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Abstract. The mechanism of inheritance is a powerful tool used to dss@om-
plexity of a reality fraction. Itis particularly importafir knowledge representation
systems modelling. It provides a specific ability to takerqueperties from a base
element, what is crucial for conciseness, and modellingieffcy as well. In the
Association-Oriented Database Metamodel, inheritantzén® coherence with the
object-oriented model in the most general terms. Howevdras been otherwise
defined which stems from the specificity of the metamodel, garticularly from
its capabilities which have blazed a trail for its furthetemsion. The main con-
tribution of this article is a description of preliminarysasnptions, postulates and
conceptual solutions applicable to inheritance. They haen discussed against the
background of the Association-Oriented Database Metahasdeell as an object-
oriented model compared with the former.
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1. Introduction

This article provides a discussion concerning the mecharo$ inheritance in the
Association-Oriented Database (AODB) Metamodel [17, 23]. It is one of the key
features particularly important in complex knowledge esgntation systems model-
ing. [24, 28]. It also addresses an analogical mechanisrieapin the object-oriented
metamodel. It is for the specificity of theAODB Metamodel that inheritance can be
defined in a manner far more extensive than in the objectymitmodel.

The original motivation to develop th®ODB Metamodel was a necessity to build
a database management system for a research project defermsSemantic Knowl-
edge Base (SKB) [25,26,27]. It is a project based and focused on concepli&eumost
projects which are focused on terms. A concept is undersisadset of semantic links
with other concepts. ConsequentBKB is not a database of linguistic nature, where the
main element is a term. It is a multifaceted project feanumerous dedicated mod-
ules. The degree of complexity of data structures is veri fag is the number of mutual
associations and dependences of various nature. Theréfas@s necessary to ensure a
data storage layer meeting the requirementSKB. Hence the decision to develop a
new database model, since as a result of multiple attemgisply relational databases,
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followed by the object-oriented ones, too many crucial fiomalities still remained to
lack support from these models. This is how an independseareh problem came into
being, one which is referred to A0DB Metamodel.

The AODB constitutes an extension of the object-oriented approglhre is cur-
rently no single universal standard governingabgect-oriented database model (OODB)
[5,13,15,21], which is due to various reasons. The lastrgitenade to create a standard
for object-oriented databases was a project referred ©OR&G 3.0 [6] developed in
1999 and published in 2000. It contains many compromisessarety general in nature.
Moreover, it is difficult to implement, and even impossibeimplement in theDbject
Query Language (OQL) [1, 7,14, 16, 19]. Most scientists or database system desig
while creating models or implementing their own solutiorefers to this standard to a
greater or lesser extent, mainly in order to highlight adifeces and to explain reasons for
abandoning this standard in favour of one’s own conceptsigbers of database manage-
ment systems focus on ensuring permanence of objects, ashtre approach preferred
in terms of the query language is based on exten&@g with object-related capabil-
ities or developingSQL-like languages. Another important concept of objectued
databases, one which is definitely worth emphasising atpibiist, is Sack Based Ap-
proach (SBA) [18, 22, 32, 35]. Both the theoretical grounds and the dohesf all ele-
ments of the solutions developed are unquestionable aatyasbf this system, both in
the theoretical and the implementation aspect. The quaguiage thus created is very
distant from the approach known @QL [2] defined inODMG 3.0 [6] as well as from
other languages based on syntax or # concept, which attempt to transform it into
an object language.

The solution proposed in this article pertains to a databaseel different than the
relational or the object-oriented one. Itis obviously attbe AODB Metamodel. In this
model, unlike in object-oriented models, it is the assamia(Assoc) that remains in the
focus. The scope of competence of tA®DB Metamodel category covers the subject
of relationships between data. Data containers are cilectColl). The splitting of
functions into those related to data storage and those ctetheith linking them is a key
to this model, and particularly to the problem of inheritanc

The section directly connected with the inheritance meismam theAODB has been
divided into subsections concerning the general conceetintheritance mechanism de-
scription known from object-oriented programming (anaty$ased on the example of
the C++ language), detailed description of inheritance modesgritdnce algorithms
and, last but not least, related work in field of various atpetinheritance in systems
modeling and databases. Moreover, possible applicatipnogfosed solution in existing
knowledge-based systems has been elaborated. The finalf plagtarticle is a summary
comprising references to the most important elements ahtieritance mechanism func-
tioning in theAODB Metamodel as well as the conclusions drawn. To present the defi-
nition of formal means used, the appendix A containg the &motation of theAODB
Metamodel has been provided.

2. Defining the Research Problem

The most primal and generally formulated research probédart into consideration is
thedevelopmentof a database model optimising the following properties:



A Novel Inheritance Mechanism for Modeling Knowledge Rejgrgtation Systems 53

— model functionality, i.e. the available mechanisms and a wide range of solutions
the scope of structure modelling on a minimised set of litittes imposed,

— development cogt, i.e. the expenditure of resources on the development okiting
tasks, maintained as low as possible,

— development time, i.e. the time assumed for the performance of modellingstask
maintained as short as possible.

As an outcome of the deliberations and analyses conduttedoliowing postulates
have been proposed for t®ODB Metamodel: modelling naturalness (intuitiveness),
model’'s power of expression, and semantic unambiguity loés@ata.

Category-specific separability of data and relationshipstlveen them- The postu-
late concerning separability of data and the relationshipgich the former are involved
is about the need for creating at least two separate and etehpindividual categories.
The scope of responsibility of first one would comprise periing a data container func-
tion, whereas that of the other one — a data link functions Plistulate stems from other
postulates, namely the modelling naturalness and the semarambiguity of database
schemata. Nevertheless, it leads to finding a solution irsaodation being an indepen-
dent modelling category.

Single modelling level- It is a solution resulting from the postulate of semantie un
ambiguity of database schemata. It involves renouncingeotual categories, i.e. design
patterns treated as model elements.

Association as an individual model categosyt is a solution stemming from the pos-
tulate of category-specific separability of data and refeghips between them as well as
of n-arity of relationships. Associatiomsoc) is a category responsible for relationships
between other model elements.

