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Abstract. Thanks to remarkably fast random reads and rapidly decreasing prices 

per bit, flash storage has been regarded as a promising alternative to traditional 

hard disk drives (HDDs). Although flash storage has many distinguished 

hardware features, it still suffers from the poor I/O performance in the case of 

update operations. Due to the absence of in-place updates, differently from HDDs, 

flash storage needs to modify data through out-of-place updates. For this reason, it 

is required to continuously renew the mapping information between a logical page 

address and its new physical address, invalidating its old physical address. When 

the invalidated pages swallow most of free space in flash storage, the actions of 

garbage reclamation are needed. Since the actions of garbage reclamation are very 

costly, it is crucial to reduce the number of update operations for the use of flash 

storage in enterprise-scale database systems. In this light, we propose a new 

buffering scheme that evicts dirty pages without writing them to storage, thereby 

reducing the amount of update operations considerably. That is, our buffering 

scheme enables the flushing-less evictions of dirty pages. To correctly read a page 

undergoing its flushing-less eviction, we propose a new on-the-fly redo 

mechanism that enables restoring the lost updates of the page in normal database 

processing. For fast execution of the on-the-fly redo, we maintain memory-

resident log data of a reasonable size. To show the performance advantages of the 

proposed scheme, we performed extensive experiments based on the TPC-C 

benchmark, by running them on the open-sourced Berkeley DB equipped 

with/without our scheme. The results show that our scheme yields a much better 

performance by reducing the amount of page updates significantly. 
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1. Introduction 

During the past decade, flash storage has rapidly widened its application domains as 

storage for diverse portable devices such as laptops, digital cameras, and smart phones. 

The popularities of flash storage are largely due to its salient features of fast random 
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reads, low power consumption, and good shock resistance [1][2]. Although the cost per 

bit of flash storage is still higher than that of traditional hard disk drives (HDDs), 

technology enhancements in the future seem to narrow the per-bit cost gap rapidly 

[7][9] [15]. In this light, much research has been done to incorporate flash storage into 

enterprise-scale systems for the purpose of performance improvement. Most of such 

research was devoted to solving the flash storage’s problem of severe asymmetric 

performances of read operations and update operations [6][7][8][9][10][11][15][16].   

Unlike the HDDs, flash storage has the hardware constraint of erase-before-write due 

to its disability of in-place updates, which is the major cause of expensive update 

operations in flash storage. Because writing of data is allowed only on an empty page, 

flash storage has latent I/O overheads for performing out-of-place writes and block 

merging needed for garbage reclamation [1][12][19]. To minimize performance 

degradations from such I/O overheads in flash storage, researchers have proposed a 

number of efficient algorithms for the flash translation layer (FTL) [19][20]. Owing to 

the FTL, flash storage can provide the HDD-like I/O interfaces by managing the 

mapping information between the logical addresses and physical addresses of pages. 

Although the use of the FTL may diminish the occurrences of full block merges during 

garbage reclamation, it cannot guarantee a robust I/O performance in the presence of a 

large volume of random writes (i.e., random updates) [4][6][8][15]. To avoid the 

limitation of such FTL-based solutions, this paper addresses a new buffering scheme 

that can reduce the number of update operations significantly (footnote: The preliminary 

version of this paper has been presented as a short paper (4 pages) in ACM CIKM 2015 

[15].) 

There have been many research efforts on effective buffering for HDD-based 

DBMSs [4][7][23]. In the case of HDDs, the I/O time for wring a page is nearly the 

same as that for reading a page, and data can be updated in-place. Therefore, there is no 

reason to make an intense effort for reducing page updates at the expense of increased 

page reads in HDD storage. As a result, the key design goal of buffering schemes with 

HDDs is to enhance the buffer hit rate for the purpose of a less number of page reads 

[23]. In this context, the LRU (least recently used) algorithm and its variations are 

widely accepted as buffer replacement algorithms [4][17].  

Under the LRU algorithm, if a dirty page X is picked as a victim page to get a free 

frame from the buffer pool, the current in-buffer image of X is written to storage before 

its eviction. In traditional buffering schemes devised for HDDs, such an eviction with 

data flushing is common and reasonable from the performance point of view [13][23]. 

However, in the case of flash storage, it may not be the case due to its cheap cost of 

page reads. For instance, assume that we evict the dirty page X without flushing it. 

Since the read cost for reloading X is very cheap in flash storage, the cost for restoring X 

may be also cheap. This makes the flushing-less eviction of X lucrative in flash storage 

by eliminating an update on X, at the expense of a page read for reloading X. Based on 

this idea, our buffering scheme enables the flushing-less evictions of dirty pages in the 

buffer pool.  

Since such flushing-less evictions make a database inconsistent, we need a 

mechanism for correctly restoring a dirty page that underwent a flushing-less eviction. 

For this purpose, we rely on the redo mechanism originally devised for the recovery 

purpose. For exposition, consider that dirty page X is evicted without flushing. When X 

is about to be read again, our buffering scheme reads the in-storage (old) image of X and 

then restores the correct image of X by applying X’s redo log record(s) on that. We refer 
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to such a real-time redo action on X as the on-the-fly redo. For fast executions of the on-

the-fly redo, we maintain a portion of redo log records in main memory. Although the 

on-the-fly redo entails more page reads and consumes some more CPU times, such 

overhead can be compensated by the I/O benefits from the decrease of page updates. 

Besides the reduction of page updates, our proposed buffering scheme provides two 

additional advantages. First, it can be used for enabling the no-steal policy in buffer 

management [12][13][23]. If any traditional buffering scheme attempts to support the 

no-steal policy, it may suffer from restrictive buffer replacements because the dirty 

pages affected by uncommitted updates cannot be evicted from the buffer pool. Here, 

the uncommitted update means an update made by a transaction that has not committed 

yet. This restrictive selections of victim pages are apt to cause exhaustions of free buffer 

space or frequent buffer misses [13][23]. Unlike that, our buffering scheme can select a 

dirty page as a victim while providing the no-steal policy, because that dirty page can be 

simply evicted without flushing. Second, the mechanism of the on-the-fly redo can be 

used to shorten the time for reincarnating the buffer pool after system failure. To restart 

the buffer pool, the recovery algorithm is usually required to perform the redo phase to 

restore the up-to-date images of dirty pages that were buffered at the time of system 

failure [13]. Redo actions are executed using the redo log data. In the case of our 

recovery algorithm, however, it can restart the buffer pool in a faster way by reading a 

set of log records without performing actual redo actions. Then, the actual redo actions 

are gradually performed through the on-the-fly redo during normal database processing. 

