
Computer Science and Information Systems 15(1):1–30 https://doi.org/10.2298/CSIS160628037M

Context-sensitive Constraints for Access Control of
Business Processes

Gordana Milosavljević, Goran Sladić ⋆, Branko Milosavljević, Miroslav Zarić, Stevan
Gostojić, and Jelena Slivka

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6
21000 Novi Sad, Serbia

{grist, sladicg, mbranko, miroslavzaric, gostojic, slivkaje}@uns.ac.rs

Abstract. Workflow management systems (WfMS) are used to automate and facil-
itate business processes of an enterprise. To simplify the administration, it is a com-
mon practice in many WfMS solutions to allocate a role to perform each activity of
the process and then assign one or more users to each role. Typically, access control
for WfMS is role-based with a support of constraints on users and roles. How-
ever, merely using role and constraints concepts can hardly satisfy modern access
control requirements of a contemporary enterprise. Permissions should not solely
depend on common static and dynamic principles, but they must be influenced by
the context in which the access is requested. In this paper, we focus on the definition
and enforcement of the context-sensitive constraints for workflow systems. We ex-
tended the common role-based constraints listed in literature with context-sensitive
information and workflow specific components. Also, we propose a mechanism for
enforcing such constraints within WfMS.

Keywords: constraints, separation of duty, access control, context-sensetive, busi-
ness process.

1. Introduction

A business process is defined as a set of one or more linked activities that collectively
realize a business objective within the context of organizational structure that defines
functional roles and relationships [11] [16]. Workflow management aims at modeling
and controlling the execution of business processes involving a combination of manual
and automated activities in an organization. A workflow management system (WfMS)
is a system that provides process specification, enactment, monitoring, coordination and
administration of workflow process through the execution of software, whose order of
execution is based on the workflow logic [11].

To ensure that the activities (tasks) of a business process (workflow) are executed by
authorized users, a proper authorization mechanisms must be applied. To simplify security
administration, it is common practice in many WfMS to express access control in terms of
the roles within the organization rather than individuals. The Role-based Access Control
(RBAC) model [19] and its derivates with different constraints had been widely applied to
both commercial and research workflow systems to meet workflow access control require-
ments. Usually, a particular role is assigned to each task in a workflow. Thus, users can
⋆ Goran Sladić is the corresponding author.



2 Gordana Milosavljević et al.

perform tasks based on the privileges possessed by their role or roles they inherit. How-
ever, there still exist many problems in the aspect of describing complex workflow access
control authorization and constraints. Especially, those models unable to express business
character and phase authorization constraints in carrying out the task between roles and
users. Traditional access control models, such as RBAC are passive access control. They
do not take into account contextual information, such as processed data, location, time,
history, etc. for making access decisions. Consequently, these models are inadequate for
specifying the access control needs of many complex real-world workflows. As context
data gets involved, the access decision no longer depends on user credentials only; it also
depends on the state of the system’s environment and the system itself.

In our previous research, we propose Context-sensitive access control model for busi-
ness processes (COBAC) [40]. We separate our model in two components: Core (contains
core model entities) and Constraint (contains constraints defined over the core entities). In
the previous paper [40], the Core component of the COBAC model is described includ-
ing the process of the access control execution. In this paper, we present the COBACs
Constraint component. Also, the process of access control execution with the constraints
enforcement is given. Rather than defining a new type of constraints, the constraints de-
fined by the COBAC model are based on the standard RBAC constraints that can be
found in the literature that are extended to support an influence of the context and which
are adapted for the use in a workflow system. The COBAC constraint model identifies
and extends two common types of constraints: static and dynamic. The static constraints
are enforced during the administration phase while the dynamic constraints are invoked
when users are actively executing a business process. Our model is independent of the
notation/model used for a business process modeling as long as in a used approach it is
possible to identify activities and order of their execution.

The rest of the paper is structured as follows. Section 2 reviews the related work.
Clarification of the core COBAC concepts, which are necessary for understanding the
proposed constraint model are described in Section 3. Section 4 presents the static con-
straints defined by the COBAC model while the dynamic constraints are given in Section
5. The constraints enforcement is given in Section 6. Section 7 concludes the paper and
outlines further research directions.

2. Related Work

In this section, two fields of research are reviewed. The first field deals with role-based
models adopted for use in workflow systems. The notion of the context, in this case, is
usually limited to the workflow environment, and access control models are extended with
some workflow specific features. The second research field gives an overview of the latest
results on context-sensitive access control, where the notion of the context is more general
and covers a wider range of meaning.

One approach to align RBAC with access control requirements for workflow is to ex-
tend the standard RBAC with the task. The paper [50] introduces the TRBAC (Task-Role-
Based Access Control) model that is based on RBAC and TBAC (Task-Based Access
Control) [44] models. The central idea of this research is that the user has a relationship
with permission through role and task. Permissions are assigned to tasks and tasks are as-
signed to roles. A similar model is presented by Oh and Park [32]. Their model is based on



Context-sensitive Constraints for Access Control of Business Processes 3

the classification of job functions. Three different types of tasks are identified: workflow
task used for workflow oriented job functions, non workflow task used for non workflow
oriented functions, and supervision task used for supervision job functions. Identically as
the previous model, permissions to the user are assigned through roles and task. Yao et al.
[49] are also using tasks to connect roles and permissions. The unit of the task becomes
the permission granularity. Authors propose constraints on user, role, task, and session so
that an access control configuration will not result in the leakage of a right to an unau-
thorized principal. An RBAC based workflow access control model in which tasks and
permissions are assigned to the roles is presented in [9].

Since business processes execution may be spread over different organizational units,
it is noticed that workflow access control models should be organizational aware. Wainer
et al. [47] propose a workflow access control model based on RBAC model extended with
case and organization unit entities and appropriate relations. The entity case is added to
be able to refer to an instance of a process. Within organizations, and thus in workflow
applications, the concept of a hierarchy of people/organizations is prevalent. While work-
flow systems, as a rule, include some form of organizational modeling capabilities, RBAC
by itself does not have such a hierarchy modeled. Therefore, the RBAC model is extended
with the organization unit entity. Constraints can be established over any of the relation-
ships of the model and can be broadly classified into static and dynamic. Authors consider
that some constraints are more important than others. In certain situations, it may be ac-
ceptable to override the less important constraints. Therefore, a priority of constraints is
introduced.

The standard RBAC model [19] supports a limited number of different types of au-
thorization constraints, which cannot fulfill requirements that have emerged in modern or-
ganization’s business processes. A typical constraint, which is very relevant, well-known
and probably the most used in the security area is Separation of Duty (SoD). Although
there are many variations, SoD is fundamentally a requirement that critical operations are
divided among two or more people so that no single individual can compromise security.
The standard RBAC model defines two types of the SoD constraints: static and dynamic.
Static SoD is enforced during the administration phase while dynamic SoD is invoked
when users are actively using the system. Researchers have proposed a great variety of
SoD models, only some of which are implemented in real systems. Simon and Zurko [39]
examines how SoD is used in role-based environments. They characterize role-based en-
vironments with an emphasis on those concepts needed to define SoD variations. Also,
authors outline different kinds of SoD variations and discuss the mechanisms required to
implement those policies. The paper [29] summarize and categorize SoDs of the RBAC
model. It gives the formal description of seven typical SoDs and analyzes their state tran-
sitions.

Botha and Eloff [10] analyze potential access control conflicts between common
workflow entities. They identified different kinds of conflicts that exist when consider-
ing separation of duty requirements in workflow environments. Based on the identified
conflicts, authors propose an approach for separation of duties in workflow environment
that is based on conflicting entities: conflicting privileges, conflicting users, conflicting
roles and conflicting tasks. Bertino et al. [6] present a language for defining constraints
on role assignment and user assignment to tasks in a workflow. By using this language, it
is possible to express conditions constraining the users and roles that can execute a given



4 Gordana Milosavljević et al.

task. Such constraint language supports both static and dynamic separation of duties. Au-
thors show how such constraints can be a formally expressed as clauses in a logic program
so that it is possible to exploit all the results available in logic programming and deduc-
tive database areas. Also, the authors classified three types of constraints: static, dynamic,
and hybrid-based on the time at which they can be evaluated. While static constraints
can be evaluated before the execution of the workflow, dynamic constraints can only be
evaluated during execution of the workflow. Hybrid constraints can be partially evaluated
before execution. Perelson et al. [33] demonstrate the “conflicting entities” (conflicting
permissions, conflicting roles, conflicting users and conflicting tasks) paradigm as a way
of specifying SoD requirements for workflow systems. This paradigm uses the task ab-
straction to define an intuitive separation of duty requirements that involve a sequence
of operations. It was shown that both Static and Dynamic SoD requirements could be
formulated according to the “conflicting entities” paradigm. Crampton [13] describe a
model, independent of any underlying access control paradigm, for specifying authoriza-
tion constraints such as separation of duty, binding of duty and cardinality constraints in
workflow systems. Warner and Atluri [48] considered that SoD constraints that span mul-
tiple instances of a workflow also need to be analyzed to mitigate the security fraud. They
extend the notion of SoD to include constraints that span multiple executing instances
of a workflow and constraints that also take into consideration the history of completed
workflow instances.

