
Computer Science and Information Systems 16(2):515–539 https://doi.org/10.2298/CSIS180312039B

Majority Vote Feature Selection Algorithm in Software

Fault Prediction

Emin Borandag1, Akin Ozcift1, Deniz Kilinc1, Fatih Yucalar1

1 Department of Software Engineering, Faculty of Technology,

Manisa Celal Bayar University, Manisa, Turkey

{emin.borandag, akin.ozcift, deniz.kilinc, fatih.yucalar}@cbu.edu.tr

Abstract. Identification and location of defects in software projects is an

important task to improve software quality and to reduce software test effort

estimation cost. In software fault prediction domain, it is known that 20% of the

modules will in general contain about 80% of the faults. In order to minimize cost

and effort, it is considerably important to identify those most error prone modules

precisely and correct them in time. Machine Learning (ML) algorithms are

frequently used to locate error prone modules automatically. Furthermore, the

performance of the algorithms is closely related to determine the most valuable

software metrics. The aim of this research is to develop a Majority Vote based

Feature Selection algorithm (MVFS) to identify the most valuable software

metrics. The core idea of the method is to identify the most influential software

metrics with the collaboration of various feature rankers. To test the efficiency of

the proposed method, we used CM1, JM1, KC1, PC1, Eclipse Equinox, Eclipse

JDT datasets and J48, NB, K-NN (IBk) ML algorithms. The experiments show

that the proposed method is able to find out the most significant software metrics

that enhances defect prediction performance.

Keywords: software fault prediction, majority voting, machine learning algorithm

1. Introduction

Prediction of software defects with the use of software fault prediction models is a cost-

effective approach in the usage of limited project resources. Static software measures,

i.e. size, coupling, cohesion, inheritance, complexity measures and defect data collected

may be used to construct machine-learning methods to predict faults in practice. Quality

of software modules are predicted as fault-prone (fp) and not-fault-prone (nfp). In this

context, if an error is acquired during module tests, the corresponding module is marked

as fp otherwise nfp. Defects in software projects lead to failures that increase the total

cost of the project. From software developer point of view, usage of efficient fault

investigation methods is important to predict defect-prone modules and thus improve

software quality [1-3]. Software prediction models make use of historical software

project faults and its corresponding software metrics to identify quality of an upcoming

project/module from similar domain. Prediction performance of a software quality

model depends on the information represented with software metrics. Therefore,

software quality estimation models require selection of relevant metrics to improve their

discrimination ability. Feature selection methods are used to obtain a subset of valuable

516 Emin Borandag et al.

software attributes among all. In this context, development of a feature selection model

is the main focus of this study [3].

Investigation of relevant metrics is a search problem and the answer to this problem

is the exploration of software metric space with the use of feature selection strategies.

The feature selection process attempt to locate the feature subsets that represent the data

at least as good as the original data with all features. In particular, the feature selection

strategies are classified in two groups, i.e. filtering and wrapper feature subset selection

algorithms [4]. Filtering based algorithms makes use of some statistical criteria to

arrange attributes according to their importance or weights. On the other hand, wrapper

methods locate the most predictive feature subset with the use of search algorithms. It is

expected that relevant feature subsets may produce a better prediction ability compared

to the features alone [5]. In this study, we evaluate filtering based feature selection

algorithms to obtain an effective feature subset.

The problem with subset selection is that evaluation of whole candidate metric

subsets is ineffective in terms of computational resources. Therefore, we explain our

Majority Vote based Feature Selection (MVFS) strategy in having two steps. First we

rank the metrics according to their relative importance with the help of 4 well-known

feature filtering strategies, i.e. Information Gain (IG), Symmetrical Uncertainty (SU),

ReliefF (RLF) and Correlation-based (CO) [6], second, we select the relevant metric

subset with a voting scheme borrowed from ensemble learning domain [7]. In this

strategy, each feature in the subset is obtained with the majority votes of the feature

filtering algorithms on the feature. Having obtained feature subsets with the proposed

strategy, we make use of 3 machine learning algorithms i.e. Naïve Bayes (NB),

Decision Tree (J48), and K Nearest Neighbor (K-NN/IBk) [8], to evaluate the defect

prediction ability of corresponding software metrics. The experimental results show that

gradual decrease of software metric space with the proposed MVFS algorithm increases

performance of the models.

