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Abstract. In this paper we investigate the role of sample size and class distribution 

in credit risk assessments, focusing on real life imbalanced data sets. Choosing the 

optimal sample is of utmost importance for the quality of predictive models and has 

become an increasingly important topic with the recent advances in automating 

lending decision processes and the ever growing richness in data collected by 

financial institutions. To address the observed research gap, a large-scale 

experimental evaluation of real-life data sets of different characteristics was 

performed, using several classification algorithms and performance measures. 

Results indicate that various factors play a role in determining the optimal class 

distribution, namely the performance measure, classification algorithm and data set 

characteristics. The study also provides valuable insight on how to design the 

training sample to maximize prediction performance and the suitability of using 

different classification algorithms by assessing their sensitivity to class imbalance 

and sample size.  
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1. Introduction 

The aim of credit scoring is to differentiate borrowers and classify them into two groups: 

good clients (non defaulters) and bad clients (defaulters), using predictive models and 

historical information on clients’ repayment behavior. It is widely used in financial 

institutions for lending decisions and asset quality monitoring and is one of the most 

widely used applications of statistical models and data mining methods in practice [1]. 

Therefore, making a correct assessment of the likelihood of the client defaulting is of 

utmost importance for financial institutions [2] and increasing accuracy in default 

prediction would be of great interest for financial institutions [3].  



156           Andrić et al. 

Class imbalance is a common occurrence in credit scoring, where the good clients 

greatly outnumber the bad clients. As one of the key challenges in data mining [4], it has 

received a lot of attention in recent years. Performance of standard classification 

algorithms tends to deteriorate when class imbalance is present as the cost of 

misclassifying a case in credit scoring is greatly asymmetrical. Frequent occurrence of 

class imbalance in credit risk assessment indicates the need for additional research efforts 

in handling imbalanced datasets. Several methods have been proposed to improve 

prediction accuracy in these settings, such as altering class distribution [5].  

Despite having access to vast amounts of data related to customer behavior, standard 

practice is to develop predictive models using a sample of data, i.e. representative of the 

overall population. Even though a lot of research has been focused around prediction 

accuracy of different classification algorithms, topics of data sample design have been 

largely neglected regardless of the fact that data sample preparation is the cornerstone and 

the most time consuming step of the model development process [6]. Little research effort 

has been devoted to assessing the impact of class distribution on credit scoring, in 

particular when dealing with real life data samples, that can be very heterogeneous and 

differ in terms of size, imbalance ratio (IR, to be defined later), the number of features 

etc. Majority of studies use benchmark data whose characteristics are not representative 

of real-life data samples, which may introduce a bias, or use a very limited number of 

data samples that contain only a few independent variables [7], [8]. Sample size is 

especially important for low default portfolios, where, due to the lack of a systematic 

empirical evaluation, it is unclear what is the minimum number of instances that would 

justify model development. Nevertheless, this topic has not been evaluated systematically 

with empirical experiments, despite its apparent importance and applicability.  

To address the observed research gap, a study of the interdependence of class 

distribution, dataset characteristics and prediction accuracy in a real life credit scoring 

environment was performed using logistic regression, neural network and gradient 

boosting algorithm on a wide array of real life data samples. Class imbalance was 

increased progressively to determine how classification accuracy was affected by 

different IRs. Performance of the proposed framework was evaluated with several 

evaluation measures. The second part of the study addresses the question of how sample 

size impacts classification accuracy and finding the minimal sample size (namely the 

number of defaulters) needed to develop a model with adequate prediction accuracy. The 

main contribution from this study can be summarized as: (1) finding the optimal class 

distribution that maximizes classification accuracy, (2) assessment of different 

classification algorithm performance when dealing with different imbalance ratios and 

samples of different size, (3) assessment of gradient boosting algorithm in credit risk 

domain, (4) finding the minimal data sample size that can be used for model development 

with adequate prediction accuracy and (5) analysis of the intrinsic characteristics of the 

data samples (IR, number of minority class cases, number of total instances). 

The rest of this paper continues as follows: Section 2 provides a literature review. The 

classification algorithms are described in Section 3, and the experimental framework in 

Section 4. Results of the study are presented and discussed in Sections 5. and 6. 

Conclusions and possible future research direction are presented in Section 7. 
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2. Background work 

A lot of research effort has been committed to evaluating classification algorithms in 

credit scoring, ranging from traditional statistical methods, such as logistic regression [1], 

to non-parametric algorithms, such as neural networks [9]. In the recent years there has 

been an increased interest for using hybrid and ensemble classifiers in credit risk, such as 

boosted regression trees, random forests, deep learning methods and other [10], [11], [12], 

[13] [14]. A number of benchmark studies have been performed, comparing classification 

accuracy of different classification algorithms [15], [8]. However, there is no consensus 

among researchers as to which algorithms yield the best performance. In fact, it seems 

that the choice of algorithm should take into account the domain, dataset and evaluation 

criterion [1], [16].  

Class imbalance is inherent to credit scoring. In [17] the authors analyzed how class 

imbalance impacts several classifiers by steadily increasing the IR. They concluded that 

gradient boosting and random forest achieved good performance, in particular when the 

IR was very high. Logistic regression also achieved high accuracy, unlike other methods, 

such as SVM and C4.5. One of the methods proposed to alleviate the adverse impact of 

using imbalanced data sets includes using pre-processing techniques, which alter the 

original imbalanced data sample to produce a more balanced class distribution [18]. With 

oversampling, the number of defaulted clients is increased, whereas with undersampling 

the number of good clients is decreased. A few comparisons of different sampling 

techniques were performed, but with different conclusions reached on which technique 

yields highest accuracy. In fact, research suggests that intrinsic data set characteristics 

and the application domain have a greater impact on the performance than a particular 

pre-processing technique, indicating that further analysis is needed [19], [20], [21].  

