
Computer Science and Information Systems 15(1):51–78 https://doi.org/10.2298/CSIS170630046K

A Novel Inheritance Mechanism for Modeling Knowledge
Representation Systems

Marek Krótkiewicz

Department of Information Systems,
Wrocław University of Science and Technology,

Wybrzėze Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract. The mechanism of inheritance is a powerful tool used to describe com-
plexity of a reality fraction. It is particularly importantfor knowledge representation
systems modelling. It provides a specific ability to take over properties from a base
element, what is crucial for conciseness, and modelling efficiency as well. In the
Association-Oriented Database Metamodel, inheritance retains coherence with the
object-oriented model in the most general terms. However, it has been otherwise
defined which stems from the specificity of the metamodel, andparticularly from
its capabilities which have blazed a trail for its further extension. The main con-
tribution of this article is a description of preliminary assumptions, postulates and
conceptual solutions applicable to inheritance. They havebeen discussed against the
background of the Association-Oriented Database Metamodel as well as an object-
oriented model compared with the former.

Keywords: knowledge representation, databases, modeling theory, inheritance,
Association-Oriented Database Metamodel, Semantic Knowledge Base, object-
oriented model.

1. Introduction

This article provides a discussion concerning the mechanism of inheritance in the
Association-Oriented Database (AODB) Metamodel [17, 23]. It is one of the key
features particularly important in complex knowledge representation systems model-
ing. [24, 28]. It also addresses an analogical mechanism applied in the object-oriented
metamodel. It is for the specificity of theAODB Metamodel that inheritance can be
defined in a manner far more extensive than in the object-oriented model.

The original motivation to develop theAODB Metamodel was a necessity to build
a database management system for a research project referred to asSemantic Knowl-
edge Base (SKB) [25,26,27]. It is a project based and focused on concepts, unlike most
projects which are focused on terms. A concept is understoodas a set of semantic links
with other concepts. Consequently,SKB is not a database of linguistic nature, where the
main element is a term. It is a multifaceted project featuring numerous dedicated mod-
ules. The degree of complexity of data structures is very high, as is the number of mutual
associations and dependences of various nature. Therefore, it was necessary to ensure a
data storage layer meeting the requirements ofSKB. Hence the decision to develop a
new database model, since as a result of multiple attempts toapply relational databases,

52 Marek Krótkiewicz

followed by the object-oriented ones, too many crucial functionalities still remained to
lack support from these models. This is how an independent research problem came into
being, one which is referred to asAODB Metamodel.

The AODB constitutes an extension of the object-oriented approach.There is cur-
rently no single universal standard governing theobject-oriented database model (OODB)
[5,13,15,21], which is due to various reasons. The last attempt made to create a standard
for object-oriented databases was a project referred to asODMG 3.0 [6] developed in
1999 and published in 2000. It contains many compromises andis very general in nature.
Moreover, it is difficult to implement, and even impossible to implement in theObject
Query Language (OQL) [1, 7, 14, 16, 19]. Most scientists or database system designers,
while creating models or implementing their own solutions,refers to this standard to a
greater or lesser extent, mainly in order to highlight differences and to explain reasons for
abandoning this standard in favour of one’s own concepts. Designers of database manage-
ment systems focus on ensuring permanence of objects, whereas the approach preferred
in terms of the query language is based on extendingSQL with object-related capabil-
ities or developingSQL-like languages. Another important concept of object-oriented
databases, one which is definitely worth emphasising at thispoint, is Stack Based Ap-
proach (SBA) [18, 22, 32, 35]. Both the theoretical grounds and the cohesion of all ele-
ments of the solutions developed are unquestionable advantages of this system, both in
the theoretical and the implementation aspect. The query language thus created is very
distant from the approach known ofOQL [2] defined inODMG 3.0 [6] as well as from
other languages based on syntax or theSQL concept, which attempt to transform it into
an object language.

The solution proposed in this article pertains to a databasemodel different than the
relational or the object-oriented one. It is obviously about theAODB Metamodel. In this
model, unlike in object-oriented models, it is the association (Assoc) that remains in the
focus. The scope of competence of thisAODB Metamodel category covers the subject
of relationships between data. Data containers are collections (Coll). The splitting of
functions into those related to data storage and those connected with linking them is a key
to this model, and particularly to the problem of inheritance.

The section directly connected with the inheritance mechanism in theAODB has been
divided into subsections concerning the general concept, the inheritance mechanism de-
scription known from object-oriented programming (analysed based on the example of
the C++ language), detailed description of inheritance modes, inheritance algorithms
and, last but not least, related work in field of various aspects of inheritance in systems
modeling and databases. Moreover, possible application ofproposed solution in existing
knowledge-based systems has been elaborated. The final partof the article is a summary
comprising references to the most important elements of theinheritance mechanism func-
tioning in theAODB Metamodel as well as the conclusions drawn. To present the defi-
nition of formal means used, the appendix A containg the formal notation of theAODB
Metamodel has been provided.

2. Defining the Research Problem

The most primal and generally formulated research problem taken into consideration is
thedevelopmentof adatabase model optimising the following properties:

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 53

– model functionality, i.e. the available mechanisms and a wide range of solutionsin
the scope of structure modelling on a minimised set of limitations imposed,

– development cost, i.e. the expenditure of resources on the development of modelling
tasks, maintained as low as possible,

– development time, i.e. the time assumed for the performance of modelling tasks,
maintained as short as possible.

As an outcome of the deliberations and analyses conducted, the following postulates
have been proposed for theAODB Metamodel: modelling naturalness (intuitiveness),
model’s power of expression, and semantic unambiguity of schemata.

Category-specific separability of data and relationships between them– The postu-
late concerning separability of data and the relationshipsin which the former are involved
is about the need for creating at least two separate and completely individual categories.
The scope of responsibility of first one would comprise performing a data container func-
tion, whereas that of the other one – a data link function. This postulate stems from other
postulates, namely the modelling naturalness and the semantic unambiguity of database
schemata. Nevertheless, it leads to finding a solution in an association being an indepen-
dent modelling category.

Single modelling level– It is a solution resulting from the postulate of semantic un-
ambiguity of database schemata. It involves renouncing conceptual categories, i.e. design
patterns treated as model elements.

Association as an individual model category– It is a solution stemming from the pos-
tulate of category-specific separability of data and relationships between them as well as
of n-arity of relationships. Association (Assoc) is a category responsible for relationships
between other model elements.

Possibility of inheriting relationships– It is another outcome of the solution which
recognises an association (Assoc) as an individual model category. Associations (Assoc)
may inherit from one another analogically to how it is handled within a collection (Coll).

Independence in role and attribute inheritance– It is an outcome derived from the
two previously mentioned ones, i.e. a role as an independentcategory and the possibility
of inheriting relationships. This outcome is particularlyimportant, for it enables indepen-
dent inheritance within data containers and in the scope of relationships.

“Real” inheritance mode– It is a derivative outcome of a group of solutions and other
outcomes. The “real” mode removes the virtuality status from the components inherited.