The main contribution of the study is following: Basic feature filtering strategies are

better to be combined in some way to obtain an improved fault prediction performance.

In the software fault prediction literature, there are many hybrid strategies that combine

feature selection strategies to obtain hybrid methods. To the best of our knowledge, this

is the first study that makes use of a voting mechanism to investigate the most relevant

features. The remainder of the paper is organized as follows. In section 2, we briefly

discuss related work. The evaluation dataset and related information is given in Section

3. In Section 4, we present ranker based filters and the machine learning algorithms

used in the study. Section 5 gives details about proposed feature selection algorithm,

detailed results of the conducted experiments, and ANOVA test employed for

statistically validate the obtained results. In Section 6, validity threats of the study are

presented. The article ends with conclusion and as well a list of references.

2. Related Work

There is an increasing effort on developing Search Based Software Engineering (SBSE)

oriented algorithms for Software Product Lines (SPLs). SBSE addresses software

engineering problems such as requirement analysis, predictive modeling, software

project management, design, testing, refactoring and repair [9]. In the context of this

MVFS Algorithm in Software Fault Prediction 517

study, one of the most important fields of SBSE searches is related with the obtaining

optimum feature model. In other words, a valuable search field in SBSE is to find

alternative methods for selecting effective features. In this paper, as an answer to SBSE

optimum feature model problem, we propose a hybrid feature selection strategy, i.e.

MVFS, to investigate effective software metrics for fault-prediction [9, 10].

There are many feature selection methods used to obtain the most relevant subset of

features particularly for improving defect discrimination performance of prediction

algorithms [11]. Many studies from literature surveys feature selection strategies and in

general feature selection algorithms are classified as filters, wrappers and hybrid

methods [12]. Filter based feature methods makes ranking of features from the most

relevant to the least relevant with the use of statistical and entropy-based correlation

criteria [13]. Chi-square (CS), Gain Ratio (GR), Information Gain (IG), Symmetrical

Uncertainty (SU) and ReliefF (RLF) are widely used feature ranker methods [14].

Though filter rankers are classifier independent feature selection methods, wrappers

help to obtain relevant feature subset depending on the classification accuracy of a core

classifier. The methods search whole feature space adding or removing features to

calculate the estimated accuracy of the core classifier. Generally, an exhaustive search is

impractical, and therefore non-exhaustive, search methods such as e genetic algorithms,

greedy stepwise, best first or random search are often preferred. Since filtering based

selection approaches are independent of a classifier they are more efficient from

computational cost of view. However, this relative gain is obtained with the loss of

awareness of possible dependency between features and the prediction algorithm [15].

The wrapper algorithms propose solution to take account this dependency while

obtaining feature subset at the expense of a computational cost. Hybrid feature selection

strategies are trade-off solutions for both feature selection domains. They have made

combination of multi feature selection approaches to acquire the best feature subset.

One particular benefit of hybrid solutions help the use of benefits of filter and wrapper

approaches. For instance a combination of filter selection methods is used in [16] to

obtain a promising feature subset. The authors have developed a hybrid similarity

measure based on defect categories and compare the performance of their metric with

IG, GR and RLF on Area Under the Curve (AUC) metric. They have made use of 11

NASA Promise datasets and they have obtained about 70 % better values in terms of

number of projects with the use of their hybrid similarity measure in comparison to

classical filtering approaches. In an another two-step hybrid feature selection strategy

[17], the authors have used CS, SU and RLF to determine relevance of the software

metrics in tandem with a clustering strategy to obtain the optimum subset of features

from Eclipse and NASA KC1 projects. They have utilized AUC and F-measure metrics

to evaluate their results and they have stated that their hybrid methodology has

increased the fault prediction performance compared to relevancy measures alone. In the

literature, there are many feature selection studies that makes a combination of filter and

wrapper approaches in some way to obtain the most valuable feature subset. [18] is an

empirical study that investigates value of hybrid feature selection strategies.

