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Abstract. In our paper we compare two centrality measures of networks,between-
ness and Linerank. Betweenness is widely used, however, itscomputation is expen-
sive for large networks. Calculating Linerank remains manageable even for graphs
of billion nodes, it was offered as a substitute of betweenness in [12]. To the best
of our knowledge the relationship between these measures has never been seriously
examined. We calculate the Pearson’s and Spearman’s correlation coefficients for
both node and edge variants of these measures. For edges the correlation tends to
be rather low. Our tests with the Girvan-Newman algorithm [16] also underline that
edge betweenness cannot be substituted with edge Linerank.The results for the node
variants are more promising. The correlation coefficients are close to1. Notwith-
standing, the practical application in which the robustness of social and web graphs
is examined node betweenness still outperforms node Linerank. We also clarify how
Linerank should be computed on undirected graphs.

Keywords: big data, networks, centrality measures, betweenness, Linerank.

1. Introduction

As part of the ever more important big data analysis [19], thestudy of network centrality
measures offers unique challenges [10, 18]. In a network centrality measures indicate the
importance, interestingness of the nodes and the edges and they play a crucial role in
many solutions to practical problems e.g. who are the most influential opinion-shapers
in a community, which web pages contain the most relevant information about a certain
topic [17] or which nodes should be deleted from a network in order to make the system
to fall to pieces [3].

In our paper we compare different centrality measures, namely node and edge be-
tweenness with node and edge Linerank respectively from different aspects. First, the
Pearson’s and Spearman’s correlation coefficients are calculated both on real world and
generated graphs. It turns out that the correlation betweennode Linerank and betweenness
is higher than0.9 almost in all cases, whereas for the edge versions it ranges from0.2 to
0.7. These results suggest that node Linerank is a very promising candidate for substitut-
ing node betweenness, while this interchangeability is farmore questionable for the edge
variants. To further assess the applicability of Linerank we present the same correlation
measures for approximates of betweenness, where instead oftheO(nm) runtime of we
perform a sampling inO(

√
nm) or as low asO(log(n)m) runtime.

After these initial results we study two practical applications of the betweenness mea-
sure and examine whether it can be substituted with Linerankwithout significantly wors-
ening the performance of these methods. Firstly, we consider community detection using
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the Girvan-Newman algorithm. In our experiment instead of betweenness we calculated
the Linerank value of the edges. In the comparison we used thesame random benchmark
graphs as in the calculation of the correlation coefficients. The results clearly show that
the betweenness version significantly outperforms the Linerank version. On the one hand,
this is not surprising since we have already observed that the correlation between these
two measures is varying and it is never too strong. On the other hand, in their original
paper Girvan and Newman tried three different variants of the betweenness measure and
they found that the quality of the clusterings was not affected noticeably by the choice of
the centrality measure. Our analysis reveals that this is nolonger the case in the case of
Linerank.

Secondly, we repeated the experiments of Boldi et al. in which they examined which
nodes have the strongest impact in determining the structure of a network [3]. Or, in
other words, which node-removal order influences this structure the most. They consid-
ered several centrality measures including Pagerank, harmonic centrality and between-
ness. They removed the nodes in decreasing order according to these measures. Contrast
to the Girvan-Newman algorithm however, in this case the order of the removal was fixed
in the first step, which means that the aforementioned valueswere not recalculated after
each deletion. The authors reported that in several cases betweenness outperformed the
rest of the candidates. In our research instead of taking into account several centrality
measures we focused solely on node betweenness and Linerank. Unlike in the previous
case the difference between the performance of these two measures was unnoticeable for
the generated benchmark graphs. However, in the case of realworld graph networks be-
tweenness outperformed Linerank again. This indicates that in practice one should still be
careful when node betweenness is to be substituted with nodeLinerank.

