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Abstract.

A generalized ensemble model (gEnM) for document ranking isproposed in this pa-
per. The gEnM linearly combines the document retrieval models and tries to retrieve rel-
evant documents at high positions. In order to obtain the optimal linear combination of
multiple document retrieval models or rankers, an optimization program is formulated
by directly maximizing the mean average precision. Both supervised and unsupervised
learning algorithms are presented to solve this program. For the supervised scheme, two
approaches are considered based on the data setting, namelybatch and online setting. In
the batch setting, we propose a revised Newton’s algorithm,gEnM.BAT, by approximating
the derivative and Hessian matrix. In the online setting, weadvocate a stochastic gradient
descent (SGD) based algorithm—gEnM.ON. As for the unsupervised scheme, an unsuper-
vised ensemble model (UnsEnM) by iteratively co-learning from each constituent ranker
is presented. Experimental study on benchmark data sets verifies the effectiveness of the
proposed algorithms. Therefore, with appropriate algorithms, the gEnM is a viable option
in diverse practical information retrieval applications.

Keywords: information retrieval, optimization, mean average precision, document
ranking, ensemble model

1. Introduction

Ranking is a core task for Information Retrieval (IR) in practical applications such as
search engines and advertising recommendation systems. The aim of the ranking task
is to retrieve the most relevant objects (documents, for example) with regard to a given
query. With the continuous growth of information in modern world wide webs, this task
has become more challenging than ever before. In the rankingtask, the general problem
is the over-inclusion of relevant documents that a user is willing to receive [1]. During the
last decade, a large quantity of models has been proposed to solve this problem. In gen-
eral, those models are evaluated by two IR performance measures, namely Mean Average
Precision (MAP) and Normalized Discounted Cumulative Gain(NDCG) [2]. Compared
to the framework in which models are proposed and then testedby IR measures, the
approaches of directly optimizing IR measures have been showed more effective [3, 4].
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These approaches apply efficient algorithms to solve the optimization problem where the
objective function is one of the IR metrics.

Structured SVM is a widely used framework for optimizing thebounds of IR metrics.
Examples include SVMmap [5] and SVMndcg [6]. Many other methods, such as Softrank
[7,8], first approximate the ranking measures through smooth functions and then optimize
the surrogate objective functions. Yet, the drawbacks of those methods have been shown
in two aspects:a) the relationship between the surrogate objective functions and ranking
measures was not sufficiently studied; andb) the algorithms resolving the optimization
problems are not trivial to be employed in practice [3]. Recently, a general framework that
directly optimizes of IR measure has been reported [3]. Thisframework can effectively
overcome those drawbacks. However, it only optimizes the IRmeasure of one ranker, and
the information provided by other rankers is not fully utilized.

In the area of classification, an ensemble classifier that linearly combines multiple
classifiers has been successfully proved to perform better than any of the constituent
classifiers. A number of sophisticated algorithms have beenproposed for obtaining the
ensemble classifier such as AdaBoost [9]. Thus, a hypothesisfor IR ranking is that the
retrieval accuracy can be increased by combining multiple ranking models [10–12]. As a
matter of fact, AdaRank [13, 14] and LambdaMART [15] are two well-known models in
IR area utilizing AdaBoost. The AdaRank repeatedly constructs weak rankers (features)
and finally linearly combines into a strong ranker with proper weights assigned to the
constituent rankers. However, the drawback of the AdaRank is the inexplicit theoretical
justification and determination of the iteration number. While the LambdaMART enjoys
the theoretical advantage of directly optimizing IR measures by linearly combining any
two rankers, it cannot be extended to multiple rankers straightforwardly. In those previ-
ous studies, the direct optimization of NDCG is well-studied but the direct optimization
of MAP are rarely tackled, to the best of our knowledge. The main difficulty of directly
optimizing MAP is that the objective function defined by MAP is nonsmooth, nondif-
ferentiable and nonconvex. Ensemble Model (EnM) [16] solves this problem by using
boosting algorithm and coordinate descent algorithm. However, the solutions cannot be
theoretically guaranteed to be optimal, or even local optimal.

In this paper, we propose a generalized ensemble model (gEnM) for document rank-
ing. It is an ensemble ranker that linearly combines multiple rankers. By appropriate ad-
justments to the weights for those constituent rankers, onemay improve the overall per-
formance of document ranking. To compute the weights, we formulate a constrained non-
linear program which directly optimizes the MAP. The difficulty of solving this nonlinear
program lies in the nondifferentiable and noncontinuous objective function. To overcome
this difficulty, we first introduce a differentiable surrogate to approximate the objective
function, and then formulate an approximated unconstrained nonlinear program.

Both supervised and unsupervised algorithms are employed for solving the nonlinear
program. In the supervised scheme, batch and online data settings are considered. These
schemes and settings are designed for different IR environments. For the batch setting, the
algorithm gEnM.BAT is a revised Newton’s method by approximating the derivative and
Hessian matrix. As for the online scheme, an online algorithm, gEnM.ON, is proposed
based on stochastic gradient descent algorithms. The gEnM.ON is the first online algo-
rithm for obtaining an ensemble ranker, to the best of our knowledge. In the unsupervised
scheme, an unsupervised gEnM (UnsEnM) inspired by iRANK [17] is proposed. The Un-
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sEnM utilizes the collaborative information among constituent rankers. The advantage of
UnsEnM over the iRANK is that it is applicable to any number ofconstituent rankers.
Compared to the EnM, the generalized version gEnM differs inthree aspects:

1. The assumption for EnM is relaxed for gEnM;
2. the batch algorithms proposed for gEnM performs better;
3. both online algorithm and unsupervised algorithm are proposed for gEnM whereas

only batch algorithm for EnM.

The remainder of this paper is organized as follows. In the next section, the prob-
lem of direct optimization of MAP is described and formulated. Also, the approximation
to this problem is provided as long as the theoretical proofs. The algorithms, including
gEnM.BAT, gEnM.ON and UnsEnM, are presented in Section 5. The computational re-
sults of the proposed algorithms tested on the public data sets are demonstrated in Section
6. The last section concludes this paper with discussions.