3. Inheritance

3.1. General Concept

Since attributes have been unburdened of the duality consisting in performance of two
functions, i.e. containing values and building relationships, it is now possible to inde-
pendently approach inheritance of attributes and relationships between collections in the
AODB Metamodel. Figure 1 provides a sample diagram developed inAssociation-
Oriented Modeling Language (AMLAO

DB)1.

1 The syntax ofAMLAO

DB is similar toUML
® and should be comprehensible for most readers. However etailed

description of its syntax and semantics has been described in papers [17, 23, 28].

54 Marek Krótkiewicz

Fig. 1. Diagram developed in theAMLAO

DB language, depicting collection (Coll) and asso-
ciation (Assoc) inheritance in theAODB Metamodel

It comprises three relationships of inheritance. Two of them are related to inheritance
of collections, and one to inheritance of associations (1).

Collection3���H
a,f

v

Collection1;Collection4���H
a,f

v

Collection2

Association2���H
r,fv

Association1

(1)

Figure 2 provides a diagram illustrating the following roles:�Association1 �� Role1
and�Association1 �� Role2, which have been inherited byAssociation2.

Fig. 2. Diagram developed in theAMLAO

DB language, depicting collection (Coll) and asso-
ciation (Assoc) inheritance in theAODB Metamodel, showing the roles (Role) inherited

As a result of the inheritance defined in expression (1), associationAssociation2 has
become an owner of the roles (Role) inherited fromAssociation1 according to expres-
sion (2).

Association2 d

�0..1�
�Association1 ��Role1
r������������ �0..1� jCollection1,

���

�Association1 ��Role2
r������������ ��� jCollection2

i (2)

Figure 3 is a diagram illustrating rights of collectionCollection3 to fulfil roles
�Role1 and�Association1 �� Role1 as well as rights of collectionCollection4 to fulfil
roles�Role2 and�Association1 �� Role2.

With regard to the object-oriented model, one cannot speak of direct inheritance of
relationships between classes. However, there is inheritance of classes, and hence the
automatic inheritance of relationships. In this manner, also relationships are inherited

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 55

Fig. 3. Diagram developed in theAMLAO

DB language, depicting collection (Coll) and asso-
ciation (Assoc) inheritance in theAODB Metamodel, showing the rights to fulfil roles
(Role) inherited by a collection (Coll)

indirectly and, to a certain extent, “as the opportunity occurs”. However, in order that
a two-directional relationship could be inherited, it is necessary to conduct inheritance of
two classes on both sides of the association.

The above examples show that the case of theAODB Metamodel is completely dif-
ferent, as it lacks the constraints of the object-oriented model. Separating the data com-
bining function from that of data containers has enabled natural and accurate modelling
of schemata having a simple structure and relatively high power of expression. This is
clearly evident in Figure 4, being a complete diagram comprising both inherited roles and
inherited rights to fulfil roles.

Fig. 4. Diagram developed in theAMLAO

DB language, depicting collection (Coll) and asso-
ciation (Assoc) inheritance in theAODB Metamodel, showing roles (Role) and rights
to fulfil roles (Role) inherited by a collection (Coll)

The example 1 shows simple real world scenario of association-oriented model, which
depicts the inheritance of collections as well as the associations.

Example 1. Let us consider the following reality: there are two types ofLiving: Plants
andAnimals.

jPlant���H
a,fv

jLiving;jAnimal���H
a,fv

j Living; (3)

56 Marek Krótkiewicz

The Livings are distinguished by the association, which describes their EatingStrategy.
TheEatingStrategy comprises role:EatingStrategy::Eater. There are three specializations
of the strategy:Herbivorous, Carnivorous andOmnivorous,

nHerbivorous���H
r,fv

nEatingStrategy;nCarnivorous���H
r,fv

nEatingStrategy;

nOmnivorous���H
r,fv

nEatingStrategy
(4)

which comprise inherited roleEatingStrategy::Eater and roleEaten. Each of them
associates the eaterAnimal instance with set of objects of different type (Fig. 5).

Fig. 5.Diagram developed inAMLAO

DB language, depicting model described in Example 1

3.2. Inheritance Mechanism Against theC++ Language Standard

TheC++ programming language standard defines the inheritance mechanism in a manner
depicted in Figure 6.

The inheritance algorithm functioning inC++ displays nearly no differences in the
case of single as well as multiple inheritance. Although both instances are distinguished
in the literature of the subject (see e.g. [5, 33]), the actual discrepancies between them
are inconsiderable. Consequently, one can easily generalise both cases and apply a single
algorithm without losing the very essence of the problem. This algorithm features several
crucial elements, all of which have been described below.

– The first important algorithm element is iteration over pre-set base classes.
– When the base class is inherited non-virtually, attributesare inherited, whereas class

methods are translated into corresponding functions.
– A table of virtual functions (vtbl) is created next, and the iteration continues over

subsequent virtual functions. The structure containing a pointer at the virtual func-
tion differs between single and multiple inheritance. Depending on how the virtual

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 57

Fig. 6.Algorithm describing the inheritance mechanism in theC++ language

function has been implemented, what is contained is a pointer at a base class method
re-implemented in the derived class, or in the case of a pure virtual function.

– When the base class is inherited virtually, an additional iteration takes place over its
base classes (higher-rank base classes). If any of the base classes has already been vir-
tually inherited, it is not inherited again, whereas otherwise the inheritance is handled
analogically to the previous case described.

3.3. Inheritance Modes in the Association-oriented Metamodel

In theAODB Metamodel, the following three inheritance modes have been defined:n –
natural,v – virtual, r – real. Natural inheritance, in this case, is exactly what non-virtual
inheritance is in theobject-oriented model. The name has been changed, compared to
theobject-oriented model, in order to distinguish more than two cases which may occur,
namely virtual and non-virtual inheritance.

58 Marek Krótkiewicz

Table 1.Collation of attribute inheritance modes

C++ AODB

non-virual n–natural:���Ha

virual v–virual���Hav

� r–real���Har

Virtual inheritance functions analogically in theobject-oriented model as well as in
AODB. In short, in theAODB Metamodel, virtuality of attributes and roles boils down
to not duplicating attributes and roles when they originatefrom multiple inheritance with
a shared starting point. Virtuality is a property of an attribute or a role. The idea of virtual
elements consists in avoiding a situation when an element (attribute or role) would appear
in more than one copy in an association (Assoc) or a collection (Coll) due to multiple
inheritance.

A component, i.e. an attribute (Attr) or a role (Role), may be assigned the virtual
status instantly after being created. Such a case has been illustrated in Figure 7.The
diagram developed in theAMLAO

DB language has been expressed with formula (5) in the
formal notation.

Fig. 7. Diagram developped in theAMLAO

DB language,
illustrating virtual attributes and roles in theAODB
Metamodel

a1 d
���

�r1
r�� ��� jc1,

���

�rv
2

r�� ��� jc1
i

c1 d
�attr1 � int8,

�attrv
2
� int8

i

(5)

Attribute inheritance in the virtual mode A database schema, defined by expression
(6), whose diagram has been provided in Figure 8, contains four collections (Coll)
containing an identical set of attributes (Attr). The first one –�attr1 – is non-virtual,
whereas the second one –�attrv

2
– virtual. What has been taken advantage of at this

point is the option of defining components as virtual when they are created.

