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Abstract. The detection of distributed denial of service (DDoS) attacks based on 

internet traffic anomalies is a method which is general in nature and can detect 

unknown or zero-day attacks. One of the statistical characteristics used for this 

purpose is network traffic entropy: a sudden change in entropy may indicate a 

DDoS attack. However, this approach often gives false positives, and this is the 

main obstacle to its wider deployment within network security equipment. In this 

paper, we propose a new, two-step method for detection of DDoS attacks. This 

method combines the approaches of network traffic entropy and the Takagi-

Sugeno-Kang fuzzy system. In the first step, the detection process calculates the 

entropy distribution of the network packets. In the second step, the Takagi-

Sugeno-Kang fuzzy system (TSK-FS) method is applied to these entropy values. 

The performance of the TSK-FS method is compared with that of the typically 

used approach, in which cumulative sum (CUSUM) change point detection is 

applied directly to entropy time series. The results show that the TSK-FS DDoS 

detector reaches enhanced sensitivity and robustness in the detection process, 

achieving a high true-positive detection rate and a very low false-positive rate. As 

it is based on entropy, this combined method retains its generality and is capable 

of detecting various types of attack. 

Keywords: Network security; Fuzzy neural networks; Distributed denial of 

service attacks; Intrusion detection; Takagi-Sugeno-Kang model 

1.      Introduction  

Denials of service (DoS) attacks are continuous cause of financial and reputational 

damage. Any organization that relies on the internet for communication with customers 

may be a victim of this type of attack. The detection of attacks in source networks and 

the mitigation of attacks in target networks are issues that remain to be solved, since the 

characteristics of attacks often change, becoming more sophisticated and powerful.  

The concept of using entropy for network attack detection is not new. The use of 

fuzzy and neural network methods, and particularly TSK, represents the next wave in 

this field. The novel approach used in this paper is a combination of entropy-based and 

Takagi-Sugeno-Kang fuzzy neural network-based methods in detecting DoS attacks. In 

the majority of related work, only one of these two approaches is used. The reason for 

the usefulness of entropy in DoS detection lies in the fact that the entropy of normal 

network traffic varies within a narrow band [1]; many anomalies caused by DoS attacks 

change the distribution of addresses and ports [2], as well as other traffic characteristics. 
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The strength of entropy-based detection arises from its generality [1-3]. The application 

of another processing level based on fuzzy logic and neural networks results in better 

detection characteristics. This requires an additional offline learning process using input 

data sets with known attack times. These learning data sets can be obtained from real 

sources by sniffing network traffic or from the simulated network environment. In this 

work, we used the ns-2 simulator, which is often used in research in this area. Our goal 

was to show that a combination of entropy-based and TSK-FS-based detection of DoS 

attacks gives rise to a robust general method with a lower false-positive rate (FPR), a 

higher true-positive rate (TPR) and a performance which comes close to that of 

specialized methods. 

The following is a short review of some related work in this area. Nychis et al. [4] 

researched the use of entropy in the detection of many different types of attack. These 

authors found a correlation between certain distributions, such as address and port 

distributions. Based on this, they suggest the choice of a complementary traffic 

distribution to increase detection rate. They also found that entropy is not efficient for 

the detection of certain types of attacks, such as port scanning or low-intensity DDoS. 

Our findings confirm those in this previous work [5] and indicate that address 

distributions can give a satisfactory detection rate for low-intensity DDoS. In [6], the 

Shannon entropy detector and the chi-square detector are evaluated. Test data are 

obtained from public datasets, with attack periods inserted. These attack periods are 

very long in comparison with the short attack periods used in our experiments. A simple 

threshold is used for change point detection, and the rate of detection is high. These 

authors propose a method for an immediate response to detected attacks. In [7], the 

authors use sliding time windows, as used in our research, and create a traffic profile 

based on minimum and maximum entropy values for each window. In addition to 

Shannon entropy, the use of other entropy measures has also been explored. Speidel et 

al. [1] report the application of T-entropy; these authors conclude that smaller and 

shorter events can be more easily detected by means of T-entropy than by Kolmogorov 

complexity estimation. In [8-9], the authors compare a Tsallis-based and a Shannon-

based detector. In [8], DDoS traffic was injected into Abilene and Geant data sets used 

in [2,10] and the performances of the two approaches were measured. In [11], a discrete 

wavelet transformation is used for detection of traffic anomalies. The transformation of 

the normal traffic is treated as noise, while the pulses are treated as anomalies that 

should be preserved and detected. The proposed method, referred to as an anti-

denoising method, results in a reduced FPR. In our paper, the TSK-FS method plays the 

same role in the reduction of noise and FPR.  