Various definitions of context have been proposed in literature [1] [17] [21] [36] [45].
Broadly, the notion of context relates to the characterization of environment conditions
that are relevant for performing appropriate actions in the computing domain. Probably
the most widely accepted definition has been provided in [1] [17]:

“Context is any information that can be used to characterize the situation of an entity.
An entity is a person, place, or object that is considered relevant to the interaction between
a user and application, including the user and applications themselves”.

To overcome various shortcomings of the RBAC model, many context-sensitive ex-
tensions of the RBAC model have been proposed. Kumar et al. [30] noticed that the RBAC
model does not specify whether the permission applies to a target object or all instances
of a class of objects. They propose the Context-sensitive RBAC that define a permis-
sion as the authority to perform a specific operation on a class of objects. A user may
be granted membership of a role, but the role membership is only valid within a certain
role context. The role context limits the applicability of the role’s permissions to a sub-
set of the instances. To define the role context, they define a user context (captures all
users security-relevant information) and an object context (captures all objects security-
relevant information). The role context is composed of these contexts by specifying a
logical constraint expression. Fadhel et al. [18] propose the GemRBAC model (General-
ized Model for RBAC) that includes all the conceptual entities required to define most
important constraints they identified in the literature. These constraints are specified us-
ing UML and OCL. Contextual information (time and location) can be assigned to users,
roles, and/or permissions. The paper [43] presents an approach that uses special purpose
RBAC constraints to base certain access control decisions on context information. In this
approach, a context constraint is defined as a dynamic RBAC constraint that checks the
actual values of one or more contextual attributes for predefined conditions. If these con-
ditions are satisfied, the corresponding access request can be permitted. Accordingly, a



Context-sensitive Constraints for Access Control of Business Processes 5

conditional permission is an RBAC permission that is constrained by one or more context
constraints. Schefer-Wenzl and Strembeck [34] [35] address RBAC context constraints
from a business process modeling perspective. The proposed solution integrates context
constraints into process related RBAC models to support context-dependent task execu-
tion. A process-related context constraint is associated with a task, meaning that certain
contextual attributes must meet certain predefined conditions to permit the task execu-
tion. Authors formally embed RBAC context constraints into a business process context.
Based on the formal model, a corresponding extension for UML 2 activity diagrams is
defined. The paper [26] describes a context-sensitive access control model that consists of
the context model, context-sensitive policy model, and context-sensitive request model. In
the paper [3], the Conditional Role Based Access Control (C-RBAC) model is presented.
This model relies on the RBAC model and extends the notion of the role by incorporating
attributes, and is based on the notion of system context. Covington et al. [12] introduce
the notion of the environmental role and provides a uniform access control framework
that can be used to secure context-sensitive applications. Georgiadis et al. [23] discuss the
integration of contextual information with the team and role-based access control. In the
paper [20] authors showed the use of context information and its quality indicators to grant
access permissions to resources. Many authors [7] [25] [28] [38] propose a context-based
access control model for web services. Their approach grants and adapts permissions to
users based on a set of contextual information collected from environments of the system.
Usage of the context-sensitive access control for controlling XML documents is presented
in the papers [8] [41] [42]. Influence of temporal constraints to access control is probably
the most detailed analyzed in [31] [4] while the influence of geospatial constraints is pre-
sented in [5] [14]. The importance of the time factor in workflow access control models
is noticed in [22] [27] [37].

To the best of our knowledge, there are not many publications covering the research on
context-sensitive constraints for workflows systems. Existing models only partially sup-
port context-sensitive constraints, usually by defining a new constraint type - context con-
straint, but to not facilitate influence of context on existing, well-known, access control
constraints. The COBAC model enables context influence on business processes access
control definition and enforcement by extending the notion of the role and the assignment
relations with the context. The COBAC’s constraint model we propose in this paper is
based on the well-known RBAC constraints that are extended with context condition to
support context-aware constraints.

3. The Overview of the COBAC Model

In this section, we give the overview of the COBAC’s core concepts necessary for un-
derstanding the COBAC’s constraints. Detail explanation of the core COBAC model can
be found in [40]. Application of the COBACs prototype implementation for judicial pro-
cesses access control is described in [24]. The core COBAC model is based on the stan-
dard RBAC model which is extended with following concepts: business process, activity,
context and resource category (Figure 1). The reason for introducing business process and
activity is to achieve efficient usage of the RBAC model in business processes because cer-
tain access control aspects need to be defined for a concrete process or its activities. There
are cases when a business process can be fully executed within a user’s session, but there



6 Gordana Milosavljević et al.

are also cases where the process execution is distributed through more users’ sessions.
Therefore, it is necessary that an access control mechanism supports both of those cases.
By using business process and activity concepts, it is possible to bind certain access con-
trol segments with activities instead of binding them with a current session. This ensures
the independence of these segments from the number of sessions in which activities are
executed. In the COBAC model activities are assigned to roles that are authorized to ex-
ecute them. During activity execution, it may be necessary to access to some resources.
To execute an activity, permissions required for the resources being accessed are assigned
to that activity. Since access control may be influenced by some other factors from a sys-
tem and an environment, the given model is also extended by the notion of a context.
The categorization of resources provides a definition of policies for the whole category of
resources, and thus the number of necessary policies may be reduced.

Fig. 1. COBAC model

The basic terms used to define the COBAC constraint model are: U - users set, R
- roles set, S - users sessions set, CBPD - complex business processes definitions set,
CAD - complex activities definitions set, CBPI - complex business processes instances
set, CAI - complex activities instances set, SBPD - simple business processes defini-
tions set, SAD - simple activities definitions set, P - permissions set, Op - operations set,
Res - resources set, Cat - categories set, Ctx - context, and CC - context conditions set.
Relation of the COBACs static and dynamic constraint with basic elements are shown in
the following sections.



Context-sensitive Constraints for Access Control of Business Processes 7

3.1. Context

Basic context’s ontology entities are presented in Figure 2. This model defines ontology
for a context in business systems. This ontology models only basic concepts and rela-
tions between them. When the COBAC model is used in the concrete case, the ontology
should be extended with new concepts and relations that are specific for the case. Two
basic classes of the context model (see Figure 2) are ContextFact and ContextExpression.
The class ContextFact represents the base context fact, while the class ContextExpres-
sion represents the context expression. Different context facts can be classified through
the ContextFact specializations. The Actor class is used for representing different partic-
ipants of events. Different activities are modeled by the Action class, and resources are
modeled by the Resource class. The location is described by the Location class. The Time
class is used for modeling time factor in the model. Different purposes in this model are
represented by Purpose class, while means are described by the Means class.

subClassOf subClassOf
subClassOf subClassOf subClassOf

subClassOf

subClassOf

hasWhoPart

hasWhatActionPart

hasWhyPart

hasWherePart
hasHowPart

hasWhatResourcePart hasTimePart

isRelatedTo

ContextFact

ContextExpression

Actor LocationResource Means Time PurposeAction

Fig. 2. COBAC’s context entities and relations

The context expression (class ContextExpression) represents semantic binding of pre-
vious concepts, and it is based on the seven semantic dimensions (relations). Each of
the afore-mentioned context facts creates one semantic dimension. Actually, the context
expression describes events that took place and the conditions under which these events
occurred. We extend five semantically dimensions defined in [2] [46] (“who”, “what”,
“where”, “when” and “how”) with the notion “why” which defines purpose and with
the notion “related” which defines relation between different context expressions. We
also define two specializations of the “what” concept. The specialization “what action”
is used for defining the “what” relation with an action, while the specialization “what
resource” is used for defining the “what” relation with a resource. In our definition, the
context expression must contain at least one “who” and “what” relation. We added this
restriction because it is necessary that the context expression contains the information
who/what did something, and what he/it did in order to describe an event.



8 Gordana Milosavljević et al.

We define the context condition as a logical expression which may consist of queries
for searching context ontology (like SPARQL), context functions, logical operators and
relational operators. The context functions are used to retrieve some current information
from a system, like who is current user, or what activity is being currently executed. The
more information about context condition can be found in [40].

The function evalCond : CC → {⊤,⊥} verifies if the given context condition is
satisfied. CC contains two specific conditions: σ (σ = TRUE) and σ̄ (σ̄ = FALSE).
The condition σ is the condition which is always satisfied, i.e. evalCond(σ) = ⊤. The
condition σ̄ is the condition opposite to σ, i.e. it is never satisfied, evalCond(σ̄) = ⊥.

3.2. Business Process

The COBAC model defines two types of business process: complex business process and
simple business process. A complex business process is defined as proposed in [11] [16].
It consists of a set of activities between which there is a proper order relation. Because
there are many relatively simple tasks that do not require a workflow, we introduced a
simple business process (consisting of only one activity) to represent them (e.g. create a
notification). Access control policies in the COBAC model can be defined for definitions
and instances of business processes. If a policy is defined for a process definition, it will
be applied to all instances of that process while policies defined for instance will be ap-
plied only to the instance. In the case of complex business processes, COBAC supports
the access control policies at process definition and the process instance level, while, in
the case of simple business processes, only policies on the process definition level are
supported, since their simplicity does not require special permissions for each instance.