As a result, our buffering scheme has an advantage of faster recovery. 

The rest of this paper is organized as follows. In Section 2, we address technical 

challenges related to our work, and explain the research motivations of this paper. In 

Section 3, we propose our buffering scheme that supports flushing-less evictions. Then, 

we present the recovery algorithm for the proposed buffering scheme in Section 4. We 

verify our performance advantages by performing experiments with the TPC-C 

benchmarks in Section 5. Finally, we summarize and conclude the paper in Section 6. 

2. Background 

2.1. Traditional Buffering Schemes 

Because of the poor speeds of random reads in HDDs, the use of a memory buffer pool 

is indispensable for enhancing the I/O performance of disk-based DBMSs [15][16][23]. 

To improve the buffer hit rate of the buffer pool with a limited size of main memory, the 

algorithms for efficient buffer replacement were intensively studied [7][16][23]. Among 

them, the LRU algorithm has been widely used due to its cheap run-time cost and 

competitive hit rate. If the LRU algorithm and its variants pick a dirty page as a victim 

at the time of buffer replacement, it needs to flush that page to storage before the page’s 

eviction. Since the updated page may contain uncommitted updates, the write-ahead-

logging (WAL) protocol is usually employed [12][13][23]. Most modern DBMSs adopt 

the WAL protocol and the LRU buffer replacement for achieving high I/O performance.  

Because our proposed buffering scheme is designed based on the redo mechanisms 

used for the system recovery, some knowledge of the recovery algorithm is necessary 
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for understanding our key idea. For this reason, we briefly describe the ARIES 

algorithm [13]. ARIES snapshots a consistent database state by storing a dirty page 

table and the list of in-progress transactions into the log file. When the recovery 

procedure is initiated to handle system failure, ARIES accesses the last checkpoint 

record. Then, the three phases of a log analysis, redo actions, and undo actions are 

consecutively performed [13][15][23]. During the log analysis phase, ARIES identifies 

the set of loser transactions to be rolled back. Then, the redo phase begins to repeat the 

lost updates in databases using the redo log data. Lastly, ARIES performs the undo 

phase to revoke the uncommitted updates made by the loser transactions. For that, 

AIRIES uses the log-sequence-number (LSN) that is stamped on every data page and 

log record. In general, an LSN is the same as the log file offset where the log record 

with that LSN is stored. By comparing the LSNs of a log record R and its involved data 

page, ARIES determines whether or not the update operation recorded in R has already 

been reflected on that page [13].  

When the ARIES algorithm is used for disk-based DBMS, the redo phase accounts 

for the most portion of the recovery time because this phase requires a large number of 

random reads while restoring dirty pages in the buffer pool [13][17][21]. For this 

reason, the ARIES algorithm usually flushes aged dirty pages during normal database 

processing [13]. Because the update operation is not a special concern in HDD storage, 

the mechanism of the dirty page flushing seems to be lucrative for the disk-based 

DBMS, if we take into account the reduced redo phase time. However, this cannot be 

the case for the flash-resident DBMS because of its high costs for page updates. This 

motivates us to devise a novel buffering scheme that supports the fast recovery without 

frequent flushing of dirty pages. 

2.2. Earlier Flash-based DBMSs 

Since data accesses in flash storage are performed without the mechanical movement of 

arms occurring in the HDD, the flash-based solid state device (SSD), which is 

composed of multiple flash dices and an internal H/W controller, provides the 

advantages of fast and uniform speeds of random reads [2][6][8]. The read speed of 

flash storage is above an order of magnitude faster than that of HDD storage. Writing of 

data into an empty page of flash storage has 9~10 times faster speeds than cutting-edge 

HDD storage. In order to utilize flash storage more effectively for achieving higher I/O 

performance in a DBMS, a number of research efforts have been made in the database 

community [4][5][6][7][8][9][10][11][12][15][16][17][18][19][20][21][22].  

As one of such efforts, there exists research that accommodates flash storage as a 

cache area located between a memory buffer pool and HDD storage [4][5]. In this 

research, the concept called the region temperature is invented for the purpose of 

estimating the degree of the benefit from caching a data region in flash storage. To this 

end, the authors of [4] logically divide the database area in HDD storage into equal-size 

regions and compute their temperatures. The temperature of region R is computed by 

accumulating the I/O benefits obtainable by caching that region in flash storage. Then, 

the region temperatures are used for determining caching priorities of regions.  

Because data are duplicated across flash storage and primary HDD storage, it is 

required to pay some extra costs for preserving data consistency between them. In 

particular, it is important to retain database consistency in the face of system failure. As 
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a naïve mechanism for recovery, one may invalidate the whole data cached in flash 

storage at the time of system restart [4]. With this approach, however, the recovered 

system usually suffers from severe performance degradations until the invalidated hot 

regions are re-cached in flash storage. To shorten such a ramping-up interval, some 

ideas have been proposed [5].  However, as the flash-cache approaches [4][5] read a 

majority of data from HDD storage, they do not seem to enhance the DBMS 

performance fundamentally.  

To solve the problem in flash-cache approaches, some research attempts to 

accommodate flash storage as a primary storage area, rather than a cache area. For this, 

the journaling mechanism [14][23] is adopted to update a data page at a cheaper I/O 

cost. For instance, IPL proposed in [11] stores databases on flash storage and prepares a 

log area at the tail of each flash block. If an update arises in any data page within a 

block B, IPL writes the corresponding log data into the log area of B. That is, IPL 

performs out-of-place updates by itself without the help of the FTL. When the log area 

becomes full because of a number of updates on its associated data pages, a block merge 

operation is conducted to clean that used log area again. That is, a block erase operation 

is executed, and all the data pages in the block are rewritten with their up-to-date 

images. Because the block merging can be done within a single block, its price is very 

low. For this reason, the IPL algorithm ensures good I/O performance for the flash-

based DBMS with a number of update operations. Since IPL does not support the 

mechanisms of the system recovery and the concurrency control for transactions, 

however, the transactional IPL (TIPL) was proposed to extend the IPL algorithm for the 

use in transaction processing systems [12].  

