
Computer Science and Information Systems 15(1):31–50 https://doi.org/10.2298/CSIS170520045S

An Approach to Business Process Simulation using

Mined Probabilistic Models

Titas Savickas and Olegas Vasilecas

Information Systems Research Laboratory,

Vilnius Gediminas Technical University,

10223 Vilnius, Lithuania

{titas.savickas, olegas.vasilecas}@vgtu.lt

Abstract. There are many approaches on how to analyse business processes, but

the simulation is still not widely employed due to high costs associated with

simulation model creation. In this paper, an approach on how to automatically

generate dynamic business process simulation model is presented. The approach

discovers belief network of the process from an event log and uses it to generate a

simulation model automatically. Such model then can be further customised to

facilitate analysis. For evaluation of the approach, conformance of the simulation

results with the source event logs was calculated. The simulation results were

event logs that were generated during the simulation of the discovered models.

The evaluation showed that the approach could be used for initial simulation

model generation.

Keywords: Probabilistic business process model, Business process simulation,

Simulation model generation, Process mining.

1. Introduction

Business processes (BP) are at the core of any enterprise, and the competitiveness

requires continuous improvement of those processes. The topic of their improvement is

covered by business process management field [1]. One of the most common ways to

analyse business processes is to use modelling and simulation. However, simulation is a

time-consuming task and requires a lot of manual labour [2]. BP models have to be

prepared, and behavioural data has to be collected for a successful simulation. There is a

need to automate simulation model creation and reduce the human labour required to

improve business agility. Such improvement could be achieved using the data generated

by the processes to automate the model creation. The data originating in information

systems (IS) are used in BP execution and/or is generated during BP execution. Ability

to utilise this data allows organisations to automate analysis tasks and improve analysis

quality[3].

Analysis of business processes carried out in an organisation can be performed using

Process Mining [3]. Process mining techniques use the data saved in IS regarding BP

historical execution and facilitate discovery of business process models, to validate and

improve existing business models or make general insights on the performance of

business processes. Although there are ways on how to employ process mining

techniques for discovery of simulation model parameters [4], there are no approaches on

32 Titas Savickas and Olegas Vasilecas

how to automatically generate BP simulation models from event logs.

For the above reasons, this paper tackles the problem of automated discovery of

simulation models from historical BP execution data and presents an approach on how

to automatically create an initial simulation model from an event log. Such a model

could provide a framework for the analysis of a BP and reduce the analyst work

required. Moreover, it would allow analysts to focus only on the process area that is of

interest to the company. The approach takes an event log, discovers probabilistic model

and transforms it into a simulation model. The generated simulation model re-uses

probabilistic model to predict the execution sequence of the process and generate the

process data. The model can further be customised by an analyst to restrict pathways,

manipulate process execution, add additional execution rules and in general perform

what-if analysis that is usually done during BP simulation [4]. The approach is

evaluated using conformance techniques to test whether the automatically created

simulation models, once simulated, conform to the processes originating from the

source event logs using process mining discovery and conformance techniques. The

experiments show that the simulation fits the event log behaviour with at least 50%

fitness. Therefore, they can be used in practice. The main benefit of the approach is the

reduced human labour required to create the simulation models. Since the discovery of

the simulation models is automated, it eliminates the task of initial simulation model

creation and allows analysts to focus on adding details specific to analysis tasks. Having

the initial simulation models, the analysts could perform business process analysis,

including what-if scenarios, data-dependency analysis and other.

This paper consists of 6 sections – the paper starts with an introduction and is

followed by related works in section 2. In section 3, the preliminaries are provided –

methods used in the approach and the simulation execution are described, and

definitions are introduced. Section 4 describes how simulation model is constructed

from event logs and probabilistic model and relation between elements in the event log,

probabilistic model and simulation model. Section 5 presents how the evaluation was

performed, data used in experiments and experimental results. The paper ends with

conclusions and further research in section 6.

2. Related Work

Although there is a need for general purpose BP simulation models, there are no

methods to discover fully capable simulation models from event logs, which would be

detailed enough to use data in BPs for the control-flow execution, decisions and

resource allocations. On the other hand, there are multiple methods to discover such

parts or parameters of simulation models [4]. This section provides an overview of

related works on process mining and simulation to facilitate BP analysis.

Automatic discovery of BP models was the initial application of process mining in

BP analysis, with algorithms such as alpha [5] for analysing BPs discovered in the form

of Petri nets. It interprets loops and is not often used nowadays. Heuristic Miner [6] was

an improvement of algorithmic approaches, and it applies heuristic rules in the

discovery of process models to improve discovery results and provide data on the

execution of the processes, such as frequency of activity paths. Most of the algorithms

applied in the process mining discover some form of Petri Nets, which have formal

An Approach to Business Process Simulation using Mined Probabilistic Models 33

definitions and can be further analysed. There are also methods to discover process

models and represent them using other lesser-known notations [7] or widely used

Business Process Modelling and Notation (BPMN) [8].

Process mining has seen quite a few applications in BP analysis. It has been used for

time prediction: in [9] Van Dongen et al. proposed a method that uses regression

equations based on event logs to prepare a model for a prediction on when the process

instance (case) will be finished; Van Der Aalst et al. proposed to use transition system

discovered from an event log to facilitate time prediction of a case [10]. The mentioned

approaches are mathematical models and provide predictive analytics, but their

simulation application is limited to estimation of BPs durations. For discovering BP

behaviour parameters that can be used in the simulation, process mining provides

multiple solutions. For flow simulation, decision rule mining that can be used to predict

branching [13]. Also, alignment between an event log and decision points could be used

to extract inter-activity data flow rules [11]. Furthermore, rules for control flow can be

discovered from data in event logs [10]. Other simulation parameters could also be

discovered. For example duration of activities using methods for activity duration

prediction [9], or resource constraints using resource scheduling protocols [14]. While

there are many possible applications of process mining for discovering BP behaviour,

their application, in case of our research, is limited to discovering parameters that can be

used for simulation. Authors of [15] performed systematic literature review analysis on

what Process Mining methods could be used for discovering data and which could be

used in BP simulation, but there is no integration demonstrated for the reviewed

approaches, and no experimental studies were done.