The i-th complex business process (cbpdi) is defined as: cbpdi = (CADi, FBPDi),
where:

– CADi - The set of complex activity definitions of cbpdi, i.e.
CADi = {cadi1, cadi2, · · · , cadin}, cadij is the definition of the j-th complex ac-
tivity of the i-th complex business process.

– FBPDi - The flow control relation which defines execution order of activities from
the set CADi.

The given model specifies three types of complex activity:

– start - The first (starting) activity of a complex business process. We define start-
ing activity as the first activity performed in a process instance. This activity can be
bounded to a starting event of a process instance. Each complex business process
definition must have exactly one activity of the start type.

– end - The last (ending) activity of a complex business process. Completing this activ-
ity takes the process to its end state (end event).

– regular - The regular activity that represents a part of a business logic implemented
through a business process.

The function typeOf : CADi → {start, regular, end} determines the type of the
complex activity, while the function instanceOfBP : CBPI → CBPD determines
the definition of the complex business process instance. The similar function is used to
determine the definition of the complex activity instance: instanceOfA : CAI → CAD.



Context-sensitive Constraints for Access Control of Business Processes 9

The function which determines to which complex business process definition belongs
the complex activity definition is defined as:

activityDefOf : CAD → CBPD

activityDefOf(cadi) = cbpdi |
cbpdi = (CADi, FBPDi

) ∧ cadi ∈ CADi

Similarly as the activityDefOf function, the activityInstOf function is defined.
This function determines to which complex business process instance belongs the com-
plex activity instance.

As noted before, the i-th simple business process (spdi) consists of a simple activity
(sadi), e.g. spdi = (sadi).

3.3. Roles

Similar as in [4] [31], roles can be in one of three following states:

– disabled - A user can not activate roles in this state in her/his current session. Roles
from this state can go to the enabled state.

– enabled - A user can activate roles in this state in her/his current session. From this
state a role can go to the disabled or active state.

– active - This state applies to each user individually. If a user activates a role in her/his
session, then that role goes from enabled to active, but only for the user. By deactivat-
ing a role, it goes from the active state to the enabled state only if the role was active
in exactly one session of the user, otherwise the role will continue to be in the active
state. From the active state, a role can also go to the disabled state.

Whether a role will be in the enabled or disabled state depends on the current context
state. Therefore, we define role as tuple : (rn, sc, sct) where:

– rn - The role name,
– sc - The context condition for enabling/disabling the role (state condition), and
– sct - The context condition type (state condition type). Possible values are from the

set {dc, ec}. It defines on what the condition applies to: the condition for disabling
role (dc) or the condition for enabling role (ec).

If the condition sc is satisfied the role will be in the disabled state if sct = dc, or in the
enabled state if sct = ec. If the condition is not satisfied the role will be in the opposite
state then defined by sct.

In the particular case, the sc condition is defined as the context condition that is always
satisfied: (rn, σ, ec). This means that there is no context influence to disabling/enabling a
role. A role is always enabled.

To determine the role state we introduce the following predicates:

– disabled(r) - Verify if the role is disabled,
– enabled(r) - Verify if the role is enabled, and
– active(r, u) - Verify if the role r is active for the user u.



10 Gordana Milosavljević et al.

The role hierarchy (RH) is defined as partial order over the roles set R (RH ⊆ R×R),
i.e. as inheritance relation, marked as ≽, where if the role r1 inherits the role r2 then stands
r1 ≽ r2.

The predicate canObtainRole(u, r) verifies if the role r can be assigned to the user
u in the presence of role hierarchy:

canObtainRole(u, rj) ⇐isRoleAssigned(u, rj)∨
((ri ≽ rj) ∧ canObtainRole(u, ri))

where the predicate isRoleAssigned(u, r) verifies if the role r is directly assigned to the
user u.

3.4. Permissions

To improve the COBAC administration, resources can be organized into the categories,
where a resource can be classified into more categories. The relation assignCat(res, cat)
classifies the resource res ∈ Res into the cat ∈ Cat category. Like roles, resource cate-
gories can also be hierarchically organized. The resource hierarchy is defined as partial or-
der over the categories set Cat (CatH ⊆ Cat×Cat), i.e. as inheritance relation, marked
as ≽cat, where if the category cati inherits the category catj then stands cati ≽cat catj .
All resources that belong to the category cati also belong to the category catj . The pred-
icate belongsToCat verifies if the resource belongs to the category.

belongsToCat(res, catj) ⇐assignCat(res, catj)∨
(cati ≽cat catj ∧ belongsToCat(res, cati))

A permission that allows executing a certain operation can be defined for resources
and categories. The permission defined for a category applies to all category’s resources
and subcategories.

The resource permission is defined as the tuple: rp = (res, op), res ∈ Res, op ∈ Op,
while the category permission is defined as: cp = (cat, op), cat ∈ Cat, op ∈ Op. Let RP
be the set of all permissions defined for resources and CP be the set of all permissions
defined for categories then P = RP ∪ CP .

The activity-permission assignment is specified with the following relations:

– cadPermissionAssign(cad, p, cc) - the permission p ∈ P is assigned to the com-
plex activity definition cad ∈ CAD if the context condition cc ∈ CC is fulfilled,

– caiPermissionAssign(cai, p, cc) - the permission p ∈ P is assigned to the complex
activity instance cai ∈ CAI if the context condition cc ∈ CC is fulfilled, and

– sadPermissionAssign(sad, p, cc) - the permission p ∈ P is assigned to the simple
activity definition sad ∈ SAD if the context condition cc ∈ CC is fulfilled.

The functions that determine the privileges, defined for the given operation, associated
to a complex activity definition or instance or simple activity definition are defined as
follows:

cadPermission : CAD ×Op → 2P

cadPermission(cad, op) = {p | p.op = op ∧ cadPermissionAssign(cad, p, cc)}



Context-sensitive Constraints for Access Control of Business Processes 11

caiPermission : CAI ×Op → 2P

caiPermission(cai, op) = {p | p.op = op ∧ caiPermissionAssign(cai, p, cc)}

sadPermission : SAD ×Op → 2P

sadPermission(sad, op) = {p | p.op = op ∧ sadPermissionAssign(sad, p, cc)}

The permission p1 is contained into permission p2 (p1 ⊑ p2) if (a) p1 and p2 are
defined for the same operation and resource (p1 = p2), or (b) p1 and p2 are defined for
the same operation and the p1 category is a subcategory of the p2 category, or (c) p1 and
p2 are defined for the same operation and the p1 resource belongs to p2 category. This
formally can be noted as follows:

p1 ⊑ p2 ⇒(p1 ∈ RP ∧ p2 ∈ RP ∧ p1.op = p2.op ∧ p1.res = p2.res)∨
(p1 ∈ CP ∧ p2 ∈ CP ∧ p1.op = p2.op ∧ p1.cat ≽cat p2.cat)∨
(p1 ∈ RP ∧ p2 ∈ CP ∧ p1.op = p2.op ∧ belongsToCat(p1.res, p2.cat))

If an activity possess the permission p2, and if that activity needs the permission p1 to
execute certain operation on a resource, then activity will be able to execute the operation
only if p1 ⊑ p2.

4. Static Constraints

Since the static constraints are enforced during the administration phase, they will prevent
prohibited relations (assignments). In the paper [39] it is noted that they could be very
restricted for business rules, especially for small organizations. However, they can be
useful when certain business rules should be applied in a whole organization. The COBAC
model identifies following static constraints (Figure 3):

– Static Separation of Duties (SSoD),
– Users-based Static Separation of Duties (USSoD), and
– Activity-based Static Separation of Duties (ASSoD).

4.1. Static Separation of Duties

Static Separation of Duties prevents a user from being a member of two conflicting roles.
This type of constraint is rigorous and in real-life may be mapped to users current occupa-
tion. A simple example of this constraint may be found in judiciary procedures. If a user
is a prosecutor, she/he may not act as a judge. Similarly, if a user is a judge than in no
circumstances that the same user may appear as a prosecutor or a lawyer in any proceed-
ings. The user’s involvement is statically determined by its job position (occupation) and
may be changed only if his occupation is changed and that change is reflected through
administration of the user profile/rights. As soon as its current occupation is changed the
new restrictions will apply, and that user is still prevented to act in conflicting activities
(although now in changed capacities).