Although IPL and TIPL can avoid severe performance degradations caused by 

frequent update operations in flash storage, they can easily suffer from considerable I/O 

overheads for scanning the log areas. To correctly read a data page P from a block B, 

these methods need to scan the whole log area in B so as to check the existence of any 

log data associated with P. If the log data are found, they are applied to generate the up-

to-date image of P. That is, some redo action is required for reading page P correctly. 

Since the log scanning is always executed for loading a new page up to the buffer pool, 

it can harm the I/O performance of the flash-based DBMS when buffer misses occur 

frequently.   

Besides such costs for redo actions, the IPL and TIPL algorithms have the problem of 

the wastes of flash storage space because of the existence of log areas in blocks. To 

reduce the storage wastes for logging, they rely on a special I/O interface that can 

support a finer-granularity of log writes. That is, it is assumed that 0.5KB worth of a 

sector is used as the unit of log writing, rather than the usual unit of 2~4 KB for data 

writing. However, such a smaller unit of writing is not supported in MLC (Multi-Level 

Cell) flash, which is the most popular type in the market for their low prices per bit 

[6][15]. Due to such H/W restrictions and overheads for redo actions, IPL and TIPL 

seem to be unsuitable for flash-resident databases. To overcome such problems, our 

research focuses on the update-aversive buffering scheme that can run well on off-the-

shelf flash storage devices. 
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3. Proposed Buffering Scheme 

In this section, we first present our proposed mechanism for the on-the-fly redo, which 

is used to enable flushing-less evictions of dirty pages in the buffer pool. Then, we 

address how to efficiently handle the commits and aborts of transactions by using the 

on-the-fly redo. 

3.1. On-the-fly Redo 

As for the buffering scheme for traditional disk-based DBMSs, its usage is mainly 

aimed at reducing the number of disk reads by caching hot/warm data pages in main 

memory [7][23]. For this, the traditional buffering scheme usually adopts the LRU-style 

algorithms as its buffer replacement policies. If a dirty page is chosen according to an 

LRU-style algorithm for buffer replacement, the current in-buffer image of that page is 

written to storage before its eviction. Through the flushing of the dirty page, the 

database consistency is guaranteed in ease. Since the update cost is not tremendous in 

HDD storage, it seems to be reasonable to flush dirty pages at their eviction times. 

However, it cannot be true in the case of flash-resident databases because update costs 

are too expensive in flash storage [7][8][9][15].  

In this context, we propose a flash-aware buffering scheme that provides the ability 

of flushing-less evictions of dirty pages, thereby diminishing the occurrences of page 

updates. To restore the correct image of a dirty page that has been evicted without 

flushing, correspondingly, we incorporate a real-time recovery mechanism into the 

proposed buffering scheme. Specifically, we perform a redo action on that page having 

a flushing-less eviction in such a way that the lost updates on it due to flushing-less 

eviction is recovered in online mode. Because the redo mechanism is originally devised 

to preserve the database consistency in face of system failure, the log data used for it are 

stored in storage and are retrieved in off-line mode. In the proposed scheme, however, 

we manage a portion of redo log data in main memory and index them for their fast 

accesses. In this paper, we refer to this online mode redo, performed during normal 

database processing, as the on-the-fly redo.  

To explain how to execute the on-the-fly redo, we use Figure 1. The buffer pool 

consists of a set of buffer frames, a page/frame addressing table (PFAT), and an in-

memory hash table used to manage log data. Here, we refer to this in-memory hash 

table as the online log table. The PFAT contains the mapping information between the 

logical addresses of buffered pages and their reserved frame IDs. The log records in the 

online log table are indexed with respect to the logical addresses of their associated dirty 

pages. Because the proposed method does not require undo actions for aborted 

transactions, we do not save undo log data either in storage or in the online log table. 

Therefore, we refer to the log records of the online log table the redo log records. 
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Figure 1. The way for managing the proposed buffer pool. The dirty page p5 is evicted without 

flushing. 

Figure 1(a) shows the buffer pool state before page p5 is evicted from the buffer 

pool. Here, we assume that the buffer pool can cache up to five pages and it is currently 

full of buffered pages. Among the five pages, the pages of p2, p4, and p5 are marked as 

dirty pages in the PFAT. In the case of p5, it is a dirty page using the buffer frame of 

number 2 and has been updated by transactions T2 and T3 in this order. To address the 

way to evict page p5 without flushing, we assume that page p6 is requested at the time 

of Figure 1(a). Since there is no free buffer frame now, the buffer replacement algorithm 

is executed to pick a victim page to be evicted. Suppose that page p5 happens to be 

selected as the victim. 

In the case of a usual buffering scheme, the current in-buffer image of p5 is written to 

storage for database consistency. Unlike that, to avoid a page update, our buffering 

scheme just evicts p5 without its flushing. Instead, we change the PFAT entry of p5 as 

in Figure (b), where p5’s PFAT entry is modified with the value of (-1, dirty). Note that 

the minus value in the frame number expresses that there exists a flushing-less eviction 

on p5. Then, the newly buffered page of p6 replaces the buffer frame of p5. 

To explain how to correctly restore the page with flushing-less eviction, suppose that 

transaction T1 requests a record in p5. To process the I/O request of T1, our buffering 

scheme first looks into the PFAT entries so as to check the existence of p5 in the buffer 

pool. From the PFAT entry of p5 in Figure (b), it is found that p5 experienced flushing-

less eviction. Thus, the on-the-fly redo is applied to p5. That is, our buffering scheme 

reads p5 from storage to the buffer and applies its two redo log records to p5. Thanks to 

the page-granularity on-the-fly redo, we can restore the correct image of p5 for T1. To 

make the restored image of p5 valid, our buffering scheme changes the minus frame 

number of p5 with its new frame ID.   

The correctness of the on-the-fly redo mechanism can be shown as follows. Since our 

redo log data is made according to the physiological logging policy, it records an update 

operation occurring only within a single page. Here, the update operation is expressed 

with a logical operation [12][13]. Based on the property of the physiological redo log, it 

is the case that the recent image of any page P can be correctly generated by 

chronologically applying the associated physiological log records on P. Moreover, with 
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a proper locking protocol, any of permutations of multiple physiological log records can 

restore the correct image of an updated page. Therefore, our on-the-fly redo mechanism 

is correct and thus can be safely applied.   

