
Computer Science and Information Systems 16(1):75–104 https://doi.org/10.2298/CSIS180226038J

Reconstructing De Facto Software Development

Methods

Marko Janković1, Slavko Žitnik1, and Marko Bajec1

1 Faculty of Computer and Information Science, University of Ljubljana,

Večna pot 113, 1000 Ljubljana, Slovenia

{marko.jankovic, slavko.zitnik, marko.bajec}@fri.uni-lj.si

Abstract. Software development is a complex process that requires disciplined

engineering approaches. Empirical studies show that companies still don’t

document their development practice, or if they do, these are not up-to-date and

do not reflect how they really develop software. The main objective of this paper

is to propose an approach that can help companies in documenting their real

development practice. Comparing to existing approaches that require substantial

effort on the side of project members, our approach extracts information on

development practice directly from software repositories. Five companies have

been studied to identify information that can be retrieved from software

repositories. Based on this, an approach to reconstruct development practice has

been developed. The approach has been evaluated on a real software repository

shared by an additional company. The results confirm that software repository

information suffice for the reconstruction of various aspects of development

process, i.e. disciplines, activities, roles, and artifacts.

Keywords: Software development method; Software repository; Development

practice; Development method; Development project.

1. Introduction

Software development requires a systematic and disciplined approach to assure the

quality of the process and its results, i.e. the software that we develop 1. This has been

recognized already in the early beginnings of the software development era and has led

to the construction of many software development methods.1 Over the years, it then

turned out that there is no ideal development method that could fit to all kinds of

projects, even in the context of a single organization. How suitable a particular

development method is, actually depends on many factors, ranging from project and

organization characteristics to the characteristics of the development team. These

findings have been identified by many researchers, e.g. [2–9].

1 In this paper, we use the term software development method to denote the work that we do to structure, plan,

control and perform the development of an information system. With the term method we cover all

important aspects of the development lifecycle, i.e. activities to be carried out, artefacts to be developed,

techniques to be used, roles to be assigned etc.

76 Marko Janković et al.

One of the research fields that emerged as a result of the aforementioned problems, is

method engineering. Researchers in this field devoted a lot of effort to find suitable

solutions. One of them is the so called situational method engineering, which is a

process of constructing development methods specifically attuned to the needs of

projects [10]. Such development methods would either be composed of fragments of

other development methods or created by tailoring the development method that is

generally used and known to the organization. Unfortunately, there are several obstacles

that hinder the application of situational method engineering in practice [11, 12]. One is

for instance that we need somebody who is capable of applying the method engineering

process (must be familiar with various development methods, method fragments etc.)

and what is even more challenging, we need enough time before starting the project so

that this person can do the job. In real settings, where projects are almost always run in

very tight schedules, this is rarely the case [13–15].

Problem statement. Based on our experience from introducing the situational method

engineering process in practice 16 and from related research findings (e.g. 17),

companies see as beneficial if they are able to document and monitor actual work on

development projects and compare it with their prescribed methods. In this way, they

can detect deviations if they occur. Doing this manually is however, very time-

consuming and perceived by developers as an unnecessary burden. An approach is thus

needed that does not require more than just a minimal effort from developers.

Objective. The objective of our research is to solve the above problem by

reconstructing information about the project performance from the data that is captured

in software repositories. We assume that software repositories contain enough data to

reconstruct at least the main method elements (i.e. disciplines, activities, artifacts).

Moreover, the objective is to support post-development analysis to learn how the project

was performed and to possibly identify its positive and negative aspects in relation to its

outcome, and also during the project performance, so as to detect situations that might

lead to project failures.

Contribution. The main contribution of the research presented in this paper is the

approach that facilitates the reconstruction of the development method elements from

software repositories. In contrast to existing approaches that only enable the

reconstruction of disciplines (e.g. analysis, design, development) or focus on the

development phase only, our approach enables the reconstruction on a more detailed

level, including additional development method elements.

Outline. The paper is organized in ten sections. In Section 2, we explain how the

research was performed (research design), giving also a brief information on the

participating companies. In Section 3 and 4, we describe the suggested approach with

Section 3 focusing on the analysis of the software repository content and Section 4 on

the reconstruction of the development method elements. Section 5 covers the evaluation

and its results, which are discussed in Section 6. Section 7 provides the information on

threats to validity. In Section 8, we position our research within related work and,

finally, Section 9 concludes the paper.

Reconstructing De Facto Software Development Methods 77

2. Research Method

This section gives a brief description of the research design. Our research was motivated

by the following research question:

Does the information stored in software repositories suffice for the reconstruction of

basic characteristics of the software development methods that were de facto used in the

corresponding software development projects?

2.1. Data Collection Procedure

Data were first collected from five software companies whose business is software

development (see Table 1 for their profiles). The companies shared their software

repositories with us (limited to selected projects only) and provided their personnel

(project managers) for qualitative analysis. For the evaluation step, an additional

company joined the research. Its data (software repository) and personnel were used to

validate the research findings.

Table 1. Profiles of participating companies.

Company Company profile
Marand d.o.o. Company with around 100 employees that develop innovative

and easy to use healthcare IT products.
Comtrade d.o.o. Large company with over 500 employees. They develop IT

solutions for different industries, including government, financial

institutions, healthcare, telecommunication providers.
Ekipa 2 d.o.o. Company with over 200 employees. They are focusing on

development of entertaining mobile apps and games.
Optilab d.o.o. Small company of about 30 employees. They develop complex

information systems for clients from the financial sector, utilities

and healthcare.
Adacta d.o.o. Company, with over 350 professionals that provides support to

400 regional and international clients. They are specialized in

developing and implementing business IT solutions and business

consulting.

2.2. Research Approach

To answer the research question, the following approach was used:

• Step1: analysis of software repository content: the purpose of this step was to find

out what kind of supporting tools the participating companies are using within

software development and, more importantly, what kind of attributes they capture in

software repositories. For further research, we assumed that attributes which we

found in all repositories (from the involved companies), are generic and could be

78 Marko Janković et al.

thus found also in any other software repository (i.e. from any other software

development company).

• Step 2: development of the algorithms for automatic reconstruction of

development method elements from software repositories: the purpose of this

step was to develop algorithms (and tools support) that will allow us to reconstruct

the development method elements from software repositories. The objective was to

reconstruct the development method elements that represent valuable information for

project managers and other project team members. Using semi-structured interviews

with project managers from the participating companies, we identified the main

development method elements of their interest. For each of these elements we then

developed algorithms for their reconstruction.

• Step 3: evaluation: the findings from the first step and the algorithms developed in

the second step were evaluated by involving another company in the research. At

first, we checked whether our assumption about generic attributes holds in their case

and then employed our algorithms to reconstruct the selected development method

elements from the repository on the recently finished project. Finally, we discussed

the accuracy and usefulness of the reconstructed software development elements

with their project manager.

In the rest of the paper, each of these steps is described in more detail.

3. Analysis of Software Repository Content

As a first step we asked companies to provide us access to their development

environments or just give us snapshots of their software repositories. This was not easy

to get due to the privacy and security issues, but eventually we got enough data to get a

good picture on what they use and collect. As we expected, the companies were quite

similar in terms of the type of tasks for which they were using computerized support

(e.g. revision control, issue/bug tracking, document management, etc.) but differed to a

certain extent in the actual tools they were using. Among the tools that we found, the

most common were:

• Jira, Bugzilla or DevTrack for issue/bug tracking (ITS)

• Subversion or Git for revision control (RCS)

• Sharepoint or LogicalDOC as a document management system (DMS)

Additionally, some companies were using tools for other tasks, such as for managing

code reviews (e.g. Cruicable, Reitveld) or for managing team collaboration (e.g. Slack,

Confluence, Skype). But since these tasks did not have computerized support in all

companies and in some cases data cannot be obtained due to the privacy issues, we did

not analyze them further.