The paper is organized as follows. In Section 2 the related work is presented. In Sec-
tion 3 the algorithm used for approximating betweenness andits expected behaviour is
described. In Section 4 the computation of Linerank is explained in more detail. Next, in
Section 5 the results of our experiments are delineated. In Section 5.1 the Pearson’s and
Spearman’s correlation coefficients are calculated. Then,in Section 5.3 edge between-
ness is compared to edge Linerank by using the Girvan-Newmanalgorithm. Afterwards,
in Section 5.4 the node variants are considered in order to determine the node removal
order in networks and then to assess the influence of these removal orders. Finally, in
Section 6 we conclude by summarizing our work. This paper is an extended version of
the paper of the same name published at ICCCI 2014 [1].1

2. Related Work

In [12] centrality measures are divided into three families. The first group is constituted by
thedegree related measures, the second group consists of thediameter related measures,
while the third group contains theflow based measures. We focus on the last group in our
paper. Here, flow refers to the amount of information that maypass through a node or an
edge. The most important member of this group, betweenness centrality, was proposed

1 This work was partially supported by the European Union and the European Social Fund through
project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013
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by Freeman2. For a given nodev, it measures the ratio of those shortest paths that go
throughv. Formally,vbet =

∑

u,w

bu,v,w

bu,w
, wherebu,w andbu,v,w respectively denote the

number of the shortest paths between nodesu, w and the number of those shortest paths
from the previous ones that pass throughv. The definition of this measure on edges can
be formulated in a similar way.

Unfortunately, the computation of the exact values of betweenness is prohibitively
expensive for large networks. For the ’node-variant’ the best known algorithms work in
time O(nm), wheren denotes the number of nodes, whilem the number of edges in
a graph [12]. For this reason several attempts have been madeto estimate the value of
betweenness by using a carefully selected sample. As an orthogonal direction in [12] a
new flow based centrality measure, Linerank, was introducedwhose computation remains
practically manageable even for graphs of billion nodes. Asits name suggests the defi-
nition of Linerank was greatly inspired by Pagerank [17]. Roughly speaking, in the first
step the original graph is transformed into the corresponding line graphon which the
Pagerank values of the nodes are calculated. Since in a line graph the nodes represent
the edges of the original graph by accomplishing the previous step one gains values mea-
suring the importance of edges in a similar way as Pagerank measures the importance of
nodes. However, we want to emphasize that in [12] this measure on edges has not been
introduced, Linerank has been only defined on nodes. Our results below confirm that this
was a wise decision indeed in the sense of the use case of substituting betweenness with
Linerank. Nevertheless, in what follows we will refer to this measure asedge Linerank.
In order to obtain a measure on nodes the previous scores of the incident edges of a node
should be aggregated. The details will be given in Section 4.

Of the many approaches that exist for community detection, such as leader-driven
community detection [20, 11] or mixed graph models [13], theGirvan-Newman commu-
nity detection algorithm [16] is one of the most well-known.Here, edges are removed
from the graph according to the decreasing order of their betweenness values. However,
after the removal of the edge with the highest betweenness score the betweenness val-
ues of the remaining edges should be recalculated in each step. Sooner or later the graph
falls to pieces and the resulting components are to be considered as communities. Of
course, later these clusters may also be broken into to pieces. The hierarchy of commu-
nities is depicted by means of a dendrogram. Each level of this tree represents a possible
clustering. In the last step the one with the highest modularity is chosen to be the final
solution. In order to evaluate the performances of the betweenness and Linerank versions
of the Girvan-Newman algorithm we appliednormalized mutual information, since it is a
widely used measure for testing the effectiveness of network clustering algorithms [8].

To generate random graphs, the model in [14] was used. This model generates graphs
with communities, whose sizes vary according to a power law distribution with exponent
β. The degree distribution is also assumed to be power law withexponentγ. Beside these
parameters one can specify a mixing parameterµ s.t. each node shares a fraction1−µ of
its edges with the nodes of its cluster and a fractionµ with the other nodes of the graph.
The number of nodes is also given as a parameter.

2 Strictly speaking, Anthonisse introduced this measure earlier than Freeman in a technical report,
however, this work has never been published [16].
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3. The Algorithm of Estimating Betweenness

The algorithm, which we have used in our comparisons [5], approximate the exact be-
tweenness values by using a sample of size

√
n or as low aslog(n), wheren denotes the

number of nodes in the graph. In the paper, where the state of the art method of computing
the betweenness values is presented [4], the formula of the betweenness value of nodev
is rewritten in the following way:

vbet =
∑

u,w

bu,v,w

bu,w
=

∑

u,w

δ(u,w, v) =
∑

u

δ(u, v), where
∑

w

δ(u,w, v) = δ(u, v).