Discovery of general simulation models (models, which are not specialized for a

single analysis task) from event logs has not been researched widely. Ahn et al.

presented a method that uses a refined alpha algorithm to discover workflow paths and

durations that are then used to create a discrete event simulation model [16], but the

discovered simulation models do not include complex data and decisions. Giuseppe et

al. presented an approach to creating a risk-based simulation model to perform

conformance analysis of a modelled process [17], and it is focused only on that specific

task. Finally, Cho et al. presented a method to discover performance parameters using

well-known process mining techniques and manually, based on them, create a

simulation model to analyse what-if scenarios [18], but the approach is not presented in

detail. None of the found approaches tries to create a model that would provide not only

activity and their duration simulation, but also provide the data generated in the

activities.

The simulation itself can also be applied to improve process mining. Szimanski et al.

proposed an approach on how BP models could be improved based on simulation

results [19]. This approach uses agent-based simulation on BP models to analyse

interactions between agents and map the interactions with events in a log. Another use

of simulation in process mining is to use it for generating event logs using simulation

and use the generated event log for mining a different paradigm BP [20]. Such research

focuses on simulating of already existing models and does not focus on the creation of

simulation models from event logs.

34 Titas Savickas and Olegas Vasilecas

3. Preliminaries

Simulation is a multi-step process [21], and the steps on how to perform it can be

summarised as: data collection, simulation model creation, and execution of the created

model. Data for model creation can come from various sources, such as files, e-mails,

databases, interviews with employees and others. Since the collection of data is a wide

topic and process mining methods use event logs, therefore, in the context of the paper,

the data source is also assumed to be a process event log. For the model creation, a

behaviour of the process must be identified. The approach models the behaviour of the

process using Bayes Belief Network (see section 3.4) for causality and decisions. The

approach uses system state transition (see section 3.3) models to constrain possible

event sequences. Finally, the data and the behaviour is used to create the simulation

model automatically. The simulation is done using dynamic BP simulation approach

(see section 3.1). This section describes the proposed approach in detail.

3.1. Dynamic Business Process Simulation

Dynamic BPs do not have a pre-defined sequence of steps [22]. In declarative or

imperative process modelling, the execution of processes is managed using control-flow

to limit the behaviour [23]. As opposed to this, in dynamic BP execution activities are

activated based on rules applied to the context, instead of a control flow mechanism,

and as such it adds further flexibility or capability to use complex decisions based on

data generated in the process. The dynamic BP simulation was chosen for the approach

due to its ability to use data generated inside the processes and use complex contextual

rule for controlling the execution of the process [24]. The process model of how such

simulation is done is depicted in Figure 1.

Fig. 1. A process on how simulation of dynamic business process is performed [25]

An Approach to Business Process Simulation using Mined Probabilistic Models 35

During the dynamic BP simulation, contrary to other simulation approaches, the

activities to be executed are selected not using standard control-flow techniques, such as

events or arcs connecting the activities, but by using predicate rules. Such a selection

allows modellers to define complex rules, taking into account resource availability, the

current state of the executed process instance, contextual data (such as time, day or

recent events) and other constraints. The activities are executed as soon as the predicate

rule result is evaluated to true. The contents of the activities are a set of tasks that are

atomic and change the state of the process instance. Each activity consists of one or

more of the tasks, and, the activity is marked as completed after all tasks are completed.

This loosely-coupled connection between activities and the use of contextual data

enables a more stochastic approach for simulation, as compared to other static models.

In addition, the use of contextual data in the dynamic BP simulation allows creating

simulation models using real historical execution data without abstractions, such as

statistical queue models.

Definition 1. The dynamic business process simulation model is defined as a tuple

 :

 Context is a set of elements , where with – the name of context

element and – the element value. Context is used to model resources, simulation

statistics and other parameters.

 Process is a set of Activities. , where is a set of possible activities

defined in the process model or dynamically added/removed during simulation.

 Rule is a function whose result indicates whether all conditions to execute an

activity are satisfied.

 Activity is a tuple, where is a set of tasks that have to be

executed if rule condition is satisfied and is a set of all possible tasks in

simulation model.

 Task is a function that can change any element of simulation state, e.g.

activities, resources or context. Task is an atomic simulation action that can be

neither divided nor interrupted.

 Queue is a set of elements , where . is the task to be executed,

and is the moment in time when the task should be executed.

3.2. Event Log

Process Mining methods focus on applying data-mining methods on data existing in ISs

that represent the historical execution of BPs [26]. This data comes in the form of an

event log which consists of data collected from various sources. There are a few ways to

represent event logs, but the most common one is the XES file format [27] – a

standardised and extensible file format based on XML data format. It is extensible and

allows adding domain-specific data about BP execution. The event log contains general

information on the execution of the BP, such as trace identifier to identify process

instance and a list of events with occurrence timestamp and identifier. Each trace and

event might also contain other domain-specific data related to the behaviour, e.g. client

names, ages, locations, system-specific information such as subsystem, server and other

data.