For each company and tool, we then examined what kind of data they actually store in

their databases or logs. In Fig. 1, you can see the set of attributes that we were able to

find in software repositories of all five participating companies.

Reconstructing De Facto Software Development Methods 79

ITS RCS DMS

Issue

Issue id

Title

Description

Type

Assignee

Reporter

Resolver

Created

Resolved

Workflow

Resolution

Int/String

String

String

String

User

User

User

Timestamp

Timestamp

Workflow

String

Commit

Revision id

User

Timestamp

Message

Changes

 Type

 File

Int/String

User

Timestamp

String

ChangeType[]

char

File

Fig. 1. Selected attributes from systems comprising the project’s software repository.

The next step was to check how well the data from different tools comprising

software repositories can be linked together. Remember that a software repository is not

a standalone physical database but rather represents a logical view on several databases

and logs from different systems. In our study, we found that important logical

connections exist between issues and commits, which both carry important information

and are kept track of in software development. While an issue represents a problem or

associated tasks that need to be carried out in order to solve a specific problem, a

commit refers to changes on specific files that are a result of solving the problem or task

and are put back into the repository. Issues and commits are however managed in

different systems and thus not necessarily linked. The link can be established if the

commit message (Fig. 1) carries enough information so that we can identify which issue

it is connected with. For unlinked commits and issues, techniques such as Frlink can be

used 18. Let us also note that linking commits with issues is a good development

practice that has been practiced in open source community for a long time 19 and should

be enforced by the companies that want to raise the quality of their development

processes.

Another challenge for establishing connections between data collected through

various systems into a software repository, is to link user accounts created in these

systems that refer to the same user. This is almost always the case, as software

repositories usually comprise tools of different vendors and the single-sign-on option is

not available. For this purpose, various existing entity resolution and identity merge

algorithms can be used. In our case, we use the one published by Goeminne and Mens

20.

80 Marko Janković et al.

4. Algorithms for Automatic Reconstruction of Software

Development Method Elements

As written in the introduction, our objective is to enable reconstruction of more detailed

information about the development methods used on projects than existing approaches

enable, and to do this without any substantial involvement of developers. The existing

approaches [21-24] focus on the reconstruction of disciplines (i.e. they are able to tell

how much effort was spent for analysis, design etc. or how these disciplines were

following one another) or they go into details on the development phase only (i.e. by

focusing on the issue lifecycle). In contrast, our goal is to focus on the whole project,

and not just the development phase and to reconstruct more than just the disciplines. In

this section, we first describe the meta model that was constructed in cooperation with

the participating companies and then describe how this information can be reconstructed

from the repositories. The steps for reconstructing the project specific software

development method are shown in the Fig. 2. In the figure each step has a link to the

section in which it is explained in more details.

Observe

repositories

Appendix A.

[reconstructed

elements are compliant

with the BM?]

Developers

knowledge

Reconstruct

method elements

[project

finished]

[new issue

resolved]

Get new insights

and update BM

Reconstructed project

specific method

Construct base

method

Software repositories

RCS ITS DMS

Method Metamodel

Section 4.1.

Base method

Section 4.2.

Section 4.3.

Section 4.2.

Developers

knowledge

Documentation

Analyze project

performance

Base method

Section 4.2.

INPUTS ACTIVITIES OUTPUTS

Updated base method

Section 4.2.

Fig. 2. Diagram showing the steps used during the reconstruction of the project specific software

development method. BM is used as acronym for “base method”.

Reconstructing De Facto Software Development Methods 81

4.1. Metamodels of Software Development Methods

Development methods can be described by a number of different concepts, including

phases, disciplines, deliverables, activities, techniques, examples, roles, experiences, life

cycles, tools, etc. A number of different metamodels exist that underpin existing

development methods 25. For the purpose of our research, we followed the SPEM

metamodel 26. Its basics, including the separation of method and process concepts, were

briefly described to the participating companies. Afterwards, the companies were asked

to identify the main method meta elements that they would be interested in

reconstructing from the software repositories. Linking data from software repositories to

SPEM metaelements has also been done by others [27, 28]. The final selection, that was

influenced also by the data that is actually captured in software repositories, included the

following method meta elements:

Disciplines: a discipline presents a set of activities that are closely related in the sense

that they all contribute to the same overall goal (e.g. Analysis, Design,

Implementation).

Activities: an activity presents a general unit of work assignable to a specific performer

(Develop a use case, Design GUI, etc.). As a result of an activity, different

deliverables (artifacts) can be produced.

User roles: a user role is responsible for performing activities and producing the

required artifacts (e.g. Developer, Analyst, Architect, etc.). Note that several project

members can be assigned to a single user role.

Artifacts: an artifact is a result produced as part of performing a particular activity (e.g.

Source code, Unit test).

The metamodel is represented in Fig. 3. Each discipline consists of one or many

activities while an activity belongs to exactly one discipline. An activity can be

connected with none, one or many artifacts and an artifact with one or many activities.

For each activity, there is exactly one user role assigned, but for a particular user role

there might be several activities that the user role is responsible for. The recursive

relationship on the meta element Activity designates that activities are dependent on each

other, which is due to the fact that they need to be performed in a certain order.

Fig. 3 also indicates the relationships of the metamodel elements with software

repository concepts. The three most important concepts, originating from a software

repository, are a file, an issue, and a user. The concept file designates a physical file that

is stored in a revision control system or document management system, the concept issue

represents an issue from an issue tracking system, and finally the concept user denotes

user accounts from any of the software repository systems. The meaning of the

relationships among metamodel elements and software repository concepts is as follows:

Artifacts are in relationship with files (stored in software repository) that represent the

artifact. Each artifact can be related to none, one or several files while a file belongs

to exactly one artifact.

Each issue requires a certain amount of work to be done. This work might be

represented as an activity. A good development practice is that each issue is

82 Marko Janković et al.

connected to exactly one activity while activities might resolve several issues at

once.

Users represent project team members with user accounts in a software repository.

Several users can be assigned to a particular user role and vice versa, a particular

user can play more than just a single user role in the observed project.

produces
User Role

Discipline

1..n

consists of

1..n

1

11..n

responsible for

0..n

0..1

0..1

follows

is assigned to
is linked via
commit to

0..n0..n0..10..n

ITSRCS/DMS S
o

ftw
a
re

re
p

o
s
ito

rie
s

M
e

ta
-m

o
d

e
l

0..n

0..n

0..n

0..1

0..n

0..1

File UserIssue

ActivityArtifact

Fig. 3. Software development method metamodel and its connection with software repository

concepts.

4.2. Construction of a Base Method

One of the concepts that plays an important role in our approach is the so called base

method. With the base method, we denote the set of method elements that are typically

used in a particular company when performing development projects. Taking into

account the metamodel described in Section 4.1, the base method of a company includes

its typical disciplines, activities, user roles, artifacts, and relations among them. The

intensity of individual activities and the sequence of their performance is however not

described with the base method as this depends on each particular project settings and its

characteristics. In our approach, the base method represents the baseline to which we

compare the reconstructed method elements and detect deviations.

The construction of a base method is a preliminary step before the reconstruction of

the project specific development method. The simplest way to do this is by analyzing

documentation of past projects or by acquiring this information from project managers.

In some cases, companies even keep their software developments methods documented,

in which case these documents can serve as a good starting point for the construction of

the base method.