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 59

Fig. 8. Diagram developed in theAMLAO

DB

language, illustrating attribute (Attr) inheri-
tance in theAODB Metamodel when disre-
garding inherited attributes

�c1, c2, c3, c4� d

�attr1 � int8,

�attrv
2
� int8

i

j�c2, c3����H
av

j c1
jc4���H

a
j �c1, c2, c3�

(6)

c4 d

�attr1 � int8,

�attrv2 � int8,

�c2 �� attr1 � int8,

�c2 �� attr
v
2
� int8,

�c1 �� attr
v
1 � int8,

�c1 �� attr
v
2
� int8,

�c3 �� attr1 � int8,

�c3 �� attr
v
2
� int8,

�c1 �� attr1 � int8

i (7)

As a result of the inheritance, collection (Coll) c4 becomes an owner of attributes
defined by expression (7). Attributesattr1 � int8 and�attrv2 � int8 are own attributes of
collection (Coll) c4. Attribute�c1 �� attr1 � int8 has emerged in collectionc4 a conse-
quence of inheritancejc4���H

a
j c1.

jc4���H
a

j c1 à c4 `�c1 �� attr1 � int8e

jc4���H
a

j c2 à c4 `�c2 �� attr1 � int8e

jc4���H
a

j c3 à c4 `�c3 �� attr1 � int8e

(8)
jc4���H

a
j c2 , c2 `�attr

v
2
� int8e à

c4 `�c2 �� attr
v
2 � int8e

(9)

Attribute�attrv2 � int8 from collectionc2 is inherited by collectionc4 according to
formula (9).

As a result of inheritancejc2���H
a
v

j c1, attribute�attr1 � int8 becomes a vir-
tual attribute from collectionc2, and inheritancejc3���H

av

j c1 proceeds analogically,
but it applies to collectionc3. Consequently, i.e. as a result of the following inheri-
tances:jc4���H

a
j c2 andjc4���H

a
j c3, which matters particularly, it appears in col-

lectionc4 in one item only, namely as�c1 �� attrv1 � int8, and not as two attributes, i.e.
�c2 �� c1 �� attr

v
1
� int8 and�c3 �� c1 �� attrv1 � int8. This is the very essence of inher-

itance in theAODB Metamodel. The foregoing dependences are formally expressed in
formula (10).

jc2���H
av

j c1 , c1 `�attr1 � int8e à c2 `�c1 �� attr
v
1
� int8e ;

jc3���H
av

j c1 , c1 `�attr1 � int8e à c3 `�c1 �� attr
v
1 � int8e ;

�

jc4���H
a

j c2 , c2 `�c1 �� attr
v
1 � int8e-

jc4���H
a

j c3 , c3 `�c1 �� attr
v
1
� int8e

� à

c4 `�c1 �� attr
v
1
� int8e ;

(10)

An entirely analogical mechanism applies to attribute�attrv
2
� int8 from collection

c1, which has been shown in formula (11). The fact that it is a virtual attribute already
when created does not change anything in the case analysed.

60 Marek Krótkiewicz

jc2���H
a
v

j c1 , c1 `�attr
v
2
� int8e à c2 `�c1 �� attr

v
2
� int8e ;

jc3���H
av

j c1 , c1 `�attr
v
2
� int8e à c3 `�c1 �� attr

v
2
� int8e ;

�

jc4���H
a

j c2 , c2 `�c1 �� attr
v
2 � int8e-

jc4���H
a

j c3 , c3 `�c1 �� attr
v
2
� int8e

� à

c4 `�c1 �� attr
v
2
� int8e ;

(11)

Attribute�attrv2 � int8 from collectionc3 is inherited by collectionc4 according to
formula (12).

jc4���H
a

j c3 , c3 `�attr
v
2
� int8e à c4 `�c3 �� attr

v
2
� int8e (12)

Figure 9 provides a full picture of inheritance in the form ofa diagram depicting
inherited attributes (Attr) in individual collections (Coll).

Fig. 9.Diagram developed in theAMLAO

DB language, illustrating attribute (Attr) inheritance
in theAODB Metamodel and showing inherited attributes

Example 2. Let us consider the following reality. There is an abstract type of research
institution employee, calledAcademic. The Academic is a generalization of two concrete
types, such asResearcher andTeacher. However, some of the academics may be both at
the same time. We created the collections for all the aforementioned types and defined
corresponding generalizations. To prevent the duplication of attributes, the attributes are
inherited invirtual mode.

jResearcher���Hav

jAcademicg;jTeacher���Hav

jAcademicg;

jResearcherT eacher���Ha
jResearcher - jResearcherT eacher���Ha

j Teacher
(13)

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 61

Consequently, theResearcherTeacher collection obtained attributes�Academic ��

namev and�Academic �� surnamev only once, as shown in the Figure 10.

Fig. 10.Diagram developed in theAMLAO

DB language, illustrating the Example 2

Inheritance of roles The inheritance of roles (Role) by associations (Assoc) follows
identical rules as the inheritance of attributes (Attr) by collections (Coll). Therefore,
only a simple example has been discussed hereafter. A sampledatabase (Db) schema is
provided in expression (14). Figure 11 shows a database (Db) schema diagram noted in
expression (14).

Fig. 11.Diagram developed in theAMLAO

DB language,
depicting role (Role) inheritance in theAODB Meta-
model

a1 d
���

�r1
r�� ��� j c1,

���

�rv
2

r�� ��� j c1
i

n�a2, a3����H
rv,fv

n a1

na4���H
r,f

v

n �a2, a3�

(14)

62 Marek Krótkiewicz

As a result of inheritance, associationsa2, a3, a4 obtain the same roles:

���

�rv
1

r�� ��� j c1 and ���
�rv

2

r�� ��� j c1, which has been formally noted in expression
(15).

Figure 12 provides a database (Db) schema diagram showing the roles inherited in
accordance with expression (15).

Fig. 12.Diagram developed in theAMLAO

DB lan-
guage, depicting role (Role) inheritance in the
AODB Metamodel

�

�

�

�

�

�

�

a1 d
���

�r1
r�� ��� j c1,

���

�rv
2

r�� ��� j c1
i,

n�a2, a3����H
rv,fv

n a1;

na4���H
r,fv

n �a2, a3�

�

�

�

�

�

�

�

à

�a2, a3, a4�d
���

�r
v

1

r�� ��� j c1,

���

�rv
2

r�� ��� j c1

i

(15)

Inheritance of rights to fulfil roles Roles (Role) belong to associations (Assoc), and so
they can only be inherited by the latter. Inheritance of rights to fulfil roles applies to both
associations (Assoc) and collections (Coll), and may only proceed in the virtual mode –

���H

fv

. A different type of inheritance would make no sense, since non-virtual inheritance
of rights to fulfil roles would imply a possibility of duplicating two identical rights. When
objects of any given collection (Coll) or association (Assoc) have such a right, then it is
in fact irrelevant how many duplicates of this right exist.