2. Generalized Ensemble Model

2.1. Problem Description

Consider the task of constructing a linear combination of rankers that result in better
performance than each constituent. We call this linear combination theensemble ranker or
ensemble model hereinafter. Given a search query in this task, a sequence ofdocuments is
retrieved by the constituent rankers according to the relevance to the query. The relevance
is measured by the ranking scores calculated by each ranker.For explicit description, let
scorek denote theranking score or relevant score calculated by thekth ranker. With
appropriate weightsweightk over those constituent rankers, the ranking scoresscore of
ensemble ranker is defined by linearly summing the weighted constituent ranking scores,
i.e.,

score =weight1 · score1 + weight2 · score2+

· · ·+ weightk · scorek

where the weights satisfyweighti ≥ 0 andweight1 + weight2 + · · · + weightk = 1.
The documents ranked by the ensemble ranker are thus orderedaccording to the ensemble
ranker scores. Our goal is to uncover an optimal weight vector

weight = (weight1, weight2, ..., weightk)
T

with which more relevant documents can be ranked at high positions.
A toy example shown in Table 1 describes this problem. According to the ranking

scores, the ranking lists returned by Ranker 1 and 2 are{2,1,3} and {3,1,2}, respec-
tively, and the corresponding MAPs are 0.72 and 0.72. In order to make full use of the
ranking information provided by both rankers, a conventional heuristic is to sum up rank-
ing scores (i.e., use uniform weights,(0.5, 0.5)), which generates Ensemble 1 with MAP
equal to 0.72. Obviously, this procedure is not optimal since we can give arbitrary alter-
native weights that generate a better precision. For example, Ensemble 2 uses weights
(0.7, 0.3) so as to result in higher MAP, i.e., 0.89, as listed in the table.
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Table 1.A toy example. The values in the mid-three rows represent theranking scores
given an identical query. The rankers are measured by MAP, aslisted in the fifth row.
The ranking scores of Ensemble 1 and 2 are defined by 0.5*Ranker 1+0.5*Ranker 2 and
0.7*Ranker 1+0.3*Ranker 2, respectively. The relevant document list is assumed to be
{2,3}.

Ranker 1 Ranker 2 Ensemble 1 Ensemble 2
Document 1 0.35 0.2 0.55 0.305
Document 2 0.4 0.1 0.5 0.31
Document 3 0.25 0.7 0.95 0.385

MAP 0.72 0.72 0.72 0.89

This toy example implies that there exist optimal weights assigned for the constituent
rankers to construct an ensemble ranker. Different from proposing new probabilistic or
nonprobabilistic models, this ensemble model motivates analternative way for solving
ranking tasks. In order to formulate this task as an optimization problem, the metric—
MAP—is used as the objective function since it reflects the performance of IR system and
tends to discriminate stably among systems compared to other IR metrics [18]. Therefore,
our goal is changed to calculate the weights with which the MAP is maximized. In the
following, we will describe and solve this problem mathematically.

2.2. Problem Definition

Let D be a set of documents,Q a set of queries andΦ a set of rankers.|Di| denotes the
relevant document list,dj ∈ D thedthj document associated withjth relevant document
in Di, qi ∈ Q the ith query andφk ∈ Φ the kth ranker.L represents the number of
queries,|Di| the number of relevant documents associated withqi andKφ the number of

rankers. The ensemble ranker is defined asH =
∑Kφ

k=1 αkφk which linearly combines
Kφ constituent rankers with weightsα’s. We assume the relevant documents have been
sorted in descending order according to the ranking sores. On the basis of these notations
and the definition of MAP, the aforementioned problem can be formulated as:

max
1

L

L
∑

i

1

|Di|

|Di|
∑

j

j

R (dj , H)

s.t.
Kφ
∑

k=1

αk = 1

0 ≤ αk ≤ 1, k = 1, 2, ...,Kφ

(P1)

whereR (dj , H) represents the ranking position of documentdj given by the ensemble
modelH . In this constrained nonlinear program,a) the objective function is a general def-
inition of MAP; andb) the constraints indicate that the linear combination is convex and
that the weights can be interpreted as a distribution. Sincethe position functionR(dj , H)
is defined by the ranking scores, it can be written as

R(dj , H) = 1 +
∑

d∈D,d 6=dj

I
{

sdj ,d(H) < 0
}

(1)
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wheresx,y(H) = sx(H) − sy(H) andI{sx,y(H) < 0} is an indicator function which
equals 1 ifsx,y(H) < 0 is true and 0 otherwise. Here,sx(H) denotes the ranking score
of documentx given by ensemble modelH andsx,y(H) the difference of the ranking
scores between documentx andy. Sincesx(H) is linear with respect to the weights, it
can be rewritten as

sx(H) = sx





Kφ
∑

k=1

αkφk(qi)





=

Kφ
∑

k=1

αksx(φk(qi))

(2)

wheresx(φk(qi)) denotes the relevant score of documentx for queryqi calculated by
modelφk.

Here, we give an example illustrating the graph of the objective function. This exam-
ple employed the MED data set with the settings identical to those in [16] except that
only two constituent rankers, LDI and pLSI, were used to comprise the ensemble ranker
for plotting purpose. The weights were restricted to the constraints in Problem P1 with
the precision of three digits after the decimal point. In detail, the objective function was
evaluated by settingα1 for LDI andα2 for pLSI, whereα1 + α2 = 1, andα1 increased
from 0 to 1 with a step size of0.001. Figure 1 shows a partial of the graph of objec-
tive function. From this plot, it is clearly observed thata) the objective function is highly
nonsmooth and nonconvex; andb) there are numerous local optimums in the objective
function. Though the differentiability is not obvious in this graph, the position function
implies that the objective function is nondifferentiable in terms of weights. Therefore, the
general gradient-based algorithms, such as Lagrangian Relaxation and Newton’s Method,
cannot be applied to this problem directly to find the optimum, even local optimums [3].

From this analysis of the objective function, the position function plays an important
role in the differentiability. Thus, we will discuss how to approximate it with a differen-
tiable function and how to solve this optimization Problem P1 in the next two sections.

3. Approximation

In this section, we propose a differentiable surrogate for the position function and further
approximate the Problem P1 with an easier nonlinear program.

Since the position function is defined by an indicator function (Equation 1), we can
use a sigmoid function to approximate this indicator function, i.e.,

I{sdj ,d(H) < 0} ≃
exp(−βsdj ,d(H))

1 + exp(−βsdj,d(H))
, (3)

whereβ > 0 is a scaling constant. It is obvious that this approximationis in the range of
[0.5, 1) if sdj ,d(H) ≤ 0 and(0, 0.5] if sdj ,d(H) > 0. The following theorem shows that
we can get a tight bound by this approximation.

Theorem 1. The difference between the sigmoid function gij and the indicator function
I{sdj,d(H) < 0} is bounded as:

∣

∣gij − I{sdj,d < 0}
∣

∣ <
1

1 + exp(βδij)
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Fig. 1.An illustrated example of the objective function with two constituent rankers in
Problem P1.

where δij = min |sdj,d|, gij =
exp(−β

∑Kφ

k=1
αksdj,d)

1+exp(−β
∑Kφ

k=1
αksdj,d)

and sdj,d represents sdj,d(φk(qi))

for notational simplicity henceforth

Proof. Forsdj ,d > 0, we haveI{sdj,d < 0} = 0 andδij ≤ sdj ,d, thus,

∣

∣gij − I{sdj,d < 0}
∣

∣ ≤
1

1 + exp(βδij
∑Kφ

k=1 αk)

Forsdj,d < 0, we haveI{sdj,d < 0} = 1 andδij ≤ −sdj,d, thus,
∣

∣gij − I{sdj ,d < 0}
∣

∣

≤
1

1 + exp(βδij
∑Kφ

k=1 αk)

Since
∑Kφ

k=1 αk = 1, we can get

∣

∣gij − I{sdj,d < 0}
∣

∣ ≤
1

1 + exp(βδij)
. (4)

This completes the proof.