Possibility of inheriting relationships- It is another outcome of the solution which
recognises an associatiodqsoc) as an individual model category. AssociatioAs §oc)
may inherit from one another analogically to how it is hakdiéthin a collection C'oll).

Independence in role and attribute inheritance It is an outcome derived from the
two previously mentioned ones, i.e. a role as an indeperwdd¢egory and the possibility
of inheriting relationships. This outcome is particularyportant, for it enables indepen-
dent inheritance within data containers and in the scopelafionships.

“Real” inheritance mode- It is a derivative outcome of a group of solutions and other
outcomes. The “real” mode removes the virtuality statusftbe components inherited.

3. Inheritance

3.1. General Concept

Since attributes have been unburdened of the duality domgig performance of two
functions, i.e. containing values and building relatidpshit is now possible to inde-
pendently approach inheritance of attributes and relakigps between collections in the
AODB Metamodel. Figure 1 provides a sample diagram developed#sociation-
Oriented Modeling Language (AML?3)?.

1 The syntax ofAMLpg is similar toUML® and should be comprehensible for most readers. Howevéecktai
description of its syntax and semantics has been describeapiers [17, 23, 28].
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Collectionl + Rolel + Role2 Collection2

0.1 0.1

Association1

-

-
© ©

Collection3 Collection4

Association2

Fig. 1. Diagram developed in theML5: language, depicting collectiol'pll) and asso-
ciation (Assoc) inheritance in thODB Metamodel

It comprises three relationships of inheritance. Two ofiitaxe related to inheritance
of collections, and one to inheritance of associations (1).

Collectionga’—JMDC’ollectionl; C’ollection4a’—fvi>Collection2 (1)
AssociationgibAssociationl
Figure 2 provides a diagram illustrating the following mile Association :: Role,

and+Associationy = Roles, which have been inherited byssociations.

Collectionl + Rolel + Role2 Collection2

Collection3 Collection4

Association2

Fig. 2. Diagram developed in theML5: language, depicting collectiol'¢ll) and asso-
ciation (Assoc) inheritance in thé\ODB Metamodel, showing the rolesRKole) inherited

As aresult of the inheritance defined in expression (1),@a8on Associations has
become an owner of the roleR¢le) inherited fromAssociation; according to expres-
sion (2).

+Associationy::Roley

[0..1] oCollectiony,
+Associationy::Rolea

[*] [*] OCollections

)

Associations

Figure 3 is a diagram illustrating rights of collecti@rollections to fulfil roles
+Role; and+Association; = Role; as well as rights of collectiofollectiony to fulfil
roles+Roles; and+Association, :: Roles.

With regard to the object-oriented model, one cannot spéalrect inheritance of
relationships between classes. However, there is inlnestaf classes, and hence the
automatic inheritance of relationships. In this mannesp aklationships are inherited
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+ Rolel + Role2

S

N e
Collectionl + Rolel y\A + Role2 Collection2
* *

0.1 0.1

Associationl
>
. . .
o - ©

o Collection3 + Association1::Rolel \_/\_ + Association1::Role2 Collectiond .
0.1 0..1 0.1 * *

Association2

Fig. 3. Diagram developed in theML5: language, depicting collectiol¢ll) and asso-
ciation (Assoc) inheritance in thédODB Metamodel, showing the rights to fulfil roles
(Role) inherited by a collectionol)

indirectly and, to a certain extent, “as the opportunitywst. However, in order that
a two-directional relationship could be inherited, it izassary to conduct inheritance of
two classes on both sides of the association.

The above examples show that the case oft®®B Metamodel is completely dif-
ferent, as it lacks the constraints of the object-orientedeh Separating the data com-
bining function from that of data containers has enablednahtind accurate modelling
of schemata having a simple structure and relatively highgomf expression. This is
clearly evidentin Figure 4, being a complete diagram cosmpgiboth inherited roles and
inherited rights to fulfil roles.

+ Rolel + Role2
Q.
T “ ) *
Collectionl + Rolel y\A + Role2 Collection2
0.1 0.1 * *
. L
* Bti -
Q-l\\\f-’:o ) Association1 "}e\flz *
Oy > AN >
.- ~ 3, - "\o“,f “
o SN2, - e ©
Rz
~Oley N 4d
<
P L
: 2.7~ e :
Collection3 + Association1:Rolel ¥ \y\( + Association1:Role2 Collection4
0.1 0.1 * * *

Association2

Fig. 4. Diagram developed in theML5: language, depicting collectiol¢ll) and asso-
ciation (Assoc) inheritance in thedAODB Metamodel, showing roles Role) and rights
to fulfil roles (Role) inherited by a collectionoll)

The example 1 shows simple real world scenario of assoniatizented model, which
depicts the inheritance of collections as well as the aatioais.

Example 1. Let us consider the following reality: there are two typed.biing: Plants
andAnimals.

aPlant=f s o Living; oAnimal % o Living; 3)
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The Livings are distinguished by the association, which describes EatingStrategy.
TheEatingStrategy comprises roleEatingStrategy: : Eater. There are three specializations
of the strategyHerbivorous, Carnivorous andOmnivorous,

OHerbivorous—1—- & EatzngStrategy, OCarnivorous—1— & EatingStrategy;

<>Omnwor0us—l> & EatingStrategy
(4)
which comprise inherited rol&atingStrategy: : Eater and roleEaten. Each of them
associates the eat@nimal instance with set of objects of different type (Fig. 5).

Plant Living Animal

+ Living::name : unicode(32)|  af' |+ name : unicode(32) af' |+ Living::name : unicode(32)
+ Living::mass : int32 + mass : int32 + Living::mass : int32
+ Living::size : int32[3] + size : int32[3] + Living::size : int32[3]

+ Eaten

+ Eaten

+ EatingStrategy::Eater ;"J'

Herbivorous Carnivorous

L
+ EatingStrategy::Eater

Omnivorous

Fig. 5. Diagram developed iAML5: language, depicting model described in Example 1

3.2. Inheritance Mechanism Against theC++ Language Standard

TheC++ programming language standard defines the inheritanceanirh in a manner
depicted in Figure 6.