Adjusting class distribution can lead to disregarding potentially valuable information 

from the sample or overfitting. Therefore, finding the optimal class distribution and its 

empirical evaluation is of great significance. Although not related to credit scoring, in 

[22] the authors studied the C4.5 classifier, concluding that balanced class distribution in 

general achieves the best results. However, in credit scoring the number of defaulted 

clients is usually very small and a balanced class distribution is hardly ever encountered 

in real life. In [23] the authors analyzed the effect of different class distributions in credit 

risk assessment. Class distribution was altered by using random undersampling to produce 

various imbalance ratios. The results stressed the importance of assessment criterion, 

reaching a conclusion that performance deteriorated with all classification algorithms 

used when faced with larger class imbalance.  

A common approach in credit scoring is to develop predictive models using a smaller 

sample of the overall population, that should resemble the target population as much as 

possible, due to various reasons. As first, these models are subjected to restrictive out of 

sample validation procedures, implying that all the data available cannot be used for 

model development. As second, using larger samples increases the cost, in terms of time 

and computational resources needed to develop a model. As third, when population drift 

occurs, where characteristics of the population change over time, the entire historical 

sample cannot be used for model development, since it is not representative of the target 

population. Population drift has become an especially important topic in recent years, 

since during the financial crisis of 2007 the overall macroeconomic environment changed 

and both customers and financial institutions changed their behavior. Therefore, sample 

size and construction are of utmost importance for the quality of predictive models. 
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Despite its relevance, studies on choosing the optimal sample size are limited. There is a 

common understanding among practitioners that a sample containing around 1500 cases 

of each class should suffice to build predictive models [6]. However, in [20] the authors 

performed an empirical study on sampling in credit scoring, using two datasets and four 

classification algorithms. The study indicated that using samples larger than those 

recommended in practice increases prediction accuracy.  

The focus of research so far has been proposing new algorithms and comparing 

classification accuracy of different classification algorithms, whereas the issues of sample 

design were largely ignored. This study aims to address the observed gaps and provide 

insight into credit risk modelling with empirical evidence on how to design the training 

sample and which algorithm might be appropriate in given settings.  

3. Classification algorithms 

Classification algorithms used in the study include logistic regression, one of the most 

commonly used methods for credit scoring [20], neural networks, a classifier whose good 

performance was demonstrated in many studies [9], [15] and gradient boosting, a 

relatively new method, yet to be thoroughly evaluated in the credit risk domain. 

3.1. Logistic regression 

Logistic regression (LR) is the standard method used for credit scoring among 

practitioners and one of the most commonly used methods for credit scoring [20]. LR 

estimates p(y = 1|x). y represents the dependent variable, equal to 1 if the client is in a 

default status. x is a vector x = (x1, x2, …, xn), or a collection of n independent variables. 

p(y = 1|x) then represents the conditional probability that the outcome of the client 

defaulting is present. The relationship between the independent variables and the 

dependent variable is described by a logit function [24]: 

logit (p(y = 1|x)) = ln (
𝑝(𝑦 = 1|𝐱)

1−𝑝(𝑦 = 1|𝐱)
) =  𝛽0 +  𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑛𝑥𝑛 . (1) 

β0 is the intercept parameter and β1, …, βn are the model parameters. The model 

parameters are estimated through minimizing the log-likelihood function: 

𝑚𝑖𝑛 𝑙 = − ∑ 𝑦𝑖 𝑙𝑛(𝑝(𝑦 = 1|𝐱)) + (1 − 𝑦𝑖) 𝑙𝑛(1 − 𝑝(𝑦 = 1|𝐱)) 
𝑛

𝑖=1
. (2) 

3.2. Neural networks 

Neural networks (NN) are nonlinear classifiers modelled after the human brain [25]. The 

multilayer perceptron (MLP) is one of the most commonly used types of neural networks. 

It contains an input layer, a hidden layer, and an output layer. In each of the layers neurons 

process their inputs into output values, used by the neurons in the next layer. The 

independent variables are the input layer neurons. Initial weights are assigned to 

connections between neurons and adjusted during training. This iterative process can be 
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based on various methods, such as gradient descent, Quasi-Newton etc. Output of the 

hidden neuron hi is determined through an activation function f: 

ℎ𝑖 = 𝑓 (𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑥𝑗)𝑛
𝑗=1  . (3) 

x represents a collection of n independent variables, x = (x1, x2, …, xn), wij is the weight 

connecting input j to neuron i and bi is the bias term. Output of the output layer is 

determined using a similar function: 

𝑜 = 𝑔 (𝑏𝑖 + ∑ 𝑣𝑖ℎ𝑖) 𝑚
𝑗=1 . (4) 

m is the number of neurons in the hidden layer and vi is the weight connecting hidden 

neuron hi to the output neuron. MLP use sigmoidal f and g functions. The model 

parameters wij, vi, bi are determined through minimizing the loss function using gradient-

based algorithms. 

3.3. Gradient boosting 

Gradient boosting (GB), also referred to as stochastic gradient boosting, is an ensemble 

model that consists of a series of simple decision trees. Ensemble models aim to improve 

accuracy by combining predictions of multiple base models and minimizing the error term 

in an iterative manner. After the initial base model (tree) is set up, each subsequent base 

model is fitted to the residuals of the previous model to minimize the error term and avoid 

errors of the current ensemble [26]. Since it is a homogeneous ensemble classifier, 

additional randomness is introduced by bootstrap sampling [8]. The model is described 

as: 

𝐹(𝑥) =  𝐺0  + ∑ 𝛽𝑖𝐿𝑖𝑖 (𝑥) . (5) 

βi are coefficients for the respective tree node Li fitted to the residuals of the previous 

algorithm and G0 the first value for the series. 

4. Experimental design 

4.1. Data samples 

To conduct the experiments, ten different data sets were used. Their characteristics are 

outlined in Table 1. Japanese and German data set are public data sets, available in the 

UCI Machine Learning Repository [27] and include data related to credit card 

applications. The German dataset has 1000 cases, 300 of which are defaulted, with 20 

features. The Japanese data set has 690 cases, 329 of which are defaulted, with 13 features. 

