
Computer Science and Information Systems 13(2):453–473 DOI: 10.2298/CSIS150518009O

Modeling Dynamical Systems with Data Stream Mining

Aljaž Osojnik1,2, Panče Panov1, and Sašo Džeroski1,2,3

1 Jožef Stefan Institute, Jamova cesta 39, Ljubljana, Slovenia
2 Jožef Stefan Interntaional Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia

3 CIPKeBiP, Jamova cesta 39, Ljubljana, Slovenia
e-mail: {aljaz.osojnik, pance.panov, saso.dzeroski}@ijs.si

Abstract. We address the task of modeling dynamical systems in discrete time
using regression trees, model trees and option trees for on-line regression. Some
challenges that modeling dynamical systems pose to data mining approaches are
described: these motivate the use of methods for mining data streams. The algo-
rithm FIMT-DD for mining data streams with regression or model trees is described,
as well as the FIMT-DD based algorithm ORTO, which learns option trees for re-
gression. These methods are then compared on several case studies, i.e., tasks of
learning models of dynamical systems from observed data. The experimental setup,
including the datasets, and the experimental results are presented in detail. These
demonstrate that option trees for regression work best among the considered ap-
proaches for learning models of dynamical systems from streaming data.

Keywords: dynamical systems, data streams, data mining, regression and model
trees, option trees

1. Introduction

The central question addressed by this paper is the applicability of the paradigm of mining
data streams, and in particular tree-based approaches to on-line regression, to the task of
system identification in discrete-time. In this paper, we propose the use of regression
trees [1], model trees [15] and option trees [12] to address the this task. Namely, these
approaches have been adapted to the on-line setting [9,10] and are very suitable for the
task of system identification.

First, regression and model trees allow us to address the general task of system iden-
tification, including structural and parameter identification, as they can approximate arbi-
trary non-linear functions with piece-wise linear functions. Second, they can handle well
both missing and noisy data, which are likely to be encountered in practice. Third, they
are very efficient and can handle large quantities of data: They scale well both in terms
of the number of data points, i.e., time points in the case of system identification, and
the number of independent variables (features, attributes), i.e., input and system variables
in the case of system identification. Recently, tree-based approaches to classification and
regression have been adapted to work in the on-line, streaming setting [3].

To address the central question of this paper, we perform a thorough experimental
evaluation, where we apply several tree-based approaches to several case studies (bench-
mark problems) in discrete-time modeling of dynamical systems coming from the area of
control engineering. Using an evaluation methodology and performance measures appro-
priate for the task at hand, we evaluate the performance of the tree-based approaches to
on-line regression and answer several more specific experimental questions.

454 A. Osojnik et al.

The remainder of the paper is structured in the following way. First, in Sec. 2, we
present the background related to this work. Next, in Sec. 3, we present the task of mod-
eling dynamical systems in discrete time using data stream mining and present the tree-
based algorithms for regression on data streams that will be used to solve the task. Further-
more, in Sec. 4 we describe the case studies and in Sec. 5, we introduce the experimental
setup, including the experimental questions and the evaluation methodology. Finally, in
Sec. 6 present and discuss the results of the experiments in Sec. 7 we conclude the paper
and suggest several directions for further work.

2. Background

2.1. Modeling Dynamical Systems in Discrete Time

Dynamical systems are described in terms of system variables (y) and, in the case of
controlled systems, control variables (u), depending on either discrete or continuous time
(t). Modeling dynamical systems in continuous time is concerned with the formulation of
differential equations for the time derivatives of the ẏ(t) system variables in terms of the
input variables u(t) and the systems variables themselves y(t). The model of a dynamical
system should correspond to the observed behavior of the system.

If we discretize this problem, we sample the time space from an initial time t0 at
fixed intervals with a time step of ∆t, at which we obtain observations. We describe the
discrete time space with a variable k that corresponds to t with the relation k ∼ i⇔ t =
t0 + i∆t, for i = 1, 2, 3, . . .

In discrete time, recurrence relations replace differential equations as the formalism
for describing the dynamical system. Discrete-time modeling of dynamical systems is
then concerned with the formulation of the recurrence relations which best describe the
observed system behavior. These recurrence relations define the present values of the
system variables y(k) in terms of past values of the system variables and present and past
values of the input variables, i.e., in terms of the vector

x(k) = [u(k − 1), . . . , u(k − n), y(k − 1), . . . , y(k − n)]T , (1)

where n is the system lag.

2.2. System Identification via Regression

To model a dynamical system in discrete time we need to define a function f so that
y(k) = f(x(k)) , where x(k) is defined by Eq. 1. The task of finding such a function f
from an observed behavior of the system is called system identification. When the form of
f is known and only its constant parameter values are to be determined, the task is called
parameter identification. When the form of f is not known, the task at hand is much more
difficult. We need to determine both the form and the constant parameter values of the
function f . In this case, the task is called structural identification.

When we observe a dynamical system we take measurements of the input and output
vector pairs u, y at each time point k, so that we record the behavior of the system. An
example of such a behavior, recorded for the gas-liquid separator case study presented
in Sec. 4.1(see Fig.1). Through the external dynamics approach [14], we transform the

Modeling Dynamical Systems with Data Stream Mining 455

Fig. 1. Recorded values of the input variables (valves 1 and 2, Liquid level) and system
variable (pressure) of the gas-liquid separator system. Input variables are plotted with
dotted lines, the system variable is plotted with a continuous line.

observations into a table of lagged input and output vector pairs. The columns of the table
are as described by the vector x(k) from Eq. 1. Each row of the table corresponds to a
point in time where an observation has been made (see Tab. 1).

The external dynamics approach allows us to formulate the task of system identifica-
tion as a regression task, where we want to predict the values of the system variables from
the lagged values of the system and input variables. The dependent (response) variable
is y(k), while the independent variables are gathered in the vector x(k). The data used
to learn the regression function y(k) = f(x(k)) are taken from the recorded behavior as
described above.