This theorem tells us that the sigmoid function is asymptotic to the indicator function
especially whenβ is chosen to be large enough. By using this approximation, the position
function can be correspondingly approximated as

R̂(dj , H) = 1 +
∑

d∈D,d 6=dj

exp(−βsdj ,d(H))

1 + exp(−βsdj ,d(H))
, (5)
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which becomes differentiable and continuous.
Then it is trivial to show the approximation error of position function, i.e.,

∣

∣

∣R̂(dj , H)−R(dj , H)
∣

∣

∣ ≤
∑

d∈D,d 6=dj

∣

∣gij − I{sdj,d < 0}
∣

∣

<
|D| − 1

1 + exp(βδij)
.

(6)

Suppose 1000 documents exit in the document setD and δij = 0.04. By setting
β = 300, the approximation error of the position function is bounded by

∣

∣

∣
R̂(dj , H)−R(dj , H)

∣

∣

∣
< 0.006, (7)

which is tight enough for our problem.
In this way, the original Problem P1 can be approximated by the following problem

max
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

j

R̂(dj , H)

s.t.
Kφ
∑

k=1

αk = 1

0 ≤ αi ≤ 1, i = 1, 2, ...,Kφ.

(P2)

Using the settings identical to Figure 1, Figure 2 plots the graphs of the original ob-
jective function (OOF) in Problem P1 and the approximated objective function (AOF)
in Problem P2. As shown in the plot, the trend of the AOF is close to that of the OOF.
The weights generating the optimal MAP almost remain unchanged in these two curves.
From this example, it is illustratively shown that the original noncontinuous and non-
differentiable objective function can be effectively approximated by a continuous and
differentiable function. The following lemma and theorem will theoretically prove this
conclusion.

Theorem 2. The error between the OOF in Problem P1 and the AOF in Problem P2 is
bounded as

|Λ̂− Λ| <
(|D| − 1)(L+

∑

i |Di|)

2L(1 + exp(βδij))
(8)

where Λ̂ and Λ denote the objective function in Problem P2 and Problem P1, respectively.

Proof. For the approximation error, we have

|Λ̂− Λ| =
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

∣

∣

∣

∣

∣

j(R− R̂)

RR̂

∣

∣

∣

∣

∣

,



130 Yanshan Wang et al.

0 0.2 0.4 0.6 0.8 1
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

α
1

M
A

P

 

 

Approximate Objective

Objective

Fig. 2.Comparison of the OOF in Problem P1 and AOF in Problem P2. (β = 200)

whereR denotesR(dj , H) for notational simplicity. SincêR = 1 +
∑

d 6=dj
gij(α) and

R = 1 +
∑

d 6=dj
I{sdj,d < 0} are strictly positive, we have

∣

∣

∣

∣

∣

j(R − R̂)

RR̂

∣

∣

∣

∣

∣

=
j
∣

∣

∣R− R̂
∣

∣

∣

RR̂
.

According to Equation 6, we have

|Λ̂− Λ| <
(|D| − 1)(L+

∑

i |Di|)

2L(1 + exp(βδij))
. (9)

This completes the proof.

This theorem indicates that the OOF in Problem P1 can be accurately approximated by
the surrogate defined by the position function (5) in ProblemP2. For example, if|D| =
10000, L = 200,

∑

|Di| = 500, β = 300 andδij = 0.04, the absolute discrepancy
between the objectives in Problem P1 and P2 is bounded by

|Λ̂− Λ| < 0.1.

This discrepancy is within an acceptable level and will decrease with the growth of the
query sizeL and the value ofβ.

The constraints of weights in Problem P2 are of practical significance because these
weights can be regarded as probabilities drawn from a distribution over the constituent
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rankers. However, adding constraints increases the difficulty of solving this optimization
problem. Intuitively, the normalization of weights assigned for ranking scores is nonessen-
tial because the ranking position is determined by the relative values of ranking scores.
Take the toy in Table 1 as an example, the weights(3.5, 1.5) result in the identical En-
semble 2 to(0.7, 0.3). The lemmas and theorems below prove the hypothesis that this
constrained nonlinear program can be approximated by an unconstrained nonlinear pro-
gram.

Lemma 1. Problem P2 is equivalent to the following problem:

max
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

j

R̃
(P3)

where R̃ = 1+
∑

d∈D,d 6=dj
g̃ij , g̃ij =

exp(−β
∑Kφ

k=1
α̃ksdj,d(φk(qi)))

1+exp(−β
∑Kφ

k=1
α̃ksdj,d(φk(qi)))

and α̃k =
α′

k
∑Kφ

k=1
α′

k

, α′
k >

0, k = 1, 2, ...,Kφ

Since
∑Kφ

k=1 α̃k = 1, it can be straightforwardly proved that Problem P3 is equivalent
to Problem P2.

Remark 1. If we let g′ij =
exp(−β

∑Kφ

k=1
α′

ksdj,d(φk(qi)))

1+exp(−β
∑Kφ

k=1
α′

k
sdj,d(φk(qi)))

, Theorem 1 applies for both̃gij

andg′ij as well.

The following theorem states that Problem P3 can be surrogated by an easier problem.

Theorem 3. Consider the following problem

max
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

j

R′
, (P4)

where R′ = 1 +
∑

d∈D,d 6=dj
g′ij . Let Λ̃ and Λ′ denote the objective function in Problem

P3 and Problem P4, respectively. Then, we have the following bound for the absolute
difference between Λ̃ and Λ′

|Λ̃− Λ′| <
ǫ̂(L+

∑L
i=1 |Di|)

2L
(10)

where ǫ̂ = ǫ′ + ǫ̃, ǫ′ = |R′ −R| and ǫ̃ =
∣

∣

∣R̃−R
∣

∣

∣.