36 Titas Savickas and Olegas Vasilecas

In the scope of this paper, event log definition is based on [9], and adapted from

authors’ previous work [28]:

Definition 2. An event log over a set of activities A and time domain TD is defined as

 , where:

 E is a finite set of events

 C is a finite set of cases (process instances),

 N is a finite set of attribute names,

 V is a value space of attributes,

 is a finite set of attributes,

 is a function assigning each event with attributes and their values,

 is a function assigning each event to an activity,

 is a function assigning each event to a timestamp,

 is a surjective function assigning each event to a case,

 is a function identifying the name of an event and

 is the succession relation which imposes a direct ordering of the events

in E,

 is the succession relation which imposes a total ordering of the events in E

Table 1. Exemplary event log of an insurance claim process

Trace ID Event Timestamp Organization

Resource

Data

1 Incoming_claim 2014.01.05 8:05 {actor A} {claimant}

1 Register_claim 2014.01.05 8:30 {actor A} {claim size}

1 End 2014.01.05 13:57 {actor A} {rejected}

2 Incoming_claim 2014.01.07 13:07 {actor B} {claimant}

2 Register_claim 2014.01.07 13:13 {actor B} {claim size}

 …

2 Initiate_payment 2014.01.10 11:15 {actor B} {payment size}

2 End 2014.01.10 11:17 {actor B} {complete}

Table 1 presents a fragment of an exemplary event log, which is based on Synthetic

log used in the experiments (see section 5). It contains an identifier of a process instance

(also called a trace or a case), an event name, timestamp and other associated domain

data, such as claimant, payment size and others.

3.3. Transition System of an Event Log

Event logs contain data on events that have occurred in the process. The information on

the sequencing of specific events is hidden in the log and needs interpretation to

understand what events can and what events cannot follow each other. A transition

system can be used to model such behaviour during the execution of a process. The

transition system uses states of the BP as the nodes, and each transition between the

nodes depict allowed change in the state. Authors of [10] define transition system as:

An Approach to Business Process Simulation using Mined Probabilistic Models 37

Definition 3. Given a state representation function and an event representation

function , a labelled transition system is defined as where Y

 is the state space and is a “head” of

event sequence in a trace of first k elements.

is the set of events labels, and with

 is the transition relation.

 is the singleton of initial states and is the set of

final states.

In the scope of the paper, the transition system is used to calculate what events, given

the current simulation state, are permitted and limit the probability calculations needed

by eliminating the sequences that have never occurred and are not present in the event

log. The transition system models only sequencing behaviour, but it does not model

causality, decisions or data that is used in the processes.

3.4. Probabilistic Business Process Model

BPs are by nature complex and stochastic, therefore existing modelling approaches are

not always suitable for simulation. The domain model must satisfy the following

constraints to be usable for analysis:

1. The process is a set of activities executed in a specific sequence to transform input

into output. Therefore, the model must represent control flow of the process;

2. The process has input, output and generates data. Therefore, the model must take

into account the detailed data occurring in the BP that is stored in an event log;

3. The process has stochastic nature due to human interactions, unknown and

unpredictable context such as weather, clients, third party systems and others.

Therefore, the model must represent this stochastic nature;

4. The process contains feedback mechanisms because behaviour and decisions made

at one point in the process impact others in complex or indirect ways, therefore, the

model must represent feedback mechanisms.

The constraints mentioned above eliminate most of the standard BP modelling

languages, such as BPMN, UML Activity Diagrams and Petri Nets, because while they

represent control flow and data, they cannot represent stochastic nature and implicit

behaviour mechanisms. Their purpose is to provide a static view that represents how the

process should behave in a perfect scenario, i.e. to depict how activities follow each

other via activity and arc elements. The constraints are often overlooked in real-life

scenarios or, in some cases, there are no elements that depict feedback mechanisms

between activities not directly linked by arcs. They also often lack detailed view of the

data that is occurring in the process and is generated in software systems but not useful

for analysts. Another drawback of such models is their limitation to represent past

behaviour, i.e. how often and based on what decisions the splits in the control flow of

the process were made.

Another alternative is artificial intelligence models, such as Support Vector Machines

(SVM) and Neural Networks (NN). Such models do not satisfy the constraints

38 Titas Savickas and Olegas Vasilecas

mentioned above because they can represent stochastic nature and implicit feedback

mechanisms, but a single model cannot represent control flow and data in a visible

manner. They are mathematical, non-graph based models making them hard to depict in

a manner that would allow easy identification of activity sequences or attribute

dependencies or explain the reasoning of the models.

It leaves only the probabilistic, graph-based methods. Markov chain could be a

suitable candidate, but it assumes that given the past, the future is independent and this

does not satisfy the 4th constraint. The final candidate is Bayes Belief Network (BBN).

It is suitable, because:

 The underlying directed acyclic graph (DAG) could represent the control flow;

 The conditional probability tables represent data used in the process and:

o attribute and value space of the data in the process;

o stochastic nature via probabilities of data occurrence;

o feedback mechanism using joint probability tables.

The belief network is defined as:

Definition 4. Belief network over event log L is defined as , where:

 is a directed acyclic graph , where P is the set of nodes and E is the set

of edges,

 is a finite set of conditional probability tables for nodes of graph G and their

attributes M,

 is a surjective function assigning each conditional probability table to its

corresponding node.

Belief network has a strict requirement that the graph modelling the relations

between events must be directed and acyclic. Such graph is required because inference

using the belief network requires iteration through all causally related nodes. The

research on how to extract DAG has already been performed [29]. The DAG is defined

as follows:

Definition 5. Directed acyclic graph for event log L is defined as ,

where:

 is a set of nodes for each subset of events not

forming a cycle,

 is a set of edges connecting nodes, whose

representative events directly follow each other,

 M is a finite set of attributes,

 is a surjective function assigning each attribute to a node.