Fig. 4 represents an example of a base method constructed according to the existing

documentation for one company that participated in the evaluation. Using the

documentation, we were able to construct the company’s base method consisting of 5

Reconstructing De Facto Software Development Methods 83

disciplines, 15 activities, 23 artifacts, 8 user roles, and the relations among them. During

the construction we have also captured 14 rules, which define the presence of a relation

between method elements based on the project characteristics. (e.g. Financial

Calculation - If the project is small then Financial Calculation is not required; If the

project is medium or large then Financial Calculation is required). More details about

the construction are presented in the Section 5.3.

Developer

Custom SDM

Manage Functional
Specification

Initiate project
Create Wireframes

Benefits Review Plan

PID

Project PlanContract

Source Code

Unit Test

Financial Calculation

Project Mngt.
Implementation

Deployment Test

Analysis & Design

Data Model

Data Schema

Analyst

Develop

Develop Database

Slicing GUI

Design UI

UI Designer

Front-end
Developer

Project
Manager

Tester

Technical
Writter

Manage Risks

Workshops/Meetings

Manage Technical
Specification

Meeting Minutes

Technical Spec.

Design

Functional Spec.Wireframes

Risk Register

Document

User Documentation Technical Docum.

Validate

Regression Tests

HTML + CSS code

Organize &
Coordinate

Manage Project
Lifecycle

Milestone Report

End Project Report Project Status Report

Tender

DB Admin

Resolve bugs

Developer

User RoleDiscipline Activity ArtifactLegend: Rules

Fig. 4. The company’s base method draft manually created out of the company’s documentation.

It comprises 5 disciplines, 15 activities, 23 artifacts, 8 user roles, and 14 rules. Examples of a rule:

(a) Financial Calculation - If the project is small then Financial Calculation is not required; If the

project is medium or large then Financial Calculation is required, or (b) If the project is small then

Benefits Review Plan is not required; If the project is medium or large then Benefits Review Plan

is optional.

4.3. Reconstruction of the Software Development Method Elements

Once the base method is defined, we use data from software repositories to reconstruct

activities, artifacts, user roles, and disciplines. In this section we describe how this is

84 Marko Janković et al.

done. In the guidelines that follow, we take into account the findings on the data that

software repositories include and how well this data is linked (see Section 3).

Reconstructing Artifacts

Artifacts are reconstructed from files that were committed to the repository. This is done

immediately after an issue is being resolved. We check the repository and retrieve all

files that were committed as a consequence of resolving this issue. Then we infer from

the files (by checking their names, file types and if necessary also the file content) which

artifacts from the base method they represent. Techniques that can be used for matching

files to artifacts are many. Machine learning algorithms are useful when we have data to

learn from, i.e. software repositories from past projects. In this case, we create a

classifier which we then use for matching. If this is not available, we acquire additional

information from the company employees so that matching can be done. The algorithm

used in such cases is described at the end of this section.

Reconstructing Activities

After we reconstruct the artifacts as a result of resolving an issue, we go further and

check which activities are connected to these particular artifacts. We do this by checking

the base method where these relationships are defined. In most cases, activities are

connected to one artifact only, thus the reconstruction of the correct activity is not a

problem. The involvement of developers is only required in rare cases, a) when these

relationships are not one to one (an activity produces several artifacts and vice versa,

several activities might be responsible for the creation of one particular artifact) or b)

when we have no artifact which we could use to infer the corresponding activity. This

happens when we deal with an issue that did not commit any file to the repository. In

such cases, we involve the developers to tell which activity is connected to that

particular issue.

User Roles and Disciplines

Similarly, we also reconstruct user roles and disciplines. Since we already know the

activity name, we simply check the base method to retrieve also the names of the

associated user roles and disciplines. Furthermore, for each retrieved user role, we also

retrieve the users (user accounts) that were assigned to this particular activity.

Algorithm for Reconstructing Artifacts and Activities

For matching files to artifacts and issues to activities we use the algorithm that is

described below.

For the algorithm to work, the first step is to go through the base method and capture

keywords that best describe each artifact. In addition, we capture file types that represent

the format in which a specific artifact is usually created. Next, we capture keywords for

the activities without artifacts.

Reconstructing De Facto Software Development Methods 85

Example: Keywords and file types for the artifact “Functional specification”

Keywords := {requirement, functional requirement,

non-functional requirement, usability, scalability…}

File types := {doc, docx, rtf, txt, pdf};

Such manual acquisition of this information is only required if we do not have any

data to learn from. If this data is available, i.e. we have access to software repositories of

finished projects, then techniques, such as Bag of Words, TF-IDF or similar can be used

to automatically acquire this information.

The algorithm to match files to artifacts and issues to activities is as follows: for each

resolved issue I, we find all connected commits C. For each such commit C, we classify

each committed file F to an artifact A from the base method BM. We try to do that based

on the file types. If several artifacts (artifact list AL) contain the same file type, we

calculate individual artifacts weights. An artifact weight w for an artifact A tells what is

the likelihood that the file F represents the artifact A from the artifact list AL. The higher

the weight, the higher the likelihood. The weight w is calculated as a sum of TF-IDF

values. The TF-IDF metric ((tfidf=tf(K,A)*idf(K,AL))) is calculated as a product

between frequency of the keyword K in the file F (tf(K,F)=fK,F) and the logarithm of the

ratio between the number of all artifacts A in the artifact list AL and the number of these

artifacts from the artifact list in which the keyword K appears

(idf(K,AL)=log(|AL|/|K∈AL|)). Once the committed files have been successfully

classified to an artifact, we check in the base method which is the activity that is

responsible for the delivery of this artifact.

If the issue under analysis cannot be connected to any commit, and thus we cannot

identify the corresponding activity over connected artifacts, then we reconstruct the

activity directly from the base method by employing a very similar approach (see lines

23-33 in Algorithm 1). Instead of searching for artifact keywords in committed files, we

search for activity keywords in the issue title and description. These are two attributes

that we can find in all issue tracking systems. For clarity reasons (to avoid duplicate

lines), this part is not shown in the algorithm.

The algorithm is represented below. It uses three data structures:

Matrix Weight_KA: a two-dimensional matrix that tells for each keyword K and artifact

A what is the likelihood that K represents A. The likelihood of K representing A is

calculated using TF-IDF.

List Artifacts: a list of artifacts from the BM that contain a specific file type in their file

types set.

List Activities: a list of activities from the BM that are in BM linked to the artifacts

reconstructed during the classification of files linked to a specific issue.

Algorithm 1: Algorithm to reconstruct Artifacts and Activities

1 INPUT:

2 List ResolvedIssues; //ordered by resolved time ASC

3 BaseMethod BM;

4

86 Marko Janković et al.

5 OUTPUT:

6 // files are classified to artifacts

7 // issue are classified to activities

8 // relations between activities and artifacts

9

10 Matrix Weight_KA;

11 Set IssueArtifacts;

12 for each issue I in ResolvedIssues do

13 for each commit C in I.connectedCommits do

14 for each file F in C.files do

15 if F.type == IgnoreFileType then next file;

16 List Artifacts = artifactsByFileType(F.type, BM)

17 If Artifacts.size == 0 then

18 // new type -> ask project member, update BM

19 else if Artifacts.size == 1 then

20 Classify(F, Artifacts[0]);

21 IssueArtifacts.add(Artifacts[0]);

22 else

23 resetAndPopulateMatrix(Weight_KA, Artifacts);

24 for each artifact A in Artifacts do

25 for each keyword K in A.keywords do

26 Weight_KA[K,A]:= tf(K,F)*idf(K,Artifacts)

27

28 Artifact, Value = max(sumByA(Weight_KA))

29 if Value != 0 then

30 Classify(F, Artifact);

31 IssueArtifacts.add(Artifact);

32 else

33 // ask project member and update BM

34

35 if IssueArtifacts.size > 0 then

36 List Activities = findActByArtifacts(IssueArtifacts, BM);

37 if Activities.size == 1 then

38 Classify(I, Activities[0])

39 else

40 // ask proj. member (bad practice, new knowledge)

41 else

42 /*Issue without artifacts. Same as in lines 23-33,

43 but this time we use keywords from issue title and

44 description and as a list all Issues without

45 artifacts*/

Reconstructing De Facto Software Development Methods 87

As a part of the research described in this paper, we developed a computerized tool

(iSPRToolset) that facilitates the application of the proposed approach in a company.