As for fuzzy-based methods, in [12], the Takagi-Sugeno fuzzy system is used with 

the predefined data set KDDCup99 rather than network simulation; this is based on 

connection attributes rather than on entropy. Experiments also show a high detection 

rate and a low rate of false alarms. In [13], a DDoS fuzzy detector is constructed based 

on the mean packet inter-arrival times, and the detection rate is empirically evaluated as 

over 80%. In many cases, however, it is difficult to distinguish legitimate behavior such 

as flash crowds, or a surge in traffic to a particular target, from DDoS attacks. This is 

investigated in [14]; it constitutes a limitation on all DoS detection methods. 

 

 



Evaluation of Takagi-Sugeno-Kang Fuzzy Method           141 

 

2.      Denial of Service Attacks 

Denial of service (DoS) attacks affect the availability of network resources and cause 

significant damage to business organizations and government agencies every year. The 

intention of an attacker is to prevent legitimate users from using the attacked service. 

During DoS attacks, attackers hit their target with a large amount of requests or data, 

exhausting its resources and preventing legitimate users from obtaining access. Large 

servers are usually robust enough to defend against attacks originating from a single 

machine, and thus DoS attacks are often carried out in the form of distributed attacks 

(DDoS) from a large number of single machines. These machines are under the control 

of the attacker and form a so-called ‘botnet’. They are infected with malicious software 

and thus can be controlled by the attacker, who starts a DDoS and in fact never accesses 

the target. Botnets are often rented as DDoS-for-hire services in the IT underground. 

Very often, DDoS attacks are reflected: the attacker uses a spoofed source address for a 

target and sends a broadcast message to an amplifying network. The entire amplifying 

network then responds to the forged source address, i.e., to the address of the target, 

causing an enormous number of requests. Examples of reflected attacks are Smurf, 

which uses a broadcast ping, and Fraggle, which sends a UDP echo to the broadcast 

address. Another well-known and still largely used form of attack is the SYN flood, in 

which the attacker, a TCP client, initiates a large number of three-way TCP handshakes 

without the intention of ever completing them. The first packet in the handshaking 

process is SYN. The server then enters the SYN-RECEIVED state, allocates a memory 

block to process it, and creates a half-open connection. The aim is to exhaust the 

number of allocated memory blocks, preventing further TCP connections and thus 

denying the service to legitimate clients. A detailed classification of DoS attacks can be 

found in [15].  

Distributed denial of service is still a growing problem. According to a Kaspersky 

Lab report for Q3 2016 [16], the average number of attacks per day in Q3 was about 

600, with a peak figure of 1746. The majority of DDoS attacks last up to 4 hours, 

although the duration of the longest reported attack was more than 7.6 days. By type, 

the most frequently used is still SYN-DOS (81%), followed by TCP-DOS (8.20%), and 

HTTP-DoS (7.56%). The most powerful attack was 620Gbit/s at its peak. Such attacks 

pose a threat not only to specific web resources but also to the data centers and even to 

the infrastructure of internet service providers.  

3.      TSK Fuzzy Detector Synthesis 

3.1. Entropy in DDoS Detection 

In information theory, entropy is used as a measure of the unpredictability or 

uncertainty of a system. Entropy is highest for truly random data from an information 

source, and is lowest when an information source gives completely predictable data. 

The concept of entropy is derived from the field of thermodynamics. Although at a 

practical level the connection between informational entropy and thermodynamic 
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entropy is not evident, a similar entropy equation is used in information theory as a 

measure of the information of a single random variable which is the output of a discrete 

information source. This is expressed by the widely used Shannon’s equation, which is 

also used in this work: 
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where zi is an instance of Z and p(zi) is the probability that Z takes the values of zi. 

In the process of detecting DDoS attacks, entropy is computed for a sample of 

consecutive packets for chosen header fields. A comparison of the value of entropy for 

the chosen header fields in one sample to the entropy of the corresponding fields of 

another sample provides a mechanism for detecting changes in randomness. It has been 

observed [3] that while a network is in a normal state, the entropy values for various 

header fields fall within a narrow range. When the network is under attack, these 

entropy values change significantly and can be detected. 

The Shannon entropy is not the only measure of information uncertainty. In this 

research, we also used the parameterized Tsallis entropy: 

1

1
1





q

p

=Η(Z)

N

=i

q

i

 
(2) 

Tsallis entropy converges to Shannon entropy when the parameter q tends to 1. When 

the value of parameter q > 1, high-probability events have a higher contribution to the 

resulting entropy, while for q < 1, events with low frequency are the main contributors. 

Thus, by fine-tuning q it is possible to change the sensitivity of event detection.  

Measures of information complexity are also often used in similar studies. 