Data sets DS1 - DS8 are real-life samples obtained from a commercial bank. Even though 
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a limited number of real-life data sets were used, datasets used for credit scoring usually 

show a high level of comparability across different credit institutions [20]. This notion 

stems from the fact that types of consumer data gathered by institutions broadly represent 

same types of information for similar types of portfolios. For a number of countries (for 

example EU countries) using the types of data that were used in this study is also a legal 

requirement [28], [29]. Consequently, institutions are required to take into consideration 

a broad set of information, including borrower risk characteristics, (borrower type, 

demographics, financial information, etc.), transaction risk characteristics, (product types, 

collateral information, etc.) and behavior patterns (historical patterns on repayment 

behavior etc.).  

Table 1. Data sets 

Size Data set No of 

cases 

No of 

features 

No of 

good 

clients 

No of 

bad 

clients 

Imbalance ratio (IR) 

Small 

German 1,000 20 700 300 2 

Low Japanese 690 13 361 329 1 

DS1 3,053 206 2,757 296 9 

Mid 

DS2 25,226 218 25,016 210 119 Severe 

DS3 67,800 162 64,831 2,969 22 Moderate 

DS4 65,535 160 62,542 2,993 21 Moderate 

DS5 26,590 198 26,397 193 137 Severe 

Large 

DS6 205,720 160 198,772 6,948 29 Moderate 

DS7 197,462 160 189,479 7,983 24 Moderate 

DS8 232,275 160 223,569 8,706 26 Moderate 

 

DS3, DS4 and DS6 - DS8 data sets include information on retail clients. Features 

include sociodemographic characteristics of the client (20 features) such as age, 

occupation etc.; income and other available funds information (29 features); loan 

characteristics (14 features) such as products type, collateral details or seasoning 

information; behavior patterns such as balances (39 features), repayment behavior (47 

features) and external information (11 features). DS1-DS2 and DS5 data sets include 

information on corporate clients. Features reflect details on borrower characteristics such 

as type, industry, region and size (27 features), financial information such as balance sheet 

(40 features), or profit and loss details (33 features), cash flows analysis (41 features), 

debt details (8 features), various ratios (29 features) and trend indicators (14 features), as 

well as external information (11 features). Every data set includes a variable that indicates 

whether a default event was observed during the performance period of one year. Clients 

with outstanding debt for more than 3 months were marked as defaulted.  

German and Japanese data sets are frequently used as benchmark datasets, especially 

for evaluating performance of different methods. Unlike the benchmark datasets, real-life 

data sets are characterized by a much greater number of features (over 150 features), as 

well as much greater size and class imbalance. The key characteristics analyzed in this 

study are sample size, class imbalance and the number of minority class cases. The extent 

of class imbalance is defined with imbalance ratio (IR), the ratio of the number of majority 

class cases and minority class cases. Data sets were divided by size, the number of bad 

clients and imbalance ratio. Those containing less than 10,000 observations were marked 
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as small sized, while the ones with more than 10,000 but less than 100,000 observations 

were marked as midsized data sets. Data sets with more than 100,000 observations were 

marked as large. Except for the Japanese data set, all the data sets are imbalanced, 

displaying different imbalance ratios. Data sets with IR smaller than 10 were categorized 

as having a low IR, those with IR between 10 and 50 as moderately imbalanced, while 

the data sets with IR higher than 50 were categorized as severely imbalanced. 

4.2. Data transformation 

A graphical illustration of the research process is presented in Figures 1. and 2. Fig 1. 

illustrates the first part of the study focusing on the impact of class imbalance on accuracy 

of different algorithms, whereas Fig. 2 illustrates the second one focusing on the impact 

of sample size. The analysis was performed in the context of a specific algorithm since 

different classification algorithms are expected to exhibit varying sensitivity on both class 

distribution and size. 

Repeated stratified random sampling, or Monte Carlo cross-validation [30] was used, 

where the data sets were split randomly into a training and a validation data set four times, 

generating training samples T1-T4 and validation samples V1-V4. In each iteration, a case 

was assigned to either the training data set or the validation data set. Stratified sampling 

was used, with the cases being assigned either to the training or the validation data set 

randomly, but keeping the original imbalance ratio constant. The classifiers were built on 

the training data set, whereas the validation data set was used for performance evaluation. 

For both experiments the data sets described in Table 1 were split randomly into a training 

(Ti) and a validation (Vi) data set using the 70%/30% ratio, as shown under Step 2 in Fig. 

1 and Fig. 2. The same approach was used throughout the study for all the algorithms.  

In order to assess the impact of gradually changing the level of imbalance, the initial 

training data sets were gradually undersampled to reach target imbalance ratios. Target 

IR ranged from 90/10, with 10% of the defaulted cases, to 20/80, with 80% of the 

defaulted cases. Class distribution was altered by random undersampling, where either 

non-defaulted clients or both defaulted and non-defaulted clients were removed to reach 

the target imbalance ratio. In other words, the defaulted clients’ ratio, for all the data sets 

was altered by a factor of 10% to create greater disparities in the level of imbalance. Eight 

new data sets Ti1- Ti8 with different IR were therefore created for each original data set, 

resulting in overall 320 different train data samples. This stage is illustrated in Fig. 1 under 

Step 2. It is important to emphasize that only the training data sets were altered, leaving 

the validation data sets and their underlying class distribution unchanged. Classifiers C1- 

C8 were trained using train samples Ti1- Ti8 (Fig. 1, Step 4.) and applied to the validation 

set Vi (Fig. 1, Step 5.). The performance metrics, outlined in Chapter 4.6., were calculated 

for each Vi (Fig. 1, Step 6.). However, with Monte Carlo cross-validation, the final 

performance metrics, reported in the remainder of the paper, were computed as an average 

over all validation sets Vi to ensure reliable estimates of the results (Fig. 1, Step 7.). 

For the study on the impact of sample size a similar approach with repeated stratified 

random sampling was used. Data set DS8 was used, as a data set representative of real-

life behavioral data samples. Under a specific IR, the size of the sample was progressively 

decreased, while keeping the IR constant (Fig. 2, Step 3.). For each IR, the sample size 

was decreased by a factor of 10% until reaching 20% of the original size, followed by a 

reduction of 5% until reaching 5% of the original size with an additional reduction to 3% 
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of the original size. As a result, for each subsample T1- T8 new train subsamples T1j- T8j 

of different sizes were created. Classifiers C1j- C8j trained using train samples T1j- T8j (Fig. 