12 Gordana Milosavljević et al.

Fig. 3. COBAC’s static constraints

The set of statically conflicting roles is defined as SCR ⊆ R×R. Verification if two
roles are mutually conflicting, in presence of role hierarchy, is defined with the predicate
sRolesInConflict:

sRolesInConflict(ri, rj) ⇐∃(ri, rj) ∈ SCR ∨ ∃(rj , ri) ∈ SCR∨
ri ≽ rm ∧ sRolesInConflict(rm, rj)∨
rj ≽ rn ∧ sRolesInConflict(ri, rn)

Now, the SSoD constraint can be formally defined as follows:

ri, rj ∈ R ∧ u ∈ U ∧ canCFObtainRole(u, ri) ∧ canCFObtainRole(u, rj) ⇒
¬sRolesInConflict(ri, rj)

where the predicate canCFObtainRole(u, r) verifies if the role r is assigned to the user
u without influence of the context. A static constraint is possible to define only for assign-
ment relations without context influence because a context condition is evaluated during
runtime while static constraints are enforced during administration phase. Therefore, the
static constraint on relations with the context condition different than σ can not be defined.

4.2. Users-based Static Separation of Duties

Users-based Static Separation of Duties represents an extension of the previous constraint.
There are cases when it is insufficient to prevent a user from being a member of two or
more conflicting roles, but it is necessary to prevent that any user from a certain group of
mutually related users (conflicting users) be a member of conflict roles. This constraint
prevents that mutually conflicting roles are assigned to any user from the set of conflicting
users. USSoD may easily be found in a public services. Usual requirement is that close
relatives of elected public officers may not occupy any post controlled or depicted by
that elected official. Hence, based on the user membership to a particular group, she/he
is prevented from taking part in any activity that may cause a conflict of interest for any
other group member.



Context-sensitive Constraints for Access Control of Business Processes 13

Let SCU ⊆ U × U be the set of related users:

(ui, uj) ∈ SCU ∧ ri, rj ∈ R ∧ canCFObtainRole(ui, ri)∧
canCFObtainRole(uj , rj) ⇒ ¬sRolesInConflict(ri, rj)

4.3. Activity-based Static Separation of Duties

Activity-based Static Separation of Duties prevents that two conflicting activities are exe-
cuted by a user or conflicting users. The conflicting activities can belong to the same busi-
ness process or different business processes. This constraint allows only conflicting roles
to execute conflicting activities. Since it is the static constraint, it can be defined only for
complex activity definitions because activity instances do not exist during enforcement.
ASSoD is applicable wherever there is a requirement for any of two (or more phases)
decision/approval process. For example, if expenditure approval requires co-signing, this
requirement will prevent the same user to execute its right of signing more than once.
Therefore, additional signing is forbidden activity for the same user.

Let SCA ⊆ CAD × CAD be the set of conflicting activity definitions:

((ai, aj) ∈ SCA ∧ ri, rj ∈ R)∧
(rcdActivityAssign(ri, ai, cci) ∧ cci = σ)∧
(rcdActivityAssign(rj , aj , ccj) ∧ ccj = σ) ⇒ sRolesInConflict(ri, rj)

where rcdActivityAssign(r, cad, cc) defines relation which allows the role r ∈ R to
execute the complex activity definition cad ∈ CAD if the context condition cc ∈ CC is
fulfilled.

5. Dynamic Constraints

Dynamic constraints are enforced during the execution of business processes. The COBAC
model supports the definition of the context condition for each dynamic constraint. If a
constraint has a context condition, then the constraint will be applied only if the condition
is satisfied. The given model defines following dynamic constraints (Figure 4):

– Dynamic Separation of Duties (DSoD),
– Users-based Dynamic Separation of Duties (UDSoD),
– Activity-based Dynamic Separation of Duties (ADSoD),
– Dynamic Binding of Duties (DBoD), and
– Dynamic Execution Constraint (DEC).

5.1. Dynamic Separation of Duties

Dynamic separation of duties prevents that a user in her/his session activates two or more
conflicting roles. An example may be found in online auction sites where users are re-
quired to register before participating in any auction. In each auction, user may act as a
bidder (buyer) or a seller. But any user should be prevented to assume both roles in any
session. The user may choose to participate in auction created by some other user. In this



14 Gordana Milosavljević et al.

Fig. 4. COBAC’s dynamic constraints

case, the user acts as a bidder and may place the bid for auctioned item. On second oc-
casion the same user may be the one to put an item to auction. He creates an auction,
which is then bound to this user. In this case, although he is a registered user he must be
dynamically assigned only the role of the seller, preventing him to place the bid for its
own auctioned item.

Let DCR ⊆ R × R × CC be a set of dynamically conflicting roles. For each ele-
ment (ri, rj , cc) ∈ DCR, roles ri and rj are in conflict if the condition cc is satisfied.
Verification if two roles are in conflict while role hierarchy is present, is defined with the
predicate dRolesInConflict:

dRolesInConflict(ri, rj) ⇐(∃(ri, rj , cc) ∈ DCR ∧ evalCond(cc))∨
(∃(rj , ri, cc) ∈ DCR ∧ evalCond(cc))∨
ri ≽ rm ∧ dRolesInConflict(rm, rj)∨
rj ≽ rn ∧ dRolesInConflict(ri, rn)

Now, DSoD constraint can be formally defined as follows:

ri, rj ∈ R ∧ u ∈ U ∧ s ∈ S ∧ usersSession(u, s)∧
activeInSession(s, ri) ∧ activeInSession(s, rj) ⇒
¬dRolesInConflict(ri, rj)

where the predicate activeInSession(s, r) verifies if the role r is active in the session s.
Algorithm 1 shows an example of the DSoD constraint enforcement. If there are two

DSoD conflicts roles in the ARS set, one of them is removed. The presented algorithm



Context-sensitive Constraints for Access Control of Business Processes 15

will always remove the second role, but it is possible to insert some additional logic to
determine which role will be removed.

Algorithm 1 DSoD enforcement
NAME: EnforceDSoD
INPUT: ARS ⊆ R - set of user’s roles in the session
OUTPUT: ARS ⊆ R - input set after DSoD enforcement

for each ri, rj ∈ ARS ∧ ri ̸= rj do
if dRolesInConflict(ri, rj) then

removeFromSet(rj, ARS)

5.2. Users-based Dynamic Separation of Duties

This constraint extends the previous one to a set of users, by preventing that two mutually
conflicting users in their session activate conflicting roles. It is useful because sometime
it is much easier to commit fraud when two persons are involved, and each person has a
different conflicting role. As this constraint is an extension of previous one, it can also be
easily explained on an extended version of auction example. We may assume that items
are put to the auction by the auction house, which may have several representatives, and
that bidders may also be auction house representatives. In this case, it is necessary to
prevent the representatives of the same auction house to act as bidders for the item that is
placed for auction by the other representatives of the same auction house. If this would be
allowed than auction would be easily manipulated to achieve higher bids.

Let DCU ⊆ U ×U ×CC be the set of dynamically conflicting users. Then, similarly
as for previous constraint, for each element (ui, uj , cc) ∈ DCU , the users ui and uj will
be in conflict only if the condition cc is satisfied. Verification if two users are in conflict
is defined with the usersInConflict predicate:

usersInConflict(ui, uj) ⇐(∃(ui, uj , cc) ∈ DCU ∧ evalCond(cc))∨
(∃(uj , ui, cc) ∈ DCU ∧ evalCond(cc))

UDSoD constraint can formally be defined as follows:

ui, uj ∈ U ∧ ri, rj ∈ R ∧ si, sj ∈ S ∧ usersInConflict(ui, uj)∧
usersSession(ui, si) ∧ activeInSession(si, ri)∧
usersSession(uj , sj) ∧ activeInSession(sj , rj)

⇒ ¬dRolesInConflict(ri, rj)

where the predicate usersSession(u, s) verifies if the session s belongs to the user u and
the predicate activeInSession(s, r) verifies if the role r is active in the session s.

The function that determine conflict users dConflictUsers : U → 2U is defined as
follows:

dConflictUsers(ui) = {uj | usersInConflict(ui, uj)}

UDSoD enforcement is described by Algorithm 2. For each user who conflicts with
the current user, it is verified if she/he has already activated a role that conflicts with any



16 Gordana Milosavljević et al.

role from the ARS set. If such role exists, then the current user cannot activate her/his
conflicting role, and therefore that role is removed from the active roles set ARS.

Algorithm 2 UDSoD enforcement
NAME: EnforceUDSoD
INPUT: ARS ⊆ R - set of user’s roles in the session
u ∈ U - user
OUTPUT: ARS ⊆ R - input set after UDSoD enforcement

CUS := dConflictUsers(u)
for each cu ∈ CUS do

CURS := activeRoles(cu)
for each ur ∈ ARS do

for each cur ∈ CURS do
if dRolesInConflict(ur, cur) then

removeFromSet(ur, ARS)

5.3. Activity-based Dynamic Separation of Duties

Activity-based Dynamic Separation of Duties prevents that a user or conflicting users exe-
cute dynamically conflicting activities. An example of this type of constraint may be found
in loan processing. We may assume that a bank employee may work in a loan approval
department. The bank employee may request a loan, probably under the preferential terms
from its bank. However, under no circumstances, she/he may be included in the process
of loan approval, even though it is her/his regular duty. In this case, hers/his first activity
in the process - requesting the loan, determines further constraints for his engagement
with the process. Furthermore, she/he must be excluded from decision-making tasks in
any subsequent process to refinance, or change the terms of the given loan. Therefore,
this constraint must hold over the one or more processes as long as she/he is dynamically
determined to be the loan user.