Here,δ(u, v) is called theone-sided dependency ofu on v. Basically, in [4] these one-
sided dependencies are calculated for each nodeu by using a breadth-first search to find
the shortest paths fromu and then applying a cunning bottom-up labelling strategy, which
results the desired betweenness values. In the estimation of [5] only a subset of the nodes
are selected to calculate the one-sided dependencies. The theoretical justification of the
method is provided by a result of Hoeffding [9], who has proven that for independent,
identically distributed random variablesX1, . . . , Xk with 0 ≤ Xi ≤ M (0 ≤ i ≤ k) and
an arbitraryξ ≥ 0:

P

(
∣

∣

∣

∣

X1 + . . .+Xk

k
− E

(

X1 + . . .+Xk

k

)
∣

∣

∣

∣

≥ ξ

)

≤ e−2k( ξ
M

)2 .

In our case, for a randomly selected nodepi

Xi(v) =
n

n− 1
δ(pi, v)

is used as a single estimate. Setting

M =
n

n− 1
(n− 2), ξ = ε(n− 2)

Hoeffding’s bound can be applied. Namely, since the expectation of estimate1
k
(X1(v) +

. . . + Xk(v)) is equal to the betweenness value ofv Hoeffding’s bound guarantees that
the error of the approximation is bounded from above byε(n−2)with probability at least

e
−2k

(

ε(n−2)
n

n−1
(n−2)

)2

, which ise−2k( ε(n−1)
n

)2 [5].
In [5] several strategies for random selection had been compared, and it turned out that

in overall the method of selecting the nodes based on the uniform distribution outperforms
the rest of the strategies. Thus, in our paper we also implemented this version. In [7] it is
stated thatk ∈ O(log(n)) samples are sufficient for approximating closeness centrality.
To benchmark our results with Linerank we measured the performance of betweenness
and edge betweenness with bothO(log(n)) andO(

√
n) samples.

4. The Computation of Linerank

As it has already been outlined in the introduction for a graphG Linerank is calculated by
first constructing the line graph ofG denoted byL(G). In a line graph each edge of the
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Fig. 1. (a) A graphG with weights. (b)L(G). (c) An undirected graphH . (d) H̃ . (e)
L(H̃). (f) The result of substituting the undirected edges ofH with bidirected edges. (g)
The line graph of the graph on (f). (h) The matrix used in the computation of Pagerank
values (proof of Corollary 1).
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original graph is represented by a node. LetG be a directed graph and lete1 = (u1, v1),
e2 = (u2, v2) be edges ofG. In L(G) there is an edge from the node representinge1 to
the node representinge2, if and only if v1 coincides withu2, i.e., the target node ofe1 is
the same as the source node ofe2. An example can be seen in Fig. 1. (a) and (b).

On the line graph a random walker at the current step either moves to a neighbouring
node with probabilityβ, or jumps to a random node with probability1− β. If the walker
moves to a neighbouring node, then she decides among the candidates according to the
weights of the joining edges. We seek the stationary probabilities of this random walk.
Or, to put in other words Pagerank is to be computed on the linegraph. However, the size
of the line graph can be much larger than that of the original graph which may render the
explicit construction of the adjacency matrix unfeasible.Therefore, in [12] this adjacency
matrix is decomposed into two sparse matrices by means of which the stationary proba-
bilities can be computed efficiently. In the last step for each node of the original graph the
scores of its incident edges are aggregated.

The original paper does not detail how Linerank should be calculated over undirected
graphs. It is tempting to substitute each undirected edge with two oppositely directed
edges. However, this approach would result in completely useless Linerank values. To be
specific for graphG denoteG̃ the result of the previous construction. Then the following
statement can be proven.

Proposition 1 Let G be an undirected graph. For each nodeu of L(G̃) the outdegree
of each of the in-neighbours ofu is the same as the indegree ofu. (An in-neighbour is
defined to be the source node of an ingoing edge ofu.)

Proof. First, note that if the indegree of a nodev in G̃ is k, then the outdegree ofv is also
k, which is a straightforward consequence of the definition ofG̃. The statement obviously
follows from this observation, since in this case the indegree of the representative of an
outgoing edge – denote itu – of v in L(G̃) is alsok. What is more, the outdegree of each
of the in-neighbours ofu is alsok as they correspond to the ingoing edges ofv. Consider
an example in Fig. 1. (c)-(e).