2, Step 4.) were applied to the validation set Vi (Fig. 2, Step 5.). The final performance 

metrics, reported in the remainder of the paper, were computed as an average over all 

validation sets Vi (Fig. 1, Step 7.). 

 

             

  Fig. 1. Class imbalance impact evaluation             Fig. 2. Sample size impact evaluation 

4.3.  Classification algorithms and feature selection 

For logistic regression we used the stepwise method to select independent variables. To 

determine the weights for neural networks we used the standard backpropagation 

algorithm. The hidden layer was set to include 3 units with no direct links between input 

and output nodes. For gradient boosting we used binary trees and the number of terms in 

the boosting series equal to 50. Features selection was performed by using Chi-square and 

R-square analysis. To prevent overfitting, the number of features was limited to 7. 

4.4. Performance evaluation metrics 

Choosing the right performance metrics when dealing with imbalanced data sets is crucial 

for appropriate evaluation of the classifier's accuracy [7]. Traditionally, the confusion 
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matrix was used to compare the predictive outcome of the algorithm with the true values 

[31]. 

Table 2. Confusion matrix 

  
Prediction Accuracy rate (acc) = 

(TP+TN)/(TP+TN+FP+FN) 

True positive rate(TPR) = (TP)/(TP+FN) 

True negative rate(TNR)= (TN)/(FP+TN) 

False negative rate(FNR) =(FN)/(TP+FN) 

False positive rate(FPR) = (FP)/(FP+TN) 

Positive Negative 

Actual 

Positive 
TP (true 

positive) 

FN (false 

negative) 

Negative 
FP (false 

positive) 

TN (true 

negative) 

 

From the confusion matrix, several metrics can be induced such as the Accuracy rate 

(acc), that measures the ratio of correct predictions of the algorithm. When dealing with 

imbalanced data sets, performance measures insensitive to class distribution should be 

used. Classical measures, such as acc, exhibit an inherent bias toward the majority class, 

since for example the error of ignoring the minority class completely would be only 2% 

if the data set contained only 2% of minority class cases. Other, more appropriate metrics 

of performance can be used, monitoring accuracy for both classes independently. True 

positive rate (TPR) represents the ratio of all the defaulted clients that were correctly 

classified by the algorithm among all defaulted clients. It is also referred to as sensitivity 

or recall. True negative rate (TNR) is the ratio of all the non defaulted clients that were 

correctly classified by the algorithm among all non defaulted clients. It is also referred to 

as specificity. The goal of a classifier is to maximize the true positive and true negative 

rates. In credit risk assessment, default prediction is of greater interest since 

misclassifying a bad client attracts a much higher cost than misclassifying a good client. 

In this study measures that consider prediction accuracy for both classes were used, 

the Receiver Operating Characteristic (ROC) and corresponding area under the ROC 

Curve (AUC), as well as geometric mean of the true rates (GM). The two measures 

represent different types of performance indicators and assess the predictive performance 

of the classifier from different angles. ROC is one of the most frequently used measures. 

AUC represents the probability that a randomly chosen positive case (a defaulted client) 

will be ranked higher than a randomly chosen negative case (a non defaulted client) [7]. 

It visualizes the trade-off between sensitivity and 1-specificity [32]. An algorithm that 

classifies all cases correctly would include point (0, 1) and a random algorithm point (0.5, 

0.5). The geometric mean of the true rates measure (GM) on the other hand combines 

measures of correctness of the binary classification predictions, allowing for simultaneous 

maximization of the prediction accuracy for both classes. It is defined as follows [31]: 

GM = √𝑇𝑃𝑟𝑎𝑡𝑒 ∗  𝑇𝑁𝑟𝑎𝑡𝑒 (6) 
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5. Empirical results - the impact of class distribution 

5.1. Using geometric mean (GM) as performance metric 

Tables 3, 4 and 5 summarize the results for all data sets at different IR, with logistic 

regression shown in Table 3, neural network in Table 4 and gradient boosting in Table 5. 

All are calculated using the validation data sets. The results show the rank of a given 

classifier for each imbalance ratio. The imbalance ratio where the highest result is 

achieved is marked by “1”. Average result across all the data sets for a given class 

distribution is also shown, together with the coefficient of variation (CV), or the ratio of 

the standard deviation of GM to the mean GM. Fig. 3 presents how the GM is affected by 

the changes in the underlying class distribution for small, medium and large data sets. 

Logistic regression - impact of sample size and imbalance ratio. The best results in 

terms of GM are achieved when the data sample is more or less balanced, or when the 

imbalance ratio ranges from 6/4 to 4/6. Similar results are observed for all data samples, 

regardless of their size. When analyzing the average GM across all data sets for a given 

imbalance ratio, the best results are achieved when the imbalance ratio is equal to 1. This 

can be observed also for small sized data sets, whereas for midsized data sets slightly 

better results on average are obtained when the imbalance ratio is greater than 1, 6/4 and 

for larger data sets when the imbalance ratio is smaller than 1. Choosing the optimal class 

distribution increases the GM by 55% on average. Overall, logistic regression did not 

show high sensitivity to IR.  

If the absolute number of bad clients is taken into account, it can be observed that data 

samples with a smaller number of bad clients achieve the best results when the number of 

good clients is larger than the number of bad clients (6/4). Data samples with an adequate 

number of bad clients benefit most from a balanced class distribution and the ones with a 

higher number of bad clients when the imbalance ratio is smaller than 1, i.e. 4/6.  

Neural networks - impact of sample size and imbalance ratio. Neural networks 

display similar performance, where the best result in terms of GM is achieved when the 

data sample is more or less balanced, more specifically when the imbalance ratio ranges 

from 6/4 to 4/6. However, neural networks show less sensitivity to changes in class 

imbalance than logistic regression, as can be seen by observing smaller disparities in the 

coefficient of variation (CV). When analyzing the average GM across all data sets we 

observed that a balanced distribution yields the highest accuracy. The same result can be 

observed for both small and large data sets, whereas for midsized data sets slightly better 

results on average are obtained when the imbalance ratio is greater than 1, i.e. 6/4. 