The tool supports the following tasks:

a) The analysis and linkage of the data from tools that comprise software

repositories

b) The creation of a base method

c) The automatic reconstruction of activities, artifacts, user roles, and disciplines

using the algorithm described in Section 4.3.4

d) Various visualizations of the development method elements of the timeline

For more details about the tool check http://ispr.jmlabs.eu and the Appendix.

5. Evaluation

To make the evaluation unbiased, we invited an additional software company to join the

project. In this way, we did not know what tools this company is using to facilitate

development, neither what information it stores in its software repository. The

evaluation comprised the following steps:

(1) Analysis of the company’s software repository

(2) Construction of the company’s base method draft

(3) Reconstruction of the development method elements

(4) Analysis of the project performance

The aim of the first step was to find out whether our assumptions about a) typical

attributes that could be found in a software repository and b) linkage between repository

data (issues, commits, user accounts) hold for this particular company.

In the second step, the goal was to create a draft of the company’s base method.

The step three was dedicated to the evaluation to what extent specific development

method meta elements can be reconstructed from the company’s software.

Finally, the purpose of the fourth step was to evaluate how useful the reconstruction

approach can be if used for controlling the project performance.

In the following, we report on the evaluation findings.

5.1. Profile of the Company

The company that we analyzed in the evaluation, develops e-business solutions for

Health, Insurance and Telco industries and employs about 50 people. They develop

software by following a combination of agile and traditional approaches. The decision to

involve this particular company into our research was based on the following reasons:

• The company was willing to provide all the necessary information about the

project that seemed appropriate for the evaluation.

• The project team members were allowed and willing to commit required time

for the purpose of the evaluation.

88 Marko Janković et al.

• The company already had a prescribed and documented development method in

place – i.e. guidelines for software development. This was useful as we could

use it as starting point for the construction of the company’s base method.  

5.2. Analysis of the Software Repository Content

For the selected project, we imported data from three different tools that the company

was using during the project. These were Jira (used as issue tracking system), SVN (used

as revision control system), and LogicalDoc2 (used as document management system).

The first step was to retrieve issues, commits, and users (user accounts). For a summary

report on the data collected see Table 2.

Table 2. Collected data.

Attribute Value

of issues retrieved (ITS) 186 – 13a

of commits retrieved (RCS + DMS) 379 + 166

of all files 3578

of users (employees + stakeholders) 15 + 2
aIn case of Jira, 13 issues were excluded as they were

duplicates of other issues, could not be resolved, or were of the

following type meta task.

On the next step, we tried to link commits from SVN and LogicalDoc to Jira Issues.

At first, we did that by extracting issue IDs from commit messages using regular

expressions, such as for example “\b”+JiraProjectKey+”\b){1}[ˆ\w[0-

9]]+\d+”. A similar approach was also used by others [29, 30]. In this way, we were

able to link roughly 70% of all commits with corresponding issues and about 60% of

issues with corresponding commits. These results alone were already promising, as we

linked majority of the commits with issues and vice versa. To improve these results, we

could have used the approach as suggested in 18, but we rather decided for a manual

check via developers so that we also learned how consistent they are in using supporting

tools.3 Together with their help, we were able to link additional 139 commits and 54

issues. 34 (6.2%) commits and 18 (10.4%) issues were left unlinked.

By analyzing unlinked commits, we found 9 of them were made to restructure and

move the repository to a new location. Additional 12 were related to specific changes,

such as upgrade library, add user as developer in pom.xml, fix typo, import files, etc.

The last 13 unlinked commits that were left were all found to be connected with project

management activities and the creation/modification of various related documents.

Similarly, by analyzing unlinked issues we found that they mainly presented system

administration activities, such as increase RAM in test environment, update from java 6

2 In LogicalDoc, a commit is perceived as a new version of a file (check-in).
3 It is important to note here that companies should require from their developers to link commits with issues

otherwise important information is missing. The open-source community seems to be aware of that – in

MongoDB and Hibernate, for example, over 90% of all commits from 2014 are linked to at least one issue

from Jira 19.

Reconstructing De Facto Software Development Methods 89

to java 7, install SSL certificate, as well as activities that did not result in the creation of

any artifact (e.g. setup development environment).

Regarding the resolution of users via user accounts, we had no problems, since the

users were using the same usernames for all the systems. On this project, 17 different

people participated, out of which 15 were employees and 2 stakeholders. For details on

the results of linking the data see Table 3.

Table 3. Percentage of issues linked to commits and vice versa.

Attribute Value

% of commits linked to issues (regex) 68.3

% of issues linked to commits (regex) 59.5

% of commits linked to issues (regex + manually) 93.8

% of issues linked to commits (regex + manually) 89.6

At the end of this step, we also checked how well the development method meta

model corresponds to the company and its expectations from the development method

reconstruction. The company’s CIO was fine with the selected development method

meta elements.

5.3. Construction of the Base Method Draft

When we asked the company to tell us how they usually develop software (i.e. do they

have any predefined steps, deliverables, techniques, user roles etc. that project team

members need to follow) they gave us a documentation in which they defined basics of

their development method. This included the description of project disciplines and

corresponding activities. For each activity, the documentation also provided a

description of the activity goals and associated artifacts. Each activity was further linked

with user roles responsible for its performance. The described development method also

differentiated among different types of projects. Based on the project size, these were

divided into three groups: small, medium and large. All this information was written in a

series of word files and available to all employees. We constructed the base method by

analyzing the provided documentation. We did that together with one of the company’s

project managers. The base method draft is depicted in Fig. 4. In the next sections, we

describe how this base method served us to reconstruct the development method

elements that were used on the observed project.

5.4. Reconstruction of the Project Software Development Method Elements

The most important part of the evaluation was to check how well can we reconstruct

development method elements of an observed project by analyzing the data from the

corresponding software repository.

To have a “golden rule”, i.e. to be able to measure how accurate is the reconstruction,

we asked the person that acted as the manager of the observed project, to help us

manually reconstruct the development method elements that were used on the project.

90 Marko Janković et al.

For each issue, the manager identified connected commits and their files and based on

that concluded what artifacts they represent.4 In case an issue was found that had no

connected commits (this happens when during the resolution of an issue no files are

created), the project manager was asked to tell what activity this issue was about.

Similarly, for the commits and related files that were not identified over issues, the

project manager was asked to classify them into the artifacts they represent. From

activities, we then inferred disciplines and user roles.

In the next step, we used this information as the baseline against which we compared

the results obtained with our algorithm. To measure the quality of the reconstruction, we

used the precision and recall measures, which are known from information retrieval and

pattern recognition. The results are shown in tables below. To fairly judge the quality of

the algorithm, we also compared manually and automatically classified file versions into

artifacts and issues into activities. The reason for this is that some artifacts are created

gradually, through many versions, and are thus connected to many issues. Consequently,

it wouldn’t be enough to limit the comparison on the artifacts only, as these might

reconstruct well only for some of the commits.