Finally, all probabilities in the belief network are stored in conditional probability

tables, which are defined as:

Definition 6. A Conditional Probability Table of an event is defined as a tuple

), where:

 is a set

of all possible values for each attribute of previous nodes in the graph;

An Approach to Business Process Simulation using Mined Probabilistic Models 39

 is a set of attributes and their values belonging

to the main node of the probability table;

 is a probability function assigning conditional probability for each

attribute value of the main node related to attribute value set of parent nodes.

The discovered Bayes belief networks model the causality of the events – it

facilitates prediction on what events can occur and what data occurs in those events

[30]. The approach to mine Bayes belief networks from an event log to represent BP

models in probabilistic form was part of previous research and is described in [28], [29].

4. Simulation Model Generation from Belief Network

In order to simulate processes, a simulation model first needs to be created. Standard

simulation models are static, i.e. all elements and the control flow of the process is

known before-hand. Contrary to the standard simulation models, we combine process

mining techniques with probabilistic models and dynamic BP simulation to facilitate

flexible control flow in the BP. The flexibility is achieved by using predicate rules

applied on process context to identify when activities can be executed instead of pre-

defined arcs.

The approach to generating simulation model from an event log is based on the

following sequence of steps:

1. Transition system is discovered from event sequences in an event log as defined in

section 3.3;

2. A belief network is discovered from an event log as defined in 3.4;

3. Based on belief network and transition system, a simulation is generated;

4. A belief network is combined with transition system to facilitate inferences on the

events to occur during simulation;

5. The simulation model is manually customised for specific needs. This step requires

human input.

The approach performs multiple transformations and objects of each step are

associated with the objects in the following steps. Figure 2 presents the relations

between the elements of the event log, the discovered belief network and the simulation

model. The elements and their relations are modelled using EMF notation (based on

UML class diagram). Everything starts with a log. A log is a set of traces where each

one describes how an instance of a process has been executed. A trace contains one or

more named events where each of them can have data attributes that are specific to that

log. There are two data attributes that are applicable to all events:

 Concept:name of data type string that defines a name of an event;

 Time:timestamp of data type date that defines when an event has occurred;

Other data attributes are domain- and event-specific. These data attributes, when used

in belief networks, allow a probabilistic view of event occurrences and the data

attributes they have.

40 Titas Savickas and Olegas Vasilecas

Fig 2. Relations between the elements of an event log, belief network and simulation model.

An Approach to Business Process Simulation using Mined Probabilistic Models 41

Belief Network is a Directed Acyclic Graph where each node has a Conditional

Probability Table (CPT). When a belief network is discovered from a log, each node in

a DAG of the belief network is named after corresponding event’s concept:name data.

Each node in the belief network can have one or more relations that define a conditional

dependency to other nodes. Each node has a CPT that is constructed from all

occurrences of the corresponding events, their associated data attributes, and preceding

events with their data attributes in the same trace. The CPT is a table, therefore it

consists of Cells where each cell defines a data attribute’s value, and each Row has a

probability to occur. The probabilistic model creation is part of previous research

[29][30].

For the creation of the simulation model, we start with the association of elements of

the belief network, simulation model and event log:

 , where is

an injective surjective function mapping each node of the belief network graph

to a specific name of events in the log;

 aca is a function mapping each activity of simulation model s to node

of a belief network graph ;

 is a function generating random attributes with values from previously

observed attribute list of the events represented by the activity ;

When a simulation model is being created, a belief network’s DAG is a direct source

of the initial Business Process (BP). Each node in the DAG is transformed to Business

Process Element (BPElement). As an event in a log can represent any element type

(BPElementType) of a process, its type is, by default, selected to be Activity. If it is not

the correct element type, the user of the simulation could set it to another appropriate

type. This way, the initial set of activities is created:

Definition 7. is the initial set of activities, where ;

Each activity in the simulation model consists of a set of tasks and a rule that defines

when an activity can occur. The rules are in the form of a predicate and define a

condition, which, when satisfied, allows an activity to occur. The idea of the approach is

to automatically generate a simplified simulation model, which could further be

customised. Therefore, the idea is that during the simulation, activities should occur

when in reality they would have the highest probability of occurrence. As such, when a

node is transformed to activity, the rule when the activity can occur is defined as:

Definition 8. A default activity rule r is defined as

In other words, if the simulation is started and, based on the current state of the

process, the next most probable event is represented by the activity, and then this

specific activity should be executed next.

The body of the activity is a task that invokes a belief network and randomly

generates data attributes based on the CPT in the belief network for that specific node.

The resulting data attributes are then added to the context of the process. The exception

42 Titas Savickas and Olegas Vasilecas

to this is if one of the data attributes and is named duration, in which case it is used as

the duration of the task. Otherwise, the activity has no duration, i.e. it is instantaneous.

The default task is defined as follows:

Definition 9. A default task of activity is such operation that modifies context in such a

way .

Once generated, the model can be customised based on the needs of the simulation

performers. The customisations can be such as the addition of other activities,

modification of activation rules, and/or modification of activity behaviour. For example,

if there is a need to customize the model and add a rule, that warehouse accepts

incoming transport only after 9:00am and only until 6:00pm, the activity “accept

transport” could be modified that its activation rule in pseudo code is “$time > (9:00am)

and $time < (6:00pm) and $started = true and most_probable_next_event(accept

transport) = true” . Another example could be that the performers want to test only a

single decision path. In that case, generated activities could be modified to generate a

specific set of data attributes that force a specific process path as opposed to pseudo-

random data. This way, the approach allows simulation performers to automatically

generate the initial simulation model from an event log and then modify it for their

needs to test what-if scenarios or analyse general process behaviour.