Choosing the optimal class distribution increases the GM by 54% on average. 

If the absolute number of bad clients is taken into account, data samples with a smaller 

number of bad clients achieve the best results when the number of good clients is larger 

than the number of bad clients (6/4). Others benefit most from a balanced class 

distribution. 
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Table 3. GM rank for logistic regression 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 8 7 5 3 1 2 4 6 41% 

Japanese 8 7 6 4 1 2 3 5 6% 

DS1 8 7 4 2 1 3 5 6 41% 

DS2 7 5 4 1 2 3 6 8 30% 

DS3 8 7 5 3 1 2 4 6 27% 

DS4 8 7 6 4 1 2 3 5 23% 

DS5 6 3 2 1 4 5 7 8 40% 

DS6 8 7 6 3 2 1 4 5 40% 

DS7 7 6 5 4 2 1 3 8 50% 

DS8 8 7 5 3 1 2 4 6 23% 

AVG 7,6 6,3 4,8 2,8 1,6 2,3 4,3 6,3 16% 

Table 4. GM rank for neural network 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 8 7 5 3 1 2 4 6 26% 

Japanese 8 7 6 5 2 1 3 4 6% 

DS1 8 7 4 2 1 3 5 6 32% 

DS2 8 6 4 1 2 3 5 7 39% 

DS3 8 6 3 1 2 4 5 7 23% 

DS4 8 7 4 2 1 3 5 6 17% 

DS5 7 4 2 1 3 5 6 8 40% 

DS6 8 6 4 2 1 3 5 7 26% 

DS7 8 7 5 3 1 2 4 6 40% 

DS8 8 7 4 1 2 3 5 6 24% 

AVG 7,9 6,4 4,1 2,1 1,6 2,9 4,7 6,3 12% 

Table 5. GM rank for gradient boosting 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 8 7 5 4 2 1 3 6 40% 

Japanese 8 7 6 1 2 3 3 3 8% 

DS1 6 5 7 7 1 2 3 4 86% 

DS2 5 5 5 5 1 2 3 4 120% 

DS3 5 5 5 5 2 1 3 4 119% 

DS4 5 5 5 5 3 1 2 4 119% 

DS5 5 5 5 5 2 1 3 4 119% 

DS6 5 5 5 5 2 1 3 4 119% 

DS7 5 5 5 5 2 1 3 4 119% 

DS8 5 5 5 5 2 1 3 4 119% 

AVG 5,7 5,4 5,3 4,7 1,9 1,4 2,9 4,1 75% 
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Table 6. Highest average GM 

 Imbalance ratio 

SAMPLE 9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 

ALL NN NN NN NN GB GB GB GB 

SMALL NN GB GB LR LR GB GB NN 

MID NN NN NN NN GB GB GB GB 

LARGE NN NN NN NN GB GB GB GB 

REAL LIFE NN NN NN NN GB GB GB GB 

 

   

   

 (a)                                               (b)                                          (c) 

Fig. 3. GM for logistic regression (LR), neural network (NN) and gradient boosting (GB) for (a) 

small data sets, (b) mid data sets and (c) large data sets 

Gradient boosting - impact of sample size and imbalance ratio. Table 5 clearly 

demonstrates that with gradient boosting the best results are also achieved when the data 
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sample is more or less balanced, with better results achieved when the imbalance ratio is 

smaller than one, 4/6. The same result can be observed for both mid and large data sets, 

whereas for small sized data sets slightly better results on average are obtained when the 

imbalance ratio is equal to 1. Gradient boosting displays much greater sensitivity to class 

imbalance than the previous two methods, as can be seen from the CV, but also from the 

fact that in vast majority of the cases when class imbalance is greater than 1, not a single 

bad client was identified by gradient boosting. As a result, GM is equal to 0%. This is 

especially relevant for real-life data sets (DS1-DS8). Choosing the optimal class 

distribution increases the GM by 75% on average. Similar results can be observed if the 

absolute number of bad clients is analyzed. 

Comparison of class distribution across all classifiers. Table 6 shows the 

classification algorithm achieving the best results on average for a given imbalance ratio. 

The results are shown separately for all the data sets, depending on the size of the data 

set, and for real life data sets. This finding suggests that when imbalance ratio is greater 

than 1, neural networks in general achieve the best results, whereas for imbalance ratios 

smaller than 1 gradient boosting achieves the best results. 

Kendall's coefficient of concordance (W) was used to compare the GMs with different 

class distributions. It is a non-parametric statistics based on the average ranked 

performance of the classification, and is calculated as follows: 

W = 
12𝑆

𝑚2(𝑘3−𝑘)
. 

(7) 

where S is the sum of squared deviations, equal to: 

S = ∑ (𝑅𝑖 − 𝑅)2𝑘
𝑖=1  . (8) 

Ri  is the average rank across all classifiers, m the number of classifiers used to perform 

ranking (3) and k is the number of assessments subject to ranking (8). W= 0.81 has shown 

a level of agreement for all the algorithms, with p-value = 0.0174 < .05 = α, allowing 

rejection of the null hypothesis that there is no agreement among the different 

classification algorithms. 

 

5.2. Using Area under the ROC curve (AUC) as performance metric 

A similar analysis is displayed in Tables 7, 8 and 9, with AUC as the evaluation measure.  

Logistic regression - impact of sample size and imbalance ratio. Logistic regression 

has shown to be insensitive to class distribution and a fairly robust technique. There is no 

single class distribution that yields the best performance for all the samples. However, 

larger disparities can be observed when the sample size and the actual number of defaulted 

cases is taken into account, especially with real-life data sets. For larger data samples the 

highest AUC is achieved when IR is smaller than 1 (more specifically 3/7). 