Proof. From Lemma 1 and Lemma 1, we can derive the following bound.

|Λ̃ − Λ′|

=
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

∣

∣

∣

∣

∣

j(R′ − R̃)

R′R̃

∣

∣

∣

∣

∣
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SinceR′ = 1 +
∑

d 6=dj
g′ij andR̃ = 1 +

∑

d 6=dj
g̃ij are strictly positive, we have

∣

∣

∣

∣

∣

∣

j
(

∑

d 6=dj
g′ij −

∑

d 6=dj
g̃ij

)

(1 +
∑

d 6=dj
g′ij)(1 +

∑

d 6=dj
g̃ij)

∣

∣

∣

∣

∣

∣

=
j
∑

d 6=dj

∣

∣(g′ij − I{sdj,d < 0}) + (I{sdj ,d < 0} − g̃ij)
∣

∣

(1 +
∑

d 6=dj
g′ij)(1 +

∑

d 6=dj
g̃ij)

According to the general triangle inequality, we can draw anupper bound for the term in
numerator

∑

d 6=dj

∣

∣(g′ij − I{sdj ,d < 0}) + (I{sdj ,d < 0} − g̃ij)
∣

∣

≤
∑

d 6=dj

∣

∣g′ij − I{sdj,d < 0}
∣

∣+
∑

d 6=dj

∣

∣I{sdj,d < 0} − g̃ij
∣

∣

< ǫ̂.

Then, it is trivial to get

|Λ̃− Λ′| <
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

j · ǫ̂

<
ǫ̂(L+

∑L
i=1 |Di|)

2L
.

(11)

This completes the proof.

Since the differencesǫ′ andǫ̃ are small enough, Problem P4 can accurately approxi-
mate Problem P3. This theorem tells us that the AOF is also determined by the ranking
positions, i.e., the relative values of ranking scores, thus the normalization constraints
in Problem P2 can be removed. Taking Lemma 1 and Theorem 2 intoaccount, we can
trivially draw the following corollary.

Corollary 1. Problem P1 can be approximated by Problem P4.

In the next section, we focus on proposing algorithms that solves Problem P4.

4. Algorithm

In order to solve Problem P4, we propose algorithms according to the data settings—batch
setting and online setting. In the batch setting, all the queries and ranking scores given by
constituent rankers are processed as a batch. Based on the batch data, the weights over
constituent rankers are computed by maximizing the MAP. Twoalgorithms, gEnM.BAT
and gEnM.IP, are reported in this setting. The potential forthe batch algorithms merit
consideration for those systems containing complete data [19]. Take a literature search
engine as an example. The titles can be seen as queries while the abstracts and contents
of publications can be regarded as relevant documents. So a batch can be established to
train the proposed model.
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In many IR environments such as recommendation systems in E-commerce, however,
the queries and ranking scores are generated in real time so as to construct data sequences
at different times. Thus, we will secondly propose an onlinealgorithm, gEnM.ON, for
dealing with these data sequences. The online algorithm is more scalable to large data
sets with limited storage than the batch algorithm. In the online algorithm, the queries as
well as corresponding ranking scores are input in a data stream and processed in a serial
fashion.

A common assumption for the aforementioned frameworks is that the relevant docu-
ments are known. However, the knowledge of relevant documents are unknown in many
modern IR systems such as search engines. For this IR environment, we further propose
an unsupervised ensemble model, UnsEnM, which makes use of aco-training framework.

4.1. Batch Algorithm: gEnM.BAT

Although many sophisticated methods can be applied for finding a local optimum, we
first propose a revised Newton’s method. Major modification includes the approximation
of gradients and Hessian matrix.

For notational simplicity, we utilize:

Gij :=
∑

d∈D,d 6=dj

g′ij ; (12)

Gk
ij :=

∑

d∈D,d 6=dj

∂g′ij
∂α′

k

; (13)

Gl
ij :=

∑

d∈D,d 6=dj

∂g′ij
∂α′

l

; (14)

Gkl
ij :=

∑

d∈D,d 6=dj

∂2g′ij
∂α′

k∂α
′
l

. (15)

Under those notations, the first and second derivative of theobjective function in Prob-
lem P4 can be written as

∂Λ′

∂α′
k

=
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

−jGk
ij

(1 +Gij)2
, (16)

and

∂2Λ′

∂α′
k∂α

′
l

=
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

−jGkl
ij (1 +Gij)

2 + 2jGk
ijG

l
ij(1 +Gij)

(1 +Gij)2
,

(17)
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respectively. According to the second derivative, the Hessian matrix is defined by

H(α) =















∂2Λ′

∂α′

1
∂α′

1

∂2Λ′

∂α′

1
∂α′

2

· · · ∂2Λ′

∂α′

1
∂α′

Kφ

∂2Λ′

∂α′

2
∂α′
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. (18)

As stated by Theorem 6 in Appendix B, the addends in the first derivative can be
estimated by zeros under certain conditions. This approximation also applies for the sec-
ond derivative as well as the Hessian matrix since both contain the first derivative item.
The advantages of using this approximation are two-fold:a) the computation of Hessian
is simplified since many addends are set to zeros under certain conditions; andb) the
computations ofGkj

ij , Gij , Gl
ij andGk

ij can be carried out offline before evaluating the
derivative and Hessian, which makes the learning algorithminexpensive.

Since the objective function in Problem P4 is nonconvex, multiple local optimums
may exist in the variable space. Therefore, different starting points are chosen to preclude
the algorithm from getting stuck in one local optimum. The largest local optimum and the
corresponding weights are returned as the final solutions. To accelerate the algorithm, we
can distribute different starting points onto different cores for parallel computing.

The batch algorithm is summarized as follows. We note thatαp and sdj ,d(φ(qi))
represent the vectors with elementsαp and sdj,d(φk(qi)), respectively, and thatp =
1, 2, ..., P indexesP initial values.

Algorithm 1 gEnM.BAT (Generalized Ensemble Model by Revised Newton’s Algorithm
in Batch Setting.)

Require: Query setQ, document setD, relevant document set|Di|with respect toqi ∈ Q, ranking
scoressd(φk(qi)) with respect toithe query,kth methodφk and documentd ∈ D, a number
of initial pointsαp and a thresholdǫ = 0 for stopping the algorithm.

1: for eachαp do
2: Set iteration countert = 1;
3: EvaluateΛ′t;
4: repeat
5: Sett = t+ 1;
6: Compute gradient∇

α
t−1

p
Λ′ and Hessian matrixH(αt−1

p ) (Algorithm 2);

7: Updateαt
p = α

t−1
p +H(αt−1

p )−1∇
α

t−1

p
Λ′;

8: EvaluateΛ′t;
9: until Λ′t − Λ′t−1 < ǫ

10: Storeαt
p

11: end for
12: return α’s.

A drawback of the conventional Newton’s method lies in that it is designed for uncon-
strained nonlinear programs while our problem requestsα nonnegative. Thus applying
the above algorithms may result in negative weights. The strategy for avoiding this short-
coming is to set the final negative weights to zeros. As a matter of fact, the rankers with
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Algorithm 2 Approximated Derivative and Hessian Computation Algorithm.