A sample database (Db) structure, containing an association (Assoc) with two roles
(Role) and two collections (Coll), is represented by expression (16).

As a result of inheritancejc2���H
fv

j c1, collection (Coll) namedc2 has obtained

the right to participate in two roles:
r1
r� and

r
v

2

r�. None of the roles (Role) has been
inherited, hence the only effect attained is that associationa1 may not only connect with
with collection (Coll) namedc1, but also with collection (Coll) namedc2 by means of

roles
r1
r� and

rv
2

r�. Figure 13 provides a diagram illustrating this situation.

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 63

a1 d
���

�r1
r�� ��� jc1,

���

�rv
2

r�� ��� jc1
i

c1 `e

jc2 �
`e ;

���H

fv

j c1
¡

(16)

Fig. 13. Diagram developed in theAMLAO

DB

language, depicting inheritance of roles
(Role) in a collection (Coll) in the AODB
Metamodel

Principles of inheriting rights to fulfil roles are analogical to those governing inher-
itance of attributes (Attr), subject to a reservation that, as aforementioned, it may only
be performed in the virtual mode. The following example illustrates the subject of inher-
itance of rights to fulfil roles in a diamond arrangement. With regard to the foregoing, a
database (Db) represented by expression (17) has been modelled.

As shown in Figure 14, the rights to fulfil rolesr1 andr2 occurred in all collections
which participated in the inheritance, which may be formally noted in accordance with
expression (18).

Figure 14 illustrates the foregoing dependences in theAMLAO

DB language.

Fig. 14.Diagram developed in theAMLAO

DB lan-
guage, illustrating multiple inheritance of rights
to fulfil roles by collections (Coll) in the
AODB Metamodel

a1 d
���

�r1
r�� ��� j c1,

���

�r
v

2

r�� ��� j c1
i

c1 `e ; c2 `e ; c3 `e ; c4 `e

j�c2, c3����H
fv

j c1

jc4���H
fv

j �c2, c3�

(17)

�

�

�

�

�

�

�

a1 d
���

�r1
r�� ��� j c1,

���

�rv
2

r�� ��� j c1
i,

j�c2, c3����H
fv

j c1;

jc4���H
fv

j �c2, c3�

�

�

�

�

�

�

�

à

a1 d
���

�r1�j�c1,c2,c3,c4��
r����������� ��� j c1,

���

�rv
2
�j�c1,c2,c3,c4��

r����������� ��� j c1

i

(18)

64 Marek Krótkiewicz

Nevertheless, one should note that the right to fulfil a role resulting from inheritance
in the virtual mode (as it is not otherwise possible in theAODB Metamodel) does not
become a right to fulfil a virtual role. As for the association(Assoc), the roles (Role)
inherited in the virtual mode become or remain virtual, however, in the case of inheritance
of rights to fulfil roles, this is not the case, the reason for which is fairly simple. Since
rights to fulfil roles are inherited in the virtual mode only,it does not matter whether
or not they have the status of virtuality. In the case of multiple inheritance, a collection
(Coll) or an association (Assoc) may be vested only one right to fulfil a specific role
(Role), and it does not matter if this right is assigned the status of virtuality, or not. In
Figure 14, rights to fulfil roles are marked in a manner implying whether rights to fulfil
virtual roles (e.g.��v�r2) or non-virtual roles (e.g.�r1) have been inherited. This is only
the case when the role (Role) has such a status. However, even if no such information was
available, it would not cause the database (Db) schema to lose unambiguity.

Example 3. In this example, the reality from Example 1 is extended by another 3 general-
ization relationships. In this case, the collection (Coll) Animal has three specializations:
Mammal, Bird andFish, which inherit the rights to fulfil role (Role) �Eater.

j�Mammal,Bird,F ish����H
a,f

v

jAnimal (19)

Consequently, there is only one role (Role) �Eater in the model, but it can be fulfilled
by the whole collection (Coll) taxonomy (i.e.Animal, Mammal, Bird, Fish collections).
The model has been shown in the Figure 15.

Fig. 15.Diagram developed in theAMLAO

DB language, illustrating the model from Exam-
ple 3

Inheritance in the real mode The real inheritance mode complements the inheritance
mechanism known from theobject-oriented model. Virtual inheritance is possible in the
object-oriented model, which causes that a specific component is assigned the virtual
status. However, there is no option of removing such a status, i.e. restoring the non-virtual
state, in other words. In theAODB Metamodel, such an operation is possible owing to the
real mode. The manner in which this mode functions has been discussed with reference
to a sample database (Db) whose schema is provided by expression (20).

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 65

�c1, c2�`�attr1 � int8,�attr
v
2 � int8e ;a1
���

�r1
r�� ��� j c1, ���

�rv
2

r�� ��� j c1h ;

jc2���H
a
r

,f
v

j c1;na2���H
r
r

,f
v

n a1

(20)

Figure 16 provides a diagram corresponding to the schema from expression (20).

Fig. 16.Diagram developed in theAMLAO

DB language, illustrating real mode inheritance in
theAODB Metamodel

The inheritance mechanism for schema (20) shown on Fig. 16 isdescribed by expres-
sion (21).

�

�

�

�

�

�c1, c2� `�attr1 � int8,�attr
v
2 � int8e,

a1
���
�r1
r�� ��� j c1, ���

�rv
2

r�� ��� j c1h,

jc2���H
a
r

,f
v

j c1 ,na2���H
r
r

,f
v

n a1

�

�

�

�

�

à

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

c1 d
�attr1 � int8,

�attrv
2
� int8

i ;

c2 d

�attr1 � int8,

�attrv2 � int8,

�c1 �� attr1 � int8,

�c1 �� attr2 � int8

i ;

a1 d
���

�r1�j�c1,c2��
r�������� ��� jc1,

���

�rv
2
�j�c1,c2��

r�������� ��� jc1

i ;

a2 d
���

�a1 ��r1�j�c1,c2��
r��������� ��� jc1,

���

�a1 ��r2�j�c1,c2��
r��������� ��� jc1

i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(21)

In accordance with expression (21) as well as the diagram provided in Figure 17, as
a result of inheritance in the real mode, attributec2 `�c1 �� attr2 � int8e does not have the
virtuality status, even though it has been declared asc1 `�attr

v
2
� int8e. Analogically, role

a2 b���
�a1 ��r2
r���� ��� j c1g has lost the status of virtuality as compared with the precursor.