The conflicting activities can belong to the same process or different processes, i.e.
the model supports intra-process and inter-process ADSoD constraints. This constraint
can be defined for the conflicting complex activity instances and the conflicting complex
activity definitions. A constraint defined for instances will apply only to those instances. If
a constraint is defined for an activity definition, then there are two types of this constraint:

– inter (inter-process, inter-instance) - constraint will be applied on all definition’s in-
stances. If two definitions are in conflict, then all theirs instances are in conflict too.

– intra (intra-process, intra-instance) - applies only to the intra-process constraints.
This constraint is applied only to activity instances that belong to the same process
instance.

To define this type of dynamic constraint, we introduce business process execution
history. It is defined as the tuple (HISTORY,≽H), where HISTORY represents the
set of previously executed activity instances and ≽H is the partially order relation over
the HISTORY set. If hi ≽H hj ∧ hi, hj ∈ HISTORY then the activity represented
with hi is executed before the activity represented with the hj element. The HISTORY
set consists of elements defined as the tuple: (cbpd, cbpi, cad, cai, u, r) where:

– cbpd - complex business process definition (cbpd ∈ CBPD),



Context-sensitive Constraints for Access Control of Business Processes 17

– cbpi - complex business process instance
(cbpi ∈ CBPI∧ instanceOfBP (cbpi) = cbpd),

– cad - complex activity definition (activityDefOf(cad) = cbpd),
– cai - complex activity instance (activityInstOf(cai) = cbpi),
– u - the user who executed cai (u ∈ U ), and
– r - the role which allows the user to execute cai (r ∈ R).

The predicate wasExecutedInst(cai, u) verifies if the user u has executed the activ-
ity instance cai, the predicate wasExecutedDefInter(cad, u) verifies if the user u has
executes any instance of the activity definition cad (the inter type), while the predicate
wasExecutedDefIntra(cbpi, cad, u) verifies if the user u has executed instance of the
activity definition cad in the process instance cbpi (the intra type).

wasExecutedInst(cai, u) ⇐ ∃(cbpd, cbpi, cad, cai, u, r) ∈ HISTORY

wasExecutedDefInter(cad, u) ⇐ ∃(cbpd, cbpi, cad, cai, u, r) ∈ HISTORY

wasExecutedDefIntra(cbpi, cad, u) ⇐ ∃(cbpd, cbpi, cad, cai, u, r) ∈ HISTORY

Let DCAD ⊆ CAD × CAD × CC be the set of dynamically conflicting activity
definitions for the inter type, wherein for each element (cadi, cadj , cc) ∈ DCAD, the
activities cadi and cadj are in conflict if the context condition cc is satisfied. Verification
if two activity definitions are in conflict is defined with the actDefInConflictrInter
predicate:

actDefInConflictInter(cadi, cadj) ⇐(∃(cadi, cadj , cc) ∈ DCAD ∧ evalCond(cc))∨
(∃(cadj , cadi, cc) ∈ DCAD ∧ evalCond(cc))

Now, ADSoD constraint (the inter type) in the case of conflict activity definitions can
be formally defined as follows:

cadi, cadj ∈ CAD ∧ actDefInConflictInter(cadi, cadj)∧
(∃hi ∈ HISTORY ∧ hi.cad = cadi) ∧ (∃hj ∈ HISTORY ∧ hj .cad = cadj)

⇒ hi.u ̸= hj .u ∧ ¬usersInConflict(hi.u, hj .u)

Let the set of dynamically conflicting activity definitions of the intra type be defined as
DCADI ⊆ CAD×CAD×CC, wherein for each element (cadi, cadj , cc) ∈ DCADI ,
the activities cadi and cadj are in conflict if the context condition cc is satisfied. Verifica-
tion if two activity definitions are in conflict is defined with actDefInConflictIntra:

actDefInConflictIntra(cadi, cadj) ⇐(∃(cadi, cadj , cc) ∈ DCADI∧
evalCond(cc))∨
(∃(cadj , cadi, cc) ∈ DCADI∧
evalCond(cc))

The ADSoD constraint in the case of conflicting activity definitions for the intra pro-
cess type can be formally defined as follows:

cadi, cadj ∈ CAD ∧ actDefInConflictIntra(cadi, cadj)∧
(∃hi ∈ HISTORY ∧ hi.cad = cadi) ∧ (∃hj ∈ HISTORY ∧ hj .cad = cadj)∧
hi.cbpi = hj .cbpi ⇒ hi.u ̸= hj .u ∧ ¬usersInConflict(hi.u, hj .u)



18 Gordana Milosavljević et al.

In the similar manner, the ADSoD constraint for complex activity instances is defined.
Let DCAI ⊆ CAI×CAI×CC be the set of dynamically conflicting activity instances.
The predicate actInstInConflict verifies if two activity instances are in conflict:

actInstInConflict(caii, caij) ⇐(∃(caii, caij , cc) ∈ DCAI ∧ evalCond(cc))∨
(∃(caij , caii, cc) ∈ DCAI ∧ evalCond(cc))

ADSoD constraint in the case of conflicting activity instances can formally be defined
as follows:

caii, caij ∈ CAI ∧ actInstInConflict(caii, caij)∧
(∃hi ∈ HISTORY ∧ hi.cai = caii) ∧ (∃hj ∈ HISTORY ∧ hj .cai = caij)

⇒ hi.u ̸= hj .u ∧ ¬usersInConflict(hi.u, hj .u)

The functions for determining conflict definitions (inter and intra) and instances of
complex activities are defined as follows:

dConflictDefActivityInter : CAD → 2CAD

dConflictDefActivityInter(cadi) = {cadj | actDefInConflictInter(cadi, cadj)}
dConflictDefActivityIntra : CAD → 2CAD

dConflictDefActivityIntra(cadi) = {cadj | actDefInConflictIntra(cadi, cadj)}
dConflictInstActivity : CAI → 2CAI

dConflictInstActivity(caii) = {caij | actInstInConflict(caii, caij)}

Enforcement of ADSoD for activity instances is shown in Algorithm 3, while the en-
forcement of the Inter-ADSoD constraint is presented in Algorithm 4. As noted before, on
activity instances are applied both: constraints defined for these instances and constraints
defined for these instances definitions (inter and intra). The result of both algorithms is
the input set from which are removed activities that violate the ADSoD constraint for the
user.



Context-sensitive Constraints for Access Control of Business Processes 19

Algorithm 3 ADSoD enforcement for instances
NAME: EnforceADSoDInst
INPUT: AIS ⊆ CAI - activity instance set
: u ∈ U - user
OUTPUT: AIS ⊆ CAI - input set after ADSoD enforcement for instances

US := {u} ∪ dConflictUsers(u)
{Enforce for instances}
for each cai ∈ AIS do

CAIS := dConflictInstActivity(cai)
for each confAI ∈ CAIS do

for each cu ∈ US do
if wasExecutedInst(confAI, cu) then

removeFromSet(cai, AIS)
{Enforce for definitions - inter type}
for each cai ∈ AIS do

CADS := dConflictDefActivityInter(instanceOfA(cai))
for each confAD ∈ CADS do

for each cu ∈ US do
if wasExecutedDefInter(confAD, cu) then

removeFromSet(cai, AIS)
{Enforce for definitions - intra type}
for each cai ∈ AIS do

CADS := dConflictDefActivityIntra(instanceOfA(cai))
cbpi := activityInstOf(cai)
for each confAD ∈ CADS do

for each cu ∈ US do
if wasExecutedDefIntra(cbpi, confAD, cu) then

removeFromSet(cai, AIS)

Algorithm 4 Inter-ADSoD enforcement for definitions
NAME: EnforceADSoDDefInter
INPUT: ADS ⊆ CAD - activity definition set
: u ∈ U - user
OUTPUT: ADS ⊆ CAD - input set after ADSoD enforcement for definitions

US := {u} ∪ dConflictUsers(u)
for each cad ∈ ADS do

CAS := dConflictDefActivityInter(cad)
for each confAD ∈ CAS do

for each cu ∈ US do
if wasExecutedDef(confAD, cu) then

removeFromSet(cad, ADS)

5.4. Dynamic Binding of Duties

Dynamic Binding of Duties is opposite to the previous constraints. The user who exe-
cutes an activity is obliged to execute some other bound activity. Such a binding enforces
what is commonly known as case-based activity assignment model in business processes,
where the prior knowledge of the activities in the process is beneficial for process execu-
tion. For example, an administrative procedure where a citizen is filing a certain request.
There may be a large number of desk clerks that are capable of performing certain tasks.
We may assume that all of them have been assigned the role of clerk. Any initial task
to be performed by the role clerk may be assigned to any clerk randomly. However, it
is far more efficient to assign any subsequent tasks aimed at the role clerk to the same



20 Gordana Milosavljević et al.

person, as she/he already has a prior knowledge of the case, and may fulfill this duty more
expediently.