For midsized data samples, the best results are achieved when the data sample is 

balanced, 5/5, whereas small data sets produce the best results when the IR is greater than 

1 (6/4). 
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Table 7. AUC rank for logistic regression 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 8 6 5 1 4 3 1 7 1% 

Japanese 5 1 4 3 6 2 7 8 0% 

DS1 1 4 3 2 5 6 8 7 2% 

DS2 1 2 5 4 7 3 6 8 3% 

DS3 8 7 6 2 4 2 1 5 1% 

DS4 8 7 6 4 1 2 4 3 0% 

DS5 4 5 7 2 1 3 6 8 2% 

DS6 8 7 5 5 4 3 1 1 0% 

DS7 8 7 5 5 2 2 1 2 1% 

DS8 7 6 5 8 3 1 3 2 1% 

AVG 5,8 5,2 5,1 3,6 3,7 2,7 3,8 5,1 0% 

Table 8. AUC rank for neural networks 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 7 1 2 3 4 5 6 8 3% 

Japanese 8 3 1 6 2 4 5 7 1% 

DS1 2 3 1 4 5 7 5 8 2% 

DS2 2 1 3 4 7 4 6 8 3% 

DS3 2 1 4 5 3 7 6 8 0% 

DS4 2 1 5 6 4 3 8 7 0% 

DS5 1 3 5 2 4 7 6 8 2% 

DS6 2 2 1 2 5 5 7 8 0% 

DS7 2 4 2 6 6 4 1 8 0% 

DS8 1 1 6 3 4 7 4 8 0% 

AVG 2,9 2,0 3,0 4,1 4,4 5,3 5,4 7,8 1% 

Table 9. AUC rank for gradient boosting 

Data set 
Imbalance ratio  

9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 CV 

German 8 2 3 4 6 1 5 7 3% 

Japanese 2 1 5 4 3 7 8 6 1% 

DS1 5 2 7 8 3 1 3 6 2% 

DS2 7 6 7 5 1 1 3 4 6% 

DS3 6 7 8 5 4 3 1 2 4% 

DS4 8 6 7 5 4 2 1 3 4% 

DS5 5 7 8 6 4 1 2 3 6% 

DS6 8 6 7 5 4 1 2 3 15% 

DS7 8 6 6 5 3 2 1 4 14% 

DS8 8 7 6 5 4 2 1 3 15% 

AVG 6,5 5,0 6,4 5,2 3,6 2,1 2,7 4,1 7% 
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If the actual number of defaulted cases is taken into account, it can be observed that 

data samples with a smaller number of bad clients achieve the best results when the 

number of good clients is much larger than the number of bad clients (8/2). Data samples 

with an adequate number of bad clients benefit most from a balanced class distribution 

and the ones with a higher number of bad clients benefit when the imbalance ratio is 

smaller than 1, 3/7.  

Neural networks - impact of sample size and imbalance ratio. Neural network 

exhibits different behavior. With neural networks the highest AUC is achieved when the 

IR is significantly greater than 1, or more specifically when the ratio of good/bad clients 

ranges from 9/1 to 7/3. The only exception is the DS7 data set, where the distribution of 

good/bad clients of 3/7 yields the highest AUC. Similar to logistic regression, it seems 

that the sample size plays an important role when it comes to determining the optimal 

class distribution. For larger data samples the best result is obtained when the imbalance 

ratio is less than one, 3/7, whereas midsized data samples tend to produce the best results 

when the class distribution is equal to 8/2. Small data sets produce the best results when 

the imbalance ratio is 7/3. Nevertheless, neural networks did not show significant 

variation in performance depending on the imbalance ratio, as demonstrated by the 

coefficient of variation (CV), which is relatively small for all data sets.  

If the actual number of minority class examples is considered, data samples with a 

smaller number of bad clients achieve the best results when the number of good clients is 

much larger than the number of bad clients (8/2).  

Gradient boosting - impact of sample size and imbalance ratio. For gradient 

boosting class distribution ranging between 5/5 to 3/7 generally yields the best 

performance in terms of AUC. Gradient boosting is more sensitive to class imbalance than 

neural networks and logistic regression. When it comes to choosing the optimal class 

distribution, greater disparities are observed, depending on the sample size, especially 

with real-life data sets. Gradient boosting produces the best results on average when the 

imbalance ratio is greater than 1, or more specifically when the imbalance ratio equals 3/7 

for larger data samples and 4/6 for midsized data samples. Class distribution of 8/2 yields 

best performance in terms of AUC for smaller data sets.  

Data samples with a small number of bad clients achieve the best results when the 

number of good clients is smaller than the number of bad clients (4/6). Other data samples 

show the best results when the imbalance ratio is even lower (3/7).  

Comparison of class distribution across all classifiers. We observed that regardless of 

the classification algorithm, changes in the underlying class distribution do not have a 

great impact on AUC. In fact, it seems that imbalance per se does not necessarily cause 

bad performance. As expected, when presented with large class imbalances, algorithms 

do not exhibit high classification accuracy, especially when a small number of minority 

class observations exist. In general, using a more balanced class distribution improves 

performance, which is especially evident with gradient boosting. Table 10 shows the 

classification algorithm achieving the best results on average for a given imbalance ratio. 

The results are shown separately for all the data sets, depending on the size of the data 

set, and for real-life data sets. This finding suggests that when imbalance ratio is greater 

than 1, neural networks in general achieve the best results, whereas for imbalance ratios 

smaller than 1 gradient boosting achieves the best results. 



170           Andrić et al. 

Table 10. Highest average AUC 

 Imbalance ratio 

SAMPLE 9/1 8/2 7/3 6/4 5/5 4/6 3/7 2/8 

ALL NN NN NN LR GB GB GB GB 

SMALL LR GB GB LR GB GB GB GB 

MID NN NN NN GB GB GB GB GB 

LARGE NN NN NN NN NN GB GB GB 

REAL LIFE NN NN NN NN GB GB GB GB 

   

   

  

(a)                                          (b)                                               (c) 

Fig. 4. AUC for logistic regression (LR), neural network (NN) and gradient boosting (GB) for (a) 

small data sets, (b) mid data sets and (c) large data sets 

Kendall's coefficient of concordance (W) was used to compare the average AUC across 

three classification algorithms and eight class distributions. W= 0.24 has shown a low 

level of agreement for all the algorithms as regarding the ranking of different class 
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distributions, with p-value > .05 = α, not allowing rejection of the null hypothesis that 

there is no agreement among the different classification algorithms. 