Table 4. Precision and recall of the automatically classified file versions to artifacts and issues to

activities.

Manually

classified

Automatically

classified

Precision Recall F-measure

File version 5945 5908 0.997 0.991 0.994

Issues 173 155 0.98 0.88 0.93

Table 5. Precision and recall of the automatically reconstructed development method elements

compared to the manually retrieved development method elements.

Method

element

Manually

retrieved

Automatically

retrieved

Precision Recall F-measure

Artifact 15 12 1.00 0.8 0.89

Activity 12 10 1.00 0.83 0.91

Discipline 5 5 1.00 1.00 1.00

User role 8 7 1.00 0.88 0.94

To achieve good results with our reconstruction algorithm, it is crucial that artifacts

are reconstructed with as high precision and recall as possible, as the reconstruction of

other method elements depend on this.

As you can see from the results, the classification of file versions to artifacts yielded

very good results (Table 4, row 1). The reason for this is that artifacts are quite different

in terms of their names, content and formats in which they are created. Thus, we were

able to differentiate among them with a high confidence. The results also show that file

versions did not influence much on the classification accuracy. This is an important

4 This was not that time consuming, as the company uses a special directory structure in revision control

system and document management system to store files that belong to a certain result or artifact. This way

the project manager could conclude already from the place in the directory structure what artifacts an

observed commit's files most probably represents.

Reconstructing De Facto Software Development Methods 91

finding as it supports iterative reconstruction of development method elements, i.e. step

by step through the project performance.

The files that were misclassified or were left unclassified, were not many and in most

cases due to one of the following reasons: (a) the file was of an unknown type, i.e. not

defined in the base method – in our case these were mainly fonts of file type woff, eot,

tff…, (b) the file content couldn’t be parsed – these were pdf files that contained

images/scans and at the same time couldn’t be classified based on keywords in their

filenames and file paths, and (c) files that included keywords which are more typical for

some other artifact – in our case this happened for files that represented meeting minutes

(e.g. on one particular meeting they were discussing a lot on the functional specification,

so this word occurred many times in the meeting minutes, and thus the file was classified

as an artifact “functional specification” rather than “meeting minutes”).

Good results in terms of precision and recall were obtained also for the classification

of issues to activities (Table 4, row 2). In most cases, we were able to correctly identify

activities that corresponded to issues by classifying files these issues created.

Table 5 shows results of reconstructing the development method elements. It

compares manually retrieved development method elements with the automatic

reconstruction. As you can see, all the automatic reconstructions were correct (100%

precision) which is not surprising as the classification of files got such a high accuracy.

The recall for activities and artifacts were however not that perfect on the first sight (0.8,

0.83, respectively). Several activities and artifacts were missing in the automatic

reconstruction. The explanation that we got from the project members revealed that the

missing elements were all newly introduced and thus couldn’t be found in the base

method. Let us emphasize however that these results are based on the fully automatic

reconstruction, i.e. without any involvement of the development team. In other words,

the results, presented in tables above, could be improved if the developers were asked

for additional information in cases when classification or reconstruction couldn’t be

done.

5.5. Checking Project Performance

The algorithm for reconstructing development method elements can be used also during

project performance. In this case, we reconstruct development method elements one by

one, every time an issue is resolved, and check for their compliancy with the base

method. There are several benefits of doing this during project performance. If the

reconstructed development method elements are not compliant with the base method, the

project manager is notified about that and can react by asking responsible project team

members for clarification. In case no suitable argumentation is given, a bad practice was

obviously detected and can also be prevented. However, if those responsible for the

deviation can argument why they declined from what was expected, the base method can

be supplemented by capturing new knowledge in terms of new development method

artifacts or rules that bind project characteristics with some specific development

method element. Additionally, if the project is being checked during its execution by

reconstructing development method elements after each resolved issue, the information

about activities and disciplines can be visualized on a timeline diagram which gives an

interesting insight into the current state of the project – this is only possible if company

92 Marko Janković et al.

store information about the time planned and spent on the level of issues. It can even

help to detect situations that might represent risk for the project. For example, if the

majority of issues that are being resolved are still connected to activities and disciplines

that should already be finished then it could be that we are at risk that the project will be

late. Some of these analyses, produced with the iSPRToolset for this particular project

are shown in the Appendix.

For the purpose of the evaluation, we simulated the project realization by passing the

issues to our approach, as they were appearing chronologically (ordered ascending by

the resolved date-time attribute) during the analyzed project. For each issue we have

reconstructed the development method elements. The Fig. 5 shows the reconstructed

development method. What is worth to mention is that we improved the base method by

three new development method elements (two artifacts and one user role), which were

detected during the reconstruction and present a new knowledge about development

practice. This happened when the algorithm was not able to classify a file into any of

existing artifacts or an issue into any of existing activities and we thus asked the project

manager for an explanation. He explained that these development method elements are

important but we obviously failed to capture them when we were creating the base

method draft. Final assessment given by the project manager was that he would like to

have our approach and iSPRToolset implemented and available for future projects he

will be working on.

Developer

Custom SDM

Manage Functional
Specification

Initiate project
Create Wireframes

Benefits Review Plan

PID

TenderContract

Source CodeUnit Test

Financial Calculation

Project Mngt.
Implementation

Deployment Test

Analysis & Design

Physical Data Model

Data Schema

Analyst

Develop

Develop Database

Slicing GUI

Design UI

UI Designer

Front-end
Developer

Project
Manager

Tester

Technical
Writter

Manage Risks

Workshops

Manage Technical
Specification

Meeting Minutes

Technical Spec.

Design

Functional Spec.Wireframes

Risk Register

Document

User Documentation Technical Docum.

Validate

Regression Tests

HTML + CSS code

Organize &
Coordinate

Manage Project
Lifecycle

Milestone Report

End Project Report Project Status Report

Project Plan

DB Admin

Resolve bugs

Developer

System Admin

System
Administration

Setup development
environment

Legend:

- User Role- Discipline - Activity - Artifact - New element - Missing element

- Elements not found during reconstruction

Fig. 5. Reconstructed software development method.

Reconstructing De Facto Software Development Methods 93

6. Discussion

The approach presented in this paper has some limitations that we need to acknowledge.

First, it does not reconstruct all possible development method elements but only some of

them, i.e. disciplines, activities, artifacts, and user roles, to be exact. It also does not

reconstruct the workflow which would tell how exactly the activities followed one

another. Furthermore, it depends on the quality of the data captured in software

repositories. Finally, it requires some effort (although not substantial) from the project

team members in order to work optimally.

On the other hand, to our knowledge, it achieves much more than existing

approaches, which we are aware of. First, it helps the company in capturing and

maintaining its base method, i.e. the method that really reflects how the company is

developing software. Next, it helps the company to conduct development projects in a

way that they are performed consistently and in line with what the company prescribes

with the base method. Also, it helps to detect deviations from the base method as project

is performed. Finally, it only requires small input from the development team.

To further validate the usability of the approach, semi-formal interviews were

conducted with seven project managers of the participating companies. We asked them

the following questions:

a) How do you perceive the suggested approach in terms of its complexity? Could

it be introduced in your company? Do you think it would be accepted by your

employees?

b) What do you expect the main benefits would be of using such approach in your

organization?

c) What would you suggest to make the approach more useful?

The feedback that we received was generally positive. They all agreed the approach is

simple enough to be adopted in their organizations. Since it doesn’t require any

substantial effort from developers or changes that developers would need to introduced

in their everyday practice, the acceptance of the approach is also expected to be high.