Kolmogorov complexity is in general not computable, and only its estimation can be 

used [17]. T-entropy has also been proposed as a good estimation of information 

complexity [1] and this has close correspondence with known physical entropies. T-

complexity is a measure which expresses complexity as the number of steps required to 

build a string. In an effort to acquire a Shannon entropy compatible information 

measure from T-complexity, Titchener [18] thus proposed the inverse logarithmic 

integral li-1(x) as a suitable function for linearising T-complexity. Finally, the T-entropy 

of a string x is defined as the gradient of the T-information of x with respect to the 

length |x| of x:  
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Since these methods use recursive string parsing to calculate complexity estimation, 

they require more computational effort than the calculation of entropies using Equations 

(1) and (2).  

The strength of entropy-based anomaly detection lies in its generality. A significant 

change in entropy level may be a sign that a network is under attack, regardless of the 

type of attack. As such entropy based methods belong to wider class of anomaly-based 

detection methods which detect deviation from ‘normal’ traffic. Thus, entropy-based 



Evaluation of Takagi-Sugeno-Kang Fuzzy Method           143 

 

methods are capable of detecting zero-day attacks. On the other side, there are 

signature-based methods, which are crafted for the detection of a specific type of attack, 

are in most cases incapable of detecting other types of attack. Although in this research 

we use specific attack types as SYN flood, the proposed method is general in nature and 

not dependant on any specific attack type.  

3.2. TSK Fuzzy Neural Network Synthesis 

The Takagi-Sugeno-Kang (TSK) model is characterized by a high accuracy of modeling 

combined with a very fast learning process. The TSK model was proposed as a 

systematic approach to generate fuzzy rules from a given set of input-output data and 

where the structure of the system is not known in advance. The detection of anomalies 

in network traffic using large amounts of input-output data requires this type of model. 

This offers an advantage over the widely used Mamdani fuzzy model, which is more 

intuitive and, as such, is more suitable for human input. TSK model gives a more 

compact and computationally efficient representation than the Mamdani system, and 

allows for adaptation techniques so that membership functions can be customized. This 

is very important in modeling highly dynamic internet traffic. Furthermore, the number 

of rules can be much smaller in this approach than in the Mamdani fuzzy model is 

applied, even for complex systems, as described in [19]. The TSK model has already 

been successfully applied to a number of real-world problems such as the 

approximation of a static non-linear function, stock market predictions, predictions of 

natural gas consumption, estimation of DC motor speed [20] and TCP throughput 

control [21], to mention only a few.  

The idea of the TSK model is that a complex system can be presented as a 

combination of inter-linked subsystems. These subsystems can be described with 

simpler functional dependencies. If the dependence is considered to be linear, and if one 

rule corresponds to exactly one subsystem, the final model with C rules can be 

represented in the following form: 

 

Ri : If x1 is Ai1 and x2 is Ai2 and . . . and xn is Ain 

          then yi = aix + bi, i= 1, 2, . . .,C    
(4) 

 

where Ri is the i-th rule; x1, x2, … xn are inputs; Ai1, Ai2, …, Ain are fuzzy sets assigned 

to each input variable; and yi is the output variable of the i-th rule. Vector ai and scalar 

bi are parameters of the consequent linear function. In our case, the inputs are entropy 

values from within the observed time window, and the outputs are the values of the 

current DDoS attack.  

The output of the TSK fuzzy model for an input of xk is: 
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where ωi(xk) is the normalized activation level for the i-th rule of the k-th input sample, 

and is given by: 
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where βi is the firing strength of the i-th rule [20]. The input-output data space is 

partitioned in clusters, and the algorithm uses training data with N input-output samples: 
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where N is the total number of all samples.  

The dimension of the input data is N and the dimension of the output is one. Each 

cluster represents a certain subsystem in which input-output data values are 

concentrated. 

The data from the learning set are divided into the obtained clusters and then 

interpreted as rules as in Equation (4). A single-layer neural network is generated, as 

shown in Fig. 1. Each node in the output layer is actually the center of the 

corresponding cluster. 

 
Fig. 1. Structure of the single-layer neural network 

The number of clusters C is fixed and is a parameter of the algorithm. A detailed 

description of the clustering algorithm is given in [22]. The input samples from the test 

dataset, i.e., the samples for which we want to estimate outputs, are then assigned to 

clusters on the basis of their proximity to the center of the cluster. The Euclidean 

distance between the input sample x and the center of each cluster is calculated. When 

the smallest distance is found, the input sample x is assigned to the nearest cluster Ai. 

The output vector y is then calculated using Equation (4). A more detailed mathematical 

derivation of the parameters ai and bi is omitted here and can be found in [20]. 
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4.      TSK-FS Detector Implementation 

4.1. Entropy Calculation 

The following algorithm used is our entropy-based detector implementation. The 

distribution of the selected variable is monitored during small subintervals of 0.1 

seconds. There is a sliding window of 10 successive subintervals. For each subinterval, 

the algorithm calculates the value of the monitored variable distribution. For every 

monitored variable, an array of subintervals is allocated. In this research, we monitor 

the distribution of the transferred bytes and packets, as well as the different source and 

destination addresses during each subinterval. At the end, the entropy values are 

calculated for each subinterval. 