The inheritance algorithm functioning i@++ displays nearly no differences in the
case of single as well as multiple inheritance. Althougthhbostances are distinguished
in the literature of the subject (see e.g. [5, 33]), the ddiscrepancies between them
are inconsiderable. Consequently, one can easily gesetadith cases and apply a single
algorithm without losing the very essence of the problenis &lgorithm features several
crucial elements, all of which have been described below.

— The first important algorithm element is iteration over peg-base classes.

— When the base class is inherited non-virtually, attribaresinherited, whereas class
methods are translated into corresponding functions.

— A table of virtual functions (vtbl) is created next, and theration continues over
subsequent virtual functions. The structure containin@iatpr at the virtual func-
tion differs between single and multiple inheritance. Degirg on how the virtual
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N [false] >©

Next base class?

[true]

i i false]
Inherit member attributes from [false] { Virtual base class?
base class

[true]

[true]
( Transform non-virtual member ) Next higher level base m [false] ﬂnherit member attributes from)

functions to ordinary functions class of base class? Class already k higher level base class

virtually inherited?

. [false]
Base class has virtual

member functions?

[ Inherit own and non-virtualy inherited
of higher-level class to ordinary functions

Transform non-virtual member functions
k member attributes from base class

lfalse]

B is transformed to function

void f_F1B();
Create table of virtual functions (vtbl)

Single or multiple

Ry paiiie e.g. function void £(); in '
[true] class A which is base of class  |ocooooooooooooooo 4

Delta tells compiler how to
determine place in memory,

where next base class begins.

inheritance? '
[false] [true] Create virtual function | _______ H
/\/ [multiple] entry with constant delta
Next virtual [single] ]
function? [None] [In derived]

Implementation
of virtual function
[In base]
Place null pointer to Place pointer of base class virtual Place pointer of derived class
derived class vtbl function to derived class vtbl virtual function to derived class vtbl

Fig. 6. Algorithm describing the inheritance mechanism in@et language

function has been implemented, what is contained is a poinge base class method
re-implemented in the derived class, or in the case of a prreaVvfunction.

— When the base class is inherited virtually, an additiorembition takes place over its
base classes (higher-rank base classes). If any of thelaaseghas already been vir-
tually inherited, it is not inherited again, whereas othiseahe inheritance is handled
analogically to the previous case described.

3.3. Inheritance Modes in the Association-oriented Metamael

In the AODB Metamodel, the following three inheritance modes have been defined:
natural,v — virtual, r — real. Natural inheritance, in this case, is exactly what-wiotual
inheritance is in thebject-oriented model. The name has been changed, compared to
the object-oriented model, in order to distinguish more than two cases which may occur,
namely virtual and non-virtual inheritance.
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Table 1. Collation of attribute inheritance modes

C++ AODB
non-virual n—natural:—*—+
virual v-virual —%—»

x r—real—%

Virtual inheritance functions analogically in thobject-oriented model as well as in
AODB. In short, in theAODB Metamodel, virtuality of attributes and roles boils down
to not duplicating attributes and roles when they origifiaden multiple inheritance with
a shared starting point. Virtuality is a property of an &tite or a role. The idea of virtual
elements consists in avoiding a situation when an elem#énb(ge or role) would appear
in more than one copy in an associatiofiséoc) or a collection Coll) due to multiple
inheritance.

A component, i.e. an attributed{tr) or a role Role), may be assigned the virtual
status instantly after being created. Such a case has Hastiated in Figure 7.The
diagram developed in thaML5: language has been expressed with formula (5) in the
formal notation.

+[v]r2

*

c1 [*] S [*] uca,
+ attrl : ints +ri a1 +ry
+ [v]attr2 : intg| * [*] — [*] Ocy (5)
- at +attry :int8,

@ +attry :int8
Fig. 7. Diagram developped in theML 22 language,
illustrating virtual attributes and roles in t#€ODB
Metamodel

Attribute inheritance in the virtual mode A database schema, defined by expression
(6), whose diagram has been provided in Figure 8, contains dollections Coll)
containing an identical set of attributed{r). The first one —+attr; — is non-virtual,
whereas the second one+sttrs — virtual. What has been taken advantage of at this
point is the option of defining components as virtual whetry dére created.
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oy {c1,09,¢5,c4) +attry :int8,
+ attrl : int8 152,53, 04 +att'f‘12) 1 nt8
+ [v]attr2 : int8 a? (6)
O{ce,c3}—2—>0Ocy
/ V\ Ocy—*—>0O{c1,c2,c3}
c2 c3
+ attrl : int8 ° + attrl : int8
+ [v]attr2 : int8 + [v]attr2 : int8
V\ /‘7 +attry Dint8,
+attry int8,
adl +cg = attry :int8,
+ attrl : int8 .
+ [v]attr2 : ints +cg = attry int8,
cq | +c1 = attry int8, @)
. . . 0 +c1 = attry int8,
Fig.8. Diagram developed in th&MLog +c3 = attry s int8
language, illustrating attributed¢¢r) inheri- +es = attrd :int8’
tance in theAODB Metamodel when disre- +cq attr? : int8’

garding inherited attributes

As a result of the inheritance, collectiof’'¢/!) ¢, becomes an owner of attributes
defined by expression (7). Attributestr; : int8 and+attrsy : int8 are own attributes of
collection (Coll) c4. Attribute +c¢; = attry : int8 has emerged in collection, a conse-
quence of inheritancac,—*—+ O ¢;.

Ocys—%»> Oy E ey (+eq = attry :int8)
Ocy—2»> Oy ey (+eo = attry - int8) (8)
Ocys—2»> Ocs E ¢y (+e3 = attry :int8)

Ocy—2> O cg A cg (+attry - int8) )
cq (+co = attry - int8)

Attribute +attry : int8 from collectione, is inherited by collectiorz, according to
formula (9).

As a result of inheritanceﬂCQ“—”> O c;, attribute +attr; : int8 becomes a vir-
tual attribute from collectior:s, and inheritanceic;—— o ¢; proceeds analogically,
but it applies to collectiores. Consequently, i.e. as a result of the following inheri-
tances:dcy,—%—+ O co andOc,—2—+ O ¢3, Which matters particularly, it appears in col-
lectionc, in one item only, namely asc; : attr} : int8, and not as two attributes, i.e.
+cg = ocp = oattry s int8 and+cg = ¢1 = attr} : int8. This is the very essence of inher-
itance in theAODB Metamodel. The foregoing dependences are formally expressed in
formula (10).