Require: Query setQ, document setD, relevant document set|Di|with respect toqi ∈ Q, ranking
scoressd(φk(qi)) with respect toithe query,kth methodφk and documentd ∈ D, current
α

t−1
p .

1: for qi ∈ Q do
2: for dj ∈ |Di| do
3: SetGij , Gkl

ij , Gk
ij andGl

ij to zeros;
4: for d ∈ D do
5: sdj ,d(φk(qi))← sdj (φk(qi))− sd(φk(qi));

6: g′ij(α
t−1
p )←

exp(−βα
t−1

p sdj,d(φ(qi)))

1+exp(−βα
t−1
p sdj,d(φ(qi)))

;

7: Gij ← Gij + g′ij(α
t−1
p )

8: if − 2
β
< α

t−1
p sdj ,d(φ(qi)) <

2
β

then

9: Gkl
ij ← Gkl

ij + β2sdj ,d(φk(qi))sdj,d(φl(qi))g
′

ij(α
t−1
p )(1 − g′ij(α

t−1
p ))(1 −

2g′ij(α
t−1
p ));

10: Gk
ij ← Gk

ij + βsdj ,d(φk(qi));
11: Gl

ij ← Gl
ij + βsdj ,d(φl(qi));

12: else
13: Gkl

ij ← Gkl
ij ;

14: Gk
ij ← Gk

ij ;
15: Gl

ij ← Gl
ij ;

16: end if
17: end for
18: end for
19: end for
20: Compute gradient∇

α
t−1
p

Λ′ (Equation 40)

and Hessian matrixH(αt−1
p ); (Equation 18)

21: return ∇
α

t−1
p

Λ′ andH(αt−1
p ).

negative weights play a negative role in the ensemble model.Thus, the ignorance of those
rankers are reasonable in practice.

4.2. Online Algorithm: gEnM.ON

In the previous two subsections, we have presented the learning algorithms for generating
gEnM by batch data sets. In contrast to the batch setting, theonline setting provides the
gEnM a long sequence of data. The weights are calculated sequentially based on the data
stream that consists of a series of time stepst = 1, 2, ..., T . For example, the gEnM is
constructed based on the new queries and corresponding rankings given at different times
in a search engine. The final goal is also to maximize the overall MAP on the data sets.

max
1

T

T
∑

t=1

1

Dt

Dt
∑

j=1

j

1 +
∑

d∈D,d 6=dj
g′ij

(19)

As a matter of fact, the presented batch algorithms can be applied directly in the online
setting by regarding the whole observed sequences as a batchat each step. In doing so,



136 Yanshan Wang et al.

however, the overall complexity is extremely high since thebatch algorithm should be run
once at each time step.

In the online setting, the subsequent queries are not available at present. An alternative
optimization technique should be considered to prevent from focusing too much on the
present training data. To distinguish with the notation in the batch setting, we letx be the
query and supposex1,x2, ...xt, ... are the given query at timet in the online setting. Here,
we assume that these sequences are given with thegrand truth distribution p(x). Thus,
the objective function of MAP can be defined as the expectation of average precision, i.e.,

J(α) =

∞
∑

t=1

f(x, α)p(x)

= Ep[f(x, α)],

(20)

where

f(x, α) =
1

Dxt

Dxt
∑

j=1

j

1 +
∑

d∈D,d 6=dj
g′xtj

(α′)
.

The expectation cannot be maximized directly because the truth distributionp(x) is
unknown. However, we can estimate the expectation by theempirical MAP that simply
uses finite training observations. A plausible approach forsolving this empirical MAP op-
timization problem is that using the stochastic gradient descent (SGD) algorithm which
is a drastic simplification for the expensive gradient descent algorithm. Though the SGD
algorithm is a less accurate optimization algorithm compared to the batch algorithm, it is
faster in terms of computational time and cheaper in terms ofstoring memory [20, 21].
Another advantage is that the SGD algorithm is more adaptiveto the changing environ-
ment in which examples are given sequentially [22].

For our problem, the SGD learning rule is formulated as

αt+1 = αt + ηt∇f(xt+1, αt) (21)

whereηt is called learning rate, i.e., a positive value depending ont. This updating rule
is validated to increase the objective value at each step in terms of expectation, which can
be verified by the following theorem.

Theorem 4. Using the updating rule (21), the expectation of average precision increases
at each step, i.e.,

Ep[f(x, αt+1)] ≥ Ep[f(x, αt)]

Proof. SinceEp[f(x, αt+1)]−Ep[f(x, αt)] = Ep[f(x, αt+1)− f(x, αt)], we only need
to showf(x, αt+1)− f(x, αt) ≥ 0.
Since

f(x, αt+1)− f(x, αt) =
1

Dx

Dx
∑

j=1

(

j
∑

d 6=dj
(g′xj(α

′
t+1)− g′xj(α

′
t))

(1 +
∑

d 6=dj
g′xj(α

′
t+1))(1 +

∑

d 6=dj
g′xj(α

′
t))

)

,
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we need to verifyg′xj(α
′
t+1)− g′xj(α

′
t) ≥ 0. According to the denotation ofg′ij , we have

g′xj(α
′
t+1)− g′xj(α

′
t) =

τ(α′
t)− τ(α′

t+1)

(1 + τ(α′
t))(1 + τ(α′

t+1))

whereτ(α′
t) =

g′

xj(α
′

t)

1−g′

xj
(α′

t)
.

Since
τ(α′

t)

τ(α′
t+1)

= exp(βηt∇f(x, α′
t)s(φ))

≥ exp(0)

= 1,

(22)

we can conclude that
τ(α′

t)− τ(α′
t+1) ≥ 0.

This completes the proof.

The learning rateη plays an important role in the updating (Equation 22), hencean
adequateηt will enhance the online algorithm to converge. Defineηt = 1/t in this article,
then we have the following well-known properties:

∞
∑

t

η2t < ∞, (23)

∞
∑

t

ηt = ∞. (24)

Since it is difficult to analyze the whole process of online algorithm [20], we will show
the convergence property around the global or local optimumin the following analysis.