2.3. Data Stream Mining

Data stream mining is a sub-field of data mining, which is concerned with the develop-
ment of methods for modeling of data arriving in the form of a stream [3]. Mining a data
stream is substantially different from classical data mining, mainly in the way data is

Table 1. An excerpt from the recorded behavior of the GLS system depicted in Fig. 1,
reformulated according to the external dynamics approach.
k

. . .

506 507 508 509 510 511 512 513 514

. . .

u1(k − 3) 0.47 0.47 0.47 0.47 0.47 0.49 0.49 0.49 0.49
u1(k − 2) 0.47 0.47 0.47 0.47 0.49 0.49 0.49 0.49 0.49
u1(k − 1) 0.47 0.47 0.47 0.49 0.49 0.49 0.49 0.49 0.49
u2(k − 3) 0.8985 0.9025 0.9070 0.9070 0.9070 0.9070 0.9070 0.9120 0.9125
u2(k − 2) 0.9025 0.9070 0.9070 0.9070 0.9070 0.9070 0.9120 0.9125 0.9130
u2(k − 1) 0.9070 0.9070 0.9070 0.9070 0.9070 0.9120 0.9125 0.9130 0.9135
u3(k − 3) 0.399 0.3995 0.4 0.4 0.4 0.4 0.4 0.4005 0.4005
u3(k − 2) 0.3995 0.4 0.4 0.4 0.4 0.4 0.4005 0.4005 0.4005
u3(k − 1) 0.4 0.4 0.4 0.4 0.4 0.4005 0.4005 0.4005 0.4005
y(k − 3) 0.5463 0.5463 0.5463 0.5465 0.5465 0.5463 0.5463 0.5468 0.546
y(k − 2) 0.5463 0.5463 0.5465 0.5465 0.5463 0.5463 0.5468 0.546 0.5445
y(k − 1) 0.5463 0.5465 0.5465 0.5463 0.5463 0.5468 0.546 0.5445 0.543
y(k) 0.5465 0.5465 0.5463 0.5463 0.5468 0.546 0.5445 0.543 0.5413

456 A. Osojnik et al.

available. In the classical batch-learning data mining setting, a fixed and complete dataset
is given as input to a learning algorithm, which can then use the data in an unrestricted
fashion. The examples or data points are assumed to all come from the same probability
distribution. In contrast to classical data mining, where all the data is available from the
beginning of the process, in the on-line approach data stream mining the data instances
arrive sequentially in time.

The key properties of data streams and on-line learning are:

1. the examples (data points) arrive sequentially,
2. the (data mining) algorithm has no control over the order of arrival of the examples,
3. there can potentially be arbitrarily many examples,
4. the distribution of examples need not be stationary,
5. there is a need for a response in real-time, and
6. after an example is processed it is discarded or archived – we can not access it directly,

unless we explicitly store it into memory (which is comparatively small comparing to
the number of examples).

3. Modeling Dynamical Systems in Discrete Time Using Data
Stream Mining

The task of discrete-time modeling of nonlinear dynamical systems from measured data
has been approached using different regression techniques. Approaches used for this pur-
pose include the basis-function approaches of Artificial Neural Networks [14] and fuzzy
modeling, as well as the nonparametric approaches of kernel methods [2] and Gaussian
Process models [16].

The task of system identification, as defined in the previous subsection, matches the
properties of learning models on data streams almost to the letter (see Sec. 2.3). This al-
lows us to formulate the task of modeling dynamical systems in discrete time using data
stream mining algorithms. If we observe a dynamical system, the individual data points
arrive sequentially along the time dimension: The system identification (learning) algo-
rithm has no control over the order of arrival of the examples/observations. Depending on
whether we continue to observe the system as time goes by, there can potentially be in-
finitely many examples. Depending on how frequently we make observations, the amount
of data collected can easily grow over the available storage capacity. Finally, the laws
underlying the behavior of a given system can change over time, especially if external
disturbances appear in its environment (e.g., a pollution introduced into an ecosystem).
Such dynamical systems are called time-varying dynamical systems.

To address the task of system identification using data stream mining, we use algo-
rithms for learning tree-like models for regression [9,10]. They can learn model trees,
as well as option trees for regression, and can also detect changes in the streaming data.
Here, we briefly describe the algorithms that we use for modeling of dynamical systems.

3.1. FIMT-DD: Learning Model Trees with Change Detection

The FIMT-DD algorithm learns regression and model trees from data streams [9]. A
model tree consists of internal nodes, which contain tests on independent variables (called

Modeling Dynamical Systems with Data Stream Mining 457

y(k − 1)

u3(k − 1) y(k − 3)

y(k) = 0.27y(k) = 0.29 y(k) = 0.61y(k) = 0.44

< 0.30 ≥ 0.30

< 1.51 ≥ 1.51 < 0.54 ≥ 0.54

Fig. 2. An example regression tree learned on data from the gas-liquid separator domain.

splits), and leaves, which contain predictive models (constant for regression or linear for
model trees) for the value of the dependent variable. An example regression tree, learned
on the gas-liquid separator dataset is shown in Fig. 2.

The pseudo code of the FIMT-DD algorithm can be found in Alg. 1. The key points of
the algorithm are the selection of splits for the internal nodes, the learning of linear models
in the leaf nodes and the detection of changes. Algorithms for learning trees on data
streams use statistical tests to determine when enough examples have been accumulated
to make a split decision.

Algorithm 1 The FIMT-DD algorithm. pseudocode.