5. Evaluation of the Approach

The proposed approach takes an event log describing historical BP execution and uses it

to create a simulation model. The simulation imitates the behaviour of the process,

therefore, in order to evaluate the effectiveness of the approach, there is a need to

compare the input of the event log with the output of the simulation. The similarity

between the input event log and the output of the simulation describes how well the

approach is suitable for discovery of simulation models. To evaluate how effective is

the approach, it was decided to discover a simulation from an event log, perform the

simulation to create an output event log and cross-check it with the source event log to

measure the similarity. The effectiveness of the approach is based on the calculated

fitness between the event logs and Petri nets discovered from the event logs. The

applied evaluation method is depicted in figure 3. It consists of the following steps:

1. Load Event Log;

2. Generate simulation model based on the event log;

3. Execute simulation and generate simulation event log. The simulation is performed

for at least 250 cases and generates event log of the resulting simulation (GEL);

4. Apply conformance checking methods to test source event log (SEL) against

simulated event log:

a. Discover Petri net from Source Event Log. The discovery is done using

Inductive miner;

b. Discover Petri net from Generated Event Log. The discovery is done using

Inductive miner;

c. Replay Source event log on Discovered Petri Net.

d. Replay Generated event log on discovered Petri Net;

5. Evaluate the results;

An Approach to Business Process Simulation using Mined Probabilistic Models 43

Load Event Log

Generate Simulation Model

Execute simulation and generate
simulation event log

Discover Petri net from
Source Event Log

Discover Petri net from
Generated Event Log

Replay Generated Event
Log on Discovered Petri Net

Replay Source Event Log
on Discovered Petri Net

Evaluate Results

Fig 3. Evaluation Approach listing activities on how the proposed approach is experimentally

evaluated

The chosen evaluation approach facilitates formal evaluation of the simulation

results. For Petri Net discovery, Inductive miner was chosen, because it is guaranteed to

provide a Petri Net which is sound and fits the event log [33]. For conformance

checking, it was decided to replay event logs against the discovered Petri Nets [34]. The

replay allows validating whether the simulated results are conformant to the original

sequences of events in the source event log. The replay does not take into account

generated data, but this does not need to be verified since the data does not strictly

follow the causal path - it is pseudo-randomly generated, i.e. it is generated not based on

what is the most probable data, but weighted against probability distribution in the CPT.

For evaluating the approach, 5 event logs in total were used that had varying levels of

complexity. They were selected to cover varying degrees of process complexity, and

they had differing control flow complexity, data attribute counts and event counts. The

first selected event log is the Synthetic log of a hypothetical insurance claim process,

and it is the most primitive process. The process contains only 9 activities, and there is a

44 Titas Savickas and Olegas Vasilecas

strict control flow between the activities. Fragment of it can be found in Table 1 and the

control flow in the Figure 4. The other selected event logs were of real processes. Three

of the real-life process event logs were taken from Business Process Intelligence (BPI)

conference challenge to make sure at least some of the experimental data is open source

and has already been investigated by other researchers.

The first of the selected BPI logs is the BPI’12 event log which belong to a process

where an application is submitted through a webpage. Then, some automatic checks are

performed, and the application is complemented with additional information. This

information is obtained by contacting the customer by phone. If an applicant is eligible,

an offer is sent to the client by mail. After this offer is received back, it is assessed.

When it is incomplete, missing information is added by again contacting the customer.

Then a final assessment is done and the application is approved and activated [35]. The

second log is the BPI’13 event log from Volvo IT Belgium for this challenge. The log

contains events from an incident and problem management system called VINST

[36]. The final BPI log is the BPI’15 event log of five Dutch municipalities. The data

contains building permit applications over a period of approximately four years. There

are many different activities present. The cases in the log contain information on the

main application as well as objection procedures in various stages. Furthermore,

information is available about the resource that carried out the task and on the cost of

the application [37].

The final log was taken from an educational institution with student edicts. The

student edict sequence depicts the study process that is governed by the edicts the

faculty dean or the rector. The edicts range from admittance to university, to the grant of

a degree. The process is the most complex one because it has no clear control-flow and

can be stopped at any time (via acquittal edict).

 The simulation was executed using those event logs, called Source Event Log (SEL).

The result of the simulation was a generated event log (GEL) that was used for further

evaluation. The properties of the SEL and GEL are listed in table 2.

Table 2. Parameters of the logs used in evaluation

Log Traces Unique Events Total Events Attributes

Synthetic log – source 3512 9 20339 2-6

Synthetic log - generated 530 9 4240 2-6

BPI12 – source 13087 36 262200 3-4

BPI12- generated 530 34 4526 3-4

BPI13 - source 7554 13 65535 9

BPI13 - generated 524 10 1231 9

BPI15 - source 1156 289 59083 12

BPI15 - generated 250 136 38364 12

University -source 2774 63 21392 6

University - generated 542 43 2955 6

The next step was to discover the Petri Nets - from the SEL was discovered Source

event log Mined Model (SMM) and from the GEL was discovered Generated event log

Mined Model (GMM). Example of discovered Petri Nets for Synthetic log is shown in

figure 4. As it can be seen, the control flow in the discovered Petri Nets is very similar.