Lemma 2. If αt is in the neighborhood of the optimum α∗, we have

(αt − α∗)∇f(x, αt) < 0. (25)

The proof of is straightforward referring to Equation 35. This lemma states that the gra-
dient drives the current point towards the maximumα∗. In the stochastic process, the
following inequality holds

(αt − α∗)Ep[∇f(x, αt)] < 0. (26)

Lemma 3. If αt is in the neighborhood of the optimum α∗, we have

lim
t→∞

∇f(x, αt)
2 < ∞. (27)

The proof is given in the Appendix. For the stochastic nature, the expectation of
∇f(x, αt)

2 also converges almost surely, i.e.,

lim
t→∞

Ep[∇f(x, αt)
2] < ∞. (28)
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Theorem 5 ( [23]).In the neighborhood of the maximum α∗, the recursive variables α
converge to the maximum, i.e.,

lim
t→∞

αt = α∗. (29)

Proof. Define a sequence of positive numbers whose values measure the distance from
the optimum, i.e.,

ht+1 − ht = (αt − α∗)2. (30)

The sequence can be written as an expectation under the stochastic nature, i.e.,

Ep[ht+1 − ht] = 2ηt(αt − α∗)Ep[∇f(x, αt)] + η2tEp[∇f(x, α)2] (31)

Since the first term on the right hand side is negative according to (26), we can obtain the
following bound:

Ep[ht+1 − ht] ≤ η2tEp[∇f(x, αt)
2]. (32)

Conditions (24) and (28) imply that the right hand side converges. According to the quasi-
martingale convergence theorem [24], we can also verify that ht converges almost surely.
This result implies the convergence of the first term in (31).

Since
∑∞

t ηt does not converge according to (23), we can get

lim
t→∞

(αt − α∗)Ep[∇f(x, αt)] = 0. (33)

This result leads to the convergence of the online algorithm, i.e.,

lim
t→∞

αt = α∗.

This completes the proof.

Based on the learning rule (21), the online algorithm for achieving the ensemble model
is summarized below.

4.3. Unsupervised Algorithm: UnsEnM

The proceeding proposed algorithms for both batch setting and online setting are based
on the knowledge of labeled data, which has been regarded as supervised learning. As a
matter of fact, in the community of conventional information retrieval systems, labeled
data are difficult to obtain in general. Under this condition, unsupervised learning plays
a crucial role. The inspiration of unsupervised algorithm for solving Problem P4 comes
from the idea of co-training that is based on the belief that each constituent ranker in
the ensemble model can provide valuable information to the other constituent rankers
such that they can co-learn from each other [17]. In order to utilize this collaborative
learning scheme, the gEnM requires all constituent rankersare generated by unsupervised
learning. In each round, the ranking scores of one of the constituent rankers are provided
asfake labeled data for other rankers to refine the weights. Iteratively learning from the
constituent rankers, the ensemble model may result in an overall improvement in terms of
MAP.
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Algorithm 3 gEnM.ON (Generalized Ensemble Model by Online Algorithm.)

Require: Query setQ, document setD, relevant document set|Di|with respect toqi ∈ Q, ranking
scoressd(φk(qi)) with respect toithe query,kth methodφk and documentd ∈ D, a number
of initial pointsαp and a thresholdǫ > 0 for stopping the algorithm.

1: for eachαp do
2: Set iteration countert = 1;
3: EvaluateΛ′t;
4: repeat
5: for eachqi ∈ Q do
6: Sett = t+ 1;
7: Compute gradient∇

α
t−1
p

Λ′ with respect toqi (Algorithm 2);

8: Updateαt
p = α

t−1
p + 1

t
∇

α
t−1
p

Λ′;
9: end for

10: EvaluateΛ′t;
11: until |Λ′t − Λ′t−1| < ǫ

12: Storeαt
p

13: end for
14: return α’s.

We modify the objective function in Problem P4 by adding a penalty item so that
the refined ranking does not depend on the fake label too much.The modified objective
function is defined as

max Λ′ −
1

2
σ
∑

qi∈Q

∑

d∈D

∑

φk∈Φ

‖Hd(qi)− sd(φk(qi))‖
2

(P8)

whereHd(qi) =
∑k∈Kφ

k αksd(φk(qi)).

Let Γ denote the objective function in Problem P8. The second derivatives ofΓ can
be written as follows:

∂Γ

∂αkαl

=
∂2Λ′

∂αkαl

− σ
∑

qi∈Q

∑

d∈D

(sd(φk(qi)) · sd(φl(qi))) (34)

The approximation of Hessian matrix reported in Algorithm 2can be employed here,
however, it is time-consuming doing so since the unsupervised algorithm requires a large
number of iterations to converge and the Hessian should be calculated at each iteration.
Therefore, the learning rule of the online algorithm gEnM.ON is applied for the unsuper-
vised algorithm. It is noteworthy that the gEnM.ON can be effortlessly modified to fit this
unsupervised co-training scheme. The algorithm is described below.

5. Empirical Experiment

5.1. Experiment Setup

The proposed methods were evaluated on four standard medium-sized ad-hoc document
collections, i.e., MED, CRAN, CISI and CACM, which can be accessed freely from the
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Algorithm 4 UnsEnM (Unsupervised Ensemble Model.)

Require: Query setQ, document setD, ranking scoressd(φk(qi)) with respect toithe query,kth
methodφk and documentd ∈ D, a number of initial pointsαp, a thresholdǫs for sd(φk(qi))
to choose fake relevant documents and a thresholdǫ > 0 for stopping the algorithm.

1: for eachαp do
2: Set iteration countert = 1;
3: EvaluateΛ′t;
4: repeat
5: for eachφk ∈ Φ do
6: Sett = t+ 1;
7: Refresh fake relevant document set|Di| = ∅;
8: Construct̂sd that excludessd(φk);
9: Constructαp that excludesαφk

;
10: for qi ∈ Q do
11: if sd(φk(qi)) > ǫs then
12: Construct fake relevant document set|Di| ← i ∪ |Di|;
13: end if
14: end for
15: Compute gradient∇

α
t−1
p

Λ′; (Algorithm 2)

16: Updateαt
p = α

t−1
p + 1

t
∇

α
t−1

p
Λ′;

17: end for
18: Reconstructαp that includesαφk

;
19: EvaluateΛ′t;
20: until |Λ′t − Λ′t−1| < ǫ

21: Storeαt
p

22: end for
23: return α’s.

SMART IR System3. In order to test the proposed methods on heterogeneous data, we
utilized the merged collection (MC) advocated by [16], which combines the four col-
lections. The basic statistics of the test data are summarized in Table 2. The following
minimum pre-processing measures were taken for the collections before evaluating the
proposed methods:a) stop words were removed from the corpus by referring to a list of
571 stop words provided by SMART1; b) special symbols, including hyphenation marks,
were removed; andc) those words with unique appearances in the corpus were removed.
We note that the incomplete documents and queries in CISI andCACM were retained in
the experiments.