For Shannon and Tsallis entropy, equations (1) and (2) are used. For T-entropy, 

mapping from addresses to symbols should be applied. Every 5 bits of IP address 

represent one symbol, starting with ‘A’ for binary 00000b. The strings built that way are 

input in libflott [23] program, proposed in [24], which outputs T-entropy. 

Network traffic could be taken from various sources, for example from real networks 

using sniffing tools. However, the generation of DDoS attacks, which can disturb 

normal business activities, is a problem here. 

There are also publicly available traffic data sets, both with and without included 

DDoS attacks. The DDoS attacks in these data sets are fixed and as such not 

configurable. In addition, these data sets often do not have time-labeled attacks, 

meaning that the output of the detection process cannot be accurately verified. 

Third option is the use of a network simulator. The drawback of this method is that it 

is very difficult to achieve a realistic simulation. However, the main advantage of 

network simulators is their configurability, which is valuable for research purposes. For 

this reason, we have chosen to use the ns-2 network simulator in this work. 

Furthermore, ns-2 is open source software, and we were thus able to change the source 

code to reflect specific requirements. A comparison of various simulators [25], 

including the new generation product ns-3, indicates that ns-2 still satisfies the needs of 

this research. To verify the proposed method, we used the public CAIDA and DARPA 

data sets in the final experiments. 

4.2. Learning Process 

For the purposes of the learning process, the learning data are treated as containing 

known attack values at each point, i.e. within each subinterval. The attack variables can 

take two possible values: a nonzero value if the attack is under way, and zero if there is 

no attack at this point in time. There is no exact value for the attack variable; however, 

in this research we found that the optimal value is of the same magnitude as the mean 

entropy. Fig. 2 presents the software components of this system.  
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Fig. 2. The learning process 

The output from the ns-2 simulator is a standard trace file. In the next step, entropy 

values are calculated for each 0.1 s subinterval, as described previously in Section 4.1. 

The output from the entropy generator, which also forms the input for the TSK-FS 

model generator, is an array of entropy values for a single monitored variable (e.g., 

destination address) in 0.1 s subintervals and the values of the known output, i.e., the 

value of the attack for each corresponding entropy value.  

A generator input vector is created in the TSK-FS model. The input vector consists 

of 10 consecutive entropy values from the subintervals within a single sliding window, 

plus the attack value for the time of the most recent subinterval. Consecutive values are 

needed in order to incorporate the entropy trend into the model and to suppress noise. 

At the next step, N (the number of samples) input vectors are processed in an offline 

TSK-FS learning process. In this case, we used an input value of C=5 clusters, which 

we found optimal for performance. Any further increase in C does not sufficiently 

improve detection to justify the higher computational effort. At the end of this process, 

parameters ai and bi for each rule (i = 1… C; C=5) of Equation (3) are calculated. 

4.3. Detection Process 

The detection process is shown in Fig. 3. The test data are in the same format as the 

learning data but without the attack values, which are yet to be estimated. The array of 

attack values ŷi is calculated by the TSK detector using Equation (4). The first two 

software components are the same as in the learning process. The third component is the 

TSK-FS detector. The detector performs the following steps. For each input sample, the 

Euclidean distance to all clusters is calculated. For the nearest cluster, an appropriate 

fuzzy rule is applied using Equation (4), and output ŷi is obtained. 

The automatic detection of a change point of ŷi, i.e., an attack in time, is performed 

using a simple cumulative sum control chart (CUSUM) (see [26]). The mean value is 

estimated using an exponential weighted moving average (EWMA) method, where 

weighting factors decrease exponentially [26]. It is assumed that the outputs ŷi are 

independent and identically distributed values. There are two hypotheses: distribution 

before the changes and distribution after the changes. In the parametric version, the test 

of the change is based on the log-likelihood ratio; in the non-parametric version of 
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CUSUM this is based on a custom function. In this work, we used the non-parametric 

version. 

 

 

Fig. 3. The detection process 

For the detection, the following equations were used: 

n = 111 )1(  nny    (8) 

=dn })({0max K+μy+d, nn1n  , 00 =d  (9) 

2

2

2

12

2 ))(1( nnn y
n

   , nhH   (10) 

H is a decision threshold and depends on standard deviation σn. If dn > H, a change is 

detected. The values for h, the decision factor and K, the allowance factor, depend on 

the level of entropy; these vary from 2.0 to 6.0 and from 0.01 to 0.05 respectively in our 

experiments. The detection strongly depends on the variations in these values, and this 

fact is considered in this research. μn is an estimation of the mean value of output series 

yn. The counter dn accumulates the deviations of yn from μn that are greater than the 

allowance factor K (minimum deviation). β1 and β2 are EWMA adaptation factors, and 

their values are fixed to 0.75 and 0.90 in this research. σn is the standard deviation of 

output series yn. 