Conformance checking was done to prove their similarity. It was done by cross-

An Approach to Business Process Simulation using Mined Probabilistic Models 45

replaying of the event logs against two mined Petri nets to reduce the impact of the

chosen discovery algorithm.

 a)

b)

Fig. 4. Petri Net discovered from Synthetic Log Source (a) and Generated Event Log (b) using

Inductive Miner

Table 3. Simulation evaluation results for different event logs

Log SEL conformance with GMM GEL conformance with SMM

Trace Fitness Move-Log

fitness

Trace Fitness Move-Log

fitness

Synthetic log 0.795 1.000 1.000 1.000

BPI12 0.821 0.817 0.814 0.771

BPI13 0.928 0.906 0.438 0.582

BPI15 0.572 0.585 0.886 0.832

University 0.982 0.995 0.979 0.987

SEL – Source event log, SMM – Mined Model from Source event log, GEL – Generated event

log, GMM – Mined model from generated event log

Table 3 presents results of cross-replay of the event logs against the discovered Petri

nets. It shows that SEL replay on GMM is less fitting. It had 0.795 trace fitness versus

that of 1.000 for the GEL fitness on SMM for the synthetic log and 0.572 versus 0.886

for the BPI15 log, correspondingly. This could be explained by the fact that the

simulation result had a lower amount of traces. Therefore, the log might not have

covered all possible execution paths that are available in the SEL. As can be seen, in

general, the simulated processes had a fitness against the source event log higher than

0.814, except for car manufacturer event log, whose flow was very dynamic and the

data attributes did not represent decisions made in the process. Other than that, the other

lowest fitness was for the BPI15 log, which has the most unique events with the least

traces. Therefore, it would be required to simulate many traces to cover all execution

paths.

46 Titas Savickas and Olegas Vasilecas

The fitness of the GEL against the SMM varies more widely than the other way

around – range of 0.438–1.000 versus that of 0.572–0.982 for SEL against GMM. Such

variation could be explained by the fact that GEL contains probabilistically generated

events. Therefore some control-flow path errors might occur such as repeating or

switched ({a,b} instead of {b,a} as required by SMM). Furthermore, the lowest fitness

was for BPI13 log that might have insufficient inferred causality between the attributes

causing errors in the log, although this needs to be further analysed.

To test whether increasing the amount of simulated traces improved the

expressiveness of the generated process and to find the lower bound of the traces that

stabilised simulation results, we tried a different length of simulation with differing

amounts of resulting traces. The tests were done with 100–1000 simulation runs for the

BPI12 log. This specific log was chosen because it has is not a simple process (36

possible distinct events with 3–4 attributes), and the source event log contained many

traces (13087 in total) ensuring that the discovered belief network was sufficiently

trained with the source data. The results are shown in table 4.

Table 4. Simulation evaluation results for differing trace counts

The fitness of generated event log against Petri Net discovered from source event log

increases when the simulated trace count is decreasing, and source event log

conformance with Petri Net discovered from the generated event log decreases when the

count is decreasing. In both cases, the fitness stabilises at 500 traces, with fitness

variation less than 5% for trace fitness, which can be accounted by the fact, that

simulation is probabilistic, and each run is independent of previous runs. Therefore,

such statistical significance is within acceptable boundaries. Also, each simulation run

results in a unique event log, and there can be variation in the discovered BP model,

increasing the fitness variation. The number of traces required to stabilise the fitness can

explain why the BPI15 fitness results were so low – the process is very complex (has

289 unique events), and there were not enough simulated traces (250) to reach stable

fitness results. The low fitness is further proven by the number of unique events that

were in the generated event log – only 139 compared to 289 in the source event log.

The presented approach was created using constructive research method and threats

to the validity of the research must be addressed. The chosen validity threat classes were

Construct, Internal and External. The assessment is presented in Tables 5–7.

Trace count SEL conformance with GMM GEL conformance with SMM

Trace Fitness Move-Log

fitness

Trace Fitness Move-Log

fitness

100 0.593 0.572 0.913 0.885

200 0.649 0.627 0.839 0.848

300 0.699 0.653 0.810 0.766

400 0.752 0.732 0.819 0.833

500 0.821 0.817 0.814 0.710

600 0.821 0.817 0.817 0.775

700 0.840 0.831 0.821 0.778

800 0.835 0.833 0.825 0.839

900 0.800 0.773 0.830 0.790

1000 0.830 0.88 0.820 0.778

An Approach to Business Process Simulation using Mined Probabilistic Models 47

Table 5. Threat to Validity Assessment

Threat Management

Poorly

chosen

evaluation

metrics

The metrics for evaluating the approach were chosen directly

based on the problem the approach tries to solve. Performance and

efficiency metrics were not selected because these metrics were

not the focus of the research and are hard to control.

Ineffective

measures

selected

The selected testing method used state of the art conformance

checking technique. In order to eliminate possible errors of model

discovery, a cross-check was done.

Bugs in

implementation

The prototype was created by an experienced developer and the

error count in implementation should not have any effect.

Poor parameter

settings

The experiment is described in detail and designed to maximise

the coverage of the evaluation. The selected data was taken to

cover as wide real-life application cases as possible.

Sensitivity to

event log size

The approach is based on Bayesian Belief Networks, therefore,

calculations increase exponentially with increasing amount of data

(event types, data attributes). For this reason, one of the logs in

the experiment was sufficiently big to test this threat.

Unreliable data Three of the event logs were taken from BPI conference, and the

event logs have been used previously in scientific papers.

Limited

behaviour

exposed in the

event logs

The approach is sensitive to the data existing in the event logs.

When the ratio between the exposed behaviour (such as event

types) and trace count is high, the success of the approach is

limited.

Non-comparable

experiment

The approach and experiment are described in detail, and some of

the data sources used are publicly available.

6. Conclusions

The paper presents a novel approach on how to automatically generate BP simulation

models, where the input is an event log with historical data of BP execution taken out of

an IS and the output is a simulation-ready model. In practice, the approach can be used

for generating random event logs from source event logs or for simulation models to be

used in BP analysis. The generated simulation model eliminates the initial workload of

the analyst and allows to focus only on customisations based on business analyst’s

needs, e.g. to force execution paths or modify execution of generated activities for what-

if analysis.