Oca—%s0cy Ay (+attry :int8) = co (+cq = attry : int8);
Ocs—2> O ¢y A ¢y (+attry = int8) £ cs (+¢ = attry - int8);
Ocy—2+> Ocg A co (+c1 = attry - int8) v
(I:IC4—‘11> Ocs Acs(+ep = attry - int8) )
cq (+eq = attry < int8);

(10)

An entirely analogical mechanism applies to attributétrs : int8 from collection
c1, which has been shown in formula (11). The fact that it is &ueirattribute already
when created does not change anything in the case analysed.
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Oca—%> Oy A ¢y (+attrl - int8) E co (+c1 = attry  int8);
Ocs—2> Oy A ¢y (+attry - int8) E cs (+c1 = attry : int8);
Oca—2+ Oca Acy (+eq : attry = int8) v) (11)
Ocy—2—> O cg A ez (+e1 = attry = int8)
cq (+c1 = attry - int8);

Attribute +attry : int8 from collectioncs is inherited by collectiore, according to
formula (12).
Ocy—2> O c3 A cg (+attry int8) & cq (+c3 = attry : int8) (12)

Figure 9 provides a full picture of inheritance in the formafliagram depicting
inherited attributesA¢tr) in individual collections Coll).

cl

+ attrl : int8
+ [v]attr2 : int8

AN

c2 c3
+ attrl : int8 + attrl : int8
+ [v]attr2 : int8 © + [v]attr2 : int8
+ [v]cl::attrl : int8 + [v]cl::attrl : int8
+ [v]cl::attr2 : int8 + [v]cl::attr2 : int8

| 7

+ attrl : int8

+ [v]attr2 : int8

+ c2::attrl : int8

+ c3::attrl : int8

+ cl::attrl : int8

+ [v]c2::attr2 : int8
+ [v]cl::attrl : int8
+ [v]cl::attr2 : int8
+ [v]c3::attr2 : int8

Fig. 9.Diagram developed in theML 52 language, illustrating attributed¢tr) inheritance
in the AODB Metamodel and showing inherited attributes

Example 2. Let us consider the following reality. There is an abstrgpetof research
institution employee, calledcademic. The Academic is a generalization of two concrete
types, such aResearcher andTeacher. However, some of the academics may be both at
the same time. We created the collections for all the aforgimeed types and defined
corresponding generalizations. To prevent the duplicatifoattributes, the attributes are
inherited invirtual mode.

OResearcher—4— 0 Academic?; 0T eacher——> 0 Academic?;

OResearcherTeacher—&— 0 Researcher v OResearcherT eacher—%— 0 Teacher
(13)
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Consequently, th&esearcherTeacher collection obtained attributes Academic ::
name® and+Academic :: surname® only once, as shown in the Figure 10.

« abstract »
Academic

+ name :

+ surname :

unicode(32)
unicode(32)

N
?

DL

Researcher

Teacher

+ degree :
+ [v]Academic: :name :
+ [v]Academic: :surname :

int8
unicode(32)
unicode(32)

+ maxLessonsWeekly : int8
+ [v]Academic::name : unicode(32)
+ [v]Academic::surname : unicode(32)

X

v

ResearcherTeacher

+ Researcher::degree :
+ [v]Academic: :name :
+ [v]Academic: :surname :
+ Teacher::maxLessonsWeekly : int8

int8
unicode(32)
unicode(32)

Fig. 10.Diagram developed in thaML5: language, illustrating the Example 2

Inheritance of roles The inheritance of rolesHole) by associationsA4ssoc) follows
identical rules as the inheritance of attribute&#) by collections Coll). Therefore,
only a simple example has been discussed hereafter. A sataalbase0b) schema is
provided in expression (14). Figure 11 shows a databB%g §chema diagram noted in

expression (14).

Fig. 11. Diagram developed in thAML?22 language,
depicting role Role) inheritance in thdODB Meta-

model

[+] > [*]oe,
aq Y
[+] 2 [+]oa
& {@,Qs}ﬁD O ap

<>(L4;_CLZ__|> & {(L27 ag }

(14)
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As a result of inheritance, associations,as,as obtain the same roles:

[*] S [*]Oc; and[*] S [*]Oci1, which has been formally noted in expression
(15).

Figure 12 provides a databasBy) schema diagram showing the roles inherited in
accordance with expression (15).

+[v]alurl

A mm e — e ———

+ [v]alur2
+ [v]alurl

al(w-ih]ucl,)A
" e |

<>{a2,a3}—u><>a1,
Oay —><>{a2,a3}

{a27a3’a4} ( [*] '—l [*] DCl,)

[+] =[] o

(15)

Fig. 12. Diagram developed in th&aML32 lan-
guage, depicting roleHole) inheritance in the
AODB Metamodel

Inheritance of rights to fulfil roles Roles Role) belong to associationsisoc), and so
they can only be inherited by the latter. Inheritance oftsgb fulfil roles applies to both
assomanonsAssoc) and collections@oll), and may only proceed in the virtual mode —
.. A different type of inheritance would make no sense, sirm@virtual inheritance
of rights to fulfil roles would imply a possibility of dupli¢ig two identical rights. When
objects of any given collectior(Joll) or association4ssoc) have such a right, then it is
in fact irrelevant how many duplicates of this right exist.

A sample databaseélp) structure, containing an associatiofiscoc) with two roles
(Role) and two collections@oll), is represented by expression (16).