The set of dynamically bounded activities is defined as DBA = {(cadi, cadj , cc) |
cadi, cadj ∈ CAD ∧ activityDefOf(cadi) = activityDefOf(cadj) ∧ cc ∈ CC}.
This means that the COBAC constraint model allows binding only the activities from the
same business process. This constraint type requires that a user who executes a bound
activity in a business process instance must execute all other activities (for that instance)
bound with the executed one. Similarly, as for separation of duties, the activities cadi and
cadj will be bound if the context condition cc is satisfied. The predicate activityInBind
verifies if the activities are bound:

activityInBind(cadi, cadj) ⇐(∃(cadi, cadj , cc) ∈ DBA ∧ evalCond(cc))∨
(∃(cadj , cadi, cc) ∈ DBA ∧ evalCond(cc))

Formally, the DBoD constraint is represented as follows:

cadi, cadj ∈ CAD ∧ activityInBind(cadi, cadj)∧
(∃hi ∈ HISTORY ∧ hi.cad = cadi) ∧ (∃hj ∈ HISTORY ∧ hj .cad = cadj)∧
(hi.cbpi = hj .cbpi) ⇒ hi.u = hj .u

The function dBindActivity : CAD → 2CAD determines binded activities and can
be defined as follows:

dBindActivity(cadi) = {cadj | activityInBind(cadi, cadj)}

Algorithm 5 shows DBoD enforcement. The output of the algorithm is the pruned
input set AIS. From this set are removed all activity instances that should be executed by
another user according to the DBoD constraint.

Algorithm 5 DBoD enforcement
NAME: EnforceDBoD
INPUT: AIS ⊆ CAI - activity instance set
u ∈ U - user
OUTPUT: AIS ⊆ CAI - input set after DBoD enforcement

for each cai ∈ AIS do
cbpi := activityInstOf(cai)
BAS := dBindActivity(instanceOfA(cai))
for each bind ∈ BAS do

if ¬wasExecutedDefIntra(cbpi, bind, u) then
removeFromSet(cai, AIS)

5.5. Dynamic Execution Constraint

This constraint represents an additional condition that needs to be satisfied to allow exe-
cution of the required activity. Dynamic Execution Constraint prevents a user to execute
activity although she/he has the privilege to execute it with a role that is assigned to
her/him. An example of this constraint may be found in a control process within power



Context-sensitive Constraints for Access Control of Business Processes 21

distribution. Certain critical activities of control process (i.e. turn on/off major switches)
are allowed only to personnel with the role operator, but for security reasons, this activity
usually can be conducted only from specific workstations. For such activities, the dynamic
execution constraint can define an additional condition that allows the activity execution
only from permitted workstations.

Since this constraint can be defined for activity definitions and instances it is rep-
resented as the pair (cad, cc), cad ∈ CAD, cc ∈ CC when it is defined for defini-
tions, and as the pair (cai, cc), cai ∈ CAI, cc ∈ CC when it is defined for instances.
DECD ⊆ CAD ×CC is the set of the dynamic execution constraints defined for activ-
ity definitions, and DECI ⊆ CAI × CC is the set of the dynamic execution constraints
defined for instances. The execution of an activity instance, from the point of satisfaction
of the execution constraints, is possible only if all execution constraints defined for that
activity instance and its definition are satisfied.

The dExecConstDefSatisf predicate verifies DEC defined for activity definitions,
and same verification for activity instances is done with the dExecConstInstSatisf
predicate:

dExecConstDefSatisf(cad) ⇐ ∀(cad, cc) ∈ DECD ∧ evalCond(cc)

dExecConstInstSatisf(cai) ⇐ ∀(cai, cc) ∈ DECI ∧ evalCond(cc)

Algorithm 6 shows DEC enforcement for activity definitions. From the input set are
removed all activities that not satisfy constraint. Similar process is used for activity in-
stances (Algorithm 7), only in this case constraints defined for activity instances and for
their definitions are applied.

Algorithm 6 DEC enforcement for definitions
NAME: EnforceDECDef
INPUT: ADS ⊆ CAD - activity definition set
OUTPUT: ADS ⊆ CAD - input set after DEC enforcement

for each cad ∈ ADS do
if ¬ dExecConstDefSatisf(cad) then

removeFromSet(cad, ADS)

Algorithm 7 DEC enforcement for instances
NAME: EnforceDECInst
INPUT: AIS ⊆ CAI - activity instance set
OUTPUT: AIS ⊆ CAI - input set after DEC enforcement

for each cai ∈ AIS do
if ¬dExecConstInstSatisf(cai) ∨ ¬dExecConstDefSatisf(instanceOfA(cai)) then

removeFromSet(cai, AIS)

6. Dynamic Constraints Enforcement

While the static constraints are defined and enforced in the policies definition phase, when
policies are created, the dynamic constraints are verified during runtime phase, as a part



22 Gordana Milosavljević et al.

of the access control enforcement activity. In this section, we described how the COBACs
dynamic constraints validations are embedded within access control execution process.

The process of the access control enforcement defined by the COBAC core model is
conducted through the following activities [40]:

– role activation,
– creation of task (activity) list containing activities that a user can execute,
– verification if the user is allowed to execute the activity at the moment when she/he

initiate its execution, and
– verification if the user is allowed to access the requested resources during the activity

execution.

Constraints enforcement is performed within first three phases, while the last one does
not require any constraint verification. For completeness of the paper, all four phases are
described.

6.1. Constraints and Variability of Context Condition

The context we propose is a dynamic category, meaning that context information can
change over time and thus cause different results of context condition influenced by that
information. To efficiently define and execute access control, some context conditions
must have a period of time when the condition’s result will not be changed. The length
of this period depends on the type of constraint (or relation) where the condition is used.
Depending on when is safe that context condition is changed we identified three types of
conditions [40]:

– slowly varying (session safe) context conditions are those conditions that are not
changed during a user session.

– frequently varying (activity safe) context conditions can be changed during a user
session, but they are unchangeable during execution of each activity.

– continuously varying context conditions are those conditions can be changed any
time, during a user session or an activity execution.

To define access control enforcement in a consistent way we assume that the context
conditions specified in the user-role assignment relations and the context conditions used
for enabling/disabling roles are slowly varying, while the conditions in the role-activity
relations and the activity-permission relations are frequently varying. Based on the previ-
ous assumptions, roles assigned to a user in her/his session are not changed during the
session duration, but it is possible that privileges (to execute certain activities) assigned
to those roles are changed.

Since different constraints are verified in different moments (different phases of access
control execution) then context conditions in the DSoD constraint and UDSoD are slowly
varying, while context conditions in ADSoD, DBoD and DEC are frequently varying.

6.2. Roles Activation

The role activation process starts by creating a set of all roles assigned to the user (Algo-
rithm 8). For each role from this set, the role condition is verified, and all roles in disabled



Context-sensitive Constraints for Access Control of Business Processes 23

state (see Section 3.3) are removed from the set. The function activateRolesForSession
uses this pruned set and activates some or all roles from it. Which roles are to be activated
solely depends on business logic and requirements of an application. Then, the DSoD
and UDSoD constraints are enforced on the active roles. The functions that perform the
constraint enforcement return the input role set from which the roles that violate the given
constraint are removed.

Algorithm 8 An example of role activation
NAME: ActivateRoles
INPUT: u ∈ U - user
s ∈ S - session of u
OUTPUT: ARS - activated roles
URS := usersRoles(u)
for each r ∈ URS do

if disabled(r) then
removeFromSet(r, URS)

ARS := activateRolesForSession(URS, s)
ARS := EnforceDSoD(ARS)
ARS := EnforceUDSoD(ARS, u)

6.3. Activity List Creation

A common functionality of many workflow-based systems is a task (activity) list. This
list is created runtime for each users session (or request) and contains all tasks currently
assigned to the user that are ready to be executed. We define this activity list as the tuple
(SCPS,ECAS,ESAS) where:

– SCPS ⊆ CAD ∧ ∀cad ∈ SCPS, typeOf(cad) = start (Start Complex Process
Set) is a set of the complex activity definitions of “start” type that can be execute, i.e.
the user can create a new instance of the complex business process.

– ECAS ⊆ CAI (Execute Complex Activity Set) is the complex activity instances set
that the user can execute.

– ESAS ⊆ SAD (Execute Simple Activity Set) is the simple activities set that the user
can execute.

All complex activity definitions of the start type which are assigned to the user’s active
roles comprise the SCPS set. This set is created through three steps (Algorithm 9). In
the first step, that is repeated for each user’s role, the assignedCompProcToStart(r)
function determines all activities of the start type which are assigned to the user’s role.
Thus created set is then filtered by verifying the ADSoD and DEC constraints defined
for activity definitions. In the case of the ADSoD constraints only constraints of the inter
type are verified, while constraints of the intra type are not enforced. Since there is still no
executed activities in this process instance because the start activity initiate the creation
of a new process instance, the ADSoD intra type of conflict cannot exist. For the same
reason, ADSoD and DEC constraints defined for instances are not necessary to enforce
because still there is no process instance. As the DBoD constraint applies on the same
instance of the business process and the start activity type is the first activity for any
complex business process, for the SCPS set it is not necessary to enforce the DBoD
constraint. The functions that perform the constraint enforcement return the input activity
set from which activities that violate the given constraint are removed.