Finding optimal values for the allowance factor K and threshold factor h may be a 

challenge. These values affect the robustness and sensitivity of the detection, and values 

which lead to high detection characteristics in one experimental setup could cause a 

poor detection rate in another. For this reason, we added adaptation capabilities to the 

detector implementation. These are represented by the dotted lines in Fig. 3. The known 

attacks from the learning dataset and the feedback from output y are used to find the 

local maximum of the difference (TPR − FPR). The adaptation process starts from a 

point (h0, K0) and finds the maximal (TPR – FPR) value in its vicinity. The new point 
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(h1, K1) becomes the starting point for the next iteration step. At the end of the process, 

the obtained values for h and K are used for further measurements. 

5.       Simulation and Results 

Experiments were carried out using two different topologies (Figs. 4 and 5) and 

different types of traffic. For each topology, one learning dataset was used to generate 

the TSK-FS model, and several test datasets were used to measure detection rates for 

various levels of attacks, starting from a very low level of attack.  

 

Fig. 4. Edge topology. The attacks originate from user stations in local network, while the targets 

are within the public internet. The detection point is at the edge/output of the monitored network 
 

The learning data are generated using 15 attack points and has a total duration of 75 

seconds. The exact times of the beginning and end of each attack are known in advance. 

The number of attacks in the test datasets is also 15. Each attacker-controlled station 

performs a SYN flood attack every five seconds. The duration of a single attack is a 

random variable with a normal distribution, a mean value of one second and a standard 

deviation of 200 ms. The experiments were carried out using the ns-2 simulator 

package, version 2.35, and the simulated attack was a SYN flood DDoS. The original 

ns2 source code of TCPAgent component was modified to perform the simulation of the 

SYN attack response.  
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Fig. 5. Large-scale topology. The attacks start from user stations within the public internet, while 
the targets are local servers  

A series of experiments was carried out with the number of attacks varying from 20 

to 150 for the large-scale topology and from 20 to 80 for the edge topology. For each 

experiment, CUSUM change point detection was applied to two points in the detection 

process (points 1 and 2 in Fig. 3). The first point is at the output of entropy calculation 

and the second point is at the output from TSK-FS. The goal of the experiments was to 

show that applying the TSK-FS method increases the detection rate and suppresses false 

positives. 

The edge network topology used in the simulation contains a local network with a 

base station serving 250 user stations; of these, there are between 20 and 80 attacker-

controlled stations and one attack target, as shown in Fig. 4. The intrusion detection 

system (IDS) sensor is positioned at the gateway, monitoring the traffic to and from the 

public internet. The host, which is the target of the DDoS attack, is within the public 

internet, and thus outside of the monitored network. The attack is detected by 

monitoring the outbound traffic. This topology enables the detection of DDoS attacks 

near their source, at a point where they can be mitigated locally.  

The baseline traffic was generated using a set of 100 constant bit rate (CBR) agents 

and 100 agents which generated HTTP traffic. Each CBR transfer contained an object 

with a mean size of 10k bytes, while each HTTP agent contained an object with a mean 

size of 30kB. The time interval between file transfers was exponentially distributed, 

with a mean value of 30 s. Fig. 6 presents the entropy values and the corresponding 

outputs from the TSK-FS detector for a simulation scenario using 30 attackers. The 

upper signal is the destination address entropy, while the lower signal represents the 

output y of the TSK-FS detector. The attacks take place between 250 and 325s. For each 

experiment, CUSUM change point detection was applied on both signals, as defined by 

Equations (8), (9), and (10). 
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Fig. 6. Stages in detection: entropy (upper signal), TSK-FS output (middle signal) and final    

detection (lower signal). Attacks take place between 250 and 325s. Attack strength is low, but 

detection is still effective. 
 

In general, the cause of false positive detections in entropy-based methods is the 

noise in the entropy values. Fig. 6 demonstrates the key concept of this research, which 

is that the application of the TSK-FS filter in entropy processing suppresses the noise 

and emphasizes impulsive changes, reducing the number of false positives and 

enhancing true positives. The upper signal represents the entropy of the network traffic, 

while the lower signal shows the detected attacks in time. The example given in Fig. 6 

shows the case when attacks are very low and shows how TSK-FS method is capable to 

filter out even very small changes in entropy time series. 