As the main benefit, they emphasized the following possibilities offered by the

approach: a) to do retrospective on finished projects, b) to observe project performance

on the fly and identify steps that does not fit their regular practice (i.e. decline from their

base method), c) to keep base method up-to-date, and d) to give more emphasis on

methodological aspects of their development activities (as a side effect). Finally, as a

suggestion for improvement they were all consistent that it would be very useful if we

were able to reconstruct also workflow information, i.e. how exactly activities and their

smaller counterparts (tasks) were performed during an observed project.

7. Threats to Validity

There are multiple threats to validity that face this research, we will address them in the

context of construct validity, internal validity, external validity and reliability.

94 Marko Janković et al.

With respect to construct validity, we had to address the fact that we rely upon data

that are created and annotated by project members and are stored in software

repositories. To improve construct validity, we have validated the data and results with

project members and constructed the reconstruction approach based on the insights that

we got from five companies. The threat we face here is also that project members might

not remember all the details from the project and there is no explicit evidence that the

project has been performed as it was reconstructed. We presume that data in software

repositories are unbiased and that project members possess enough information about

how project has been conducted.

From an internal validity point of view, we do not face any threats, since our main

goal was to show that using data from software repositories, we can reconstruct a

development process and method followed on the project. In our evaluation, we

analyzed an already completed project, hence the data should not be biased.

An external validity issue we face is that we evaluated our approach only on one case

study, hence it is hard to justify how generalizable our results are. However, the

approach to reconstruct method elements and perform different analyses is

straightforward: if all the required data are available, it is reasonable to assume that

reconstruction can also be done on other development projects. Among different

organizations, the main difference, when using the proposed approach, is in the base

method, which is specific to the organization and should be defined based on the

company's development practice. Another threat we face is that the data are not of such a

good quality as required. For example, commits and issues might not be linked to that

extend as required. In our case study we were able to link 93.8% of all commits with an

issue. However, this might not be achievable on other projects, since it is up to the

development culture and rules inside a particular organization.

In terms of reliability the accuracy of the annotated data can be a concern as it can

produce biased results. In case of the reconstruction this would give spurious results, but

reconstruction would still be successful. So this threat is more related to the accuracy of

the reconstructed method. To mitigate this threat, the reconstructed method was

validated with project members.

8. Related Work

There are several works that can be considered related to our research. These can be

grouped into four categories, according to the research fields they come from:

• Method engineering

• Software repository mining

• Software process discovery

• Software process mining

• Other related approaches

Note that there is some overlapping among these fields (specifically among the last

three fields), in terms of approaches and techniques that they use. Different names that

Reconstructing De Facto Software Development Methods 95

they carry are more a result of the fact that they come from different research groups and

times.

8.1. Method Engineering

Method engineering is an approach to create software development methods that are

specifically attuned to organizations. In general, the idea lies in the conceptualization,

and construction of new methods and tools (or in the adaptation of existing ones), so that

they best fit requirements of a certain organization. The research on method engineering

has a long tradition. A good introduction to the field can be found in 31. Based on the

method engineering principles, a specific direction has emerged, called situational

method engineering. As the name implies, situational method engineering deals with

developing new methods or adapting existing ones on-the fly, i.e. to meet specific

project situations. In the literature, a number of situational method engineering

approaches were suggested [16, 32, 33]. For an excellent review see 10.

Method engineering and specifically situational method engineering works are related

to our research in general, as they share the same motivation, i.e. to help software

development companies develop software in more disciplined way. In both cases,

development methods are the subject of research with a difference that situational

method engineering approaches require much more human effort to properly work. As

reported in 14 and 16, this is considered one of the main reasons why situational method

engineering approaches hardly penetrate to practice.

8.2. Software Repository Mining

The analysis of software repository data is a research discipline that deals with the

analysis of rich software repository information to get valuable insights about the

development process and software itself. For a survey, see 34. The works that are

directly related to our research, are for instance 35, 36, or 37. Here, the authors employ

various statistical models, such as Latent Dirichlet Allocation and Latent Semantic

Indexing to cluster unstructured and unlabeled textual data (commit log comments,

source code, documentation, mailing lists, etc.) into topics. Although results show that

this can be done efficiently, the topics do not convey much information on the

underlying development method, except maybe the main activities, if they can be

inferred from the topics.

In this group, we also include works that deal with software process recovery.

Existing approaches mainly apply supervised and unsupervised techniques, such as bag-

of-words, summary statistics, topic analysis, and Bayesian classifiers to recover the

development process from a variety of artifacts that were created by developers and can

be obtained from software repositories [21, 22]. These approaches allow for the

recovery of the so called Unified Process Views, which illustrate how the relative

emphasis on different disciplines changes over the course of the project. Detailed

information on activities, user roles, and artifacts are out of scope of these works.

96 Marko Janković et al.

8.3. Software Process Discovery

In the field of software process discovery 38, their main objective is to automatically

derive a formal model of a process from the data that was collected during the execution

of a process. Several approaches have been suggested on how this can be done, for

example [39–41]. What these works have in common, is that they only use information

from revision control systems and not also from other systems that usually comprise a

software repository.

8.4. Software Process Mining

In the field of software process mining, the authors linked data from different software

repositories and apply process mining techniques to derive a process map and identify

inefficiencies, imperfections, and enhance existing process capabilities [23, 42]. They

have used data from software repositories to perform different control and

organizational analyses. However, as part of their analyses, they only focus on the

processes on the level of code review or bug life cycle. The same goes for other work in

this field that employ process mining techniques to recover valuable information [24, 43,

44]. Here, the authors focus on the reconstruction of software processes on the level of

disciplines or on the level of issues, but do not consider activities, user roles and

artifacts, as we do in our research.

8.5. Other related approaches

There are also other research areas related to our research such as Organizational

patterns, which also can be used to capture software development methods [45, 46, 47].

Mainly organizational patterns are still captured and documented manually, but some of

the researchers are trying to use data from software repositories to detect bad practices

(anti-patterns) [27, 28]. These approaches could benefit from our research since they

could analyze the behavior and patterns on the higher level, level of activities.

9. Conclusion and Future Work

Software development is a complex and creative task, whose sophisticated results are

increasingly influencing our daily lives in various ways. Due to the nature of this work, it

is important that each company has a method in place to manage, control, and guide the

work of software developers and project managers. Otherwise, confusion may ensue,

leading to project failures, low quality of the developed software and higher

maintenance costs.

To manage software projects, companies often use different supporting tools, such as

issue tracking systems, revision control systems, document management systems, code

review tools, and others. Their main goal is to support the work of developers. Each tool

Reconstructing De Facto Software Development Methods 97

per se contains a lot of information and valuable knowledge on how a project has been

performed in practice. However, to obtain an even better overview of the development

process as a whole, the information from these tools can be linked. Linked data can then

be used to reconstruct what really happens behind those projects and eventually to learn,

among others, why some projects go well and others do not.

In this paper, we described how the data from different software repositories (issue

tracking system, revision control system, document management system) can be used to

reconstruct valuable information on the project performance with only a little

involvement of the developers. The aim of the paper was to demonstrate that using and

linking the data from tools comprising software repositories, allows us to reconstruct the

development method in more details than existing approaches do. Furthermore, the aim

was to show that it is possible to capture the actual ways of working in an organization,

in a form of a base method, which can be constantly kept up-to-date without any

significant involvement of developers.