Having introduced the basis of general feature selection strategies, we now survey

related work conducted in software defect prediction domain. One of the early studies in

this context is the study conducted in [19]. The authors made use of filters ranker an

empirical study to eliminate irrelevant features and they show that only a few software

metrics are enough to build an effective defect predictor. In another feature selection

study for software defect prediction, authors use an artificial immune system search for

518 Emin Borandag et al.

building a wrapper model to evaluate a software fault predictor [20]. Jacob et al.

propose a hybrid selection method combining information gain ratio and correlation

based feature selection applied on NASA datasets [21]. In their detailed empirical work,

Catal et al. investigate effects of various feature selection techniques on public datasets

from PROMISE repository with the use of RF and NB algorithms [22]. In their recent

work [23], the authors use a multivariate linear regression stepwise forward feature

selection as a wrapper fashion to obtain optimal set of source code metrics. Another

recent work makes use of a hybrid feature selection to improve fault prediction

performance of machine learning algorithms [24]. As a last study from literature, Chen

et al. improves performance of their machine learning algorithms with two-step hybrid

feature selection methodology [25].

There are many studies in the software engineering domain making use of feature

selection methods to improve defect prediction accuracies of the algorithms. One of the

key points observed in the recent studies is that hybrid of feature selection strategies are

preferred to take benefit of multiple extraction techniques at the same time. The

rationale behind this approach is similar to ensemble learning methodologies that rely

on the performance of ensemble learners rather than a single learner [26]. In this

context, hybrid feature selection strategies are continuously explored particularly in

software fault prediction domain. Our feature-selection combination strategy, i.e.

MVFS, is explained in section 5.1 is an extension to the ongoing search.

3. Software Measurement Data

In this study, we have used datasets from PROMISE repository [27], Eclipse Equinox

[28] and Eclipse JDT R3.1 [29] bug prediction datasets given in Table 1. First four

datasets are from NASA software projects which were developed in C/C++ language for

spacecraft instrument, storage management, flight and earth orbiting. Eclipse Equinox

Bug Prediction Dataset which was developed in Java language for the infrastructure of

the Java IDE. The brief descriptions of the datasets are presented in Table 1.

Table 1. The description of datasets

Dataset Number of modules Non-Defective Defective % Defect

CM1 498 449 49 9.83

JM1 10885 8779 2106 19.35

KC1 2109 1783 326 15.45

PC1 1109 1032 77 6.94

Eclipse Equinox 997 791 206 20.66

Eclipse JDT R3.1 3883 2611 1272 32.75

NASA datasets contain 22 attributes composed of 4 McCabe metrics [30], 9 base

Halstead measures [31], 8 derived Halstead measures [32], and the last attribute is

‘defect’ with 2 classes (false or true, whether a software module is defective or not)

[33]. The definition and description of these metrics are presented in Table 2.

MVFS Algorithm in Software Fault Prediction 519

Table 2. Description of NASA software metrics

Metric type Software metrics Description

McCabe

LOC Line count of code

v(g) Cyclomatic complexity

ev(g) Essential complexity

iv(g) Design complexity

Derived Halstead

N Total operators + operands

V Volume

L Program length

D Difficulty

I Intelligence

E Effort to write code

B Effort estimate

T Time estimator

Basic Halstead

IOCode Line count

IOComment Comment count

IOBlank Blank line count

IOCodeAndComment Number of code and comment lines

uniq_Op Number of unique operators

uniq_Opnd Number of unique operands

total_Op Number of total operators

total_Opnd Number of total operands

branchCount Number of branch counts

Class defects
Describing whether a software

module is defective or not

On the other hand, Eclipse Equinox consists of 38 metrics: 6 Chidamber & Kemer

(CK) metrics [34], 11 Object-Oriented (OO) metrics [35], 5 entropy metrics [35], 15

change metrics [36, 37], and the last metric is ‘bug’ that describing whether a file is bug

or not. The brief description of these metrics is given in Table 3.