24 Gordana Milosavljević et al.

Algorithm 9 Activity list creation
NAME: CreateActivityList
INPUT: u ∈ U - user
ARS ⊆ R - active roles of user in session
OUTPUT: (SCPS,ECAS,ESAS) - user’s actitivty list

{Create Start Complex Process Set (SCPS)}
SCPS :=

∪
r∈ARS assignedCompProcToStart(r)

SCPS := EnforceADSoDDefInter(SCPS, u)
SCPS := EnforceDECDef(SCPS)

{Create Execute Complex Activity Set (ECAS)}
ECAS :=

∪
r∈ARS assignedCompActToExec(r)

ECAS := EnforceADSoDInst(ECAS, u)
ECAS := EnforceDBoD(ECAS, u)
ECAS := EnforceDECInst(ECAS)

{Create Execute Simple Activity Set (ESAS)}
ESAS :=

∪
r∈ARS assignedSimpActToExec(r)

The ECAS set contains all activity instances assigned to the user’s active roles, and
that should be executed next. The initial version of this set is created as the union of
complex activity instances which all users active roles can execute (the union of results
of assignedCompActToExec). Thus, created set is then pruned by enforcing the both
types of ADSoD, DBoD, and DEC constraints.

The SCPS set consists of simple activities that are assigned to the user’s active roles.
It is created by combining the results of the function assignedSimpActToExec called
for each users active role. Since the COBAC constraints cannot be defined for the simple
business processes, verification of dynamic constraints for this set is not performed.

6.4. Action Execution

When a user selects an activity to execute (from her/his activity list) it is necessary, once
more, to verify if the user can execute that activity. The reason for this additional verifica-
tion is the existence of the frequently varying context conditions and the possibility that
in the meantime a conflicting user executed the activity that onflicts with the activity that
the user wants to execute.

Verification if it is allowed to execute a complex activity instance is presented in Al-
gorithm 10. The user can execute activity instance if she/he has an active role with the
privilege to execute that activity (the function canExecCompActInst) and if none of
the assigned ADSoD, DBoD and DEC constraints are violated. The functions that per-
form the constraint enforcement return the input activity instance set from which activity
instances that violate the given constraint are removed. Verification if any constraints are
violated is reduced to verification if the ECAS set is empty because, before constraint
verification, this set contains only the activity instance that the user wants to execute.

The similar algorithm is used to verify if the execution of simple activities or creation
of new process instance is allowed.



Context-sensitive Constraints for Access Control of Business Processes 25

Algorithm 10 Verification if it is allowed to execute an activity instance
NAME: ExecOfComplexActivityAllowed
INPUT: cai ∈ CAI - complex activity instance to execute
u ∈ U - user
ARS ⊆ R - active roles of user in session
OUTPUT: result - result, can user execute taks

result := false
for each r ∈ ARS do

if canExecCompActInst(r, cai) then
CAIS := {cai}
CAIS := EnforceADSoDInst(CAIS, u)
if CAIS ̸= ∅ then

CAIS := EnforceDBoD(CAIS, u)
if CAIS ̸= ∅ then

CAIS := EnforceDECInst(CAIS)
{If cai not removed from CAIS constraints allow execution of cai}
if CAIS ̸= ∅ then

result := true

6.5. Resource Access

Execution of an activity may require access to some resources. In this case, it is necessary
to verify if the activity has permission to perform requested operation on the accessed
resource.

Algorithm 11 Permission verification
NAME: CanExecOperation
INPUT: cai ∈ CAI - complex activity instance
op ∈ Op - operation
res ∈ Res - resource
OUTPUT: result - result, can operation be executed on resource

result := false
p := (res, op)
RPS := caiPermission(cai, p.op) ∪ cadPermission(instanceOfA(cai), p.op)
for each rp ∈ RPS do

if p ⊑ rp ∧ evalCond(rp.cc) then
result := true

Verification if the complex activity instance cai can execute the operation op on the
resource res is described by Algorithm 11 [40]. cai will be allowed access to the resource
if the permission that allows execution of op on res is contained in any of the permission
assigned to the instance (caiPermission) or its definition (cadPermission) (see Sec-
tion 3.4). Since the COBAC model does not provide constraints on resources access it is
not necessary to verify them during this phase.

7. Conclusion

Access control mechanism that includes constraints for business processes may depend
on different factors, which can vary from process to process. A possible solution for this
problem is to use context-sensitive access control. In this paper, we present the context-
sensitive constraints defined by the COBAC model. The presented constraints are based



26 Gordana Milosavljević et al.

on the common RBAC constraints listed in the literature which are extended with context-
sensitive information and adopted for use in workflow systems.

Existing models for context dependant constraints for workflow access control only
partially support context-sensitive constraints, usually by introducing new (context-based)
constraint type. The most notable contributions of our solution is the extension of the ex-
isting constraints with the context condition and proposal how workflow access control
can be enforced with such constraints. The presented constraints can be adopted for use
in different workflow environments and use-cases. The main advantage of the proposed
model is that it does not introduce new context constraints, but it extends existing access
control constraints with the context. This can facilitate the process of access control poli-
cies definition since we are relying on well-known constraints. Security experts together
with domain experts can extend those constraints with context when fine-grained access
control is required. This process is probably simpler than using new constraints types and
trying to achieve fine-granularity with the existing constraints and new ones.

Probably, the main obstacle in applying the COBAC model and its constraints is the
proper extension of the context model for a specific purpose. We plan to investigate is it
possible to provide (semi-)automatic generation of context parts from user requirements,
data model, and business process model. Also, a proper tool that will integrate business
process definition with constraints definition (including context) can facilitate this pro-
cess.

Simulating a new business process is important activity since it minimizes the risk of
an inappropriate business process being implemented. This process is usually performed
by simulating the newly developed business process under various initial conditions and
what-if scenarios using proper simulation tools [15]. So far we did not consider how
the COBCACs access control policies can be verified using different business process
simulation tools.

The proposed context-sensitive constraints model does not consider the quality of the
context information, like accuracy, reliability, etc. This information can be very important
for access control in certain cases. In future, we plan to examine how usage of the context
quality influences constraint enforcement. So far, we do not detect if a context condition
belongs to slowly, frequently or continuously varying context conditions type. Detection
of the condition type can be crucial for usage of the model in systems when large contexts
and a large number of context conditions are used. We plan to extend our context model
to automate the detection of the context condition type.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a better
understanding of context and context-awareness. In: HUC ’99: Proceedings of the 1st inter-
national symposium on Handheld and Ubiquitous Computing. pp. 304–307. Springer-Verlag
(1999)

2. Abowd, G.D., Mynatt, E.D., Rodden, T.: The human experience. IEEE Pervasive Computing
1(1), 48–57 (2002)

3. Bao, Y., Song, J., Wang, D., Shen, D., Yu, G.: A role and context based access control model
with UML. In: International Conference for Young Computer Scientists. vol. 0, pp. 1175–1180.
IEEE Computer Society (2008)



Context-sensitive Constraints for Access Control of Business Processes 27

4. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access control model.
ACM Trans. Inf. Syst. Secur. 4(3), 191–233 (2001)

5. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC: a spatially aware RBAC.
In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models and
technologies. pp. 29–37. ACM (2005)

6. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authorization con-
straints in workflow management systems. ACM Trans. Inf. Syst. Secur. 2(1), 65–104 (1999)

7. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control model for web-
services. Distributed and Parallel Databases 18(1), 83–105 (2005)

8. Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J.B.: XML-based specification for web services
document security. Computer 37(4), 41–49 (2004)

9. Botha, R.A., Eloff, J.H.P.: Access control in document-centric workflow
systems – an agent-based approach. Computers & Security 20(6), 525 –
532 (2001), http://www.sciencedirect.com/science/article/B6V8G-44416WY-
F/2/d0d1f2c9bbd12fa52bc648371a9e5a39

10. Botha, R.A., Eloff, J.H.P.: Separation of duties for access control enforcement in workflow
environments. IBM Systems Journal 40(3), 666–682 (2001)

11. Coalition, W.M.: Workflow management coalition the workflow reference model. TCOO- 1003
(1994)

12. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.: Securing
context-aware applications using environment roles. In: Proceedings of the 6th ACM Sympo-
sium on Access Control Models and Technologies (SACMAT). pp. 10–20. ACM (2001)

13. Crampton, J.: A reference monitor for workflow systems with constrained task execution. In:
SACMAT ’05: Proceedings of the tenth ACM symposium on Access control models and tech-
nologies. pp. 38–47. ACM (2005)

14. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A spatially aware RBAC.
ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

15. Damij, N., Boškoski, P., Bohanec, M., Boshkoska, B.M.: Ranking of business process simula-
tion software tools with dex/qq hierarchical decision model. PloS one 11(2), e0148391 (2016)