 Fig. 7 presents the dependency of detection rates on threshold value h for a fixed 

allowance factor K. The diagram is centered on the optimal h and K values where 

difference between TPR and FPR reaches a local maximum. The reliability of the 

detection is measured in terms of the closeness of TPR to 100% and FPR to 0%. The 

figure shows that the application of TSK-FS improves the quality of detection.  
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Fig. 7. Detection rate against threshold for edge topology, using Shannon entropy with CUSUM 

change detection for the optimal value of the allowance factor K 

In our research, it was found that the allowance factor K in CUSUM change point 

detection should not take a fixed value; both h and K must vary in order to find the best 

detection rate. Fig. 8 illustrates the three-dimensional dependency of detection rates on 

both h and K for Shannon entropy, while Fig. 9 presents the same dependency when 

TSK-FS is applied to Shannon entropy. The detection is more reliable if the TPR and 

FPR surfaces are closer to 100% and 0% respectively. Point (0, 0) represents the point 

of optimal values of h and K, where the distance between TPR and FPR is a maximum. 

Hence, the h and K axes on the diagram are actually offsets from the optimal values for 

the threshold and allowance factors. Detection rates on vertical axis are percentages of 

detected attacks out of total number of attacks 

From the diagrams it can be seen that the detection is more robust, and the distance 

between TPR and FPR remains high for a wider range of values of h and K, compared 

to the method without the use of TSK-FS processing. 
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Fig. 8. True (upper surface) and false (lower surface) detection rates against two CUSUM 

parameters h and K for the edge topology. Shannon’s entropy is used without TSK-FS  

 

Fig. 9. True (upper surface) and false (lower surface) detection rates for the edge topology and 

Shannon’s entropy with TSK-FS applied. The CUSUM method is used for the final change point 

detection  
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Table 1 presents the results for the destination address distribution for the edge 

network topology using Shannon, Tsallis and T-entropy, when the attack strength 

changes from high to low. The TPR and FPR values are presented only for the optimal 

choices of h and K. The optimal values for the threshold and allowance parameters are 

obtained from the optional adaptation loop (the dotted lines in Fig. 3).  

It can be seen that the true-positive rate is higher, and FPR is lower, when TSK-FS is 

applied. Even in the case of very low-level attacks, when normal variations in entropy 

are of the same magnitude as the variations caused by attacks (last row in Table 1 for 

each entropy type), TSK-FS still detects some attacks, whereas the detection based 

solely on Shannon entropy does not detect any attack. Similar experiment in [5], table I 

show similar results for similar simulation setup with Shannon entropy. Tsallis entropy 

gives a slightly better detection rate, especially for a low-level attack and when 

combined with TSK-FS. T-entropy gives poor detection rate, although TSK-FS also 

reduces FPR. This is especially true for low-level attacks where detection is even not 

possible. This may be explained with high sensitivity of T-entropy, which detects 

pattern changes in signals, and as such produces more noise than Shannon and Tsallis 

entropy. The problem of noise in application of T-entropy is discussed in Eimann’s 

thesis [27].  

Table 1. Comparison of detection rates for Shannon, Tsallis and T-entropy, with and without the 

applied TSK-FS method for the edge network topology and optimal parameter choices. The 

number of attackers (first column) varies from 20 to 80  

Number  

of attackers 
   TPR   FPR    h       K   TPR   FPR h        K 

 Shannon                   Shannon+TSK-FS 

80     94%     6%    6.8    0.02   100%   0% 4.0     0.03 

60     87%     0%    3.4    0.07   100%   6% 4.6     0.01 

40     20%     0%    6.6    .025   94%     6% 4.3     0.005 

20     0%       0% -   46%     0% 2.8     0.035 

 Tsallis Tsallis+TSK-FS 

80    100%   6%    5.8    0.03   100%   0% 4.2     0.03 

60    87%     13%    5.6    0.03   100%   0% 4.6     0.01 

40    61%     6%    5.0    0.005   87%     0% 3.8     0.005 

20    26%     13%    8.8    0.03   54%     0% 3.3     0.03 

 T-entropy T-entropy+TSK-FS 

80    80%     40%    5.2    0.025   56%     6% 4.8     0.025 

60    46%     26%    4.8    0.03   33%     0% 4.6     0.020 

 

 

From Figs. 8 and 9 it is obvious that the detection rate is more robust when TSK-FS is 

applied, for a deviation of the threshold h and allowance K from the optimal values. 

This is especially true for low values of the allowance K, which actually represents the 

sensitivity of detection. For low values of K, entropy-only detection shows a significant 

rise in false positives (Fig. 8). The false positive rate is significantly lower for the TSK-

FS method, and this does not increase even for low threshold h.  