Input: δ – confidence level, Nattr – number of attributes, nmin – chunk size.
Output: T – root node of the current model/regression tree

for∞ do
e← ReadNextExample()
Leaf ← Traverse(T, e)
Seen← SeenAtLeaf(Leaf) + 1
UpdateStatistics(Leaf, e)
UpdateLeaf(Leaf, e)
if Seen mod nmin = 0 then

for i = 1→ Nattr do
hi ← FindBestSplitForAttribute(i)

end for
hA ← BestSplit(h1, . . . , hNattr)
hB ← SecondBestSplit(h1, . . . , hNattr)

if VR(hA)
VR(hB)

< 1−
√

ln(1/δ)
2·Seen then

MakeSplit(hA, T)
end if

end if
end for

458 A. Osojnik et al.

Algorithms for learning decision trees on data streams start with a single leaf node.
Leaves are then split when enough evidence has accumulated that the more complex tree
resulting from the split will perform better than the leaf node. Deciding when to split a
leaf is a critical step in tree construction. For this purpose, FIMT-DD utilizes the variance
reduction heuristic along with the Hoeffding bound [6].

The basic version of FIMT-DD learns regression trees, where the predictions in the
leaves are constant. An extension of the FIMT-DD algorithm learns model trees instead
of regression trees. In model trees, at a given leaf, instead of returning the average of
target variable values for the accumulated examples, we use linear regression to predict
the target value of incoming examples.

To this end, we place a single layer perceptron into each leaf. Given inputs x1, . . . , xn
(attribute values), the output is computed as o =

∑n
i=1 xiwi + b, where wi are the

weights and b is the threshold. Using the squared error function for an example e, E(x) =
1
2 (y−o)

2, where y is the actual target value and o is the predicted target value, we can con-
tinuously update the perceptron according to the delta or Widrow-Hoff additive rule. The
complete perceptron learning scheme (procedure UpdateLeaf in Alg. 1) is as follows

1. The weights w1, . . . , wn and the threshold b are initialized to random values.
2. Consider a vector x = (x1, . . . , xn) and calculate o.
3. Update the weights using the delta rule w ← w+η(y− o)x, (η is the learning rate).
4. Return to step 2.

In our case, the learning rate is not kept constant but is decreased inversely propor-
tional to the number of instances η = η0

1+Nηd
, where η0 is the initial learning rate, N is

the number of examples processed and ηd is the learning rate decay parameter.
To detect changes, FIMT-DD makes use of the Page-Hinckley test (see Alg. 2). The

test is a mechanism for detecting changes in a signal x(k). At any time point k, the test
considers the following two variables: a cumulative sum m(k) and its minimal value
M(k) = mini=1,...,km(i). The summ(k) is defined as the cumulative difference between
the signal x(k) and its average x(k) corrected with an additional parameter α (minimal
absolute amplitude of change that we wish to detect), m(k) =

∑k
i=1(x(k)− x(k)− α).

The Page-Hinckley test monitors the difference between m(k) and M(k), PH(k) =
m(k) −M(k). When this difference passes a threshold λ, an alarm is triggered which
informs the algorithm of a possible change. To detect possible change in the data, we use
the Page-Hinckley test on the absolute error signal |y − ŷ|, where y is the true value of
an example and ŷ is the predicted value. The error is back-propagated towards the root of
the tree, as the Page-Hinckley test is monitored at each node in the tree.

When an alarm is triggered, the FIMT-DD algorithm responds by starting to grow an
alternate subtree. The tree is grown at the node at the lowest level which has triggered the
alarm. The alternate tree is grown in parallel with the original subtree, while the growth of
the original subtree is stopped. At a time interval of Tmin, the viability of both the original
O and the alternate tree A is compared using the faded Qi statistic. If Qi(O,A) is greater
than 0, that means that the alternate subtree is better in terms of the predictive performance
and the original subtree is replaced with the alternate. However, if after 10·Tmin examples,
the alternate tree has not managed to produce better predictions, we discard the alternate
tree and again allow the growth of the original tree.

Modeling Dynamical Systems with Data Stream Mining 459

Algorithm 2 Traverse procedure of the FIMT-DD algorithm. pseudocode.
Input: T – node (root, internal or leaf), e – training example
Output: Leaf – leaf node where the example e will be traversed

if IsLeaf(T) 6= True then
Change← UpdatePHTest(T, e)
if Change = True then
InitiateAlternateTree(T, e)

end if
Child← ApplyNodeTestToExample(T, e)
Leaf ← Traverse(Child, e)

else
Leaf ← T

end if
return Leaf

3.2. ORTO: Learning Option Trees for Regression on Data Streams

The ORTO algorithm is an extension of the FIMT-DD algorithm which introduces option
nodes into the learned regression (or model) trees [10]. When making a prediction for
a new example with a regular regression (or model) tree, the example is sorted down
exactly one branch of the tree, i.e., sorted to exactly one branch of each internal node it
encounters. In contrast, when sorting an example through an option node, the example is
multiplied and sorted to each of the children of an option node. This means that in each
option node multiple predictions are produced, corresponding to the multiple branches
out of the node followed by the example. These predictions are then aggregated to form
a single prediction, e.g., by averaging. An example option tree for regression is presented
in Fig. 3.

Option node

y(k − 1)

≥ 0.30< 0.30

u3(k − 1)

≥ 1.51

y(k) = 0.29 y(k) = 0.27

< 1.51

y(k − 3)

≥ 0.54

y(k) = 0.44 y(k) = 0.61

< 0.54

y(k − 3)

y(k − 3)y(k) = 0.25

< 0.29

≥ 0.54

y(k) = 0.44 y(k) = 0.61

< 0.54

≥ 0.54

y(k − 2)

y(k − 3)y(k) = 0.26

< 0.30

≥ 0.54

y(k) = 0.44 y(k) = 0.61

< 0.54

≥ 0.30

Fig. 3. An example option tree learned on data from the gas-liquid separator domain.
The highlighted area represents the best tree.

460 A. Osojnik et al.

The pseudocode of ORTO is presented in Alg. 3. The split decision process of ORTO
is almost identical to that of FIMT-DD, but it includes an important alteration, which
allows the introduction of option nodes. We use two aggregation approaches, averaging
and choosing the best path. Averaging is the more straightforward of the two approaches.
The final prediction of the option node is obtained by averaging the predictions obtained
from the children of the option node. We refer to this variant of the ORTO algorithm as
ORTO-A. The other aggregation approach used is to choose the (currently) best path. The
cumulative errors for each example processed are kept for each of the children of an option
node, and when combining the predictions, the prediction of the child with currently the

Algorithm 3 The ORTO algorithm. pseudocode.