In any case, we observed that undersampling increases classification accuracy, with 

the largest impact observed with the gradient boosting algorithm. The impact of class 

distribution for samples of different sizes is displayed in Fig. 4. 

5.3. Comparison of results across performance metric 

The results presented in chapters 5.1. and 5.2. reveal that GM and AUC in some cases 

indicate a different imbalance ratio that provides the best performance for the same 

algorithm and data set. This finding can be explained by the fact that the two measures 

reflect different aspects of classifiers’ performance. AUC reflects the ability of the 

classifier to rank the cases from negative to positive in the correct order. Although having 

appealing properties, such as averaging the performance over all possible thresholds and 

being objective (i.e. no subjective input from the user is required), there are some 

disadvantages to using AUC. For example, AUC can give misleading results if ROC 

curves cross. It can also provide a somewhat incoherent measure of performance, as AUC 

presumes different misclassification cost distributions for different classifiers [32].   

On the other hand, GM measures whether a correct binary classification has been made, 

indicating the balance between classification performances on both classes. As a 

performance indicator, it is similar to accuracy rate. Even if positive cases are correctly 

classified, poor prediction accuracy of the negative cases will lower the GM value. 

Consequently, the GM measure can be used to avoid overfitting to the positive class, 

where the negative class becomes marginalized. However, GM does not distinguish the 

contribution of each class to the overall performance, as different combinations of TPR 

and TNR can produce the same GM value. Also, these types of threshold indicators 

disregard the absolute values of predictions. If the estimate is higher than the threshold, 

it is irrelevant what is the actual estimated probability is. 

To get a clearer view on the alignment of the two measures, a correlation analysis of 

the rankings of the imbalance ratios suggested by both measures was performed, outlined 

in Table 11. The high correlation illustrates overall large agreement between the results 

for LR and GB on which imbalance ratio would yield the best performance. Somewhat 

lower agreement can be observed for small data sets. On the other hand, the results for 

NN are quite different and negative correlation between the measures indicates a 

disagreement between the measures. Therefore, for NN specifically, GM could offer an 

additional angle from which to prediction accuracy can be assessed.  

In general, using different types of evaluation metrics when comparing different 

classifiers' performance is advisable, because a single metric cannot capture all related 

important aspects [33]. Nevertheless, when faced with conflicting results presented by 

GM and AUC, AUC could be considered as more appropriate since it enables measuring 

performance of a classifier and its discriminatory ability over its entire operating range. 

Credit institutions stand to benefit a great deal from having relative ranks of the clients 

determined accurately, since it enables a better differentiation of the degree of credit risk 

and a more accurate assessment of the portfolio and expected losses [34]. 
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Table 11. Pearson's correlation coefficients among GM and AUC for imbalance ratios rankings  

Data set LR NN GB 

German 0.725 0.725 0.405 

Japanese -0.190 0.238 -0.518 

DS1 -0.119 -0.232 0.753 

DS2 0.048 -0.179 0.946 

DS3 0.763 -0.071 0.627 

DS4 0.942 -0.286 0.848 

DS5 0.429 0.381 0.811 

DS6 0.572 0.067 0.811 

DS7 0.535 -0.253 0.806 

DS8 0.431 -0.313 0.738 

 

6. Empirical results - the impact of sample size and the number of 

minority class cases 

In addition to the impact of the IR, a detailed study of the impact of the sample size was 

conducted. For each IR, the sample size was decreased by a factor of 10% until reaching 

20% of the original size, followed by a reduction of 5% until reaching 5% of the original 

size. An additional reduction to 3% was performed to illustrate inconsistencies that occur 

when using very small samples. Obviously, with smaller samples a greater deviation from 

the original population is introduced.  

Based on the results outlined in the previous chapter related to class distribution, the 
impact of sample size was evaluated for IR ranging from 2.33 (70/30) to 0.43 (30/70), 
since the best performance for this data set was achieved at these IRs. Thus, for each IR 
additional 12 data sets of different sizes were created.  

6.1. Using geometric mean (GM) as performance metric 

Fig. 5 presents the impact of varying sample sizes on GM under imbalance ratios ranging 

from 2.33 (70/30) to 0.43 (30/70) by displaying the relative change of GM when compared 

to the sample of the maximum size for each of the algorithms.  

The results document several important findings. A general trend of decreasing 

accuracy when the sample size is decreased can be observed, especially when the sample 

is more or less balanced. Surprisingly, the impact is much smaller than expected. Also, 

decreasing the sample size has a much greater impact on NN than LR. In addition to class 

imbalance, LR has demonstrated low sensitivity to sample size. Decrease in GM, 

compared to using the whole sample with all defaulters (100% of the size) did not exceed 

1.5%. These results confirm suitability of using LR with small samples. NN exhibits 

greater sensitivity to the sample size and number of defaulters, with a much greater 

decrease in GM observed when faced with smaller samples. GB did not exhibit high 

sensitivity to sample size and seems to be more affected with the class imbalance than the 

sample size. NN and GB displayed unusual behavior when dealing with samples where 
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defaulters outnumber non defaulters. It appears that reducing the sample size 

unexpectedly leads to improvements with and a general trend of increased accuracy. 

 

 

 

Fig. 5. GM  % change for IR ranging from 70/30 to 30/70 

When measuring performance with GM, NN outperforms LR when the good clients 

outnumber the bad clients, whereas LR outperforms NN when bad clients outnumber the 

good clients, regardless of the number of defaulters. However, when the sample is 

balanced, LR outperforms NN when the sample is small (less than 600 defaulters).  