The approach was evaluated using publicly available event logs and by applying

formal conformance checking methods. Based on the results of the evaluation, the

approach is capable of simulating BPs and reproducing event sequences that conform to

the source event logs that were used for simulation model generation. The fitness of the

48 Titas Savickas and Olegas Vasilecas

generated event log was at least 0.886 for complex event log and 1.000 for the simple

synthetic event log.

Cross-checking of discovered Petri net conformance with the source event log has

shown worse fitness, but this could be explained by the fact that the simulation was

shorter, and during the simulation, generated fewer instances and less data was

generated than the source log while the source log represented a complex process.

Therefore, the simulation did not achieve the same expressiveness compared to the

source event log, and this needs further research.

The approach, in the current state, has limitations that inhibit its wide application.

There is a need to identify the context where the approach reaches satisfiable results and

extend the simulated behaviour to not only control flow and data but other aspects as

well.

To extend the simulated behaviour, there is a need to increase the capabilities of

simulation by discovering other elements (besides activities and data-based control

flow) in the simulation model, such as events, decisions, resources and business rules.

For such element detection, other approaches, such as BPMN model discovery [8] or

resource protocol discovery [38] could be applied, but this needs to be further

researched.

To clarify the context of the applicability, there is a need to investigate data

dependency between the data attributes in the event log and the simulation results and

how many simulation instances need to be executed to achieve the same expressiveness

of the processes as is available in the source event logs. While this has been done in this

paper (table 4), each event log and simulation model is unique and clear dependency

rules should be identified to clarify the context when this approach could be unsuitable.

References

1. R. K. L. Ko, S. S. G. Lee, and E. Wah Lee, “Business process management (BPM)

standards: a survey,” Bus. Process Manag. J., vol. 15, no. 5, pp. 744–791, 2009.

2. M. I. Kellner, R. J. Madachy, and D. M. Raffo, “Software process simulation modeling:

Why? What? How?,” J. Syst. Softw., vol. 46, no. 2, pp. 91–105, 1999.

3. G. Vossen, “The process mining manifesto - An interview with Wil van der Aalst,” in

Information Systems, 2012, vol. 37, no. 3, pp. 288–290.

4. N. Martin, B. Depaire, and A. Caris, “The use of process mining in a business process

simulation context: Overview and challenges,” IEEE SSCI 2014 - 2014 IEEE Symp. Ser.

Comput. Intell. - CIDM 2014 2014 IEEE Symp. Comput. Intell. Data Mining, Proc., pp. 381–

388, 2015.

5. W. M. P. Van Der Aalst, T. Weijters, and L. Maruster, “Workflow mining: Discovering

process models from event logs,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 9, pp. 1128–

1142, 2004.

6. A. J. M. M. Weijters, W. M. P. Van Der Aalst, and A. K. A. De Medeiros, “Process Mining

with the Heuristics Miner Algorithm,” Tech. Univ. Eindhoven, Tech. Rep. WP, vol. 166, pp.

1–34, 2006.

7. A. J. M. M. Weijters and J. T. S. Ribeiro, “Flexible heuristics miner (FHM),” IEEE SSCI

2011 Symp. Ser. Comput. Intell. - CIDM 2011 2011 IEEE Symp. Comput. Intell. Data Min.,

vol. 334, no. December, pp. 310–317, 2011.

8. R. Conforti, M. Dumas, L. García-Bañuelos, and M. La Rosa, “BPMN Miner: Automated

discovery of BPMN process models with hierarchical structure,” Inf. Syst., vol. 56, pp. 284–

303, 2016.

An Approach to Business Process Simulation using Mined Probabilistic Models 49

9. B. F. Van Dongen, R. A. Crooy, and W. M. P. Van Der Aalst, “Cycle time prediction: When

will this case finally be finished?,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 5331 LNCS, no. PART 1, pp. 319–336, 2008.

10. W. M. P. Van Der Aalst, M. H. Schonenberg, and M. Song, “Time prediction based on

process mining,” Inf. Syst., vol. 36, no. 2, pp. 450–475, 2011.

11. [M. De Leoni and W. M. P. Van Der Aalst, “Data-aware process mining,” Proc. 28th Annu.

ACM Symp. Appl. Comput. - SAC ’13, p. 1454, 2013.

12. Y. Liu, H. Zhang, C. Li, and R. J. Jiao, “Workflow simulation for operational decision

support using event graph through process mining,” Decis. Support Syst., vol. 52, no. 3, pp.

685–697, 2012.

13. A. Rozinat and W. M. P. Van Der Aalst, “Decision mining in business processes,” BPM

Cent. Rep. BPM-06-10, vol. 6, no. 10, 2006.

14. A. Senderovich, M. Weidlich, A. Gal, and A. Mandelbaum, “Queue mining - Predicting

delays in service processes,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 8484 LNCS, pp. 42–57, 2014.

15. N. Martin, B. Depaire, and A. Caris, “The Use of Process Mining in Business Process

Simulation Model Construction,” Bus. Inf. Syst. Eng., vol. 58, no. 1, pp. 73–87, 2016.

16. S. Ahn, P. S. Dunston, A. Kandil, and J. C. Martinez, “Process mining technique for

automated simulation model generation using activity log data,” in Congress on Computing

in Civil Engineering, Proceedings, vol. 2015–Janua, no. January, 2015, pp. 636–643.

17. C. Giuseppe, M. Valerio, M. Teresa, and S. L. Carmela, “A Simulation Approach in Process

Mining Conformance Analysis. The Introduction of a Brand New BPMN Element.,” IERI

Procedia, vol. 6, pp. 45–51, 2014.