To identify the information that can be retrieved from software repositories we have

cooperated with five companies, which shared their data with us. Based on the findings

we have developed an approach to reconstruct development practice. We have evaluated

the approach on a real software repository shared by an additional company. The results

show that software repository information suffice for the reconstruction of various

aspects of development process, i.e. disciplines, activities, roles, and artifacts.

As part of our future work we plan to gather data from other software repositories and

include it into the process of reconstruction. With this we expect to rise the

reconstruction accuracy and level of details reconstructed. We also plan to use the

approach on other software projects to see how it performs in real-time manner

(monitor, control, guide).

Acknowledgments. We thank Professor Martin Pinzger for his comments on the draft of

this paper. We also wish to acknowledge financial support for this project by the

Slovenian Research Agency ARRS within the research program P2-0359.

References

1. David P. and Parnas L.: Risks of Undisciplined Development. Communications of the ACM,

Vol. 53, No. 10, 25-27. (2010) doi: 10.1145/1831407.1831419.

2. Hardy C. J., Thompson J. B. and Edwards H. M.: The use, limitations and customization of

structured systems development methods in the United Kingdom. Information and Software

Technology, Vol. 37, Issue. 9, 467-477. (1995) doi: 10.1016/0950-5849(95)97291-F.

3. Fitzgerald B.: An empirical investigation into the adoption of systems development

methodologies. Information & Management, Vol. 34, 317–328. (1998) doi: 10.1016/S0378-

7206(98)00072-X.

4. Huisman M. and Iivari J.: The individual deployment of systems development

methodologies. Lecture Notes in Computer Science, 134–150. (2002).

5. Hansson C., Dittrich Y., Gustafsson B. and Zarnak S.: How agile are industrial software

development practices? Journal of Systems and Software, Vol. 79, Issue 9, 1295-1311.

(2006) doi: 10.1016/j.jss.2005.12.020.

98 Marko Janković et al.

6. Gonzalez-Perez C. and Henderson-Sellers B.: A work product pool approach to

methodology specification and enactment. Journal of Systems and Software, Vol. 81, Issue

8, 1288-1305. (2008) doi: 10.1016/j.jss.2007.10.001.

7. Petersen K. and Wohlin C.: A comparison of issues and advantages in agile and incremental

development between state of the art and an industrial case. Journal of Systems and

Software, Vol. 82, Issue 9, 1479-1490. (2009) doi: 10.1016/j.jss.2009.03.036.

8. Clarke P. and O’Connor R. V.: The situational factors that affect the software development

process: Towards a comprehensive reference framework. Information and Software

Technology, Vol. 54, Issue 5, 433-447. (2012) doi: 10.1016/j.infsof.2011.12.003.

9. Ivarsson M., Gorschek T.: Practice selection framework. Int. J. Soft. Eng. Knowl. Eng., Vol.

22, No. 01, 17-58. (2012) doi: 10.1142/S0218194012500027

10. Henderson-Sellers B., Ralyté J., Ågerfalk P. J. and Rossi M.: Situational Method

Engineering. Springer. (2014) doi: 10.1007/978-3-642-41467-1.

11. Kuhrmann M., Méndez Fernández D., and Tiessler M.: A mapping study on the feasibility of

method engineering. J. Softw. Evol. and Proc., 1053–1073. (2014) doi: 10.1002/smr.1642

12. Ter Hofstede A. H. M., Verhoef T. F.: On the feasibility of situational method engineering.

Information Systems, Vol. 22, Issue 6, 401-422. (1997) doi: 10.1016/S0306-4379(97)00024-

0.

13. Fitzgerald B.: The use of systems development methodologies in practice: a field study.

Information Systems journal, 201-212. (1997) doi: 0.1046/j.1365-2575.1997.d01-18.x.

14. Fitzgerald B., Russo N. L. and O’Kane T.: Software development method tailoring at

Motorola. Communications of the ACM, Vol. 46, Issue 4, 65-70. (2003) doi:

10.1145/641205.641206.

15. Coleman G.: An Empirical Study of Software Process in Practice. In Proceedings of the 38th

Annual Hawaii International Conference on System Sciences, 315c-315c. (2005)

doi: 10.1109/HICSS.2005.86.

16. Bajec M., Vavpotič D. and Krisper M.: Practice-driven approach for creating project-specific

software development methods. Information and Software Technology, Vol. 49, Issue 4,

345-365. (2007) doi: 10.1016/j.infsof.2006.05.007

17. Gupta M., Sureka A., Padmanabhuni S. and Asadullah A. M.: Identifying Software Process

Management Challenges: Survey of Practitioners in a Large Global IT Company. In 12th

IEEE Working Conference on Mining Software Repositories, 346-356. (2015).

18. Yan Sun, Qing Wang and Ye Yang: FRLink: Improving the recovery of missing issue-

commit links by revisiting file relevance. Information and Software Technology, Vol. 84, 33-

47. (2017) doi: 10.1016/j.infsof.2016.11.010

19. Jankovic M. and Bajec M.: Comparison of software repositories for their usability in

software process reconstruction. In proceedings of IEEE 9th International Conference on

Research Challenges in Information Science, 298–308. (2015) doi:

10.1109/RCIS.2015.7128890

20. Goeminne M. and Mens T.: A Comparison of Identity Merge Algorithms for Software

Repositories. Sci. Comput. Program, Vol. 78, 971-986. (2013) doi:

10.1016/j.scico.2011.11.004

21. Hindle A.: Software process recovery: Recovering process from artifacts. In 17th Working

Conference on Reverse Engineering, 305-308. (2010) doi: 10.1109/WCRE.2010.46

22. Hindle A., Godfrey M. and Holt R.: Software process recovery using recovered unified

process views. In IEEE International Conference on Software Maintenance, 1-10. (2010)

doi: 10.1109/ICSM.2010.5609670

23. Gupta M. and Sureka A.: Mining Bug Report History for Discovering Process Maps,

Inefficiencies and Inconsistencies. In Proceedings of the 7th India Software Engineering

Conference, 1-10. (2014) doi: 10.1145/2590748.2590749

Reconstructing De Facto Software Development Methods 99

24. Poncin W., Serebrenik A. and Van den Brand M.: Process mining software repositories. In

15th European Conference on Software Maintenance and Reengineering, 5-14. (2011) doi:

10.1109/CSMR.2011.5

25. Hug C., Front A., Rieu D., and Henderson-Sellers B.: A method to build information systems

engineering process metamodels. Journal of Systems and Software, Vol. 82, No. 10, 1730-

1742. (2009)

26. OMG, Software & Systems Process Engineering Metamodel Specification (SPEM), Tech.

rep. (Apr. 2008). URL http://www.omg.org/spec/SPEM/2.0

27. Pícha P., Brada P., Ramsauer R., and Mauerer W.: Towards Architect’s Activity Detection

Through a Common Model for Project Pattern Analysis. In Proceedings of 2017 IEEE

International Conference on Software Architecture Workshops. (2017).

28. Pícha P. and Brada P.: ALM Tool Data Usage in Software Process

Metamodeling. In Proceedings of 2016 42th Euromicro Conference on Software

Engineering and Advanced Applications. (2016).