Input: δ – confidence level, Nattr – num. of attributes, nmin – chunk size, Agg – aggregation
method, β – option decay factor, Tmax – max. number of options.

Output: T – current option tree.
T ← InitiateOptionTree()
for∞ do
e← ReadNextExample()
Leaf ← Traverse(T, e)
Seen← SeenAtLeaf(Leaf) + 1
UpdateStatistics(Leaf, e)
UpdateLeaf(Leaf, e)
if Seen mod nmin = 0 then

for i = 1→ Nattr do
hi ← FindBestSplitForAttribute(i)

end for
hA ← BestSplit(h1, . . . , hNattr)
hB ← SecondBestSplit(h1, . . . , hNattr)

if VR(hA)
VR(hB)

< 1−
√

ln(1/δ)
2·Seen then

MakeSplit(hA, T)
else
O ← CreateOptionNode(T,Leaf)
AddSplit(hA, O)
Count← 0
k ← CountSplitCandidates(h1, . . . , hNatr)
l← Level(T,Leaf)
for i = 1→ Nattr do

if i 6= 1 and Count < k · βl and VR(hi)
VR(hA)

> 1 −
√

ln(1/δ)
2·Seen and

NumberOfOptions(T) < Tmax then
AddSplit(hi, O)
Count← Count+ 1

end if
end for

end if
end if
return Predict(T,Agg, e)

end for

Modeling Dynamical Systems with Data Stream Mining 461

lowest error is returned as the option node’s prediction. For example, the leftmost child of
the option node of the tree in Fig. 3 has the lowest error and would be used when making
predictions. This variant of ORTO is referred to as ORTO-BT.

4. Case Studies

In this paper, we demonstrate the applicability of tree-based approaches to on-line regres-
sion to the task of system identification in discrete-time, on three use cases coming from
the area of control engineering. These include the following case studies: modeling the
gas-liquid separator [11], modeling the process of pH neutralization [5], and modeling a
synthetic dynamical system [13]. Below we present briefly each of the case studies.

4.1. Case Study: Gas-Liquid Separator

The gas-liquid separator is a unit in a semi-industrial process plant which is part of a larger
pilot plant. The unit’s purpose is to capture flue gases under low-pressure from the effluent
channels using a water flow, cool the gases down, and supply them with higher pressure
to other parts of the plant. A schematic representation of the unit is given in Fig. 4.

The flue gases coming from the effluent channels are absorbed by the water into the
water circulation pipe through the injector I1. The water flow is produced by the water
ring pump P1, which operates at constant speed. The gas-water mixture is fed by the pump
into the tank T1, where the gas-liquid separation occurs. The accumulated gases form a
pressurized gas ‘cushion’. This pressure forces the flue gases to be blown out from the
tank into a neutralization unit. Similarly, the cushion pushes the water to circulate back
into the reservoir. The amount of water in this circuit is kept constant. The entire process
is controlled through a manipulation of the V1 and V2 valves.

This process is modeled with a set of differential equations [11], one of which is
presented below: The equation describes the rate of change of the p1 variable, which

T
2

T
1

Flue gas

P
1

V
2

V
1

Flue gas

I
1

PT
1

p
1

LT
1

h
1

FT
1

FT
2

LT
2

h
2

Fig. 4. A schematic representation of the system in the gas-liquid separator case study.

462 A. Osojnik et al.

corresponds to the relative air pressure in the tank T1

dp1
dt

= fa(h1) ·
[
α1 + α2p1 + α3p

2
1 + fb(u1)

√
p1 + fc(u2)

√
p1 + α4 + α5h1

]
, (2)

where h1 is the liquid level in T1, u1 and u2 are the command signals for the V1 and V2
valves, respectively, α1, . . . , α5 are constants, while fa, fb and fc are functions of the
appropriate variables. In more detail, fa is a rational function of h1, while fb and fc are
valve characteristics, i.e., exponential functions of input signals u1 and u2, respectively.

In previous work, a complete non-linear dynamic model was derived and modeled in
MATLAB by using Simulink [17]. The model consists of several parts: models of the
valves V1 and V2, a model of the air pressure in the separator, a model of the water and air
flow through the injector, and a model of the water levels in the separator and the reservoir
(see Fig. 5). For the purpose of comparison, we replicated the simulation model using the
same parameters (see Sec. 5).

The modeling task in this case study is to build a predictive model that can predict the
value p1 from its previous (lagged) values, as well as the current and previous values of
the input variables. For the purpose of modeling, h1 was also taken as an input variable,
in addition to the control signals u1 and u2 for the valves V1 and V2. For this dataset a
system lag of 3 was selected.

The dataset is composed of two runs of the gas-liquid separator, each sampled twice
per second for about two hours, netting around 14500 examples each. For the purposes
of learning a predictive model, we have concatenated these two runs into a single dataset,
producing 29036 total examples.

Fig. 5. A model for the gas liquid separator in Simulink, consisting of five sub-models

Modeling Dynamical Systems with Data Stream Mining 463

4.2. Case Study: pH Neutralization

This case study [5] is concerned with the problem of controlling alkalinity, a common
problem in biotechnological and chemical processes. In particular, it seeks to identify the
pH neutralization process, which exhibits severe nonlinear behavior.

The system is composed of several fluid streams: an acid stream Q1, a buffer stream
Q2 and a base streamQ3. The streams are mixed in a tank T1. Prior to the mixing, the acid
stream passes through another tank T2. The observed variable is the effluent pH, which is
controlled by manipulating the flow rate of the base stream Q3, while both the acid and
the buffer flows are kept constant. This process is schematically presented in Fig. 6.