 If we attempt to support the no-steal policy in the same way as in the traditional 

buffering scheme, we cannot evict any dirty pages having uncommitted updates at the 

time of buffer replacement. Such restriction on victim selections usually entails poor 

buffer hit rates. In particular, the existence of some long living transactions may 

severely hurt the buffer hit rate by exhausting free buffer space when they update a 

number of pages during their long life [13][23][15].  This is the reason why the steal 

policy is common in the traditional disk-based DBMSs. Since our buffering scheme 

enables to evict dirty pages without flushing, it can easily support the no-steal policy in 

buffer management. Due to the advantages of such a no-steal policy, the proposed 

buffering scheme not only provides the faster recovery at the time of system failure but 

also eliminates the overhead of maintaining undo log records during normal database 

processing. More details will be elaborated in Section 4. 

3.2. Handling of Transaction Commits 

In the conventional disk-based DBMSs, the buffered log writing is useful for reducing 

the I/O overheads required in storing log data. That is, new log records are appended to 

an in-memory log buffer, which is written into the log file through a single I/O call 

when it gets full of log records. To commit a transaction T, therefore, the log buffer 

should be flushed out to write all the log records associated with T [3][17][23]. Note 

that all the committed log records should be stored in safe storage for executing redo 

actions for the recovery. Since the log buffer usually contains the log records owned by 

other transactions, uncommitted log records could be flushed along with the committed 

log records of T. Here, an uncommitted log record indicates a log record related to an 

uncommitted update. Such uncommitted log records are those for undo actions and thus 

are called the undo log records. They are normally used for rolling back the update 

operations made by aborted transactions.  

Since the no-steal policy can be effectively realized with our scheme, there is no need 

of undo log records. For this reason, when a transaction T requests its commit, we save 

only the log records owned by T without saving other transactions’ log records. 

Specifically, we copy the log records belonging to T from the online log table into the 

log buffer. Then, the log buffer is flushed in order to store T’s committed log records. 

Since the total amount of log records for a single committed transaction is normally 

much less than the smallest size of data writes in flash storage, we may waste a 

considerable fraction of I/O bandwidth while recording log data.  

To alleviate the I/O wastes in logging, we adopt the well-known technique called the 

group-commit [23] as an optional commit protocol, together with the ordinary 

immediate commit protocol. Using the group-commit protocol, we can gather the 

committed log data in the log buffer by delaying times of transactions’ commits. When 

the log buffer becomes full of log records, its data is flushed out to storage, by 

following the group-commit protocol. To prevent excessive delays of transactions’ 

commits, we set the maximum delay time for our group-commit protocol.   

Although the log records of a transaction T are stored at its commit time, we do not 

remove their duplicates managed in the online log table. This is because they are still 
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required for the correct executions of the on-the-fly redo. For the exposition, suppose 

that transaction T2 of Figure 1(b) has committed and its log records are all written to the 

log file. If we remove the committed log records of T2 made for page p5, the on-the-fly 

redo cannot be correctly performed on p5 because of the absence of the committed log 

records of T2. Therefore, the committed log records of T2 need to be kept for p5. For 

that reason, our buffering scheme retains committed log records in the online log table 

until the on-the-fly redo can be correctly performed without them. More specifically, the 

deletion of committed online log records is performed at the time of checkpointing. In 

the proposed scheme, the checkpointing process deletes committed log records, and also 

flushes their related dirty pages. The algorithm for the checkpointing process is 

presented in Section 4. 

3.3. Handling of Transaction Aborts 

Thanks to the no-steal policy implemented in our buffering scheme, our recovery 

process has no need of undo actions after system. However, during normal database 

processing, we need to handle individual transaction aborts correctly to nullify their 

updates made on the buffered pages. Let us assume that a transaction T, which has 

updated some database pages, is about to abort itself. In the buffering scheme used in 

disk-based DMBSs, the uncommitted updates of T are nullified with undo actions on 

their involved dirty pages in the buffer. Thus, for logging these undo actions, the 

compensation log records (CLRs) are saved in the log file during the T’s abort [13]. The 

use of CLRs inevitably enlarges the log data and consumes more CPU times for 

applying the undo log records to dirty pages.  

Unlike that, our proposed buffering scheme eliminates the necessity of the CLR 

usage. To explain this, we use Figure 2, which illustrates how the states of the PFAT 

and the online log table are modified for aborting a transaction. Figure 2(a) depicts a 

situation where transactions T1, T2, and T3 are in progress and they have made updates 

on pages p2, p4, and p5. According to the no-steal policy for buffer management, those 

updates have not been reflected on storage until now. Suppose that transaction T2 aborts 

itself at the time of Figure 2(a). In the case of the traditional buffering scheme, undo 

actions are performed to nullify T2’s update operations on p4 and p5, along with the 

saving of the corresponding CLRs. Unlike this conventional mechanism, we just evict 

the two pages p4 and p5 updated by T2 and delete the online log records owned by T2 

as in Figure 2(b). During the abortion of T2, we neither write any CLRs nor perform 

undo actions on p4 or p5. We just free the buffer frames reserved for the updated pages 

without any actual updates 

The correctness of the above mechanism for the transaction abort can be easily 

verified. Suppose that a certain transaction asks for page p4 after the transaction abort of 

Figure (b). Since the PFAT does not contain any entry for p4, that page will be read 

from storage. Since the no-steal policy is employed in our scheme, it is ensured that the 

in-storage image of p4 was not affected by T2. Therefore, the transaction can correctly 

read page p4. In turn, suppose that page p5 is requested by a certain transaction. For this 

data request, our buffering scheme executes the on-the-fly redo on p5 because the PFAT 

entry of p5 contains the frame number of a minus value. Since the online log records of 

T2 were deleted already, page p5 can be correctly restored by using the online log 
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records of T3 and T1.  Consequently, we can clean the update operations made by 

transaction T2 without the use of undo actions and logging of CLRs.  

 

Figure 2. The way to abort transaction T2. For the abortion of T2, pages p4 and p5 are evicted. 