Table 3. Description of Eclipse Equinox software metrics

Metric type Software metrics Description

CK Metrics

WMC Weighted method count

DIT Depth of inheritance tree

RFC Response for class

NOC Number of children

CBO Coupling between objects

LCOM Lack of cohesion in methods

OO Metrics

Fan-In Number of other classes that reference the class

Fan-Out Number of other classes referenced by the class

NOA Number of attributes

NOAI Number of attributes inherited

NOPA Number of public attributes

NOPRA Number of private attributes

LOC Number of lines of code

NOM Number of methods

520 Emin Borandag et al.

NOMI Number of methods inherited

NOPM Number of public methods

NOPRM Number of private methods

Entropy

Metrics

HCM Entropy of code changes

WHCM Weighted entropy

LDHCM Linearly decayed entropy

LGDHCM Logarithmically decayed entropy

EDHCM Exponentially decayed entropy

Change

Metrics

NR Number of revisions of a file

NFIX Number of times file was involved in bug-fixing

NREF Number of times file has been refactored

NAUTH Number of authors who committed the file

LOC_ADDED Sum over all revisions of the LOC added to a file

maxLOC_ADDED Maximum number of LOC added for all revisions

avgLOC_ADDED Average LOC added per revision

LOC_REMOVED
Sum over all revisions of the LOC removed from a

file

max LOC_REMOVED Maximum number of LOC removed for all revisions

avg LOC_REMOVED Average LOC removed per revision

codeCHU Sum of code churn over all revisions

maxCodeCHU Maximum code churn for all revisions

avgCodeCHU Average code churn per revision

AGE Age of a file in weeks

WAGE Weighted age

Class Bugs Describing whether a file is bug or not

The features of Eclipse JDT R3.1 dataset is taken from the study Mausa et al. [29].

4. Majority Vote Feature Selection Algorithm in Software Fault

Prediction

In the literature, feature selection strategies are divided in three main groups, i.e. filters,

wrappers, hybrid approaches, as aforementioned. The goal of the feature selection

strategies is two-sided: (i) gain increase in the interpretability of the domain via

decrease in feature space and (ii) obtain an improvement in the performances of the

machine learning algorithms. With MVFS method, we explore a subset of software

metrics that serve these two enhancements. In our method, we make use of

combinations of filter approaches that are explained in the following sub-sections.

MVFS Algorithm in Software Fault Prediction 521

4.1. Feature Filtering Methods

4.1.1. Information Gain

Information Gain (IG) is a widely used feature selection method based on Shannon’s

entropy which describes the level of importance between random variable Y and a given

information X [38]. In machine learning, IG is used to measure the attribute’s

information gain with respect to the class label. This method can be work with both

nominal and numerical feature values with an appropriate normalization. IG score of an

attribute A can be calculated as follows.

𝐼𝐺(𝐴) = 𝐻(𝑆) − ∑
𝑆𝑖

𝑆
𝐻(𝑆𝑖)

𝑖

 (1)

where H(S) is the total entropy of the dataset and H(Si) is the entropy of the ith subset

generated by partitioning S based on feature A.

4.1.2. Symmetrical Uncertainty

Symmetrical Uncertainty (SU) is the normalized form of Information Gain [39] and is

calculated with the following equation.