The model of this dynamical system [5] contains the following state, input (control)
and output variables: x = [Wa4,Wb4, h1], u = Q3, y = pH , where Wa4 and Wb4 are the
effluent reaction invariants and h1 is the liquid level in the tank T1. Following from here,
it is assumed that a (previously designed) controller is being used to keep the fluid level
in the tank T1 constant at h1 = 14 cm. This is achieved through the manipulation of the
flow rate of the effluent stream Q4.

The mathematical model obtained has the following form:

x = f(x) + g(x)u

c(x, y) = 0 ,
(3)

where f(x) and g(x) are non-linear functions of the state vector x, while c(x, y) is a
non-linear function that implicitly defines the value of the output variable y.

In total, a set of 31998 data instances was produced by simulating the above model.
We apply the lagging procedure with a system lag of 2. This provides 4 features to be used
in the modeling of the system behavior, i.e., y(k − 1), y(k − 2), u(k − 1) and u(k − 2).

q
1

 q
2

q
3

q
4

q
1'

h
1

T
2

T
1

LT

pH

V
1

V
2

Fig. 6. A schematic representation of the system in the pH neutralization case study.

464 A. Osojnik et al.

4.3. Case Study: Narendra

To evaluate how the FIMT-DD algorithm adapts to change, we consider the synthetic
Narendra dataset [13]. This dynamical system is composed of an input variable u and a
system variable y, connected as follows

y(k) =
1

1 + y(k − 1)2
+ u(k − 1)3 . (4)

The value of the input variable u is selected uniformly at random from the interval [−1, 1]
after every 20 examples (time points) and kept constant for the next 20 examples. The
initial system state is set as y(0) = 0. This system is modeled with a system lag of 1,
which gives us two features y(k − 1) and u(k − 1) to model the system behavior.

Specifically to test the change detection and adaptation of FIMT-DD, we change the
dynamics of the system. There are two types of changes that we introduce: change of the
function and change of a parameter. In the former, the recurrence relation is replaced by

ŷ(k) =
1

1 + ŷ(k − 1)2
+ u(k − 1) , (5)

replacing the exponent 3 in the second term with a value of 1, while in the latter, the
relation changes into

ŷ(k) =
1

1 + ŷ(k − 1)2
+ 2u(k − 1)3 , (6)

replacing the constant 1 in front of the second term with the constant 2.
For this case study we generated datasets Narendra-F and Narendra-P, where the

change is introduced in the function and in the parameter, respectively. Both types of
changes are introduced half-way through the dataset. In total, 900000 instances were gen-
erated and in both cases the change was introduced at the 450000th time point.

When considering these two datasets, we compare two variants of the FIMT-DD algo-
rithm, with an enabled and disabled change adaptation mechanism, respectively. In both
cases, we use FIMT-DD to learn model trees.

5. Experimental Design

In this section, we first explicitly state the experimental questions that we set out to an-
swer. We then list the on-line regression algorithms that we evaluate and compare, along
with their parameter settings. The section concludes with the evaluation methodology.

5.1. Experimental Questions

In our comparison, we address four specific experimental questions. First, we assess
whether the data stream mining approaches are appropriate for the identification of dy-
namical systems in discrete time. Additionally, we are interested in determining which of
the compared algorithms performs the best. Afterwards, we compare the model produced
by the best performed algorithm with an expert model in terms of simulation. Finally,

Modeling Dynamical Systems with Data Stream Mining 465

we wish to evaluate the effectiveness of the change detection mechanism of the on-line
tree learning approach, which would be necessary for the identification of time-varying
dynamical systems.

To answer the question of whether the considered approaches perform satisfactorily on
the task of identification of dynamical systems, we need to verify that they make small,
preferably ever-decreasing, errors. Low values of the error are desired that should be
lower than those of a pre-selected baseline method. This means accurate predictions of
the evolution of the state of the system, i.e., its state at the next point in time.

To evaluate which of the algorithms performs best, we compare them on two bench-
mark control engineering problems. The first one consists of measured data (gas-liquid
separator case study in Sec. 4.1), while the second is synthetic (pH neutralization case
study in Sec. 4.2). Our task is primarily to examine the predictive performance of the
algorithms. In addition, we also inspect their time and memory consumption.

For the gas-liquid separator case study, we compare the simulation of the system dy-
namics obtained by using the models learned by data stream mining with the simulation
produced by the expert model described in Sec. 4.1. This allows us to determine whether
the learned model, which required almost zero effort to create, captures the dynamics of
the system and how it compares to the expert model, which required a lot of effort to
produce.

Specifically, we use the best performing algorithm identified above (ORTO-A), which
learns on only the first run of the gas-liquid separator. Similarly, the parameter tuning of
the expert model is performed on the first run. The second run of the gas-liquid separator
is used for the simulation. For the learned model, the lagged output values are replaced
by its earlier predictions, i.e., aside from the initial system state, the learner is agnostic of
the recorded state of the system during the second run.

Finally, an important aspect of learning from data streams is the ability to detect
changes in the data. In the context of system identification, this corresponds to the suc-
cessful identification of time-varying dynamical systems. We investigate the performance
of on-line learning of model trees with and without change detection on an artificial task
where two types of changes are introduced to a known dynamical system (see Sec. 4.3).

5.2. Evaluated Algorithms

We compare and evaluate the on-line regression algorithms described in Sec. 3. In partic-
ular, we compare FIMT-DD using regression and model trees as well as the ORTO-A and
ORTO-BT algorithms for learning option trees, without change detection, on the pH neu-
tralization and gas-liquid separator case studies. For the Narendra case study, we consider
only FIMT-DD with and without change detection.

We use a single linear regression model learned on-line as a baseline, i.e., a single
perceptron (see Sec. 3.1). It can also be interpreted as a model tree with only leaf at the
root, which is never allowed to grow. The parameter settings chosen for the evaluated
algorithms are listed in Tab. 2.