Due to the mechanism of the on-the-fly redo, the proposed buffering scheme can 

efficiently process transaction aborts without any page updates or log writing, which are 

required in the conventional buffering schemes. However, our scheme needs extra page 

reads used for re-caching the pages that have been evicted for transaction’s abortion. 

For example, in the case of p5 in Figure 2, we need to read this page before an on-the-

fly redo is applied to it. As mentioned before, the I/O cost for reading a page is very low 

in the case of flash storage. As a result, the transaction abort can be handled at a cheaper 

price by our buffering scheme, compared with the traditional scheme. The performance 

advantage is discussed in Section 5. 

4. Algorithms for Recovery 

In this section, we present how to recover the buffer pool after system failure. To 

expedite the system recovery, we rely on the checkpointing scheme that is usually 

employed to create a snapshot of the recent database state. However, the proposed 

checkpointing algorithm performs the compaction of the online log table as well as the 

creation of a recent database snapshot. 

4.1. Checkpointing Scheme 

4.1.1 Overview 

Checkpointing in a DBMS aims at creating a snapshot of a continuously changing state 

of a database that is used for faster recovery after system failure [13]. Among the earlier 

(a) State before transaction T2 aborts. (b) State after transaction T2 has aborted.
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checkpointing schemes, the fuzzy checkpointing scheme has been widely accepted for 

its low I/O overhead and short duration. To make a database snapshot, it records the 

logical addresses of the dirty pages residing in the buffer pool and the LSNs of their 

corresponding recovery log records. Here, the recovery log record of page P is defined 

as the log record created for the first update made on P after P has been buffered. The 

dirty page list and the LSNs of the recovery log records are stored together in the dirty 

page table. Besides the dirty page table, the fuzzy checkpointing algorithm saves the 

IDs of in-progress (live) transactions in the checkpoint record.   

To explain the usage of the LSN information of recovery log records, let us assume 

that a page P has been updated three times within the buffer pool. Let the update times 

of the dirty page P be t1, t2, and t3, respectively, after P has been buffered. According 

to the WAL protocol, the same number of log records are created for the recovery 

purpose. In this case, the first log record representing the update at time t1 is used as the 

recovery log record of P. P’s log records preceding the recovery log record have been 

already reflected in P and thus are useless for redo actions on P. For this reason, the 

recovery log record becomes the starting point of redo actions for P in the presence of 

system failure. Therefore, the minimum (i.e., oldest) LSN of the recovery log records 

for all the updated pages is used as the starting point of the redo phase. That is, the redo 

phase is conducted by scanning all the log records from this minimum LSN to the end 

of a log file. Recall that the LSN of a log record is usually represented as the log file 

offset where the log record is stored. In this paper, the minimum LSN is called the redo 

starting point. 

To shorten the checkpointing time, the fuzzy checkpointing scheme does not enforce 

flushing of all the dirty pages. Therefore, the redo starting point may stay backwards far 

from the present if there exist too aged (long-living) dirty pages in the buffer. To 

prevent the redo phase from being prolonged, the traditional buffering schemes based 

on the fuzzy checkpointing usually take an approach that flushes gradually dirty pages 

during normal database processing, rather than during checkpointing. That is, a 

background process is periodically invoked to flush long-living dirty pages for fast 

recovery [23]. This helps the traditional buffering schemes to reduce its recovery time at 

the cost of an increasing number of page updates during normal database processing. 

Unlike the previous fuzzy checkpointing schemes, our checkpointing scheme has 

another mission of compacting the online log table, as well as creating a database 

snapshot. To see this, we use Figure 3(a) where there exist three dirty pages in the 

buffer pool. Currently, pages p1, p2, and p3 have three, one, and two committed log 

records, respectively, in the online log table. Since the copies of those committed log 

records have been already stored in the log file, we can delete them. When deleting 

those committed log records, however, we have to carefully update their involved dirty 

pages. As stated earlier, the careless deletions of committed online log records entail 

incorrect executions of on-the-fly redo actions.  

When the proposed checkpointing scheme is applied to the buffer state in Figure 

3(a), five committed log records are eliminated as in Figure 3(b). In this example, we 

assume that the log compaction is allowed only for the dirty page having two or more 

committed log records involved with it. In the case of p1 in Figure 3(a), its three log 

records are all committed ones. Therefore, the current in-buffer image of p1 can be 

written to storage without impairing the no-steal policy, and its online log records can 

be safely deleted. For this, the PFAT entry of p1 is updated as in Figure 3(b), where the 

state of page p1 is changed to a clean page. On the other hand, page p2 has a single 
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committed log record in the online log table of Figure 3(a). Thus, we do not perform log 

compaction on p2. As a result, the buffer state of p2 remains intact as in Figure 3(b). 

Through the restrictive selections of the dirty pages to be flushed, we can reduce the 

total number of page updates while executing the actions for online log compaction.   

 

Figure 3. Log compaction at the checkpointing time. Five committed log records are deleted and 

two pages are updated for the online log compaction.  

In the case of page p3, a sophisticated mechanism is required for log compaction. As 

shown in Figure 3(a), page p3 has an uncommitted online log record, together with two 

committed ones. Because our checkpointing scheme conforms to the no-steal policy, it 

cannot write the in-buffer image of p3 to storage now. Rather, we read the in-storage 

image of p3 and perform an on-the-fly redo on p3 by using the two committed log 

records. Then, the after-redo image of p3 is written to update p3. Correspondingly, p3’s 

PFAT entry is modified so that the on-the-fly redo is performed on p3 using the 

remaining online log record. Recall that the similar mechanism was employed for 

handling transaction aborts in Section 3.3.  

After the actions for log compaction, the checkpointing algorithm needs to create a 

dirty page table. In the case of Figure 3(b), page p2 is saved in the dirty page table. As 

the recovery record of p2, we record the first committed log record that is owned by 

transaction T3. On the other hand, page p3 is not included in the dirty page table. 