𝑆𝑈(𝑆, 𝐴) = 2 ∗
𝐼𝐺(𝑆|𝐴)

𝐻(𝑆) + 𝐻(𝐴)
 (2)

The SU method works similarly to IG. In addition to the score calculated for

information gain, it defines the information content of a particular attribute, including

definitions of the attribute and the entropy structure of the class.

4.1.3. ReliefF

ReliefF feature selection method measures the importance of an attribute by repeatedly

sampling an instance and taking into account the value of the given attribute for its two

nearest instances, one instance from the same class, and the other instance from the

different class [40]. This method is very effective when working with large amounts of

data. Since the number of performed sampling trials is constant, ReliefF feature

selection method can run quicker than other methods. The algorithm of ReliefF method

for a given m number of sampled instances and k number of features is shown in Figure

1.

Set all weights W[Ai] = 0.0;

for j = 1 to m do begin

 randomly select an instance X;

 find nearest hit H and nearest miss M;

 for I = 1 to k do

522 Emin Borandag et al.

 W[Ai] = W[Ai] – diff(Ai, X, H) / m + diff(Ai, X, M) /

m

end;

Fig. 1. ReliefF Algorithm

4.1.4. Correlation based approach

Correlation based feature selection approach evaluates the importance of an attribute by

measuring the Pearson's correlation between the attribute and the target class [41]. This

method simply measures linear correlation between features. The following formula

indicates the calculation of Correlation Coefficient (R) between the attribute A and class

C.

𝑅(𝑓𝑖, 𝑦) =
𝑐𝑜𝑣(𝑓𝑖 , 𝑦)

√𝑣𝑎𝑟(𝑓𝑖) 𝑣𝑎𝑟(𝑦)
 (3)

4.2. Machine Learning ClassifiersNaïve Bayes

Naïve Bayes (NB) is a well-known machine learning classifier based on statistical

Bayes Theorem and conditional probability [42]. Bayes theorem provides to calculate

the posterior probability, P(c | x), from P(c), P(x), and P(x | c). NB classifier presumes

that the impact of the value of a feature (x) on a given class (c) is independent of the

values of other attributes. This assumption is called class conditional independence and

calculated with following equations.

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 (4)

𝑃(𝑐|𝑥) = 𝑃(𝑥1|𝑐) ∗ 𝑃(𝑥2|𝑐) ∗ … ∗ 𝑃(𝑥𝑛|𝑐) ∗ 𝑃(𝑐) (5)

where P(c | x) is the posterior probability of class given feature. P(c) is the prior

probability of class. P(x | c) is the likelihood which is the probability of feature given

class. P(x) is the prior probability of attribute.

4.2.2. Decision Tree

Decision tree is a supervised learning approach that classifies the test data by creating a

flowchart-like decision tree based on a training set. In the constructed decision tree,

internal nodes, branches, and leaflets indicate the features of dataset, values of features,

and classification labels respectively. The main advantage to the use of decision trees is

the class-oriented visualization of dataset. In this study, J48 decision tree learning

algorithm which is a version of well-known Iterative Dichotomiser (ID) 3 is utilized

[43].

MVFS Algorithm in Software Fault Prediction 523

4.2.3. K-Nearest Neighbor

K-Nearest Neighbor (K-NN) is a simple instance-based and lazy learning classification

algorithm having no training phase [44]. The distance between the test data and

remaining instances is calculated, finally the class having maximum count is selected

from the nearest k samples. In K-NN, Euclidean and Cosine similarity measures are the

most common algorithms to calculate the distance [45]. In the proposed study, a Weka

implementation of K-NN algorithm called IBk is employed.

4.2. Evaluation Criteria

Different criteria are employed to evaluate the performance of classifiers in Machine

Learning. All criteria are formulized using a confusion matrix that contains actual and

predicted class labels. True Positives (TP), True Negatives (TN), False Positives (FP),

and False Negatives (FN) indicates the four different prediction outcomes [46]. In

software fault prediction literature, Geometric Mean - 1 (GM) is used by researchers

such as Ma et al[46] and Cagatay et al[47] for the valuation of prediction systems to

benchmark ML algorithms [48]. In this study, we therefore have used GM to evaluate

performance of our algorithms. GM is also a good performance indicator when the

datasets are imbalanced and it is used for the evaluation of fault prediction systems [47].