As a result of inheritancaczi» O ¢, collection Coll) namede; has obtained

the right to participate in two roles*— and «2_. None of the roles Role) has been
inherited, hence the only effect attained is that assariati may not only connect with
with collection Coll) namede;, but also with collection@oll) namedc, by means of

roless> and«2-. Figure 13 provides a diagram illustrating this situation.
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+ [v]r2

Fig. 13. Diagram developed in thAML?3
language, depicting inheritance of roles
(Role) in a collection Coll) in the AODB
Metamodel
Principles of inheriting rights to fulfil roles are analogido those governing inher-
itance of attributesAttr), subject to a reservation that, as aforementioned, it nmly o
be performed in the virtual mode. The following examplesthates the subject of inher-
itance of rights to fulfil roles in a diamond arrangement.iWegard to the foregoing, a
databaselDb) represented by expression (17) has been modelled.
As shown in Figure 14, the rights to fulfil roles andr, occurred in all collections
which participated in the inheritance, which may be formalbted in accordance with
expression (18).

Figure 14 illustrates the foregoing dependences irAli& 32 language.

al(w — Muq,}
[+] = [+]oe
er(hiea(hies ()sea ) (17)

O{ce,c3}—>0Ocy

+[v]r2
+rl
+rl
+[v]r2

+rl

+[vir2

DC4L> O {02, 03}

c2

e | [+] == [*]Oe,
* a1 +T5 A
(] lae
O {CQ,'Cg}—D Ocy;
< . |:|04j—l>|:|{02,03}

([*] +7‘1(|:|{01,02,03,C4}) [*] Dcl’>
a1

4] +ry (0{c1,c2,c3,ca})

=

Fig. 14. Diagram developed in thaML52 lan-

[*] Ocy
guage, illustrating multiple inheritance of rights

(18)
to fulfil roles by collections oll) in the
AODB Metamodel




64 Marek Kroétkiewicz

Nevertheless, one should note that the right to fulfil a relutting from inheritance
in the virtual mode (as it is not otherwise possible in &@DB Metamodel) does not
become a right to fulfil a virtual role. As for the associatiphssoc), the roles Role)
inherited in the virtual mode become or remain virtual, hegrein the case of inheritance
of rights to fulfil roles, this is not the case, the reason fhich is fairly simple. Since
rights to fulfil roles are inherited in the virtual mode onitydoes not matter whether
or not they have the status of virtuality. In the case of rplétinheritance, a collection
(Coll) or an association4ssoc) may be vested only one right to fulfil a specific role
(Role), and it does not matter if this right is assigned the stafusrtuality, or not. In
Figure 14, rights to fulfil roles are marked in a manner implyivhether rights to fulfil
virtual roles (e.g+[v]r2) or non-virtual roles (e.gtrl) have been inherited. This is only
the case when the roléple) has such a status. However, even if no such information was
available, it would not cause the databaB®) schema to lose unambiguity.

Example 3. In this example, the reality from Example 1 is extended bytla@a3 general-
ization relationships. In this case, the collecti6fv{l) Animal has three specializations:
Mammal, Bird andFish, which inherit the rights to fulfil role Role) + Eater.

o{ M ammal, Bird, Fish}a’—fub 0 Animal (29)

Consequently, there is only one roled(e) + Fater in the model, but it can be fulfilled
by the whole collectionoll) taxonomy (i.e Animal, Mammal, Bird, Fish collections).
The model has been shown in the Figure 15.

+ Eater

Mammal

O

"—6.—-1 + Eater Bird afv Animal

0.1 0.1
0.7 7 7--* Eate, oF

EatingStrategy

0.7~ Fish

Fig. 15. Diagram developed in thaMLp: language, illustrating the model from Exam-
ple 3

Inheritance in the real mode The real inheritance mode complements the inheritance
mechanism known from thabject-oriented model. Virtual inheritance is possible in the
object-oriented model, which causes that a specific component is assigned thealvirtu
status. However, there is no option of removing such a statusestoring the non-virtual
state, in other words. In tl®ODB Metamodel, such an operation is possible owing to the
real mode. The manner in which this mode functions has besusied with reference
to a sample databas®}) whose schema is provided by expression (20).
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{c1,ca} (+attry : int8, +attry : int8); ay ([*] S (ko [#] NICE [*]oca);

arp o
Ocg—==>0Oc1; Cas———=> < ay

(20)

Figure 16 provides a diagram corresponding to the schemadsgression (20).

c2 cl

+attrl : intg [ 270" bl aterd ¢ ints
+ [v]attr2 : int8 + [v]attr2 : int8

+[v]r2

Fig. 16.Diagram developed in theML?: language, illustrating real mode inheritance in
the AODB Metamodel

The inheritance mechanism for schema (20) shown on Fig. déseribed by expres-
sion (21).

{c1,c2} (+attry - int8, +attry = int8) A
ar([+] - [ oe, [+] = [+l o)A |
DCQGT—JN; Ocp A OGQV—JII; O ay
+attry sint8,\
! +attry :int8 [’

+attry 1 int8,
. +attry vint8, \ (21)
2 +c1 @ attry cint8, [’

+cq ¢ attry s int8
(19 e,
ay 3

[+] +r5 (0{c1,c2}) [+] ey

+ay:zri(0f{ci,c2})

]
a2 ( +arsra(O{cr,ca})
[] e ——
In accordance with expression (21) as well as the diagramiged in Figure 17, as
a result of inheritance in the real mode, attribeé€+c; = attrs : int8) does not have the
virtuality status, even though it has been declared &sattry : int8). Analogically, role

as <[x—] T [«]o c1> has lost the status of virtuality as compared with the prsmur

Example4. Let us assume the following reality. We have set of animatsckvare dis-
tinguished (among others) by their velocity. Therefore weated the collection({ol[)
Animal. We have two abstract specializations of the animal disisigng them because

[#] Dcl,>

[*] Ocy
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+alur2

+ [v]r2

c2

+ attrl : int8 fev
+ [v]attr2 : int8 | = _ py+ attrl : int8
+ cl::attrl : int8 + [v]attr2 : int8
+ cl::attr2 : int8

+alur2

Fig. 17.Diagram developed in theML5: language, illustrating real mode inheritance in
the AODB Metamodel, showing the components inherited

of their ability to moveFlying and Svimming. They virtually inherit the attribute from
the Animal collection.

o{ Flying®, Swimmingg}“—vb 0 Animal (22)

Next, we defined th&\aterBird collection (Coll), which is in relationship of inheri-
tance in natural mode with the aforementioned abstractciidins.

oW ater Bird—%— 0 { Flying?, Swimming?}
AO{Flying?, Swimming? }(+ Animal :: velocity® : int8) & (23)
oW ater Bird(+Animal :: velocity® : int8)

It has inherited single attributeAnimal :: velocity”. The most important thing in
real inheritance is, that sometimes we neededgrtualize a virtual attribute. To show
that, we defined the concrete collectid@riv{!) for Duck which inherits in real mode from
the collectioraterBird. It gives the possibility to define the attribute twice, ofmeeach
abstract velocity (Fig. 18).