Example 4. Let us assume the following reality. We have set of animals, which are dis-
tinguished (among others) by their velocity. Therefore we created the collection (Coll)
Animal. We have two abstract specializations of the animal distinguishing them because

66 Marek Krótkiewicz

Fig. 17.Diagram developed in theAMLAO

DB language, illustrating real mode inheritance in
theAODB Metamodel, showing the components inherited

of their ability to move:Flying andSwimming. They virtually inherit the attribute from
theAnimal collection.

j�Flyingg, Swimmingg����Hav

jAnimal (22)

Next, we defined theWaterBird collection (Coll), which is in relationship of inheri-
tance in natural mode with the aforementioned abstract collections.

jWaterBird���Ha
j �Flyingg, Swimmingg�

, j �Flyingg, Swimmingg�`�Animal �� velocityv � int8e à

jWaterBird`�Animal �� velocityv � int8e

(23)

It has inherited single attribute�Animal �� velocityv. The most important thing in
real inheritance is, that sometimes we need todevirtualize a virtual attribute. To show
that, we defined the concrete collection (Coll) for Duck which inherits in real mode from
the collectionWaterBird. It gives the possibility to define the attribute twice, oncefor each
abstract velocity (Fig. 18).

jDuck���Har

jWaterBird , jWaterBird`�Animal �� velocityv � int8e à

jDuck d
�Bird �� Flying �� Animal �� velocity � int8

�Bird �� Swiming �� Animal �� velocity � int8
i

(24)

3.4. Algorithm of Inheritance in the Association-orientedMetamodel

Description of the main part of the inheritance algorithm Figure 19 shows an inher-
itance algorithm common to all three inheritance modes (n – natural,v – virtual andr –
real). It also pertains to inheritance of attributes (Attr) in collections (Coll) as well as
roles in associations (Assoc).

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 67

Fig. 18.Diagram developed in theAMLAO

DB language, illustrating the model in the Exam-
ple 4

Verification – The verification process is conducted at first in order to check whether one
can create a generalisation. It is not possible when:

– a cycle has been found in the graph of generalisation (special case – generalisa-
tion of a collection (Coll) or an association (Assoc) itself to itself),

– incompatibility of databases (Db) has been found for the base and the derived
collection (Coll) or association (Assoc)2,

– there is already a generalisation established between a specific base and derived
element.

If establishing agen-spec relationship has proved impossible, a database system error
is generated and the generalisation is not created, whereasthe algorithm is finalised.

Creating objects – The inhreitance object is created (Inheritance), the generalization
base node is set and the object is added to the specializationinheritance list.

Inheritance of components – If component inheritance has been enabled in the course
of generalisation, iteration over components of the base collection (Coll) or associa-
tion (Assoc) takes place.

– Inheritability 3 aspect– Depending on the inheritance mode in the aspect of
inheritability, inheritability status of a newly created component is:
Y inheritable: base component is inheritable, and the inheritability mode is

nochange,
Y not inheritable: base component is not inheritable or the inheritability mode

is disable.
No base components of not inheritable status are inherited.The foregoing means
that they do not appear in the derived component at all4.

– Virtuality aspect – Depending on the inheritance mode in the aspect of virtuality,
the inheritance process proceeds in a slightly different manner.
When the inheritance is established in:
Y virtual mode – a virtual component is created,

2 Theoretically, it would be possible to make an attempt of introducing agen-spec relationship between ele-
ments of two different databases (Db). However, such an action is impermissible in theAODB Metamodel.

3 Inheritability is a concept ofAODB Metamodel which determines whether components are inherited or not.
4 In theC++ language, private elements are copied to the derived component; they occupy memory but cannot

be accessed directly.

68 Marek Krótkiewicz

Fig. 19. Activity diagram depicting the component inheritance algorithm in theAODB
Metamodel

Y natural mode – it is verified whether or not the base component is virtual.
If it is:

* virtual – a virtual component is created,

* non-virtual – a non-virtual component is created,

Y real mode– it is verified whether or not the base component is virtual.
If it is:

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 69

* virtual – procedure , as depicted in Fig-
ure 20, used to resolve the ambiguity of inherited components, is exe-
cuted, and this is where they are made “real”,

* non-virtual – a non-virtual component is created.

Fig. 20. Activity diagram depicting an algorithm for resolving ambiguity of inherited
components –

The algorithm provided in Figure 20 pertains to resolving ambiguity of inherited com-
ponents – . The following are descriptions of its most im-
portant elements:

– The method envisaged to resolve the ambiguity consists is determining the path of
virtual inheritance of an attribute (Attr) or a role (Role) starting from the moment of
its creation.

– In order to determine a unique path, consecutive base nodes constituting generali-
sations of all levels of the pre-set base collection (Coll) or association (Assoc) are
recursively checked. A prerequisite for positive finalisation of a path of function calls
is finding a base node being the source of creation of the givenvirtual component.

– In the course of successive procedure calls, consecutive base nodes, for which the
procedure is initiated each time, are added to the path.

– Once the path is determined (along with the source), one has obtained the information
required to create a “devirtualised” component. A full pathwill be needed to create a
complete prefix containing all levels of generalisation.

Principles of defining prefixes The inheritance mechanism imposes a necessity to de-
velop principles for building names of components in order to ensure that they are unique
and, consequently, that one can make references to them. This problem will be a sub-
ject of another paper, describing the manner in which prefixes are designated as well as
providing a comparative analysis conducted with referenceto an analogical mechanism
functioning under an object-oriented programming language, namelyC++. Below is an
overall outline of the relevant principles collated as a list of key items.

70 Marek Krótkiewicz

– Own components5 only require their names to be specified.
– Inherited components require that a complete path in the hierarchy of inheritance

should be specified6.
– Prefixes are built of component names, starting from an element of the lowest rank in

the inheritance hierarchy7.
– When the virtual mode is encountered:

Y symbol is entered before the component name,
Y if there is a virtual mode in the inheritance path, and at the same time there is no

real mode, the prefix building ends with the first virtual modeencountered.

– When the real mode occurs in the inheritance path, it is from that point forth that all
components lose the property of virtuality8.

4. Applications in Knowledge-Based Systems

Following section is an evaluation ofAODB Metamodel in the form of exemplary knowl-
edge representations system structures. Those structuresuse both collections’ and associ-
ations’ inheritance mechanisms.

In theOntological Core Module (OCM SKB) structure ofSKB – Semantic Knowl-
edge Base (Fig. 21) [24] the mechanism of collection inheritance in the aspects of at-
tributes and rights to fulfill roles was used to define specializations of abstract collection
CONCEPTg, e.g.CLASS, INSTANCE, SET, RELATIONSHIP, FEATURE, VALUE,
UNIT, VALUESPEC. Moreover, the inheritance of associations was used for thedefini-
tion of UsedIn association, which is a specialization ofConnection association enriched
with a Relationship role. Another example might be aSetInstance association being a
specialization of bothClassInstance andSetConcept.

SKB Extended Semantic Network Module (ESNM SKB) [28] has been presented on
theAMLAO

DB diagram (Fig. 22). It is designed for the storage of complex rules and facts in
the form of hypergraphs. Since this module is oriented mainly on building relationships,
thay have their emanation among others in the form of complexassociations taxonomy.
The central association isOperandg, which is a generalization for following types of
operands:OperandOperator, OperandInstance, OperandNode, OperandNet. Addi-
tionaly OperandInstance inherits fromInstanceg, while OperandNode inherits from
Substitutability.

nOperandNode���Hr
n Substitutability (25)

It should be noted that only roles are inherited with no rights to fulfill roles. Moreover,
following inheritances occur:

nOperator���H
r,fv

n Instance;nConclusion���H
r,fv

nNet. (26)

5 Uninherited.
6 Exceptions to this rule have been described in the item concerning virtual inheritance.
7 Component names are separated with a double colon symbol – .
8 It means that a complete path of all components must be placedin the prefix.