6.2. Using Area under the ROC curve (AUC) as performance metric 

Table 12 presents the impact of reducing sample size to 20% or less of the original size 

on AUC under imbalance ratios ranging from 2.33 (70/30) to 0.43 (30/70). It enables 

comparison of different algorithms when using the same sample, as well as relative impact 

on performance when compared to the sample of the maximum size (size=100%) for each 

of the algorithms. Paired t-tests were conducted to evaluate if the performance when using 

the reduced sample differs significantly from using the entire sample.  
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Table 12. AUC - Impact of sample size with IR ranging from 70/30 to 30/70  

LR 

SIZE No Bad IR = 2.33 IR = 1.50 IR = 1.00 IR = 0.67 IR = 0.43 

100% 6,093 0,84 *** 0,84 *** 0,84 *** 0,84 *** 0,84 *** 

20% 1,218 0.84 *** 0.84 *** 0.84 *** 0.84 *** 0.84 *** 

15% 913 0.84 *** 0.84 *** 0.83 *** 0.84 *** 0.83 *** 

10% 609 0,83 * 0,84 *** 0,83 *** 0,84 *** 0,83 *** 

5% 304 0,83 * 0,83 *** 0,83 *** 0,83 *** 0,83 * 

3% 182 0,83  0,83 *** 0,83 *** 0,83 * 0,83 *** 

NN 

SIZE No Bad IR = 2.33 IR = 1.50 IR = 1.00 IR = 0.67 IR = 0.43 

100% 6,093 0,84 *** 0,84 *** 0,84 *** 0,84 *** 0,84 *** 

20% 1,218 0.84 *** 0.84 * 0.84 * 0.84 * 0.84 * 

15% 913 0.84 *** 0.84 *** 0.84 * 0.84 * 0.83 * 

10% 609 0,84  0,84 *** 0,83 *** 0,83  0,83 * 

5% 304 0,83  0,83  0,83 * 0,83  0,83 *** 

3% 182 0,82 * 0,83  0,82  0,81 * 0,82 * 

GB 

SIZE No Bad IR = 2.33 IR = 1.50 IR = 1.00 IR = 0.67 IR = 0.43 

100% 6,093 0,82 *** 0,82 *** 0,84 *** 0,87 *** 0,88 *** 

20% 1,218 0.82 *** 0.82 *** 0.85 *** 0.87 *** 0.87 * 

15% 913 0.82 *** 0.82 *** 0.86 *** 0.87 *** 0.87 * 

10% 609 0,81 * 0,81 *** 0,86 *** 0,87 *** 0,87 * 

5% 304 0,82 *** 0,82  0,85 *** 0,87 *** 0,87 * 

3% 182 0,81   0,81 * 0,84 *** 0,87 * 0,86 * 

*** accuracy is not significantly different from the accuracy at size = 100% at α=95% 

* accuracy is not significantly different from the accuracy at size = 100% at α=99% 

 

Fig. 6 shows the relative change in AUC when compared to the entire sample with all 

defaulters included graphically. 

The results document several important findings. With LR and NN a clear trend of 

decreasing accuracy when the sample size is decreased can be observed. Surprisingly, the 

impact is much smaller than expected and in almost all cases accuracy for small sample 

sizes of 600 or 300 defaulted clients, is not significantly different from the accuracy at 

size = 100%. This finding is surprising, given that it contradicts the widely recommended 

using of 1,500 – 2,000 cases. The finding that decreasing the size of the sample with this 

magnitude does not cause significant changes in performance, represents a novel and very 

useful discovery for credit scoring. In addition to reducing cost and providing more 

flexibility when choosing a training sample, it might also encourage practitioners to 

engage in model development for low default portfolios. For LR the decrease in AUC, 

compared to using the whole sample with all defaulters (100% of the size) never exceeds 

1%. In almost all cases accuracy was not significantly different statistically from the 

accuracy achieved at size = 100%, even for very small samples. NN on the other hand is 

more affected by the sample size. However, AUC did not decrease by more than 4% even 

when faced with very small samples. When measuring performance with AUC, NN again 

outperforms other algorithms LR when the good clients outnumber the bad clients, 

whereas GB outperforms NN and LR when bad clients outnumber the good clients, 
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regardless of the sample size. However, when the sample is balanced, NN outperforms 

GB when the sample is larger (more than 4000 defaulters). GB did not exhibit high 

sensitivity to sample size and seems to be more affected with the class imbalance than the 

sample size. GB displayed unusual behavior when dealing with balanced sample, where 

reducing the sample size surprisingly lead to improvements in prediction accuracy. 

 

 

 

Fig. 6. AUC  % change for IR ranging from 70/30 to 30/70 

The results also confirm that GB is not suitable for dealing with imbalanced data sets, 

contradicting some of the previous research [17]. LR performs well when using small 

samples, indicating that samples smaller than the widely accepted benchmark of 1,500 

defaulters can be used to develop models of good performance. 

7. Conclusion 

In this article, a comprehensive experimental study on the effect of sample size and class 

distribution in credit scoring was presented, using logistic regression, neural network and 

gradient boosting algorithm on a wide array of real life data samples.  

All algorithms have shown a decrease in performance when challenged with higher 

imbalance ratios. The results suggest that gradient boosting might not be an appropriate 

classification algorithm when dealing with imbalanced data sets, while logistic regression 
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and neural networks are fairly insensitive to changes in the class distribution. Neural 

networks displayed the best performance on average when dealing with higher imbalance 

ratios. The results also indicate that class imbalance by itself does not necessarily cause a 

reduction in classification accuracy, and that sample size and classification algorithm play 

an important role when it comes to determining the optimal class distribution, especially 

the absolute number of minority class cases.  

Classification algorithms have also shown different levels of sensitivity to sample size. 

With logistic regression and neural network a clear trend of decreasing accuracy was 

observed when the sample size was decreased. However, the impact was much smaller 

than expected, suggesting that decreasing sample size significantly, even down to as few 

as 300 defaulted cases does not cause a significant decline in performance, and represents 

an important discovery for credit scoring. Gradient boosting did not exhibit high 

sensitivity to sample size and seems to be more affected by the class imbalance than the 

sample size.  

Given the recent advances in automating lending decision processes, the ever-growing 

richness in data collected, the big data trend and capital adequacy optimization, we foresee 

this to remain a very active research area. Leveraging on these findings, we plan to 

conduct experiments using other classification algorithms, such as random forests, and 

other, more sophisticated data pre-processing techniques. 
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