Because the proposed buffering scheme employs the no-steal policy, the update 

operations in the uncommitted log records never affect the database state. Therefore, we 

can regard the dirty page such as p3 to be a clean page from the consideration of system 

recovery. Then, the in-progress (i.e., live) transaction list is saved in the checkpoint 

record, along with the dirty page table.  
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4.1.2 Checkpointing Algorithm 

The major purpose of the traditional checkpointing algorithms is to make a snapshot for 

the fast recovery after system failure. Through periodic checkpointing, the previous 

checkpointing algorithms prevent the recovery time from enlarging too much. Being 

slightly different from them, our checkpointing algorithm does not take such a periodic 

approach. This is because we can keep the recovery time very short owing to the 

capability of gradual recovery actions that can be performed along with normal 

transaction processing. Rather, the execution of our checkpointing algorithm depends on 

the amount of free space in the on-line log table. More specifically, in the range of 5% 

to 10% of free space in that table, we begin the checkpointing procedure for log 

compaction as well as for flushing dirty pages to storage.    

At the time of checkpointing, we first create a log record denoting the start of 

checkpointing. Next, the actions for log compaction are performed to clean the 

committed log records from the online log table. During the log compaction, the 

checkpointing algorithm can flush some dirty pages so that the associated committed 

updates are reflected on the database. Subsequently, the information of the dirty page 

table and in-progress transactions is saved in a new checkpoint record. Finally, the 

master record in the system is modified to correctly point to the newly created 

checkpoint record. These stepwise actions are not different from those in traditional 

disk-based DBMSs, except for the extra actions for log compaction.   

Figure 4 gives the pseudo code for the proposed checkpointing algorithm. The 

algorithm takes the two input parameters of min_del and max_age. The former 

parameter says the minimum number of committed online log records where log 

compaction can be executed with respect to a single page. That is, by setting min_del to 

k, log compaction for a dirty page p is delayed until p has k committed online log 

records. Because at least k updates per page are required to incur a single update 

operation, we can reduce the total amount of page updates in flash storage. With a 

greater min_del, a larger number of updates could be reflected into storage via a single 

I/O. In fact, we pick 16 as the value of min_del. In the case of a cold page, however, the 

number of updates on it could not be large enough for log compaction. In an extreme 

case, a set of dirty pages with a small number of committed online log records may 

swallow the memory available for the online log table. Against that, the parameter of 

max_age is introduced. By deleting the committed online log records that are older than 

max_age, our algorithm could perform the log compaction even for a dirty page having 

a very low update frequency. By adjusting these two parameters appropriately, we can 

control the update frequency, while preventing the continuous increase of the online log 

table size.     

The checkpointing algorithm of Figure 4 conducts its initial steps in lines 1-2. After 

the initial steps, it performs the actions of log compaction in lines 4-19, with respect to 

each dirty page existing in the buffer pool. Using the hashed information of the online 

log table, the algorithm counts the number of committed online log records of page P in 

line 5. If this number is not zero, the algorithm decides whether log compaction is 

necessary or not in line 8. If log compaction on P is not lucrative, then page P is 

recorded in the dirty page table without log compaction. That is, the logical address of P 

and the LSN of its recovery record are recorded in line 19. Otherwise, the actions for 

log compaction are performed in lines 9-17.  
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Figure 4. The algorithm for making a checkpoint. During this checkpointing time, committed log 

records are deleted from the online log table.  

The log compaction on page P arises in two different ways, depending on the 

existence of uncommitted online log records of it.  If the online log records of P are all 

committed ones, P is updated with its current in-buffer image and set to a clean page in 

lines 10-11. If P has one or more uncommitted log records, the algorithm reads page P 

again and applies the committed redo log records to P as in lines 13-14. Then, the after-

redo image of P is written and its PFAT entry is modified as in lines 15-16. In line 17, 

the log records applied on P are deleted from the online log table.  Finally, in lines 21-

23, the dirty page table and information about in-progress transactions are logged in 

storage. 

4.2. Reincarnating the Buffer Pool 

In this section, we address how to restore the buffer pool after system failure. After 

rebooting the failed system, our recovery module reads the system master record to 

locate the last checkpoint record in the log file. Then, the actions for buffer 

reincarnation are conducted according to the recovery algorithm of Figure 5. Through 

the steps, we can restore the crashed online log table and also build the PFAT data 

correctly. Recall that all the log records found in the log file are committed ones 
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because we selectively store only the committed log records rather than uncommitted 

ones.     

 

Figure 5. The algorithm for reincarnating the failed buffer pool. This algorithm is used to rebuild 

the online log table and the PFAT efficiently. 

By reading the saved dirty page table, the recovery algorithm finds the redo starting 

point in lines 4-5. That is, the earliest LSN of the recovery log records is selected as the 

redo starting point. From the redo starting point, our algorithm begins the redo phase, 

aiming at restoring the online log table. During the redo phase in lines 7-14, the 

algorithm reads each committed log record for page P and checks if this log record is 

required for the on-the-fly redo on P in line 13. If needed, then the log record is added 

into the online log table in line 14.  

More specifically, our recovery algorithm reads each log record Rlog and compares its 

LSN with the LSN of the last checkpoint record. From this, we can determine the time 

order between Rlog and the last checkpoint time. If Rlog is older and is not found in the 

dirty page table, then we understand that Rlog was deleted prior to the last checkpoint 

time. In this case, the update in Rlog has already been reflected on the database during 

previous checkpointing. As a result, we can skip record Rlog as in lines 9-10. In other 

cases, we read the page P associated with Rlog in lines 11-12. Then, we have to check if 

the update recorded in Rlog is reflected on P via the LSN comparison. If the LSN of P 

precedes that of Rlog, then Rlog is added into the online log table in line 14. After the redo 

phase during the steps in lines 7-14, the recovery algorithm frees all the buffer frames 

and updates the PFAT entries of the dirty pages with (-1, dirty) in line 17. From now on, 
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the correct images of the dirty pages are generated by on-the-fly redo actions during 

normal database processing. Since there is no need of undo actions in our recovery 

procedure, we can restart the system after a new creation of the checkpoint record in 

line 18. 

From the recovery mechanism above, we can have two advantages. First, the time for 

the redo phase is significantly shortened. In the traditional recovery algorithms 

including ARIES, the redo phase accounts for a large portion of the total recovery time. 