ODuck——> 0 Water Bird A0W ater Bird(+Animal : velocity® : int8) £
+Bird :: Flying : Animal = velocity : int8 (24)

DDuck +Bird :: Swiming :: Animal :: velocity : int8

3.4. Algorithm of Inheritance in the Association-orientedMetamodel

Description of the main part of the inheritance algorithm Figure 19 shows an inher-
itance algorithm common to all three inheritance modes fatural,v — virtual andr —
real). It also pertains to inheritance of attribute®() in collections (Coll) as well as
roles in associationsAssoc).
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« abstract » P « abstract »
. v Animal v A
Flying RN S — | Swimming
+ velocity : int8

+ [v]Animal::velocity : int8 + [v]Animal::velocity : int8

WaterBird

a + [v]Animal::velocity : int8

Duck

+ WaterBird::Flying::Animal::velocity : int8
+ WaterBird::Swimming::Animal::velocity : int8

Fig. 18. Diagram developed in th&ML52 language, illustrating the model in the Exam-
ple 4

Verification — The verification process is conducted at first in order tekléhether one
can create a generalisation. It is not possible when:

— acycle has been found in the graph of generalisation (dpese — generalisa-
tion of a collection C'oll) or an association4ssoc) itself to itself),

— incompatibility of databased)b) has been found for the base and the derived
collection (Coll) or association4ssoc)?,

— there is already a generalisation established betweenc#isfgmse and derived
element.

If establishing ayen-spec relationship has proved impossible, a database system erro
is generated and the generalisation is not created, whtreadgorithm is finalised.
Creating objects — The inhreitance object is createthferitance), the generalization
base node is set and the object is added to the specializatieritance list.
Inheritance of components— If component inheritance has been enabled in the course
of generalisation, iteration over components of the bafieatmn (C'oll) or associa-
tion (Assoc) takes place.

— Inheritability 3 aspect— Depending on the inheritance mode in the aspect of
inheritability, inheritability status of a newly createdmponentis:
e inheritable: base component is inheritable, and the itdiahty mode is
nochange,
¢ not inheritable: base component is not inheritable or theiitability mode
is disable.
No base components of not inheritable status are inhefitesliforegoing means
that they do not appear in the derived component &t all
— Virtuality aspect — Depending on the inheritance mode in the aspect of vityyali
the inheritance process proceeds in a slightly differemtmaa
When the inheritance is established in:
¢ virtual mode — a virtual component is created,

2 Theoretically, it would be possible to make an attempt abidiicing agen-spec relationship between ele-
ments of two different database®&). However, such an action is impermissible in &@DB Metamodel.

3 Inheritability is a concept cAODB Metamodel which determines whether components are inherited or not.

4 IntheC++ language, private elements are copied to the derived coempoiiey occupy memory but cannot
be accessed directly.
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Conditions met? (
Verification Create Inheritance object
[truel K

Add Inheritance object to derived
[falsel BaseNode inheritance list

Role/Attr inheritability mode == none

Raise AODB Error [false]

[false]

Ko

Can get next Role/Attr

[true]

Get next Role/Attr
from base Assoc/Coll

[false]

Role/Attr inhertable

[true]

Gherited Role/Attr inheritable status = [nochange]

base Role/Attr inheritable status

Role/Attr inhefitability mode

[disable]

Vitualitvmode " orited Role/Attr )

Create virtual [virtuall
Role/Attr )

[natural]

inheritable status = false

[truel Resolve real
\ Role/Attr

Base Role/Attr is Virtual?

[real]

[true]

Create non-virtual [falsel

Role/Attr

Base Role/Attr is Virtual?

Fig. 19. Activity diagram depicting the component inheritance aiipon in the AODB
Metamodel

e natural mode — it is verified whether or not the base component is virtual.
Ifitis:
* virtual — a virtual componentis created,
* non-virtual — a non-virtual component is created,

e real mode- it is verified whether or not the base component is virtual.
Ifitis:



A Novel Inheritance Mechanism for Modeling Knowledge Rejgrgtation Systems 69

* virtual — procedure , as depicted in Fig-
ure 20, used to resolve the ambiguity of inherited compa)eatexe-
cuted, and this is where they are made “real”,

* non-virtual — a non-virtual component is created.

inheritance path

generalization)

Create prefix [true] [false] \> [true] ~.[ Get next inheritance
) \/ N\ of BaseNode

. BaseNode has next
BaseNode is

" inheritance?
component's origin  [false]

Create non-virtual 9\,6

component

Add BaseNode to [ResolveRealComponents(inheritance]

Fig. 20. Activity diagram depicting an algorithm for resolving arghity of inherited
components —

The algorithm provided in Figure 20 pertains to resolvindpauity of inherited com-

ponents — . The following are descriptions of its most im-
portant elements:

— The method envisaged to resolve the ambiguity consiststesmd@ing the path of
virtual inheritance of an attributed¢tr) or a role Role) starting from the moment of
its creation.

— In order to determine a unique path, consecutive base naesittting generali-
sations of all levels of the pre-set base collecti6l{) or association 4ssoc) are
recursively checked. A prerequisite for positive finalisabf a path of function calls
is finding a base node being the source of creation of the giveral component.

— In the course of successive procedure calls, consecutse mades, for which the
procedure is initiated each time, are added to the path.

— Once the path is determined (along with the source), onelitagved the information
required to create a “devirtualised” component. A full paih be needed to create a
complete prefix containing all levels of generalisation.