29. Fischer M., Pinzger M. and Gall H.: Populating a Release History Database from version

control and bug tracking systems. In proceedings of the International Conference on

Software Maintenance, 23-32. (2003) doi: 10.1109/ICSM.2003.1235403

30. Sliwerski J., Zimmermann T. and Zeller A.: When Do Changes Induce Fixes? In proceedings

of the International Workshop on Mining Software Repositories, 1-5. (2005) doi:

10.1145/1082983.1083147

31. Brinkkemper S., Lyytinen K. and Welke R. J.: Method engineering: principles of method

construction and tool support. In Selected Papers from the International Conference on

‘‘Principles of Method Construction and Tool Support’’. (1996) doi: 10.1007/978-0-387-

35080-6

32. Ralyté J., Deneckère R. and Rolland C.: Towards a generic model for situational method

engineering. In Proceedings of the 15th Conference on Advanced Information Systems

Engineering, 95-110. (2003)

33. Karlsson F. and Ågerfalk P. J.: MC Sandbox: Devising a tool for method-user-centered

method configuration. Information and Software Technology, Vol. 54, Issue 5, 501-516.

(2012) doi: 10.1016/j.infsof.2011.12.009

34. Woosung J., Eunjoo L. and Chisu W.: A Survey on Mining Software Repositories. IEICE

Transactions on Information and Systems, 1384-1406. (2012)

35. Savage T., Dit B., Gethers M. and Poshyvanyk D., TopicXP: exploring topics in source

code using latent dirichlet allocation, In IEEE International Conference on Software

Maintenance, 1–6, 2010. doi: 10.1109/ICSM.2010.5609654.

36. Chen T. H., Thomas S. W., Nagappan M. and Hassan A. E., Explaining software defects

using topic models, In 9th IEEE Working Conference on Mining Software Repositories,

189–198, 2012. doi: 10.1109/MSR.2012.6224280.

37. Hindle A., N. Ernst A., Godfrey M. W. and Mylopoulos J.: Automated topic naming.

Empirical Software Engineering, Vol. 18, Issue 6, 1125-1155. (2013) doi: 10.1007/s10664-

012-9209-9

38. Cook J. E. and Wolf A.: Automating process discovery through event-data analysis. In 17th

International Conference on Software Engineering, 73-73. (1995) doi:

10.1145/225014.225021

39. Kindler E., Rubin V. and Schäfer W.: Incremental workflow mining based on document

versioning information. Unifying the Software Process Spectrum, no. 3840 in Lecture Notes

in Computer Science, 287-301. (2006)

40. Akman B. and Demirors O.: Applicability of process discovery algorithms for software

organizations. In 35th Euromicro Conference on Software Engineering and Advanced

Applications, 195-202. (2009) doi: 10.1109/SEAA.2009.87

http://www.omg.org/spec/SPEM/2.0

100 Marko Janković et al.

41. Duan B. and Shen B.: Software process discovery using link analysis. In IEEE 3rd

International Conference on Communication Software and Networks, 60-63. (2011) doi:

10.1109/ICCSN.2011.6014218

42. Gupta M.: Process Mining Software Repositories to Identify Inefficiencies, Imperfections,

and Enhance Existing Process Capabilities. In Companion Proceedings of the 36th

International Conference on Software Engineering, 658-661. (2014) doi:

10.1145/2591062.2591080

43. Rubin V., Gunther C. W., Van Der Aalst W. M. P., Kindler E., Van Dongen B. F. and

Schäfer W.: Process mining framework for software processes. In proceedings of the

international conference on Software process, 169-181. (2007)

44. Lemos A., Sabino C., Lima R. and Oliveira C.: Using process mining in software

development process management: A case study. In proceedings of the IEEE International

Conference on Systems, Man, and Cybernetics, 1181-1186. (2011) doi:

10.1109/ICSMC.2011.6083858

45. Coplien O. J. and Harrison B. N.: Organizational Patterns of Agile Software Development,

Prentice Hall. (2004)

46. Sulaiman Khail W. and Vranić V.: Treating Pattern Sublanguages as Patterns with an

Application to Organizational Patterns. In Proceedings of 22nd European Conference on

Pattern Languages of Programs. (2017)

47. Frťala T. and Vranić V.: Animating Organizational Patterns. In Proceedings of 8th

International Workshop on Cooperative and Human Aspects of Software Engineering.

(2015)

Appendix A. Project Performance Analyses

In this appendix, we provide examples of visualizations that have been created during

the evaluation phase based on the information created with the iSPRToolset

(http://ispr.jmlabs.eu). The aim is to show that there are other insights on the project

performance that we get by following the proposed approach and might be beneficial for

project managers.

The reconstructed method elements in combination with other information available

from the software repositories (e.g. worklogs – each user logs hours spent working on a

specific issue) provide a basis for different project analyses. All figures in this section

are created using the data provided by the participating company.

Using the information about the worklogs allows us to observe on a daily basis how

much time (effort) was spent per discipline, activity, or user role. This tells us, for

instance, for which part of the project the most time was spent. Furthermore, we also

have a possibility to analyze the total time spent for a particular discipline, activity, or

user role. The daily intensity of particular discipline/activity/user role is presented on the

right-hand side of Figures 6, 7, and 8.

Before acquiring a project, companies typically prepare a tender for which they also

estimate the time that will be needed for a particular activity on the project in order to

estimate the total costs of the project. The comparison of the actual and estimated time

allows us to detect for which disciplines/activities/user roles developers spent more time

than expected. This information is very important to project managers and can help them

to make better estimations on new projects. In our case, the observed company, in order

to prepare a tender and to estimate the project costs, does an internal financial

calculation as part of which they also estimate the time needed for a particular task on

the project. All this information is documented in an Excel file, which is classified to the

Financial Calculation artefact from the base method. We used this information to gather

Reconstructing De Facto Software Development Methods 101

information about the estimated time for each activity and consequently also for each

discipline. The comparison of the estimated and actual time is presented on the left-hand

side of Figures 6, 7, and 8. It shows what portion of time was planned for a particular

discipline/activity/user role and what portion was actually spent. With this comparison,

project manager can identify project activities (and roles) that required more time than

was expected.

It is a rule in the observed company that at the beginning of each project they also

prepare a project plan, which includes the timeline of a project - often presented with a

gantt chart. From the gantt chart we gathered the information about the timespan of a

particular task and when it was planned to be resolved. We used this information to

visualize how the expected timeline deviated from the actual one. The information from

the gantt chart is integrated into the actual timeline of a project and is presented with

light blue rectangles in Figures 6 and 8.

Fig. 6. Intensity of particular disciplines.

102 Marko Janković et al.

Fig. 7. Analysis on the level of user roles.

Reconstructing De Facto Software Development Methods 103

Fig. 8. Analysis on the level of activities

104 Marko Janković et al.

Marko Janković is a reseacher at the Faculty of Computer and Information Science,

University of Ljubljana. He has been researching mainly in the field of mining software

repositories and software development methods. His work has been published in

journals and presented on several international conferences. Professionally he is also

working on projects related to the Internet of things, big data, and data analysis.

Slavko Žitnik, PhD, is an assistant at the University of Ljubljana. His bibliography

counts more than 20 items with a book chapter and a patent application. He has been

researching mainly in the field of information retrieval and information extraction from

textual sources. He designed an end-to-end information extraction system that uses an

ontology and represents the extracted entities, relationships and coreferences against it.

In the field of natural language processing he achieved first place at the BioNLP 2013

challenge in extracting relationships from text to build gene regulation network.

Professionally he is also working on projects related to the Internet of things, big data,

social networks and semantic data analysis.

Marko Bajec is a Full Professor and head of the Laboratory for Data Technologies at

the Faculty of Computer & Information Science, University of Ljubljana. His research

interests primarily focus on IT and data Governance include software development

methods, IT/IS strategy planning, data management and manipulation. His work has

been published in many high-ranked journals. In his career, he has led or coordinated

over 30 applied and research projects. For his contribution in transferring knowledge to

industry he received several awards and recognitions.

Received: February 26, 2018; Accepted: October 11, 2018