The constituent rankers, in essence, are important factorsthat influence the results.
Four rankers recommended by [16], namelytf-idf -based ranker (TFIDF) [1], Latent Se-
mantic Analysis (LSA) [25], probabilistic Latent SemanticIndexing (pLSI) [26], Indexing
by Latent Dirichlet Allocation (LDI) [16], were utilized inthis paper for assembling the
gEnM. In brief, TFIDF represents documents by a tf-idf weighted matrix; LSA projects
each document into a lower dimensional conceptual space by applying Singular Value
Decomposition (SVD); pLSI is a probabilistic version of LSA; and LDI represents each
document by a probabilistic distribution over shared topics based on Latent Dirichlet Al-

3 Available at: ftp://ftp.cs.cornell.edu/pub/smart.
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Table 2.Data characteristics.
Data Subject Document # Query # Term #
MED Medicine 1,033 30 5,775

CRAN Aeronautics 1,400 225 8,213
CISI Library 1,460 112 10,170

CACM Computer 3,204 64 9,961
MC Multiplicity 7,097 431 27,784

location (LDA) [27]. These rankers are all unsupervised rankers and thus are trivial to be
trained in the unsupervised setting. In addition to this training requirement, the rankers
contain different information describing each corpus, such as information of keyword
matching, concepts, or topics.

Since the four rankers represent documents and queries intovectors, the ranking
scores are the cosine distances (or cosine similarities) between the vectors of documents
and queries. Subsequently, the ranking scores of gEnM can begenerated with appropri-
ate adjustments to the weights being made for the ranking scores of the four rankers.
For formulating Problem P4, we setβ = 200. Finally, the proposed algorithms can be
implemented to calculate the optimal weights for gEnM.

In order to address the over-fitting problem of batch algorithms, we adopted the
two-fold cross validation for testing the gEnM.BAT and gEnM.ON. A difference for the
gEnM.ON is that the training queries and corresponding relevant documents were given
sequentially at each step. The performance metric was the mean value of the MAPs in the
two-fold cross validation. As for the UnsEnM, the ranking scores of different constituent
rankers are provided as labeled data for other rankers in different rounds. The UnsEnM
was then evaluated by means of MAP on the real labeled data.

As discussed in Section 4, the proposed algorithms would benefit from different initial
weights. Choosing the proper initial points for nonlinear program is an open research is-
sue. In our tests, we utilized the operational criterion of selecting the best. In other words,
we tested performances for different initial weights and selected the one that generated
the maximum retrieval performance in terms of MAP. In this experiment, we first set the
initial weights to binary elements, i.e.,α ∈ B4. The reason of doing so lies in that the
constituent rankers are initially active in some of the rankers and inactive in others, which
reflects our heuristics at the first step. Since the EnM has been shown prior to the four
basis rankers by [16], the EnM model was used as baseline methods for comparison.

5.2. Experimental Results

The experimental results are shown in Table 3. We have considered three measures for
comparing the performances of the proposed algorithms: mean average precision (MAP),
(average) precision at one document (Pr@1), and (average) precision at five documents
(Pr@5). Indeed, the gEnM performance is always better than the EnM. Since the EnM is
also solved by a batch algorithm, we conduct the Wilcoxon signed rank test to evaluate
the difference between EnM and gEnM.BAT. We see that, in somecases, the difference
is statistically significant with a 95% confidence. We emphasize that the Pr@1 of gEnM
is 48% higher than that of EnM for the CISI data set and is closeto 100% for the MED.
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In other words, the retrieved documents by gEnM are more relevant at high ranking posi-
tions, which is desirable from the user’s point of view.

Table 3.Comparison of the algorithms for gEnM and baseline methods.Pr@1 denotes
the precision at one document and Pr@5 the precision at five documents. An asterisk (*)
indicates a statistically significant difference between EnM and gEnM.BAT with a 95%
confidence according to the Wilcoxon signed rank test.

CollectionMeasure EnM gEnM.BAT gEnM.ON UnsEnM impr(%)

MED
MAP 0.6420 0.6458 0.6467 0.6465 +0.6
Pr@1 0.8667 0.9333 0.9333 0.9333 +7.7*
Pr@5 0.7867 0.8133 0.8133 0.8133 +3.4*

CRAN
MAP 0.3766 0.3937 0.3972 0.3972 +4.5
Pr@1 0.6133 0.6622 0.6667 0.6356 +8.0*
Pr@5 0.3742 0.4080 0.3991 0.4018 +9.0*

CISI
MAP 0.1637 0.1945 0.1816 0.1825 +18.8*
Pr@1 0.3289 0.4868 0.3684 0.3947 +48.0*
Pr@5 0.2974 0.3237 0.2868 0.3079 +8.8

CACM
MAP 0.1890 0.2166 0.2256 0.1745 +14.6*
Pr@1 0.3654 0.3846 0.4423 0.3077 +5.3
Pr@5 0.2192 0.2500 0.2538 0.2000 +14.1*

MC
MAP 0.2768 0.3162 0.3099 0.3169 +14.2*
Pr@1 0.4204 0.5196 0.5300 0.5274 +23.6*
Pr@5 0.307 0.3614 0.3624 0.3629 +17.7*

From Table 3, we also see that the performance of gEnM.ON is better than the gEnM.BAT.
The slight priority of gEnM.ON is due to the approximation ofHessian for the gEnM.BAT.
However, the gEnM.ON is more expensive than gEnM.BAT because of iterative use of
queries for calculation. Having said that, gEnM.ON can be used in a specific system where
data are given in sequence. Since the knowledge of relevant documents is unknown in un-
supervised learning, the performance of UnsEnM is inferiorto the supervised algorithms.
However, the results on the more heterogeneous data set MC are surprisingly the best
among the proposed algorithms. The supervised algorithm may work well when tested
against similar queries and documents in the homogeneous data. Yet the unsupervised al-
gorithm does not fit the training data as much as the supervised algorithm does and thus
the superiority becomes more obvious when tested on more heterogeneous data.

Figure 3 shows the precision-recall curves of the examined methods.

For illustrating the learning abilities of the gEnM.ON and UnsEnM, the learning
curves on the MED data are reported in Figure 4. The results onthe other data sets are
very similar. The tolerance is set to1e − 4 and the number of iteration is set to at least
10 in order to clearly view the changes of objective. The onlinelearning curves validates
the convergence property of gEnM.ON. Amongst these curves,several scenarios, such as
whenα = (1, 1, 1, 1)T andα = (1, 0, 0, 0)T , imply that the gEnM.ON may occasionally
fail for some queries that are not similar to the previous sequences and not near the local
optimum. With the increase of iterations, however, the impact of those queries may mit-



Generalized Ensemble Model for Document Ranking in Information Retrieval 143

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

MED

 

 
EnM
gEnM.BAT
gEnM.ON
UnsEnM

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

CRAN

 

 
EnM
gEnM.BAT
gEnM.ON
UnsEnM

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

Recall

P
re

ci
si

on

CISI

 

 
EnM
gEnM.BAT
gEnM.ON
UnsEnM

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

Recall

P
re

ci
si

on

CACM

 

 
EnM
gEnM.BAT
gEnM.ON
UnsEnM

Fig. 3.Precision-Recall Curves for the testing data sets.
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Fig. 3.Precision-Recall Curves for the testing data sets. (continued)

igate due to the majority effect. Apart from these specific cases, the gEnM.ON is able to
gradually learn from the sequences, which is consistent with the theoretical analysis.