5.3. Evaluation on Data Streams

The evaluation of accuracy of algorithms on data streams is not straightforward [4]. In
this paper, we use the predictive sequential or prequential approach, which introduces a

466 A. Osojnik et al.

Table 2. Parameter settings used for the compared algorithms.
Parameter Value Description

FIMT-DD
δ 0.0000001 Confidence level.
τ 0.05 Tie threshold.

nmin 300 Chunk size.
η 0.001 Perceptron learning rate.

ORTO
β 0.9 Option decay factor.

Tmax 10 Maximum total number of options.

fading factor into the calculation of error metrics [3]. Instead of reporting the average
error EN = 1

N

∑N
i=1 L(yi, ŷi) , where L is some loss function, yi is the real value of

the i-th example and ŷi is the algorithm’s prediction on the i-th example, we introduce
the faded sum of errors SN and the faded number of examples BN defined as follows:
SN = L(yN , ŷN)+αSN−1 =

∑N
i=1 α

N−iL(yi, ŷi) ,BN = 1+αBN−1 =
∑N
i=1 α

N−i ,
to compute the faded error EN = SN

BN
. We use the parameter value α = 0.975 [3].

If we use the square loss function L(y, ŷ) = (y − ŷ)2 , this allows us to compute
the faded mean squared error. Additionally, we use the relative root mean squared error
(RRMSE), where we take the square root of the ratio of the mean squared error of the
algorithm with the mean squared error of the linear regression model, which is used as a

baseline: RRMSE =
√

MSEalg

MSElr
.

6. Results and Discussion

In this section, we present the experimental results organized according to the experimen-
tal questions, posed in the previous section. We first discuss the question of the satisfactory
performance of data stream mining approaches for modeling dynamical systems. Next, we
discuss the relative performance of the different approaches to on-line regression. After-
wards, we focus on the comparison of two simulations obtained by a learned and a human
constructed model. Finally, we discuss how the on-line learning of regression trees (with
and without change detection) deals with time varying dynamical systems.

6.1. Comparison to the Baseline

In Tab. 3, we present the faded mean squared errors for the baseline method of linear
regression and each of the four tree-based approaches for the gas-liquid separator do-
main. The error is recorded after each 5000 examples. The performance figures for the
pH domain are given in Tab. 4.

The results clearly show that the tree-based methods for regression perform very well
in terms of predictive error. For the case of the gas-liquid separator, the mean squared error
rapidly approaches zero for all four tree-based approaches, as well as for the baseline.
However, the error of the baseline is about an order of magnitude larger. For the pH

Modeling Dynamical Systems with Data Stream Mining 467

Table 3. The faded mean squared errors of the different modeling approaches on the
gas-liquid separator dataset, recorded at intervals of 5000 examples.

of examples 5000 10000 15000 20000 25000
Baseline 0.0084 0.0051 0.0253 0.0117 0.0136

FIMT-DD Reg. trees 0.0064 0.0018 0.0050 0.0030 0.0011
FIMT-DD Model trees 0.0040 0.0007 0.0006 0.0016 0.0003

ORTO-A 0.0008 0.0002 0.0021 0.0002 0.0005
ORTO-BT 0.0022 0.0002 0.0018 0.0011 0.0018

neutralization case, the error is getting close to zero for the tree-based approaches, but
stays very high for the linear regression baseline approach.

The relative root mean square error essentially compares the error of the tree-based
approaches to the error the baseline, the latter having the root relative root mean square
error of 1. For the gas-liquid separator domain, the relative root mean squared error is
clearly lower than 1 for all tree-based approaches (see Fig. 7a). For the pH neutraliza-
tion case it is even lower (see Fig. 7b). To sum up, we can conclude that all tree-based
approaches perform successfully at the task of system identification in discrete-time.

6.2. Relative Performance of the Tree-Based Approaches

In this section, we present the performance of the tree-based methods in terms of the
(faded) root relative mean squared error with respect to the baseline (see Fig. 7), memory
and time consumption (see Fig. 8 and 9), both for the gas-liquid separator case (marked
with (a) in the figures) and the pH neutralization case (marked with (b) in the figures).

For the case of the FIMT-DD algorithm, we can see that FIMT-DD clearly performs
better when learning model trees than when learning regression trees (see Fig. 7). Further-
more, the usage of model trees makes learning faster (in terms of achieving lower error
with the same number of examples). In addition, model trees also achieve lower error
overall than regression trees (for any given number of examples).

Regarding the option trees, the ORTO-A algorithm clearly outperforms the ORTO-BT
algorithm. While the option trees learned for both ORTO-A and ORTO-BT are the same,
the aggregation by averaging yields more accurate predictions. In addition, ORTO-A is
also less prone to fluctuations in the error.

Table 4. The faded mean squared errors of the different modeling approaches on the pH
dataset, recorded at intervals of 5000 examples.

of examples 5000 10000 15000 20000 25000 30000
Baseline 3.0473 3.9209 4.1793 3.1796 3.8867 3.3447

FIMT-DD Reg. trees 0.9071 0.0606 0.0438 0.0343 0.0281 0.0195
FIMT-DD Model trees 0.4405 0.0745 0.0390 0.0313 0.0375 0.0198

ORTO-A 0.0733 0.0251 0.0252 0.0215 0.0150 0.0167
ORTO-BT 0.3576 0.0343 0.0402 0.0396 0.0219 0.0151

468 A. Osojnik et al.

(a) gas-liquid separator dataset (b) pH dataset

Fig. 7. The relative performance (in terms of RRMSE) of the different approaches.

If we analyze the overall performance, the ORTO-A algorithm is the best performing
algorithm. It consistently outperforms all of the other algorithms in terms of the error.
In addition, is the fastest among the algorithms to achieve low errors. These results hold
both for the gas-liquid separator case, as well as the pH neutralization case. This is to be
expected, as the ORTO algorithm was designed to overcome the problem of initial delay
in learning in a streaming setting and to increase the predictive accuracy faster [10].