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 71

Fig. 21.AMLAO

DB diagram ofOCM SKB

5. Related Work

The issue of inheritance in database world should be identified as two different ap-
proaches: mechanisms directly implementing the semanticsof inheritance and mapping
of structures according to appropriate design patterns. One of well described standards
of direct implementation of inheritance mechanism is OM ODMG 3.0 [6]. In the field of
conceptual implementation of inheritance is mapping in O/R[20] or EER [36,38].

The literature is rich in the discussion on identity of the inheritance mechanism
and subtyping mechanism conceptions. The opinions seem to be divided [9, 10]. OM
ODMG 3.0 [6] separates and implements both of those concepts. The Generalization-
Specialization is emanation of subtyping mechanisms, while Extends ensures inheritance.
RDF being a triplestore database metamodel type which provides subtyping mechanism
only. TheAODB approach towards inheritance assumes coexistence of both aforemen-
tioned concepts within one mechanism.

The inheritance mechanism can have semantic character (built from existing syntax
elements) or can have predefined syntax and semantics with carefully described gen-

72 Marek Krótkiewicz

Fig. 22.AMLAO

DB Diagram ofESNM SKB

spec mechanism. The inheritance mechanism in ODMG OM 3.0 cover both inheritance
of elements state and behavior [37] as well as substitutability in OQL [11]. The inher-
itance mechanism in EER has been defined taking into account total/partial and dis-
joint/overlapping properties. While graph databases in most cases represent theIS_A re-
lation as an edge named as such, it has nothing in common with inheritance mechanism
and it functions only in semantics layer. Ohira et al. [30] proposed theDirected Recur-
sive Hypergraph data Model, that seems to fill the gap with the definition of Shape graph
providing information in regard of i.a. gen-spec relationships.The RDF metamodel has
defined in standard [3, 29] property, that defines all instances of a
given subclass being at the same instance of a base class. The
property works analogically for properties. SPARQL is a language using those mecha-
nisms [41]. Relational metamodel [31] has no mechanism of inheritance defined, how-
ever there are number of studies providing design patterns and mappings implementing
gen-spec relationships [4,34] that are used e.g. in O/R systems [8]. Some of the high-level
approaches to metamodeling, e.g. Context-Driven Meta-Modeling show, that inheritance

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 73

issues are not needed in the high level of modeling, but they can be defined in the domain
specification language level [39,40].

TheAODB provides inheritance separate mechanisms for associations and datasets.
Those mechanisms provide number of modes allowing to selectively inherit components
or rights to fulfill roles, as well as they fully support virtual inheritance. Moreover, com-
ponents have the property named Inheritability, that allowto selectively define which
components should be subject to inheritance mechanism.

6. Conclusions

The article addresses the subject of inheritance in theAssociation-Oriented Database
(AODB) Metamodel compared with an analogical solution typical of the object-oriented
model. Due to the fact that theAODB Metamodel features a number of fundamental
innovations compared to theobject-oriented model, the most important components of
this model are discussed in the first part of the paper. What follows is a description of
the AODB inheritance mechanism, analysed from the perspective of specificity of its
definition.

The inheritance mechanism is one of the most important and popular methods used
to describe complexity. It ensures considerable simplification of the modelling activity. In
AODB, inheritance is particularly crucial, and it is strongly integrated with other mech-
anisms of this model. The foregoing results from the fact that competences of data con-
tainers and relationships between data have been separated. This separation is decisive
in its influence on all aspects of a model, including the inheritance mechanism. In the
intensional9 sense, the elements responsible for data storage in the object-oriented model,
namely attributes and classes, also perform functions enabling relationships between data
to be established. Inheritance applies to classes and is responsible for attributes, irre-
spective (in an indistinguishable manner) of whether the latter are containers for data or
constitute relationships between them. On the other hand, in theAODB Metamodel, in-
heritance independently pertains to data containers, the function being performed by col-
lections (Coll), and relationships between data, namely associations (Assoc). Attributes
(Attr) are inherited within a collection (Coll), as roles (Role) are within an association
(Assoc). Since both collections (Coll) and associations (Assoc) can participate in rela-
tionships, then also inheritance of rights to fulfil roles ispossible within each of these
categories. In collections (Coll), inheritance of attributes (Attr) and rights to fulfil roles
is entirely and mutually independent. The situation is analogical in associations (Assoc),
i.e. inheritance of roles (Role) and rights to fulfil roles is also completely separated on the
modelling level.

The examples presented here show inheritance methods that significantly support the
modeling of relatively complex conceptual constructs. In particular, it should be empha-
sized that the inheritance within associations allowed fora considerable simplification
of the schema, and in many cases made it possible to express concepts that would be
impossible to implement in e.g.C++ or generally speakingobject-oriented model. It is
worth to mention that inAODB it is possible to define inheritance modes, thus separating
the aspect of inheriting components from the aspect of the inheritance of roles. The pre-

9 Structural.

74 Marek Krótkiewicz

sented examples clearly point out both the significant semantic capacity10 and the power
of expression11 of AODB Metamodel. Its implementation is an undeniable asset that,
combined with the above features, makes it a very powerful tool for modeling complex
knowledge representation structures.

Owing to the algorithm developed for prefixing names of the components being inher-
ited, also entailing virtual inheritance modes, a designeris unconstrained in naming com-
ponents, without any concerns pertaining to ambiguity related to uniqueness of names.
At the same time, multiple inheritance is permissible, since by no means does it cause
any ambiguity or any limitations as to names of components orinheritance structures.
The only limitation, structurally imposed upon inheritance, is absence of cycles, which is
detected and controlled by an association-oriented database using internal algorithms en-
suring coherence detection as well as correctness of structures and data. The inheritance
mechanism functioning in theAODB Metamodel is of major importance for modeling
productivity, and its complete integration with other mechanisms exerts very significant
influence on the model’s power of expression. The proposed solution could make a benefit
for modeling ontologies [12] and other knowledge representation systems, as shown on
the case studies ofOCM SKB andESNM SKB .