Principles of defining prefixes The inheritance mechanism imposes a necessity to de-
velop principles for building names of components in ordegrisure that they are unique
and, consequently, that one can make references to them pididlem will be a sub-
ject of another paper, describing the manner in which prefare designated as well as
providing a comparative analysis conducted with referdncn analogical mechanism
functioning under an object-oriented programming languagmelyC++. Below is an
overall outline of the relevant principles collated as adiskey items.
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— Own componentsonly require their names to be specified.

— Inherited components require that a complete path in theattly of inheritance
should be specifiéd

— Prefixes are built of component names, starting from an eiénféhe lowest rank in
the inheritance hierarcly

— When the virtual mode is encountered:

e symbol is entered before the component name,
e if there is a virtual mode in the inheritance path, and at #reestime there is no
real mode, the prefix building ends with the first virtual metgeountered.

— When the real mode occurs in the inheritance path, it is fiwem point forth that all
components lose the property of virtuafity

4. Applications in Knowledge-Based Systems

Following section is an evaluation 80DB Metamodel in the form of exemplary knowl-
edge representations system structures. Those struokadmth collections’ and associ-
ations’ inheritance mechanisms.

In the Ontological Core Module (OCM*®®) structure ofSKB — Semantic Knowl-
edge Base (Fig. 21) [24] the mechanism of collection inheritance ie #spects of at-
tributes and rights to fulfill roles was used to define spéxatibns of abstract collection
CONCEPT?, e.g.CLASS, INSTANCE, SET, RELATIONSHIP, FEATURE, VALUE,
UNIT, VALUESPEC. Moreover, the inheritance of associations was used fodéfiai-
tion of UsedIn association, which is a specialization@fnnection association enriched
with a Relationship role. Another example might beSQetinstance association being a
specialization of botiClassinstance andSetConcept.

SKB Extended Semantic Network Module (ESNM*®<®) [28] has been presented on
the AML5: diagram (Fig. 22). It is designed for the storage of complees and facts in
the form of hypergraphs. Since this module is oriented rgainl building relationships,
thay have their emanation among others in the form of comgéswciations taxonomy.
The central association ®perand?, which is a generalization for following types of
operandsOperandOperator, Operandinstance, OperandNode, OperandNet. Addi-
tionaly Operandinstance inherits frominstance?, while OperandNode inherits from
Substitutability.

OOperandN ode—"— & Substitutability (25)

It should be noted that only roles are inherited with no mgiat fulfill roles. Moreover,
following inheritances occur:

OOperatorT’—fub O Instance; oConclusion=Ls & Net. (26)

5 Uninherited.

6 Exceptions to this rule have been described in the item coimgevirtual inheritance.
7 Component names are separated with a double colon symbol —

8 |t means that a complete path of all components must be pladie prefix.
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+ unit : ref(UNIT)
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+Set

Classinstance Setinstance SetConcept

Fig.21.AML5: diagram ofOCMs«®

5. Related Work

The issue of inheritance in database world should be idedtiis two different ap-
proaches: mechanisms directly implementing the semaotictheritance and mapping
of structures according to appropriate design patterns. @mwell described standards
of direct implementation of inheritance mechanism is OM OBM8.0 [6]. In the field of
conceptual implementation of inheritance is mapping in @2 or EER [36, 38].

The literature is rich in the discussion on identity of théentance mechanism
and subtyping mechanism conceptions. The opinions seere tivided [9, 10]. OM
ODMG 3.0 [6] separates and implements both of those conc&pts Generalization-
Specialization is emanation of subtyping mechanisms enfwtends ensures inheritance.
RDF being a triplestore database metamodel type which ges\subtyping mechanism
only. The AODB approach towards inheritance assumes coexistence of fmrmeen-
tioned concepts within one mechanism.

The inheritance mechanism can have semantic charactdfrffoun existing syntax
elements) or can have predefined syntax and semantics wifultp described gen-
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Fig. 22.AML52 Diagram ofESNM s<®

spec mechanism. The inheritance mechanism in ODMG OM 3.6rdmath inheritance
of elements state and behavior [37] as well as substitittail OQL [11]. The inher-
itance mechanism in EER has been defined taking into accotaitpartial and dis-
joint/overlapping properties. While graph databases istoases represent th& A re-
lation as an edge named as such, it has nothing in commonntitritance mechanism
and it functions only in semantics layer. Ohira et al. [30gosed theDirected Recur-
sive Hypergraph data Model, that seems to fill the gap with the definition of Shape graph
providing information in regard of i.a. gen-spec relatioips. The RDF metamodel has
defined in standard [3, 29] property, that defines all instaraf a
given subclass being at the same instance of a base class. The

property works analogically for properties. SPARQL is agaage using those mecha-
nisms [41]. Relational metamodel [31] has no mechanism lo¢iiitance defined, how-
ever there are number of studies providing design patterdsraappings implementing
gen-spec relationships [4,34] that are used e.g. in O/RBs[8]. Some of the high-level
approaches to metamodeling, e.g. Context-Driven Metaéding show, that inheritance
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issues are not needed in the high level of modeling, but thaybe defined in the domain
specification language level [39, 40].

The AODB provides inheritance separate mechanisms for assodadioth datasets.
Those mechanisms provide number of modes allowing to $&dcinherit components
or rights to fulfill roles, as well as they fully support viglLinheritance. Moreover, com-
ponents have the property named Inheritability, that altoveelectively define which
components should be subject to inheritance mechanism.

6. Conclusions

The article addresses the subject of inheritance ilAgociation-Oriented Database
(AODB) Metamodel compared with an analogical solution typical of the objegéented
model. Due to the fact that thODB Metamodel features a number of fundamental
innovations compared to thabject-oriented model, the most important components of
this model are discussed in the first part of the paper. WHenwe is a description of
the AODB inheritance mechanism, analysed from the perspective edifsgity of its
definition.