If we analyze the performance in terms of time and memory used, we can observe that
the ORTO-A and the ORTO-BT algorithms are the most resource intensive (see Fig. 8
and 9). However, the ORTO-BT algorithm uses a fractionally smaller part of the tree for
prediction than the ORTO-A algorithm. Using model trees rather than regression trees,
for the FIMT-DD algorithm, increases the time consumption slightly, while the memory
consumption barely changes.

(a) gas-liquid separator dataset (b) pH dataset

Fig. 8. The memory consumption (in MB) of the different tree-based approaches.

Modeling Dynamical Systems with Data Stream Mining 469

(a) gas-liquid separator dataset (b) pH dataset

Fig. 9. The time consumption (in seconds) of the different tree-based approaches.

6.3. Comparison to the Simulated Model

Here we use ORTO-A, which we identified as the best performing method. Here, we com-
pare its predictions to the recorded values, as well as the values obtained by simulating the
expert-derived non-linear dynamic model (see Sec. 4.1). The simulation was performed
in Simulink using the ODE3 (Bogacki-Shampine) fixed step solver.

The results of the comparison are presented in Fig. 10. It is clear that the model learned
by ORTO-A captures the dynamics of the system. In the first half of the simulation, the
pressure simulated by the learned model is often off of the real pressure. This may be due
to the differences between the two runs of the gas-liquid separator.

While the simulation of the expert-derived model better captures the dynamics of the
system, it should be noted that the construction of this model required a lot of human
resources. Our method, on the other hand, was used out of the box, without any param-
eter tuning, requiring minimal additional resources, both in terms of human effort and
computation time.

6.4. Change Detection

In Fig. 11, we show the performance of the FIMT-DD algorithm in terms of the faded
mean squared error on the Narendra-F and Narendra-P datasets, from the Narendra case.
In the former, a functional form of the dynamics is changed, while in the latter a parameter
of the dynamics changes, to simulate a time-varying dynamical system (see Sec. 4.3)

Analyzing the performance of the Narendra-F dataset, we notice that the FIMT-DD
algorithm with change detection does detect the change, builds an alternate subtree and
replaces the original in about 25000 examples, as the change is introduced at the 450000-
th example and the predictive accuracy increases at about the 475000th example (see
Fig. 11a). However, the difference in the error between the FIMT-DD with and without
detection and the adaptation to change is small. The increase in error due to the abrupt
change in the dynamics, which is in this case also relatively small, peaks at about 0.08.

The change introduced in the Narendra-P dataset, causes a larger increase in error,
peaking at about 0.15 (see Fig. 11b). This is expected, as in this case the change doubled

470 A. Osojnik et al.

Fig. 10. The recorded values of the system variable (pressure) and its values simulated
by the model learned by ORTO-A and the constructed expert model of the pressure in
the gas-liquid separator case study.

the range of the second term to [−2, 2], while the change introduced in the Narendra-
F dataset only changed its distribution on the [−1, 1] interval. As before, the change is
detected and the tree is adapted in about 25000 examples. Because the introduced change
is more radical than before, regrowing of the affected subtree(s) produces better results.

7. Conclusions and Further Work

The central question addressed by this paper concerns the applicability of the paradigm
of mining data streams, and in particular the tree-based approaches to on-line regression,
to the task of system identification in discrete-time. To address this question, we perform
a thorough experimental evaluation, where we applied several tree-based approaches for
on-line regression to several benchmark problems in discrete-time modeling of dynamical

(a) Narendra-F dataset (b) Narendra-P dataset

Fig. 11. The performance (faded MSE) of FIMT-DD without and with change detection.

Modeling Dynamical Systems with Data Stream Mining 471

systems. Using an evaluation methodology and performance measures appropriate for the
task at hand, we answer several experimental questions, as summarized below.

Our conclusions are as follows. Overall, tree-based approaches to on-line regression
are appropriate for solving the task of identification of dynamical systems in discrete-
time. Among the considered approaches, the ORTO-A algorithm clearly stands out as the
best-performing one. ORTO-A learns option trees for regression, where an example may
be sorted down multiple branches of the tree in option nodes, and averages the predictions
obtained from each of the branches in the option tree that an example follows.

When comparing the learned model to an expert constructed model, we noted that the
expert model produces a simulation closer to the recorded data. However, the learned
model still captures the dynamics of the system quite well. Furthermore, the learned
model required minimal additional use of resources, human and machine, while the con-
struction of the expert model and its parameter tuning is a labor intensive and error-prone
process.

We also investigate the use of tree-based regression algorithms on data streams for the
identification of time-varying systems. The FIMT-DD algorithm for learning model trees
is applied to synthetic data, which include a change of system dynamics at a given point
in time. The change detection mechanism and the adaptation method in the FIMT-DD
algorithm successfully detect the introduced change and adapt the tree to achieve better
performance (as compared to the FIMT-DD algorithm without change detection).

Many avenues remain for further work. Specifically, the change detection and adap-
tation mechanisms of tree-based on-line learning approaches should be tested on other
real-world datasets, where change is either known or suspected to appear. Furthermore,
the mechanism for detecting change, i.e., the Page-Hinckley test, should be automatically
parameterized with regard to the relative error instead of the absolute error, as this would
allow to detect changes of any size without the need to select the parameters manually.

More generally, the experimental questions posed in this paper should be answered
for a larger set of real-world problem domains and corresponding datasets. Of particular
interest is the identification of dynamical systems which have more than one system vari-
able: These are called MIMO (multiple input multiple output systems). Additional on-line
learning methods should also be considered for the task at hand, such as tree-based on-
line ensemble approaches, including on-line methods for learning multi-target regression
and model trees on data streams [8].

Acknowledgments. Aljaž Osojnik is supported by the Slovenian Research Agency (ARRS) through
a young researcher grant. Sašo Džeroski would like to acknowledge the financial support of the
following institutions: The Slovenian Research Agency (Grant P2-0103), the European Commission
(Grants ICT-2013-612944 MAESTRA and KT-2013-604102 HBP). The authors would also like to
thank Juš Kocijan for providing the expert simulation model for the gas-liquid separator use case
and the provided feedback.