The UnsEnM also converges with the increase of iterations. We can see that in the
case ofα = (1, 0, 0, 0)T a ranker which is regarded as supervised labels may dramatically
decrease the objective function. In most cases, the impact of such rankers can be balanced



144 Yanshan Wang et al.

out by other rankers. As a matter of fact, this phenomenon is similar to gEnM.ON since
the data are given sequentially in both cases.

6. Conclusions and Discussions

In this paper, we propose a generalized ensemble model, gEnM, which tries to find the op-
timal linear combination of multiple constituent rankers by directly optimizing the prob-
lem defined based on the mean average precision. In order to solve this optimization
problem, the algorithms are devised in two aspects, i.e., supervised and unsupervised. In
addition, two settings for the data are considered in the supervised learning, namely batch
and online setting. Table 4 summarises the algorithms with potential applications in prac-
tice. In brief, the gEnM.BAT can be used in those IR systems that have the knowledge of
labeled data, such as academic search engines; the gEnM.ON is appropriate for real-time
systems where the data is given in sequence, such as movie recommendation systems; and
the UnsEnM is proposed for those systems without the knowledge of labeled data, such
as search engines.

Table 4.Summary of the algorithms: gEnM.BAT, gEnM.ON and UnsEnM.
Algorithm Category Setting Application
gEnM.BAT supervised batch literature search, etc.
gEnM.ON supervised online movie recommendation, etc.
UnsEnM unsupervised batch search engine, etc.

An experimental study was conducted based on the public datasets. The encourag-
ing results verify the effectiveness of the proposed algorithms for both homogeneous and
heterogeneous data. The gEnM performance is always better than the EnM, except for
the case of UnsEnM on CACM. Briefly, the difference between gEnM.BAT and EnM is
statistically significant in most cases; the gEnM.ON performs the best among the pro-
posed algorithms for the MED, CRAN and CACM; and the unsupervised UnsEnM is
more applicable for heterogeneous data than the supervisedalgorithms.

While we have shown the effectiveness of the proposed algorithms, we have not yet
analyzed the computational complexity of the algorithms. Though we simplified the com-
putation of the derivative and Hessian matrix, we were unable to reduced the complexity
of the batch algorithm based on Newton’s method. A possible future direction is to ex-
ploit cheaper and faster algorithms for the batch setting. Another interesting research topic
is the selection of initial weights, which is actually an open research issue in nonlinear
programming.

Apart from the potential improvements with regard to algorithms, the selection of
constituent rankers is an extremely important issue. This problem may be resolved if we
can identify which ranker is redundant for the ensemble. In this paper, we use human
heuristics for choosing the four rankers. However, a concrete framework to effectively
evaluate the contribution of each ranker is no doubt a subject worthy of further study.
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Fig. 4.Learning curves of EnM.ON and UnSEnM with different initialpoints on MED.
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Fig. 4.Learning curves of EnM.ON and UnSEnM with different initialpoints on MED. (continued)
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A. Derivation of the derivative of Λ′

(1) Derivation of the first derivative
According to the calculus chain rule, the derivative of objective in Problem P4 with

respect toαk, k = 1, 2, ..,Kφ is

∂Λ′

∂α′
k

=
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

−j
∑

d 6=dj

∂g′

ij

∂α′

k

(1 +
∑

d 6=dj
g′ij)

2
, (35)

where
∂g′ij
∂α′

k

= −βsdj ,d(φk(qi))g
′
ij(1 − g′ij). (36)

(2) Derivation of the second derivative
Also by the chain rule, the second derivative with respect toα′

l, l = 1, 2, ..,Kφ is

∂2Λ′

∂α′
k∂α

′
l

=
1

L

L
∑

i=1

1

|Di|

|Di|
∑

j=1

−j
∑ ∂2g′

ij

∂α′

k
∂α′

l

(1 +
∑

g′ij)
2 + 2j

∑ ∂g′

ij

∂α′

k

∑ ∂g′

ij

∂α′

l

(1 +
∑

g′ij)

(1 +
∑

d 6=dj
g′ij)

4
,

(37)

where
∂2g′ij

∂α′
k∂α

′
l

= −βsdj,d(φk(qi))(1 − 2g′ij)
∂g′ij
∂αl

, (38)

and
∂g′

ij

∂αl
can be calculated by Equation 36.

B. Approximation of the derivative of sigmoid function

For notational simplicity, we begin by considering the following sigmoid function:

f(x) =
1

1 + exp(βx)
. (39)
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Theorem 6. The derivative of function (39) can be approximated as follows:

∂f(x)

∂x
≃















− β(f(x)− f2(x)), if −
2

β
< x <

2

β
;

0, if x < −
2

β
or x >

2

β
.

(40)

if the scaling constant β is large.

Proof. We apply the centered linear approximation method to the approximation of the
sigmoid function as shown in Figure 5, which is described below:

f(x) ≃































f(x), if −
2

β
< x <

2

β
;

0, if x < −
2

β
;

1, if x >
2

β
.

(41)

Hencef(x)(1 − f(x)) = 0 if x < − 2
β

or x > 2
β

. This completes the proof.

We note that this approximation is more precise with a largerβ.

(0, 0)

(−
2

β
, 1)

(
2

β
, 0) x

y

(0, 1)

Fig. 5.The approximation of sigmoid function through the centeredlinear approxima-
tion method. (β = 300)

Remark 2. The derivative function (36) can be approximated by:

∂g′ij
∂α′

k

≃



















− βsdj,d(φk(qi))g
′
ij(1− g′ij),

if −
2

β
<
∑

k

α′
ksdj,d(φk(qi)) <

2

β
;

0, otherwise.

(42)

if the scaling constantβ is large.
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C. Proof of Lemma 3

In this section, we only sketch the proof of Lemma 3.

Proof (Sketch of Proof). In this proof, we use simple symbols for clarity. For example,
g(αt) denotesg′ij(α

′
t).

∇f(x, αt+1)
2 −∇f(x, αt)

2

=

(

1

D

D
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D
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2, we have
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2 <
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2 + exp(β
∑
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<
1

2 + exp(β
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Thus, we have

∇f(x, αt+1)
2 −∇f(x, αt)
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D

D
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jβ
∑

s
1

2 + exp(β
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η∇fs)

)2

It is easy to show that the 1
1+exp(η) is the summand of a convergent infinite sum. This

result implies that∇f(x, αt)
2 converges because it is bounded and its oscillations are

damped.
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