The inheritance mechanism is one of the most important apdlpo methods used
to describe complexity. It ensures considerable simptificeof the modelling activity. In
AODB, inheritance is particularly crucial, and it is stronglyagrated with other mech-
anisms of this model. The foregoing results from the fact daanpetences of data con-
tainers and relationships between data have been separaisdseparation is decisive
in its influence on all aspects of a model, including the ifthace mechanism. In the
intensional sense, the elements responsible for data storage in thet-asjented model,
namely attributes and classes, also perform functionsieigadelationships between data
to be established. Inheritance applies to classes and psnstble for attributes, irre-
spective (in an indistinguishable manner) of whether thiedare containers for data or
constitute relationships between them. On the other hartielAODB Metamodel, in-
heritance independently pertains to data containersutiaibn being performed by col-
lections (Coll), and relationships between data, namely associatidnso). Attributes
(Attr) are inherited within a collection{oll), as roles Role) are within an association
(Assoc). Since both collectiong{oil) and associations4(ssoc) can participate in rela-
tionships, then also inheritance of rights to fulfil rolespisssible within each of these
categories. In collectiongoll), inheritance of attributes4ttr) and rights to fulfil roles
is entirely and mutually independent. The situation is agigll in associationsAssoc),
i.e. inheritance of rolesiole) and rights to fulfil roles is also completely separated @n th
modelling level.

The examples presented here show inheritance methodsghdicantly support the
modeling of relatively complex conceptual constructs. émtigular, it should be empha-
sized that the inheritance within associations allowedaf@onsiderable simplification
of the schema, and in many cases made it possible to expresspts that would be
impossible to implement in e.&++ or generally speakingbject-oriented model. It is
worth to mention that iMODB it is possible to define inheritance modes, thus separating
the aspect of inheriting components from the aspect of theritance of roles. The pre-

9 Structural.
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sented examples clearly point out both the significant séimeapacity® and the power

of expressiolt of AODB Metamodel. Its implementation is an undeniable asset that,
combined with the above features, makes it a very powerhllftr modeling complex
knowledge representation structures.

Owing to the algorithm developed for prefixing names of th@ponents being inher-
ited, also entailing virtual inheritance modes, a desighanconstrained in naming com-
ponents, without any concerns pertaining to ambiguityteeldo uniqueness of names.
At the same time, multiple inheritance is permissible, sibg no means does it cause
any ambiguity or any limitations as to names of componentslogritance structures.
The only limitation, structurally imposed upon inheritenis absence of cycles, which is
detected and controlled by an association-oriented dsgalsing internal algorithms en-
suring coherence detection as well as correctness of stascand data. The inheritance
mechanism functioning in thaODB Metamodel is of major importance for modeling
productivity, and its complete integration with other maglsms exerts very significant
influence on the model’s power of expression. The propodetieo could make a benefit
for modeling ontologies [12] and other knowledge represiimt systems, as shown on
the case studies @CM ¢ andESNM =&,
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A. Elements of formal notation of the AODB

While defining theAODB Metamodel, the formal notation described below was envis-
aged.

{r} — set of typer elements[7] — table of typer elements(r) — list of type  el-
ements.(ty : Ty,t2 i T2, ..., ty : T,) — tuple containing elements, t,, ..., ¢, of types
T1,To, ..., Tn FESpPECtively.

Coll :: ¢; orac; — collection Coll) namede;. Assoc : a; or &ag — associationAssoc)
nameda;. Obj = 01 Or oy — object Obj) namedo;.

AssocObj = ao; Or &aoy — association objectAssocObj) namedao;. 01 : ¢ Or
Moy : Ocy; — object Obj) o1 of collection Coll) c1. 01 € ¢; — object Obj) o, exten-
sionally belongs to collection({oll) ¢, in the case of association objectssocObj)
aoq € ay.

c1 — objs[i] — reference to thé" object of collection (oll) named; .
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c1 (+aty :int8, +aty : int8) — attributes fttr) of collection Coll).

c1 — attrs — reference to elemeanttrs of a tuple of collection('oll) namedc;, which

means a reference to a list of attributeg#(-) of collection (Coll) marked ag;.

01.at1 — reference to attributedir) at, of object Obj) o;.

(v1: 71,02 : To,..., 0, : T, ) — tuple representing value® ¢lue) of attributes @A¢tr) of

object Obj), wherevy,vs,. .., v, are type ¥ alue) values.

Oc¢? — abstract collection{oll). &a? — abstract associationdgsoc). Ocf — non-

navigable collection@oll). &ay — non-navigable associatiod §soc).

States of inheritability of components, i.e. attributdst{) and roles Role): + — inheri-

table, — —noninheritable.

Role: « — biNav,biDir, R biNav,toDest, A biN av,toOwner, O

uniNav,toDest.
[1] +r1(0cy)

[0..1]

[*] Ocy,
[1..*](}@2

Virtuality: #at? — virtual attribute s — virtual role.
Multiplicities: [0..1] — one at the maximuni]] — exactly one[1..x] — at least onée]+ ] —
any chosen numbep..m] — minimumn and maximumn.

ai — list of roles of a specific association.

+r2 (Oas)

A composition may occur on one side of the rolee [+] (8o

+7r1 (Elcl)

[*]Oey, butit may

simultaneously occur on both sidesca [ * ]
collections—— — inheritancé?’.

For the collectionColl), attribute @Attr) inheriting is possible in——+ — natural mode,
—2" 5 _virtual mode,—*— —real mode, whereas inheriting rights to fulfil roles — only in
the virtual mode: .

For the association4ssoc), role (Role) inheriting may take place inr"—+ — natural
mode,—~—+ —virtual mode,—~— — real mode, whereas inheriting rights to fulfil roles —
only in the virtual mode:? "+

Moreover, inheritance may take place %+, —"», EEA nochange mode,

ey s =, _disablemode, component symbal,(r, f) absent -none mode e.g.:

[*] 0 ¢1. a1 — describing

a

—

Saoy : Gaq (Ko1 : Ocp ) — in extensional aspect.
It means that association object{socObj) ao, of type a; is associated with object
(Obj) oy of typec,; by means of roleRole) ry.

®aor : Oaq ri(e) (@ {01, 02,03} : Ocy) —is fully analogical compared to the previous
one, the only difference being that the association objégtécObj) is associated with a
set of three objectgo;,02,03}.

r1(0c1)

Tl(l:lcl)

g .. . .
©ao1: Qa1 e, (o :0cu) — association4 ssoc) with multiple roles.

(@02 : Oca)
ao1---01 — describing objects.

12 Understood as a mechanism defined\dDB.
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