References

1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.
Wadsworth, Belmont, CA (1984)

2. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK (2000)

472 A. Osojnik et al.

3. Gama, J.: Knowledge Discovery from Data Streams. Chapman & Hall/CRC, London (2010)
4. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning algorithms.

In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. pp. 329–338. ACM Press, New York (2009)

5. Henson, M.A., Seborg, D.E.: Adaptive nonlinear control of a pH neutralization process. IEEE
Transactions on Control Systems Technology 2, 169–182 (1994)

6. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association 58, 13–30 (1963)

7. Ikonomovska, E.: Algorithms for Learning Regression Trees and Ensembles on Evolving Data
Streams. Ph.D. thesis, Jožef Stefan International Postgraduate School, Ljubljana (2012)

8. Ikonomovska, E., Gama, J., Džeroski, S.: Incremental multi-target model trees for data streams.
In: Proceedings of the 2011 ACM Symposium on Applied Computing. pp. 988–993. ACM
Press, New York (2011)

9. Ikonomovska, E., Gama, J., Džeroski, S.: Learning model trees from evolving data streams.
Data Mining and Knowledge Discovery 23, 128–168 (2011)

10. Ikonomovska, E., Gama, J., Ženko, B., Džeroski, S.: Speeding-up Hoeffding-based regression
trees with options. In: Proceedings of the 28th International Conference on Machine Learning.
pp. 537–544. ACM Press, New York (2011)

11. Kocijan, J., Likar, B.: Gas-liquid separator modelling and simulation with Gaussian-process
models. Simulation Modelling Practice and Theory 16, 910–922 (2008)

12. Kohavi, R., Kunz, C.: Option decision trees with majority votes. In: Proceedings of the 14th In-
ternational Conference on Machine Learning. pp. 161–169. Morgan Kaufmann, San Francisco,
CA (1997)

13. Narendra, K., Parthasarathy, K.: Identification and control of dynamical systems using neural
networks. IEEE Transactions on Neural Networks 1, 4–27 (1990)

14. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks
and Fuzzy Models. Springer, Berlin (2001)

15. Quinlan, J.R.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint
Conference On Articial Intelligence. pp. 343–348. World Scientific, Singapore (1992)

16. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cam-
bridge, MA (2006)

17. Vrančić, D., Juričić, D., Petrovčič, J.: Measurements and mathematical modelling of a semi-
industrial liquid-gas separator for the purpose of fault diagnosis. Tech. rep., Jožef Stefan Insti-
tute, Ljubljana, Slovenia (1996), dP-7260

Aljaž Osojnik is a young researcher at the Department of Knowledge Technologies, Jožef
Stefan Institute, Ljubljana, Slovenia and a PhD student at the Jožef Stefan Postgraduate
School. He completed his MSc and BSc in mathematics at the Faculty of Mathematics and
Physics, University of Ljubljana, Slovenia. His research interests are related to machine
learning, data mining, and more specifically development of methods for data stream
mining.

Panče Panov is a postdoctoral researcher at the Department of Knowledge Technologies,
Jožef Stefan Institute, Ljubljana, Slovenia. He completed his PhD in 2012 in the area of
data mining at the Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
His thesis concerned the design and implementation of a modular ontology for the do-
main of data mining. His research interests are related to machine learning, data mining,
the knowledge discovery process, and applying ontology in these domains. His contribu-
tions include developments of ontologies for describing the domain of data mining and

Modeling Dynamical Systems with Data Stream Mining 473

the process of knowledge discovery, which can be employed in various applications. He
was actively involved in several EU-funded projects in the past (IQ, SUMO) and is cur-
rently involved in the MAESTRA project. In addition, he participated in several projects
financed by the Slovenian research agency and one bilateral project between Slovenia and
Croatia. He is a co-editor of the book entitled “Inductive databases and constraint-based
data mining” published in 2010 by Springer. In 2014, he was program co-chair of the
International Conference on Discovery Science (2014) and co-editor of the proceedings
of the conference published by Springer. Finally, in 2016 he a co-editor of a special issue
of the Journal Machine Learning on Discovery Science.

Sašo Džeroski is a scientific councillor at the Jožef Stefan Institute and the Centre of Ex-
cellence for Integrated Approaches in Chemistry and Biology of Proteins, both in Ljubl-
jana, Slovenia. He is also a full professor at the Jožef Stefan International Postgraduate
School. His research is mainly in the area of machine learning and data mining (including
structured output prediction and automated modeling of dynamic systems) and their appli-
cations (mainly in environmental sciences, incl. ecology, and life sciences, incl. systems
biology). He is co-author/co-editor of more than ten books/volumes, including “Inductive
Logic Programming”, “Relational Data Mining”, “Learning Language in Logic”, “Com-
putational Discovery of Scientific Knowledge” and “Inductive Databases and Constraint-
Based Data Mining”. He has participated in many international research projects (mostly
EU-funded) and coordinated two of them in the past: He is currently the coordinator of
the FET XTrack project MAESTRA (Learning from Massive, Incompletely annotated,
and Structured Data) and one of the principal investigators in the FET Flagship Human
Brain Project.

Received: May 18, 2015; Accepted: May 8, 2016.

	Introduction
	Background
	Modeling Dynamical Systems in Discrete Time
	System Identification via Regression
	Data Stream Mining

	Modeling Dynamical Systems in Discrete Time Using Data Stream Mining
	FIMT-DD: Learning Model Trees with Change Detection
	ORTO: Learning Option Trees for Regression on Data Streams

	Case Studies
	Case Study: Gas-Liquid Separator
	Case Study: pH Neutralization
	Case Study: Narendra

	Experimental Design
	Experimental Questions
	Evaluated Algorithms
	Evaluation on Data Streams

	Results and Discussion
	Comparison to the Baseline
	Relative Performance of the Tree-Based Approaches
	Comparison to the Simulated Model
	Change Detection

	Conclusions and Further Work