GM metric is calculated using Eq. 6.

Geometric Mean1 = √(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙) (6)

In 6, Precision is the ratio of correctly predicted positive instances and total predicted

positive instances. Furthermore Recall is the defined as the ratio of correctly predicted

positive instances and total number of correctly observed positive instances. Precision

and Recall are calculated with Eq. 7 and 8 respectively.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(8)

5. Experimental Study and Analysis

5.1. Design

In this section, we supply a detailed pseudocode that explains the details of MVFS

algorithm.

524 Emin Borandag et al.

Input:

D: array [KC1, PCI, JM1, CM1, EclipseCore, EclipseJDT]: Datasets

S: Full feature set of selected dataset

MLA: array [IBK, NB, J48]: Machine learning algorithms

SMLA: Selected machine learning algorithm

Rt array [IG, CO, RF, SU]: Feature selection techniques

r: Number of ranker

voting: Number of voting

Output:

o1: Specifies Gm (G-means)

Method:

(1) S = D[Selected data set] // A dataset is selected.

(2) o1 = MLA[smla(S)], o2= MLA[smla(S)] // Selected machine learning algorithms are
trained and tested.

 Gm = o1 // The value of o1 measure is obtained.

(3) S = D[Selected data set] // Dataset is selected once again for feature selection.

(4) o1 = Rt(MLA[smla(S)], r), o2 = Rt(MLA[smla(S)], r)

 Gm = o1 // Gm performance metric is obtained.

(5) while (Rt((S), r) for each dataset)

 {

 if (voting = "2/4") // Voting count is identified.

 voting_count=2

 else if (voting = "3/4")

 voting_count=3

 else if (voting = "4/4")

 voting_count=4

 }

(6) o1 =MLA[smla(voting(S), r)] // 3 new datasets for each voting rule are obtained and
machine learning algorithms trained and tested using cross validation.

 Gm= o1 // Gm performance metric for all generated datasets is obtained.

Fig. 2. The pseudocode of MVFS Algorithm.

In brief terms, the proposed algorithm runs as follows:

NASA and Eclipse projects are used with all features and tested with NB, J48 and

IBK algorithms on top of 10-fold cross validation scheme to obtain GM metric. In the

second phase IG, CO, RF and SY rankers are used to obtain top 20 software metrics and

the experiments are revaluated. In this phase, MVFS algorithm is run using 2/4, 3/4 and

4/4 voting rules and 3 new datasets with reduced features are obtained. The

dimensionally reduced datasets are used and GM metric is obtained for NB, J48 and

IBK classifiers. This cycle is repeated as follows: (i) obtain subset of features gradually

20, 15, 10, 5 and run MVFS to obtain 3 new data sets for each voting rule, (ii) use 10-

CV train-test model for NB, J48 and IBK and obtain GM performance metric for all

generated datasets.

All the runs are performed using the implementations of NB, J48, and IBK

algorithms in the WEKA (Waikato Environment for Knowledge Analysis) version 3.8.1

[49]. The default parameters are used for each algorithm and the mentioned ranker

methods since they produce promising results as stated in [50]. For NB having

MVFS Algorithm in Software Fault Prediction 525

continuous variables, any kernel method for prediction of the distribution is not used.

The default parameters for IBK and J48 algorithm are also employed in the study. For

IBK, the value of parameter k is selected as 1, distance weighting is not applied and

Euclidean distance is chosen as distance function.