In the second set of scenarios, the simulated topology is a network composed of 470 

user stations in the public domain. The number of attacker-controlled stations varies 
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from 20 to 150. There are 40 servers in the local network, of which one is the attack 

target. The topology is an unbalanced dumbbell topology, illustrated in Fig. 5. The 

attack target is part of the server tree. This topology simulates large-scale attacks from 

the internet on a server within a local network. There is a link node between the client 

and the server parts of the network, and this node contains an IDS detector. The attack 

is detected by monitoring the inbound traffic. All clients are grouped into one cluster, 

and the baseline traffic is HTTP sessions generated by the clients. The duration of 

simulation is 500 s. The simulated attack varies from the low-intensity type, in which 

only 20 stations are controlled by the attacker, to 150 attacker-controlled stations. The 

number of sessions is 200, and each session contains 250 pages with a single object. The 

object size is the Pareto II variable with an average value of 120 and shape parameter 

1.2. The attacks are in range of 250–325 s while the network load is high. The dataset 

from the scenario with 60 attacker stations was used for the learning phase of TSK-FS.  

Figures 10 and 11 present the true and false detection rates versus threshold factor h 

and allowance factor K for one chosen experiment with 110 attackers and Tsallis 

entropy. Detection rates on vertical axis are percentages of detected attacks out of total 

number of attacks.   

 
Fig. 10. True (upper surface) and false (lower surface) detection rates against CUSUM parameters 
h and K for the large-scale topology and Tsallis entropy without TSK-FS 
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Fig. 11. True (upper surface) and false (lower surface) detection rates against CUSUM parameters 

h and K for the large-scale topology and Tsallis entropy with TSK-FS 

In Fig. 10 we can see that the surfaces representing TPR and FPR are close to each 

other i.e. detection is less robust. In a similar way to the experiments for the edge 

topology, detection is only possible for very narrow range of allowance factor K. The 

corresponding diagram for the same experiment using TSK-FS detection is presented in 

Fig. 11. We can see that the detection rate is more robust when the TSK-FS filter is 

applied, and the differences between TPR and FPR are high for a wide range of 

CUSUM change point detection parameters h and K. This result is important for the 

possible practical implementation of TSK-FS DDoS detection in network equipment, 

since, once determined, the factors h and K may give a stable quality of detection when 

the environment changes dynamically.  

Table 2 presents the results for the destination address distribution for the large-scale 

topology when the attack strength changes from low to high. The results in Table 2 are 

presented only for the optimal values of h and K for given attack strengths. The same 

observation applies to this set of experiments as for the edge network topology. 

Detection with applied TSK-FS outperforms detection based solely on entropy. Even 

for low-strength attacks, the TSK-FS method still detects an attack at the point where 

entropy variations caused by DDoS attacks are too low to be detected by simple 

entropy-based detection. Again, the parameterized Tsallis entropy gives slightly better 

results than Shannon entropy, while T-entropy gives acceptable results only in the case 

of strong attacks. In all experiments FPR for the TSK-FS method remains low. Similar 

results are presented in [9], table 1. Our results in experiments without TSK show less 

FPR for similar setup, but this is because in [9] factor K is fixed, while in this work it 

varies, so the local maximum of (TPR – FPR) is higher. In [7] authors performed 

experiments for few entropy types. Although experimental setup is different, TPR and 
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FPR are close to our results without TSK. The same experiments were carried out for 

other distributions. The experiments show similar results for source address distribution 

for both topologies. Byte and packet distribution show poor performance with both 

methods for the topologies used. 

 
Table 2. Comparison of detection rates for Shannon, Tsallis, and T-entropy with and without 

applied TSK-FS method for the large-scale network topology and optimal parameter choices. 

Number of attackers varies from 20 to 150 

  Number of  

  attackers 
  TPR   FPR    h     K   TPR     FPR h       K 

 Shannon       Shannon+TSK-FS 
150    80%     13%    1.7    0.01   100%     6% 4.3     0.02 
110    94%     6%     1.6    0.01   100%     0% 3.0     0.03 
70    74%     20%   1.4    0.01   87%       6% 5.7     0.01 
50    47%     13%   1.6    0.01   74%       0% 5.4     0.01 
30    13%     13%   1.7    0.01   26%       0% 4.5     0.025 
20    0%       20%   1.7    0.01   20%       6% 3.9     0.025 
 Tsallis        Tsallis+TSK-FS 
150   100%    0%   4.8    0.025   100%     0% 6.0    0.035 
110   100%    0%   4.8    0.015   100%     0% 6.0    0.035 
70   100%    6%   3.8    0.015   100%     0% 5.8    0.035 
50   94%      20%   3.8    0.012   86%       13% 5.6    0.035 
30   13%      0%   3.8    0.015   47%       13% 4.6    0.03 
20   0%        0%   4.8    0.012   23%       6% 6.0    0.025 
 T-entropy      T-entropy+TSK-FS 
150   87%      20%   4.6    0.01   67%       0% 3.9    0.01 
110   6%        6%   5.0    0.01   33%       0% 4.2    0.015 
70   0%       20%   5.2    0.015   20%       6% 4.2    0.01 

 

A cross-topology experiment was also carried out, i.e., the learning dataset was taken 

from the large-scale topology and the generated model was then applied to the test data 

taken from the edge network topology. The results are presented in Table 3. The 

detection rates are slightly lower than for the model obtained from the appropriate 

topology, but low FPR is still shown for both destination and source address 

distributions. A cross-entropy experiment, i.e., when the TSK-FS model generated for 

Shannon entropy was applied to data obtained by applying Tsallis entropy, did not show 

improved detection rate, although detection was still possible. 