References

1. Alagíc, S.: Type-checking OQL queries in the ODMG type systems. ACM Transactions on
Database Systems 24(3), 319–360 (sep 1999)

2. Alashqur, A.M., Su, S.Y.W., Lam, H.: OQL: a query languagefor manipulating object-oriented
databases. In: VLDB ’89 Proceedings of the 15th international conference on Very large data
bases, pp. 433–442. VLDB ’89, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1989)

3. Antoniou, G., van Harmelen, F.: A semantic web primer (2004)
4. Arafi, F.: Supporting inheritance in relational databasesystems. Proceedings Fourth Interna-

tional Conference on Software Engineering and Knowledge Engineering pp. 511–518 (1992)
5. Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D., Zdonik, S.: The Object-

Oriented Database System Manifesto. In: Proceedings of theFirst International Con-
ference on Deductive and Object-Oriented Databases, pp. 223–240. North-Holland, Ky-
oto, Japan (1989),

6. Berler, M., Eastman, J., Jordan, D., Russell, C.L., Schadow, O., Stanienda, T., Velez, F.: The
Object Data Standard: ODMG 3.0. Morgan Kaufmann Publishers(2000)

7. Blakeley, J.A.: OQL[C++]: extending C++ with an object query capability. In: Kim, W. (ed.)
Modern database systems, chap. OQL[C++]:, pp. 69–88. ACM Press/Addison-Wesley Publish-
ing Co., New York, NY, USA (1995)

8. Cabibbo, L., Carosi, A.: Managing Inheritance Hierarchies in Object/Relational Mapping
Tools. In: 17th International Conference on Advanced Information Systems Engineering,
CAiSE 2005, Porto, Portugal. vol. 3520, pp. 135–150 (2005)

9. Cartwright, R., Moez, A.A.: Inheritance is subtyping. In: The 25th Nordic Workshop on Pro-
gramming Theory (NWPT). Citeseer (2013)

10 The termsemantic capacityis used as an identifier of a concept describing potential of ametamodel to
express complex conceptual structures.

11 The termpower of expressionis used as an identifier of a concept describing high semanticcontent in a
concise syntactic form.

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 75

10. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. Computing pp. 125–135
(1990),

11. Dhande, S.S., Bamnote, G.: Query Optimization in OODBMS: Identifying Subquery for Com-
plex Query Management. Computer Science & Information Technology (CS & IT) (April),
161–177 (2014)

12. Dudycz, H., Korczak, J.: Process of ontology design for business intelligence system. In: Infor-
mation Technology for Management - Federated Conference onComputer Science and Infor-
mation Systems, ISM 2015 and AITM 2015, Lodz, Poland, September 2015, Revised Selected
Papers. pp. 17–28 (2015)

13. Garvey, M., Jackson, M.: Introduction to object-oriented databases. Information and Software
Technology 31(10), 521–528 (dec 1989)

14. Gray, P.M.D.: Oql. In: LIU, L., M. Tamer Özsu (eds.) Encyclopedia of Database Systems, pp.
2003–2004. Springer US (2009)

15. Habela, P., Roantree, M., Subieta, K.: Flattening the Metamodel for Object Databases. In: Pro-
ceedings of the 6th East European Conference on Advances in Databases and Information
Systems. pp. 263–276. ADBIS ’02, Springer-Verlag, London,UK, UK (2002)

16. Henrich, A.: P-OQL: n OQL-oriented query language for PCTE. In: SEE ’95 Proceedings of the
1995 Software Engineering Environment Conferences, pp. 48–60. SEE ’95, IEEE Computer
Society, Washington, DC, USA (1995)

17. Jodłowiec, M., Krótkiewicz, M.: Information Technologies in Medicine: 5th International Con-
ference, ITIB 2016 Kamién Śla̧ski, Poland, June 20 - 22, 2016 Proceedings, Volume 1. chap.
Semantics Discovering in Relational Databases by Pattern-Based Mapping to Association-
Oriented Metamodel – a Biomedical Case Study, pp. 475–487. Springer International Pub-
lishing, Cham (2016)

18. Jodłowski, A., Habela, P., Płodzień, J., Subieta, K.: Objects and Roles in the Stack-Based Ap-
proach. In: Hameurlain, A., Cicchetti, R., Traunmüller, R.(eds.) Database and Expert Systems
Applications, Lecture Notes in Computer Science, vol. 2453, pp. 514–523. Springer Berlin
Heidelberg (2002)

19. Josifovski, V., Su, S.Y.W.: Incorporating associationpattern and operation specification in
odmg’s oql. In: Proceedings of the Sixth International Conference on Information and Knowl-
edge Management. pp. 332–340. CIKM ’97, ACM, New York, NY, USA (1997)

20. Keith, M., Schnicariol, M.: Object-Relational Mapping. In: Pro JPA 2, pp. 69–106 (2009)
21. Kim, W.: Object-oriented databases: definition and research directions. IEEE Transactions on

Knowledge and Data Engineering 2(3), 327–341 (1990)
22. Kozankiewicz, H., Stencel, K., Subieta, K.: Distributed Query Optimization in the Stack-Based

Approach. In: Yang, L.T., Rana, O.F., Di Martino, B., Dongarra, J. (eds.) High Performance
Computing and Communications, Lecture Notes in Computer Science, vol. 3726, pp. 904–909.
Springer Berlin Heidelberg (2005)

23. Krótkiewicz, M.: Association-Oriented Database Model– n-ary Associations. International
Journal of Software Engineering and Knowledge Engineering27(02), 281–320 (mar 2017)

24. Krótkiewicz, M., Jodłowiec, M., Wojtkiewicz, K.: Introduction to Semantic Knowledge Base
: multilanguage support of Linguistic Module. In: 2016 Third European Network Intelligence
Conference (ENIC 2016). IEEE Computer Society Conference Publishing Services, Wrocław
(2016)

25. Krótkiewicz, M., Wojtkiewicz, K.: Conceptual Ontological Object Knowledge Base and Lan-
guage. In: Computer Recognition Systems, vol. II, pp. 227–234. Springer (2005)

26. Krótkiewicz, M., Wojtkiewicz, K.: Introduction to semantic knowledge base: Linguistic mod-
ule. In: 2013 6th International Conference on Human System Interactions (HSI). pp. 356–362.
IEEE, Sopot, Poland (jun 2013)

27. Krótkiewicz, M., Wojtkiewicz, K.: Functional and Structural Integration without Competence
Overstepping in Structured Semantic Knowledge Base System. Journal of Logic, Language
and Information 23(3), 331–345 (sep 2014)

76 Marek Krótkiewicz

28. Krótkiewicz, M., Wojtkiewicz, K., Jodłowiec, M., Pokuta, W.: Semantic knowledge base:
Quantifiers and multiplicity in extended semantic networksmodule. In: Communications in
Computer and Information Science. vol. 649, pp. 173–187. Springer, Cham (2016)

29. McBride, B.: Rdf vocabulary description language 1.0: Rdf schema (2004),

30. Ohira, Y., Hochin, T., Nomiya, H.: Introducing Specialization and Generalization to a Graph-
Based Data Model, pp. 1–13. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

31. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: Thestructure of the relational database
model, vol. 17. Springer Science & Business Media (2012)

32. Płodzién, J., Kraken, A.: Object Query Optimization in the Stack-Based Approach. In: Eder, J.,
Rozman, I., Welzer, T. (eds.) Advances in Databases and Information Systems, Lecture Notes
in Computer Science, vol. 1691, pp. 304–316. Springer Berlin Heidelberg (1999)

33. Snyder, A.: Encapsulation and inheritance in object-oriented programming languages. SIG-
PLAN Not. 21(11), 38–45 (Jun 1986)