That is because the traditional algorithm needs to repeat all the lost updates, including 

uncommitted updates that will be rolled back during the undo phase later. If the portion 

of such lost updates becomes large because of long checkpoint intervals, then the 

prolonged redo time could be problematic. Unlike such a traditional redo mechanism, 

our one requires no actual update operations. Instead, we only have to reload the online 

log from the log file. The actual updates arise through on-the-fly redos during normal 

database processing. Thus, the delay time needed for redo actions is amortized over the 

normal transaction processing times. Second, our buffering scheme prevents 

uncommitted transactions from affecting the databased state. For this, flushing of dirty 

pages is allowable only at the checkpoint times. Therefore, our recovery procedure does 

not require the undo phase, thereby shortening the recovery time. Thanks to those two 

advantages in the recovery procedure, our algorithm can ensure fast system restart, even 

while checkpoints are being taken with long time intervals. This makes our buffering 

scheme not enforced to flush dirty pages for the consideration of the fast recovery. 

Consequently, we can reduce the amount of expensive page updates significantly. 

5. Performance Evaluation 

In this section, we examine the performance advantages of the proposed buffering 

scheme. Via extensive experiments based on the TPC-C benchmark [25], we verify that 

the proposed scheme provides better throughput than the traditional buffering scheme 

due to the significantly reduced number of page updates. 

5.1. Parameter Settings 

As the proposed buffering scheme requires a memory-resident log table for the efficient 

execution of the on-the-fly redo, we need to arrange how to calibrate the memory 

allocation ratio of the online log table to the total memory space available for the buffer 

pool. Here, the buffer pool includes the memory areas used for its buffer frames and 

online log table. To examine the effect of the ratio of the online log table size to the 

total memory size, we executed the TPC-C benchmark while varying the size of 

memory space for the online log table. For our experiments, we modified the open-

sourced Berkeley DB [26] so that the proposed buffering scheme and the checkpointing 

algorithm are both incorporated into it.  

The experimental results are depicted in Figure 6. Here, we executed 10K 

transactions according to the TPC-C benchmark scenario and measured the total 

processing time of 10K transactions. For the experiments, we changed the memory size 

of the buffer pool to 20MB, 40MB, and 60MB. Within any of the buffer pool sizes, we 
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changed the size of the online log table incrementally. In the figure, the graphs of the 

total processing time have the shapes of convex curves. Specifically, in the case of the 

buffer pool size of 60MB (or 40MB) our scheme yields the best performance when the 

online log table consumes about 18MB (or 12MB) of memory space. That is, around 

30% of the buffer pool size seems to be optimal for the usage of the online log table in 

those cases. If the memory usage of the online log table exceeds that ratio, it begins to 

affect adversely the system performance because of reduced numbers of the buffer 

frames. Note that the memory cannibalization from the buffer frames incurs a greater 

number of buffer misses, causing performance degradation.   

 

Figure 6. TPC-Benchmark results to show how the transaction processing time varies with 

respect to an increasing ratio of memory usage of the online log table. 

On the other hand, in the case of the smallest buffer pool size of 20MB, we obtain the 

best performance at 50% to 60% of the memory usage ratio for the online log table. 

From these observations, we set the lower bound of main memory usage for the online 

log table as 10MB. Based on the results in Figure 6, we adjusted the size of the online 

log table in the range of 10MB to 20MB, while performing the TPC-C benchmark in 

Section 5.2. 

As stated in Section 3.2, the group-commit protocol is useful for improving the 

storage utilization and reducing the amount of log writes. Recall that the committed log 

records are collected in the log buffer and are written to storage at once. Since the 

group-commit protocol used for the better logging performance can prolong the average 

processing time of transactions, it is desirable to maintain a proper balance between the 

logging efficiency and the delayed processing times.  

For this reason, we conducted more experiments in order to get the knowledge about 

how much space of the log buffer needs to be filled before its flushing. That is, we 

performed the TPC-C benchmark with 10K transactions, while varying the log file 

utilization, which is defined as the ratio of the flushed log size with respect to the log 

buffer size. Figure 7 shows the results. We see that about 80% of the log file utilization 
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yields the best performance. From the observation, we delay the commits of completed 

transactions until they fill more than 80% of the log buffer. To prevent excessive delay 

times of transaction commits, we make the group-commit protocol have a maximum 

delay time for transactions’ commits.  

 

 

Figure 7. TPC-Benchmark results to show how the transaction processing time varies with 

respect to the minimum utilization of the log buffer.  

5.2. Results and Analyses 

To examine the performance improvement with our method, we performed the TPC-C 

benchmark over the modified Berkeley DB equipped with our scheme and the original 

Berkley DB. The benchmark results were obtained by executing 100K transactions. To 

verify that the proposed method works well for ordinary flash storage devices, we 

picked an off-the-shelf SSD that has the H/W specifications of Table 1. For our 

experiments, we set the sizes of a data page and a log file page to 8KB and 2KB, 

respectively. These unit sizes have been widely used in previous literature [17][26]. The 

database size and the main memory size available for the buffer pool were also chosen 

according to the environmental specifications of the TPC-C benchmark [25]. 

To compare the performances between the original Berkeley DB (‘Original’) and the 

modified Berkeley DB with our flash-aware buffering scheme (‘Proposed’), we 

measured the processing times to complete 100K transactions. The experimental results 

are given in Figure 8, where the values on the x-axis represent the memory size 

provided for the buffer pool. In the case of ‘Proposed’, we allocate a portion of the total 

memory capacity for the use of the online log table and the other portion for the buffer 

frames. The allocation ratios are chosen according to the observations in Section 4.1. In 
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the case of ‘Original’, we allocate all the memory capacity for buffer frames because it 

does not use the online log table.  

Table 1. SSD Hardware Specs for the TPC-C benchmarks. 

CPU Inter Core 2 Duo 2.53GHz 

Used SSD Samsung 830 Series (128GB) 

OS Solaris 11 (4GB Memory) 

Database Size About 1GB 

Data Page Size 8KB 

Log Page Size 2KB 

 

In Figure 8, we observe that ‘Proposed’ reduces the processing time by 20% to 53%. 

The improvement mainly comes from the reduction of page updates on storage. In 

particular, with 60MB of the buffer pool size, ‘Proposed’ using the group-commit 

protocol yields the best performance. In the figure, it is shown that the group-commit 

protocol employed in ‘Proposed’ improves the processing time by 15% up to 27%, 

compared with the ordinary immediate-commit protocol. This is because the group-

commit protocol decreases the overall I/O time in writing log data considerably. 
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Figure 8. TPC-C Benchmark results to show the performance improvement by using the 

proposed buffering scheme.   