Table 3. Cross-topology detection results. The learning dataset and the test dataset are from 

different network topologies 

Attack     

strength 
TSK-FS method 

 TPR      FPR  h         K 

80 attackers 87%         0% 5.8       0.05 

60 attackers 73%         6% 9.5       0.055 

40 attackers 54%         6% 6.5       0.15 

20 attackers 33%        13% 8.1       0.075 
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In the final set of experiments, available public data sets have been used to verify the 

method. The model from the large-scale topology was applied to the CAIDA data sets 

[28]. The purpose of these experiments was not to accurately test detection rate but to 

apply the TSK-FS method to real traffic as a step towards its practical implementation. 

Fig. 12 presents entropy values and corresponding outputs y from the TSK-FS detector 

for data set 20070804_141436 and for a destination address distribution. There are no 

false positives, and the period during which the network was under attack is detected as 

three attacks taking place very close in time, which is the correct detection from a 

practical point of view. 

 

 

Fig. 12. Entropy and TSK-FS output for the sample CAIDA data set 

In the second experiment with publicly available data sets, presented in Fig. 13, the 

data set is DARPA_2009_DDoS_attack-20091105 [29]. The victim target with address 

172.28.4.7 is outside of the network, similar to edge topology example. So, the model 

from edge topology is used for this data set. In opposite to previous example, DDoS 

attack consists of very frequent single attacks which sometimes last as short as few 

microseconds. From practical point of view it is important to detect the attacks as a 

whole, from its starting moment to the end, and not necessary every single flow. More 

than 55% of short attacks are detected, spanning across the whole DDoS attack 

duration, which makes the detection successful.  
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Fig. 13. Entropy and TSK-FS output for the sample DARPA data set 

6.        Conclusions 

This paper presents an evaluation of a combined method for the detection of outbound 

DDoS attacks based on entropy with the Takagi-Sugeno-Kang fuzzy neural network 

detector. The CUSUM method is used for final change point detection in all 

experiments. The monitored TCP packet distributions are the source and destination 

addresses and the number of bytes and packets. For entropy calculation, Shannon’s, 

Tsallis and T-entropy equation are used. The trace files from the ns-2 network simulator 

are used as learning and test data. Experiments were performed on two topologies and 

three types of entropy: a local network topology with constant bit rate baseline traffic, 

with a detector on its edge; and a large-scale topology with HTTP baseline traffic. 

Experiments were carried out using three different entropies: Shannon’s, Tsallis and T-

entropy. 

The experimental evaluations confirm that the method significantly increases the 

DDoS detection rate, and is more robust when the configuration changes, in comparison 

with the method using direct detection on entropy values. By applying the TSK-FS 

method on any three types of entropy, the noise in the entropy time series is suppressed, 

enabling more accurate change point detection. The experiments show that slightly 

better results are achieved if Tsallis entropy is used and poorer results for T-entropy. 

False positives are significantly reduced, even in the case of low intensity attacks. The 
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true-positives detection rate remains high and the false-positive detection rate remains 

low for a wide range of values of configuration parameters. This finding is important for 

practical uses of this method in IDS equipment. The method was also successful when a 

TSK-FS model generated on one specific network topology was applied to a different 

network topology. Finally, the method was successfully applied on real-world public 

data sets.  

This method is effective for the entropy of destination and source addresses 

distributions, although it has poor performance when applied to byte and packet entropy 

distributions. As an entropy-based method, it retains its generality and is capable of 

detecting attacks regardless of their type. On the other hand, the fuzzy and neural 

network approach increases the sensitivity and robustness of detection. Additional 

robustness and better network event coverage could be achieved if this method is 

combined with a set of specific signature-based methods. 

There are several directions for possible future research. One is the fine-tuning of the 

algorithm to provide a lower number of false positives when dealing with flash crowds, 

that is, a burst of legitimate traffic to single destination. Another direction is to 

determine the optimal set of input variables for the TSK-FS model to achieve a better 

detection rate in a dynamic environment. The derivation of entropy, the values of some 

packet header fields, and packet inter-arrival times are good candidates for combining 

with entropy values. 
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