Corollary 1 For an arbitrary undirected, uniformly weighted graphG the stationary
probabilities – Pagerank values – are the same for each node of L(G̃).

Proof. (Sketch.)Consider the matrix used in the computation of the Pagerank values of
the nodes ofL(G̃). From Proposition 1 it follows that the values of a tuple of this matrix
are either0’s or 1

k
’s, wherek is the indegree of the represented node by this tuple. What is

more the sum of these1
k

values is equal to1. Hence, when the product of this matrix and
vector( 1

n
. . . 1

n
) is calculated at the first step of the computation, then the result is equal

to the same( 1
n
. . . 1

n
) vector (Fig. 1. (h)), thus the computation terminates resulting the

same Pagerank values (stationary probabilites) for all nodes.

Thus, instead of adding extra edges the line graph should be constructed as if the
original undirected edges were bidirected. An example can be found in Fig. 1. (c), (f)-(g).
Our experiments have shown that this construction avoids the preceding anomaly. What
is more, it also saves a considerable amount of memory space.
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5. Experiments

5.1. The Correlation between Linerank and Betweenness

As a first step in our investigation we calculated the betweenness and Linerank values of
the nodes and the edges of real world graphs. In all cases the scatter plots suggested a
strong correlation between the node Linerank and betweenness values, whereas for the
edge variants the relationship remained somewhat blurred.As a typical example in Fig-
ure 2 (a) and (b) we have included the plots belonging to the polblogs dataset [2], a
directed network of hyperlinks between weblogs on US politics recorded in 2005 with
1490 nodes and19090 edges. Beside the aforementioned real world graphs we also con-
ducted the same experiment on random graphs described in theintroduction. Owing to
the costly computation of the exact betweenness values we used graphs of rather smaller
sizes, namely with1000 and5000 nodes. Theγ exponent of the power law distribution
of the degrees was set to2, while theβ exponent of the power law distribution of the
sizes of the clusters was chosen to be1. We further distinguished two cases. In the first
case we worked with rather large clusters whose size ranged between20 and100 nodes,
while in the second case this size ranged between10 and50. The mixing parameter varied
between0.1 and0.6 with steps of0.1. The plots revealed the same connection between
the Linerank and betweenness values as in the case of the realworld graphs.

Next, to quantify this relationship we calculated the Pearson’s and Spearman’s corre-
lation coefficients of the two measures. For the polblogs dataset these values were high
for the node variants of the centrality measures: Pearson’s: 0.82 Spearman’s:0.89; while
for the edge variants the correlation turned out to be much weaker: Pearson’s:0.15 Spear-
man’s:0.26. In the case of the random benchmark graphs we generated10 graphs for
every parameter settings and took the average of the results. In Figure 2 (c) and (d) the
relevant diagrams can be found for graphs with5000 nodes. The curves for the graphs
with 1000 nodes look like almost exactly the same.

Interestingly, both for the node and edge variants the correlation between the centrality
measures increases as the boundaries among the clusters becomes blurred. However, for
the node versions it is very high in all cases and as the value of the mixing parameter grows
the correlation approaches to1, whereas for the edge variants the correlation becomes
higher only when the clusters literally disappear from the graph.

5.2. Correlation between Betweenness and its approximations

Another possible route for providing feasible approximations of the algorithms described
in Subsection 5.3 and 5.4 would be to approximate the measureof betweenness itself
instead of substituting it as suggested in [5]. Compared to [5] we use different indicators
to assess the results, a namely Spearman’s and Pearson’ correlation coefficients as in
Section 5.1.

To demonstrate the efficiency of the approximation we have plotted the results for the
polblogs dataset [2], that has also been used for the experiments in Subsection 5.1. The
correlation coefficents were measured as presented in Table1.

The node betweenness approximating algorithms performed exceptionally well from√
n samples and decently fromlog(n) samples. The performance of Linerank shown in

Subsection 5.1 is between these solution, however for largegraphs Linerank has even
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Fig. 2. (a) Node betweenness and Linerank values for the polblogs dataset. (b) Edge
betweenness and Linerank for the same dataset. (c) Pearson’s correlation coefficients for
the benchmark graphs with 5000 nodes. (d) Spearman’s correlation coefficients for the
same set of benchmark graphs.