To explore the major causes of the performance improvement, we counted the 

numbers of page reads and page writes (including page updates) that have been 

performed during the experiments of Figure 8. Here, the I/O’s for saving log data was 

counted as the number of page writes. Figure 9 depicts the I/O’s counting for page reads 

and writes found in the experiments in Figure 8. As shown in that figure, ‘Proposed’ 

has a greater number of page reads, compared with ‘Original’, while it reduces the 

number of pages writes. Since the I/O increase in page reads is larger than the decrease 

in page writes, the proposed scheme could impair the system performance in case of 
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HDD storage. However, ‘Proposed’ ensures better performance as in Figure 8. As 

easily inferred, such performance enhancement comes from the severe asymmetry 

between read and write costs in flash storage.  

When it comes to the relatively larger workloads of page reads in ‘Proposed’, we can 

consider two main reasons. First, each flushing-less eviction inevitably incurs one more 

page read later. Since the mechanism of the on-the-fly redo requires re-caching of any 

dirty page having flushing-less eviction, ‘Proposed’ could not evade an increase in page 

reads, while providing the flush-less evictions that lead to less page writes. Second, 

‘Proposed’ may usually experience more buffer replacements during normal database 

processing. Since a portion of main memory is reserved for the use of the online log 

table, there is less memory space available for buffer frames in ‘Proposed’. This leads 

to more buffer misses in ‘Proposed’. As a result, ‘Proposed’ produces a more number 

of page reads than ‘Original’ as shown in Figure 9.  

 

Figure 9. The number of I/Os performed in running the TPC-C Benchmark.  

Although ‘Proposed’ suffers from lager workloads of page reads during normal 

database processing, it can diminish the amount of page writes. In Figure 9, more than 

30% of page writes (including updates) are reduced via our buffering scheme, compared 

with the traditional buffering scheme. This is because it does flushing-less evictions of 

dirty pages and performs restrictive flushing of dirty pages during the checkpoint times. 

On the other hand, in the respect of the number of log page writes, ‘Proposed’ with the 

immediate-commit protocol works worst as in Figure 9. This is due to the smallest sizes 

of log data written through a single I/O. In the case of ‘Proposed’ using the group-

commit protocol, however, the number of log page writes is reduced a lot. Since 

Proposed’ stores redo log data only (i.e., no undo log data), it can reduce the total size 

of log data. Additionally, it stores only the committed log records (i.e., no undo log 

records). Because of less log data stored and deferred log writes, ‘Proposed’ with the 

group-commit protocol can decrease the total workload for storing log data as in Figure 

9. From the results shown in Figure 9, we can say that the reduced I/O cost of page 
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writes fully compensate the enlarged cost of page reads thanks to very cheap page reads 

in flash storage.  

 

 

Figure 10. TPC-Benchmark experiments to show how much the transaction processing time 

varies with respect to an increasing rates of transaction aborts. 

When a transaction needs to be aborted for some reasons, the traditional buffering 

scheme conducts undo actions for rolling back the update operations of the transaction. 

At the same time, the CLRs are written for preventing the repetitive undo actions at the 

presence of consecutive system failure. Unlike that, our scheme simply throws away the 

dirty pages containing these aborted updates from the buffer pool, as stated in Section 

3.3. If any of the evicted dirty pages is requested after the transaction’s abortion, then 

our scheme has to read that page again for buffering. Note that, in the case of the 

traditional buffering scheme, there is no need for reading that page again because it 

remains in the buffer pool.  

For this reason, our scheme may suffer from increasing I/O costs for reloading pages 

in the presence of frequent transactions aborts.  In this concern, we inspect how much 

the individual transaction aborts affect the performance of the proposed buffering 

scheme. We measured the number of page writes and the processing time when running 

100K transactions, while varying the abortion rates of transactions. Unlike our concern, 

as in Figure 10, ‘Proposed’ shows better adaptation to the tough situations with high 

transactions’ abortion rates, compared with ‘Original’. Contrariwise, ‘Proposed’ even 

yields a somewhat better performance at the high rates of transaction aborts. This is 

mainly because ‘Proposed’ does not write CLRs that are needed in the traditional 

scheme of ‘Original’. Additionally, ‘Proposed’ does not perform undo actions in rolling 



390           Kyosung Jeong et al. 

back the aborted updates. Since the cost of page reads is very cheap in flash storage, 

‘Proposed’ seems to provide robust performance improvement in face of frequent 

transactions aborts. 

6. Conclusions 

In the case of the traditional buffering scheme in disk-based DBMSs, it is not 

meaningful to make intense effort for reducing the amount of page updates at the 

expense of increasing page reads. This is because there exists no significant difference 

between the I/O costs of a page update and a page read in HDD storage. However, if we 

attempt to use flash-based devices as primary storage media, such a traditional 

assumption is not true because of their highly expensive update costs. Therefore, there 

is a need for developing a new buffering scheme that can efficiently diminish the 

occurrences of page updates.  

To this end, we have proposed a new flash-aware buffering scheme and its recovery 

algorithm. In our approach, the page-granularity on-the-fly redo is used to enable the 

flushing-less evictions of dirty pages. Thanks to the on-the-fly redo mechanism, we can 

easily delay the time of page updates until their owner transactions commit, thereby 

reducing update operations. Besides the advantage of less page updates, the proposed 

recovery algorithm guarantees the rapid recovery at the time of system failure because 

of its undo-free recovery and a very fast redo-phase. In our scheme, it is not required to 

periodically flush dirty pages during normal database processing for the purpose of the 

fast recovery.  

Despite the advantages above, the proposed buffering scheme needs to allocate some 

portion of main memory for the on-line-log table. Therefore, our method may suffer 

from less buffer hit rates because of less memory space assigned for buffer frames. 

However, such shortcoming can be compensated by the I/O performance gains 

obtainable from the reduced page updates in our method. To verify this, we performed 

quite extensive experiments based on TPC-C benchmarks by making the Berkeley DB 

equipped with our scheme. From the experimental results, we observed that the 

proposed scheme provides better performance, even though it has a smaller number of 

buffer frames available. We also verified that the proposed method works well even in 

the system environment with frequent transaction aborts. 
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