18. M. Cho, M. Song, and S. Yoo, “A systematic methodology for outpatient process analysis

based on process mining,” in Asia-Pacific Conference on Business Process Management,

2014, pp. 31–42.

19. F. Szimanski, G. Ralha, G. Wagner, and D. R. Ferreira, “Improving Business Process

Models with Agent-Based Simulation and Process Mining,” Lect. Notes Bus. Inf. Process.,

vol. 147 LNBIP, pp. 124–138, 2013.

20. L. Ackermann, S. Schönig, and S. Jablonski, “Inter-Paradigm Translation of Process Models

using Simulation and Mining,” CoRR, 2016.

21. D. R. C. Hill, Theory of Modelling and Simulation: Integrating Discrete Event and

Continuous Complex Dynamic Systems: Second Edition by B. P. Zeigler, H. Praehofer, T.

G. Kim, Academic Press, San Diego, CA, 2000., vol. 12, no. 1. 2002.

22. D. Kalibatiene, O. Vasilecas, T. Savickas, T. Vysockis, and V. Bobrovs, “A New Approach

on Rule and Context Based Dynamic Business Process Simulation,” Balt. J. Mod. Comput.,

vol. 12, no. 1, pp. 408–419, 2016.

23. D. Fahland, J. Mendling, H. A. Reijers, B. Weber, M. Weidlich, and S. Zugal, “Declarative

versus imperative process modeling languages: The issue of maintainability,” Lect. Notes

Bus. Inf. Process., vol. 43 LNBIP, pp. 477–488, 2010.

24. O. Vasilecas, D. Kalibatiene, and D. Lavbič, “Rule- and context-based dynamic business

process modelling and simulation,” J. Syst. Softw., vol. 122, pp. 1–15, 2016.

25. O. Vasilecas, T. Savickas, K. Normantas, T. Vysockis, and D. Kalibatiene, “A Goal-

Oriented Approach to Dynamic Business Process Simulation,” in Databases and Information

Systems IX: Selected Papers from the Twelfth International Baltic Conference, DB&IS 2016,

2015, vol. 291, p. 143.

26. S. Buckl, F. Matthes, C. Neubert, and C. M. Schweda, “Information Systems Evolution,” in

Lecture Notes in Business Information Processing, 2011, vol. 72, pp. 136–149.

27. S. K. Reddy, A. S. Barbas, R. S. Turley, J. L. Steel, A. Tsung, J. W. Marsh, D. A. Geller, and

B. M. Clary, A standard definition of major hepatectomy: Resection of four or more liver

segments, vol. 13, no. 7. Eindhoven, 2011.

50 Titas Savickas and Olegas Vasilecas

28. T. Savickas and O. Vasilecas, “Bayesian belief network application in process mining,”

Proc. 15th Int. Conf. Comput. Syst. Technol. - CompSysTech ’14, vol. 883, pp. 226–233,

2014.

29. O. Vasilecas, T. Savickas, and E. Lebedys, “Directed Acyclic Graph Extraction from Event

Logs,” in Information and Software Technologies, Springer, 2014, pp. 172–181.

30. O. Vasilecas, D. Kalibatiene, T. Savickas, A. Smaizys, J. Trinkunas, and E. Lebedys,

“Decision-making in information systems based on new development framework and

business process mining,” in Frontiers in Artificial Intelligence and Applications, 2014, vol.

Databases, pp. 129–142.

31. S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst, “Discovering block-structured

process models from event logs-a constructive approach,” in Application and Theory of Petri

Nets and Concurrency, 2013, pp. 311–329.

32. W. M. P. Van Der Aalst, A. Adriansyah, and B. F. Van Dongen, “Replaying history on

process models for conformance checking and performance analysis,” Wiley Interdiscip.

Rev. Data Min. Knowl. Discov., vol. 2, no. 2, pp. 182–192, Mar. 2012.

33. S. J. J. Leemans, D. Fahland, and W. M. P. Van Der Aalst, “Discovering block-structured

process models from event logs containing infrequent behaviour,” in Lecture Notes in

Business Information Processing, 2014, vol. 171, pp. 66–78.

34. A. Adriansyah, B. F. Van Dongen, and W. M. P. Van Der Aalst, “Conformance checking

using cost-based fitness analysis,” in Proceedings - IEEE International Enterprise

Distributed Object Computing Workshop, EDOC, 2011, pp. 55–64.

35. B. F. Van Dongen, “BPI Challenge 2012.” Eindhoven University of Technology, 2012.

36. W. Steeman, “BPI Challenge 2013, incidents. Ghent University. Dataset.” Ghent University,

2013.

37. B. F. Van Dongen, “BPI Challenge 2015 Municipality 5.” Eindhoven University of

Technology, 2015.

38. A. Senderovich, M. Weidlich, A. Gal, and A. Mandelbaum, “Mining resource scheduling

protocols,” in Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8659 LNCS, S. Sadiq, P.

Soffer, and H. Völzer, Eds. Cham: Springer International Publishing, 2014, pp. 200–216.

Titas Savickas has doctoral degree in informatics engineering acquired in 2017 in

Vilnius Gediminas Technical University. Current research is focused on process mining

and its application in business process analysis, such as prediction and simulation.

Olegas Vasilecas is a full professor in Information System Department of the Vilnius

Gediminas Technical University and a researcher in Vilnius University Institute of

Mathematics and Informatics. He has many years of practical and research experience

in Information System development. Current research areas include business,

information and software systems engineering; knowledge based information systems;

business process modelling and simulation; systems theory and engineering, modern

databases.

Received: May 20, 2017; Accepted: December 12, 2017.