Table 1.Correlation for approximating betweenness values on the polblogs dataset
Coeff. Node appr.,

√

n Node appr.,log(n) Edge appr.,
√

n Edge appr.,log(n)

Pearson 0.87 0.75 0.34 0.16
Spearman 0.97 0.71 0.81 0.66
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Fig. 3. (a) Node betweenness and Node betweenness approximation from
√
n values for

the polblogs dataset. (b) Node betweenness and Node betweenness approximation from
log(n) values for the for the same dataset.
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lower runtime than the one usinglog(n) sample vertices. The edge variant of the mea-
sure is significantly less promising. The approximation itself is not on par with its node
counterpart, but still outperforms edge Linerank in both cases.

We have also conducted experiments on the benchmark graph dataset described in
Subsection 5.1. The baseline for the result were the resultsgiven by the exact between-
ness computation, the results for the graphs with5000 nodes summarized in Figure 5 also
suggest that node Linerank can be a strong candidate in comparison with the approximate
versions of node betweenness. Interestingly enough in certain cases edge Linerank out-
performed the appoximations of edge betweenness, but the correlation tended to be rather
low in almost all cases for the edges.
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Fig. 5. (a) Pearson’s correlation coefficients for the benchmark graphs with
√
n samples.

(b) Spearman’s correlation coefficients for the same dataset with
√
n samples. (c)

Pearson’s correlation coefficients for the same dataset with log(n) samples. (d)
Spearman’s correlation coefficients for the same dataset with log(n) samples.
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5.3. Edge Betweenness versus Edge Linerank, the Girvan-Newman Algorithm

In order to assess the applicability of the edge Linerank in practice we implemented two
versions of the well-known Girvan-Newman algorithm [16] for detecting communities in
a network. The first version uses edge betweenness for findingthe next edge to remove
from the graph as in the original paper, whereas the second applies edge Linerank for this
purpose. To compare the performance of the two variants we employednormalized mu-
tual information[6], which is a frequently used measure for testing community detection
algorithms.

For two partitionsX ,Y define two random variablesX andY s.t.

P (X = i) =
nX
i

n
andP (Y = j) =

nY
j

n
,

whereP (X = i), P (Y = j) denote the probability that a node belongs to theith andjth

cluster in partitionsX andY respectively, whilenX
i , nY

j denote the number of nodes in
theseith andjth clusters, finallyn is the overall number of nodes. Accordingly, the joint
distribution of these variables is defined as

P (X = i, Y = j) =
nij

n
,

wherenij denotes the number of nodes in the intersection of the aforementionedith and
jth clusters. Themutual informationof two random variables is defined as

I(X,Y ) = H(X)−H(X |Y ),

whereH(Z) denotes the Shannon entropy of random variableZ. Thus, this measure tells
how much the knowledge ofY reduces the uncertainty ofX . As it is noted in [8] mutual
information is not an ideal similarity measure, since for all subpartitionsZ ′ of partitionZ
the mutual information of the derived random variablesZ andZ ′ will be always the same,
even though these subpartitions may substantially differ from each other. Therefore, in [6]
normalized mutual informationis introduced

Inorm(X,Y ) =
2I(X,Y )

H(X)H(Y )
,

which equals1, if the two partitions are the same, while for independent random variables
its expected value is0 [8]. This observation at least partially explains the popularity of this
measure for comparing community detection algorithms.

In our experiments we used the same set of random benchmark graphs as in the pre-
vious case. Again, we generated10 graphs with every parameter setting and we took
the average of the normalized mutual information values. The behaviour on graphs with
1000 and 5000 nodes was indistinguishable, therefore we only included the diagrams
related to the graphs with5000 nodes. As the plots in Fig. 6. (a) and (b) clearly show
the betweenness version of the Girvan-Newman algorithm significantly outperforms the
Linerank version. Indeed, the scores of the latter are extremely low, which indicates the
unusability of this method in practice. Of course, one may anticipate this result from the
observations of the previous subsection, however, the former experiments only revealed
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Mixing parameter

GN using betweenness centrality
GN using linerank

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Mixing parameter

GN using betweenness centrality
GN using linerank

(b)

Fig. 6. (a) Effectiveness of GN algorithm versions on the benchmarkgraphs with larger
clusters. (b) The same information for the benchmark graphswith smaller clusters.

that the correlation between the edge Linerank and betweenness values was rather low
especially when the graphs contained quite definite clusters, but they did not foretell the
superiority of betweenness. What is more, although these results suggest the inapplica-
bility of edge Linerank for detecting clusters, since the correlation in the case of more
scattered graphs was higher, the measure may still prove to be useful in certain scenarios,
where the presence of clusters is not so remarkable.