16. Davenport, T.H., Short, J.E.: The new industrial engineering: Information technology and busi-
ness process redesign. Sloan Management Review 31(4), 11–27 (1990)

17. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)
18. Fadhel, A.B., Bianculli, D., Briand, L.: A comprehensive modeling framework for role-based

access control policies. Journal of Systems and Software 107(0), 110 – 126 (2015)
19. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed NIST stan-

dard for role-based access control. ACM Transactions on Information and System Security
(TISSEC) 4(3), 224–274 (2001)

20. Filho, J.B., Martin, H.: Using context quality indicators for improving context-based access
control in pervasive environments. In: EUC ’08: Proceedings of the 2008 IEEE/IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing. pp. 285–290. IEEE Computer
Society (2008)

21. de Freitas Bulcao Neto, R., da Graca Campos Pimentel, M.: Toward a domain-independent
semantic model for context-aware computing. In: Proceedings of the 3rd Latin American Web
Congress (LA-WEB). pp. 61–70. IEEE Computer Society (2005)

22. Gao, L., Zhang, L., Xu, L.: Access control scheme for workflow. In: ICCET ’09: Proceedings
of the 2009 International Conference on Computer Engineering and Technology. pp. 215–217.
IEEE Computer Society (2009)

23. Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible team-based access control
using contexts. In: SACMAT ’01: Proceedings of the sixth ACM symposium on Access control
models and technologies. pp. 21–27. ACM (2001)



28 Gordana Milosavljević et al.

24. Gostojić, S., Sladić, G., Milosavljević, B., Konjović, Z.: Context-sensitive access control model
for government services. Journal of Organizational Computing and Electronic Commerce
22(2), 184–213 (2012)

25. Haibo, S., Fan, H.: A context-aware role-based access control model for web services. Pro-
ceedings of the IEEE International Conference on e-Business Engineering (ICEBE) 0, 220–223
(2005)

26. Han, W., Zhang, J., Yao, X.: Context-sensitive access control model and implementation. Pro-
ceedings of the 5th International Conference on Computer and Information Technology (CIT)
0, 757–763 (2005)

27. Irwin, K., Yu, T., Winsborough, W.H.: Enforcing security properties in task-based systems.
In: SACMAT ’08: Proceedings of the 13th ACM symposium on Access control models and
technologies. pp. 41–50. ACM (2008)

28. Kapsalisa, V., Hadellisb, L., Karelisb, D., Koubiasc, S.: A dynamic context-aware access con-
trol architecture for e-services. Computers & Security 25(7), 507–521 (2006)

29. Kong, G., Li, J.: Research on rbac-based separation of duty constraints. Journal of Information
and Computing Science 2(3), 235–240 (2007)

30. Kumar, A., Karnik, N., Chafle, G.: Context sensitivity in role-based access control. SIGOPS
Oper. Syst. Rev. 36(3), 53–66 (2002)

31. Latif, U., Joshi, J.B.D., Bertino, E., Ghafoor, A.: A generalized temporal role-based access
control model. IEEE Trans. on Knowl. and Data Eng. 17(1), 4–23 (2005)

32. Oh, S., Park, S.: Task-role-based access control model. Information Systems 28(6), 533–562
(2003)

33. Perelson, S., Botha, R., Eloff, J.: Separation of duty administration. SACJ/SART - South
African Computer Journal 1(27), 64–69 (2001)

34. Schefer-Wenzl, S., Strembeck, M.: Modeling context-aware rbac models for business processes
in ubiquitous computing environments. In: Mobile, Ubiquitous, and Intelligent Computing
(MUSIC), 2012 Third FTRA International Conference on. pp. 126–131. IEEE (2012)

35. Schefer-Wenzl, S., Strembeck, M.: Modelling context-aware rbac models for mobile business
processes. International Journal of Wireless and Mobile Computing 3 6(5), 448–462 (2013)

36. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proc of IEEE
Workshop on Mobile Computing Systems and Applications. pp. 85–91. IEEE Computer Soci-
ety (1994)

37. Shafiq, B., Samuel, A., Ghafoor, H.: A GTRBAC based system for dynamic workflow compo-
sition and management. In: Proceedings of the 8th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC). pp. 284–290. IEEE Computer Society
(2005)

38. Shang, C., Yang, Z., Liu, Q., Zhao, C.: A context based dynamic access control model for web
service. In: International Conference on Embedded and Ubiquitous Computing, IEEE/IFIP.
vol. 2, pp. 339–343. IEEE Computer Society (2008)

39. Simon, R., Zurko, M.E.: Separation of duty in role-based environments. In: CSFW ’97: Pro-
ceedings of the 10th IEEE workshop on Computer Security Foundations. p. 183. IEEE Com-
puter Society (1997)

40. Sladić, G., Milosavljević, B., Konjović, Z.: Context-sensitive access control model for business
processes. Computer Science and Information Systems (ComSIS) 10(3), 939–972 (2013)

41. Sladić, G., Milosavljević, B., Konjović, Z., Vidaković, M.: Access control framework for XML
document collections. Computer Science and Information Systems (ComSIS) 8(3), 591–609
(2011)

42. Sladić, G., Milosavljević, B., Surla, D., Konjović, Z.: Flexible access control framework for
MARC records. The Electronic Library 30(5), 25 (2012)

43. Strembeck, M., Neumann, G.: An integrated approach to engineer and enforce context con-
straints in rbac environments. ACM Trans. Inf. Syst. Secur. 7(3), 392–427 (2004)



Context-sensitive Constraints for Access Control of Business Processes 29

44. Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (TBAC): A family of models
for active and enterprise-oriented autorization management. In: Proceedings of the IFIP TC11
WG11.3 11th International Conference on Database Securty XI. pp. 166–181. Chapman &
Hall, Ltd. (1998)

45. Tripathi, A.R., Kulkarni, D., Ahmed, T.: A specification model for context-based collaborative
applications. Pervasive Mob. Comput. 1(1), 21–42 (2005)

46. Truong, K.N., Abowd, G.D., , Brotherton, J.A.: Who, what, when, where, how: Design issues
of capture & access applications. In: Ubicomp 2001: Ubiquitous Computing. pp. 209–224.
Springer-Verlag (2001)

47. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model incorporating
controlled overriding of constraints. International Journal of Cooperative Information Systems
12(4), 455–485 (2003)

48. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow management.
In: SACMAT ’06: Proceedings of the eleventh ACM symposium on Access control models and
technologies. pp. 190–199. ACM (2006)

49. Yao, L., Kong, X., Xu, Z.: A task-role based access control model with multi-constraints. In:
NCM ’08: Proceedings of the 2008 Fourth International Conference on Networked Computing
and Advanced Information Management. pp. 137–143. IEEE Computer Society (2008)

50. Zhang, L., Luo, L., Zhang, L., Geng, T., Yue, Z.: Task-role-based access control in application
on MIS. In: Proceedings of the 2006 IEEE Asia-Pacific Conference on Services Computing
(APSCC). pp. 153–159. IEEE Computer Society (2006)

Gordana Milosavljević is holding the associate professor position at University of Novi
Sad, Faculty of Technical Sciences. She teaches courses in Business Information Sys-
tems and Model Driven Software Development. Her research interests focus on software
engineering methodologies, rapid development tools and enterprise information systems
design.

Goran Sladić is holding the associate professor position at the Faculty of Technical
Sciences, University of Novi Sad since 2016. Mr. Sladi received his PhD degree at the
University of Novi Sad in 2011. His research interests include information security and
privacy, document management systems, context-aware computing, software engineering
and workflow systems. He is the corresponding author.

Branko Milosavljević received a PhD degree at the University of Novi Sad in 2003.
He is holding the position of full professor at the University of Novi Sad, Faculty of
Technical Sciences. He has authored or co-authored more than 80 scientific papers. Most
of these publications are related to software engineering, net-centric computing, document
management, digital libraries and access control.

Miroslav Zarić received his PhD in Electrical engineering and computing from Univer-
sity of Novi Sad, Serbia. He is currently an assistant professor at University of Novi Sad,
Faculty of Technical Sciences. His research interest include business process management
and process automation, service oriented architectures. He is a member of ACM.

Stevan Gostojić is assistant professor of applied computer science and informatics at
Faculty of Technical Sciences, University of Novi Sad. He has a Ph.D. in electrical en-
gineering and computer science from the same university. His research interests are: le-
gal informatics, e-government and information society services; knowledge engineering,



30 Gordana Milosavljević et al.

knowledge based systems, linked data and semantic web; document engineering, docu-
ment management and business process management; and open data, open knowledge
and open government.

Jelena Slivka is holding the assistant professor position at the Faculty of Technical Sci-
ences, Novi Sad, Serbia since 2015. Ms. Slivka received her Master degree (2008) and
PhD degree (2014) all in Computer Science from the University of Novi Sad, Faculty of
Technical Sciences. Since 2009 she is with the Faculty of Technical Science in Novi Sad.
Her main research interests are data mining and machine learning.

Received: June 28, 2016; Accepted: July 29, 2017.