34. Stathopoulou, E., Vassiliadis, P.: Design Patterns forRelational Databases (i), 1–38 (2009)
35. Subieta, K., Beeri, C., Matthes, F., Schmidt, J.W.: A Stack-Based Approach to Query Lan-

guages. In: Eder, J., Kalinichenko, L. (eds.) East/West Database Workshop, pp. 159–180. Work-
shops in Computing, Springer London (1995)

36. Teorey, T.J., Yang, D., Fry, J.P.: A logical design methodology for relational databases using
the extended entity-relationship model. ACM Comput. Surv.18(2), 197–222 (Jun 1986)

37. Torres, M., Samos, J.: Generation of external schemas inodmg databases. In: Database Engi-
neering and Applications, 2001 International Symposium on. pp. 89–98. IEEE (2001)

38. Upadhyaya, S.R., Kumar, P.S.: Eronto: A tool for extracting ontologies from extended e/r di-
agrams. In: Proceedings of the 2005 ACM Symposium on AppliedComputing. pp. 666–670.
SAC ’05, ACM, New York, NY, USA (2005)

39. Zabawa, P.: Context-Driven Meta-Modeling Framework (CDMM-F) – Internal Structure. e-
Informatica Software Engineering Journal (2017), accepted for publication

40. Zabawa, P., Hnatkowska, B.: CDMM-F – Domain Languages Framework. In:Świątek, J.,
Borzemski, L., Wilimowska, Z. (eds.) Information Systems Architecture and Technology: Pro-
ceedings of 38th International Conference on Information Systems Architecture and Technol-
ogy – ISAT 2017: Part II. pp. 263–273. Springer International Publishing, Cham (2017)

41. Zhai, J., Zhou, K.: Semantic retrieval for sports information based on ontology and SPARQL.
Proceedings - 2010 International Conference of Information Science and Management Engi-
neering, ISME 2010 1(4), 395–398 (2010)

A. Elements of formal notation of the AODB

While defining theAODB Metamodel, the formal notation described below was envis-
aged.
�τ� – set of typeτ elements.�τ� – table of typeτ elements.̀ τe – list of type τ el-
ements.�t1 � τ1, t2 � τ2, . . . , tn � τn� – tuple containing elementst1, t2, . . . , tn of types
τ1, τ2, . . . , τn respectively.
Coll �� c1 or jc1 – collection (Coll) namedc1. Assoc � a1 orna1 – association (Assoc)
nameda1. Obj �� o1 or�o1 – object (Obj) namedo1.
AssocObj �� ao1 or ~ao1 – association object (AssocObj) namedao1. o1 � c1 or
�o1 � jc1 – object (Obj) o1 of collection (Coll) c1. o1 > c1 – object (Obj) o1 exten-
sionally belongs to collection (Coll) c1, in the case of association objects (AssocObj)
ao1 > a1.
c1 (objs�i� – reference to theith object of collection (Coll) namedc1.

A Novel Inheritance Mechanism for Modeling Knowledge Representation Systems 77

c1 `�at1 � int8,�at
v
2
� int8e – attributes (Attr) of collection (Coll).

c1 (attrs – reference to elementattrs of a tuple of collection (Coll) namedc1, which
means a reference to a list of attributes (Attr) of collection (Coll) marked asc1.
o1.at1 – reference to attribute (Attr) at1 of object (Obj) o1.
�v1 � τ1, v2 � τ2, . . . , vn � τn� – tuple representing values (V alue) of attributes (Attr) of
object (Obj), wherev1, v2, . . . , vn are type (V alue) values.
jcg

1
– abstract collection (Coll). nag

1
– abstract association (Assoc). jc�

1
– non-

navigable collection (Coll).na�1 – non-navigable association (Assoc).
States of inheritability of components, i.e. attributes (Attr) and roles (Role): � – inheri-
table, � – noninheritable.
Role:

�r
r� – biNav, biDir,

�r
r� – biNav, toDest,

�r
r�� – biNav, toOwner,

�r
r�L –

uniNav, toDest.

a1 d
�1�

�r1�jc1�
r����� ��� j c1,

�0..1�
�r2�na2�

r����� �1..��n a2

i – list of roles of a specific association.

Virtuality: #atv
1

– virtual attribute.
r
v

1

r� – virtual role.
Multiplicities: �0..1� – one at the maximum,�1� – exactly one,�1..�� – at least one,��� –
any chosen number,�n..m� – minimumn and maximumm.

A composition may occur on one side of the role –na1���
�r1�jc1�
r����NL ���j c1, but it may

simultaneously occur on both sides –na1���
�r1�jc1�
rNL����NL ��� j c1. a1�c1 – describing

collections.���H – inheritance12.
For the collection (Coll), attribute (Attr) inheriting is possible in:���Ha – natural mode,
���H

av

– virtual mode,���Har

– real mode, whereas inheriting rights to fulfil roles – only in

the virtual mode:���H
fv

.
For the association (Assoc), role (Role) inheriting may take place in:���Hr – natural
mode,���Hrv – virtual mode,���Hrr – real mode, whereas inheriting rights to fulfil roles –

only in the virtual mode:���H
fv

.

Moreover, inheritance may take place in:���Ha ,���Hr ,���H
fv

– nochange mode,

���H

a
� ,���H

r
� ,���H

f
v

� – disable mode, component symbol (a, r, f) absent –none mode e.g.:

���H

a
v

� .

~ao1 � na1
r1�jc1�
r���� `�o1 � jc1e – in extensional aspect.

It means that association object (AssocObj) ao1 of type a1 is associated with object
(Obj) o1 of typec1 by means of role (Role) r1.

~ao1 � na1
r1�jc1�
r���� `��o1, o2, o3� � jc1e – is fully analogical compared to the previous

one, the only difference being that the association object (AssocObj) is associated with a
set of three objects:�o1, o2, o3�.

~ao1 � na1

¢

¨

¨

¨

�

¨

¨

¨

¤

r1�jc1�
r���� `�o1 � jc1e ,
r2�jc2�
r���� `�o2 � jc2e

£

¨

¨

¨

§

¨

¨

¨

¥

– association (Assoc) with multiple roles.

ao1�o1 – describing objects.

12 Understood as a mechanism defined inAODB.

78 Marek Krótkiewicz

Marek Krótkiewicz received his PhD in Computer Science in 2001 at Wrocław Uni-
versity of Science and Technology (WUST). Since then he focused his research on data
structures and knowledge representation. In 2004 he founded the Knowledge and Informa-
tion Engineering Group, that is a developer of Semantic Knowledge Base (SKB) project.
SKB is a hybrid knowledge representation system that uses multiple types of KR meth-
ods, such as frames, ontologies, semantic networks etc. Forthe purpose of SKB he has
modeled and implemented Association-Oriented Database (AODB) Metamodel, which is
the next generation database metamodel that puts relationships in the center of its inter-
est. He is an author or co-author of more than 20 conference papers and journal articles
in regard of SKB and AODB. Currently he holds the position of Assistant Professor at
Wrocław University of Science and Technology, where he continues his research career
as part of prof. Ngoc-Thanh Nguyen knowledge engineering team.

Received: June 30, 2017; Accepted: December 10, 2017.