5.4. Node Betweenness versus Node Linerank, the Robustnessof Networks to
Node Removal

After testing the applicability of edge Linerank we tried tofind out to what degree node
betweenness can be substituted with node Linerank in a practical application. For this
purpose using node Linerank and betweenness we conducted the experiment of Boldi et
al. again in which they tested to what extent the node removals can disrupt the structure
of the web and social networks [3]. More precisely, in the course of node removalϑm
edges are deleted, wherem denotes the number of edges and0 ≤ ϑ ≤ 1. In the first
step one defines an order among the nodes by using a measure andthen considering the
nodes in decreasing order starts to remove their incident edges. As soon as the number
of the deleted edges becomes greater than or equal toϑm, the process stops. The authors
were interested in how the node removal orders based on different measures influence
the fraction of reachable pairs asϑ increases. They also wanted to assess the divergence
between the distance distributions of the old and new graphs. They tried several different
approaches to measure these changes and they have found thatthe relative harmonic-
diameter changereflects the differences the best.

Relative harmonic-diameteris defined as

n(n− 1)
∑

u6=v
1

d(u,v)

,

whereu, v are nodes,d(u, v) denotes their distance, i.e., the length of the shortest path
between them, andn again denotes the number of nodes in the graph. Unreachable pairs
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Fig. 7. (a) The relative harmonic-diameter change for the benchmark graphs with
increasing ratio of the deleted edges (the mixing parameteris fixed). (b) The same data
with varying mixing parameters (the ratio of the deleted edges is fixed). (c) The relative
harmonic-diameter change for the CA-AstroPh network. (d) The scatter plot of the node
betweenness and Linerank values for the CA-AstroPh network.
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contribute0 to the sum, hence this measure represents both disconnection and distance
distribution [3]. For graphG denoteR(G) its relative harmonic-diameter, then the change
in this measure is calculated as

R(Q)

R(P )
− 1,

whereP andQ respectively denotes the original graph and the graph afternode removal.
In our own experiments again we used both generated and real world graphs. However,

in this case we increased the number of nodes of the random graphs to10000 and50000.
Accordingly, the sizes of the clusters also were also set higher. For the larger clusters
these values ranged between40 and200, whereas for the smaller clusters between20 and
100. The rest of the parameters remained the same. As the diagrams in Fig. 7. (a) and
(b) show the results are indistinguishable for node Linerank and betweenness. We only
plotted the data belonging to the benchmarks graphs with50000 nodes and larger clusters,
however, the rest of the diagrams look exactly the same. Neither the changes of the mixing
parameter nor the increase in the ratio of deleted edges influences this behaviour.

Nonetheless, in the case of real world graphs the scenario issomewhat less straight-
forward. As one can see in Fig. 7. (c) for the CA-AstroPh dataset [15], which is the col-
laboration network from the e-print ArXiv in the Astro Physics category (nodes:18772,
edges:198110), the difference between the relative harmonic-diameter change is more
significant. On the other hand, as the scatter plot in Fig. 7. (d) suggests the correlation be-
tween node Linerank and betweenness is still high. We experienced the same phenomenon
for several real world graphs, which indicates that although the correspondence between
the two measures seems to be strong, in practice one should still be careful, when node
betweenness is to be substituted with node Linerank.

6. Conclusions

In our paper we compared two flow based centrality measures betweenness and Liner-
ank. We have found that in the case of edges the correlation between these measures
varies but tends to be rather low. Our experiments with the Girvan-Newman algorithm
also underlined that edge betweenness cannot be substituted with edge Linerank in prac-
tice. The results for the node variants are more promising. In our tests both Pearson’s and
Spearman’s correlation coefficients were close to1 in most of the cases. For the gener-
ated benchmark graphs this strong correspondence persisted in the practical application in
which we examined the robustness of social and web graphs to node removal. However,
for real world graphs, although the correlation seemingly remained high, node between-
ness outperformed node Linerank. This which shows that evenin this case the substitution
of the former with the latter remains problematic. Beside these investigations we have also
clarified how Linerank should be computed on undirected graphs.
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