in tak fof database theory in
1991, his thesis title was Dependencies of Relational estad Since 2010 he is working
as the head of Information Systems Department at EdtvoaricbUniversity. His scien-
tific research is focusing on database theory and practceastic web, big data, graph
databases, data mining. In addition, he also investigatestipns related with social net-
work analysis.

Received: November 1, 2014; Accepted: December 24, 2014.