5.2. Results

In this section, we give details corresponding to the designed algorithm. The overall

results corresponding to each project are given in related tables. However, we did not

provide the results for all voting rules. We instead selected the best performance metrics

for the sake of convenience. Additionally, in order to make interpretation of tables

easier and illustrate the performance of the proposed algorithm more obvious, we

produced recapping figures for each table.

Table 4. Experimental Results for Project KC1

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.838 0.839 0.829 0.832 0.810
J48 0.835 0.839 0.830 0.833 0.837

NB 0.819 0.819 0.823 0.824 0.827

CO

IBk 0.838 0.839 0.831 0.828 0.828
J48 0.835 0.840 0.835 0.834 0.833
NB 0.819 0.819 0.821 0.823 0.825

RF

IBk 0.838 0.838 0.832 0.839 0.831
J48 0.835 0.833 0.835 0.833 0.836
NB 0.819 0.819 0.819 0.818 0.816

SY

IBk 0.838 0.839 0.835 0.825 0.822
J48 0.835 0.840 0.836 0.825 0.828

NB 0.819 0.819 0.825 0.823 0.824

FS

Method

Classifier 19 out of 20 8 out of 15 2 out of 10 1 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.838 0.839 0.833 0.826 0.829
J48 0.835 0.840 0.839 0.835 0.834

NB 0.819 0.819 0.822 0.823 0.837

In Table 4, it is seen that MVFS yields acceptable values in terms of GM compared

to the standard feature ranker algorithms. The results may be examined in Figure 3 more

precisely.

526 Emin Borandag et al.

Fig. 3. Illustration of Experimental Results of Table 4

Table 5. Experimental Results for Project PC1

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.921 0.919 0.912 0.916 0.913

J48 0.925 0.921 0.917 0.919 0.934

NB 0.895 0.894 0.897 0.894 0.895

CO

IBk 0.921 0.919 0.916 0.910 0.915

J48 0.925 0.921 0.920 0.923 0.922

NB 0.895 0.894 0.896 0.897 0.895

RF

IBk 0.921 0.921 0.915 0.917 0.920

J48 0.925 0.923 0.918 0.921 0.932

NB 0.895 0.894 0.893 0.892 0.896

SY

IBk 0.921 0.919 0.915 0.916 0.912

J48 0.925 0.921 0.920 0.919 0.925

NB 0.895 0.894 0.895 0.894 0.900

FS

Method

Classifier 19 out of 20 11 out of 15 10 out of 10 2 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.921 0.919 0.915 0.916 0.916

J48 0.925 0.921 0.920 0.923 0.935

NB 0.895 0.894 0.895 0.902 0.907

While examining Table 5 for the experiments of project PCI, we may observe that

MVFS technique improves the performance of the algorithms particularly for top 5

software metrics. This improvement is observed in Figure 4 clearly.

MVFS Algorithm in Software Fault Prediction 527

Fig. 4. Illustration of Experimental Results of Table 5

The experiment conducted on Project JM1 is given in Table 6 and the visualization of

the results is provided in Figure5.

Table 6. Experimental Results for Project JM1

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.766 0.765 0.762 0.761 0.758

J48 0.776 0.782 0.787 0.792 0.792

NB 0.784 0.784 0.783 0.782 0.782

CO

IBk 0.766 0.766 0.762 0.759 0.764

J48 0.776 0.776 0.785 0.787 0.790

NB 0.784 0.783 0.783 0.784 0.787

RF

IBk 0.766 0.766 0.766 0.764 0.755

J48 0.776 0.777 0.781 0.789 0.784

NB 0.784 0.783 0.783 0.784 0.774

SY

IBk 0.766 0.765 0.761 0.760 0.752

J48 0.776 0.783 0.791 0.786 0.798

NB 0.784 0.784 0.783 0.781 0.785

FS

Method

Classifier 18 out of 20 9 out of 15 7 out of 10 5 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.766 0.766 0.763 0.786 0.775

J48 0.776 0.782 0.791 0.809 0.788

NB 0.784 0.784 0.784 0.785 0.787

As the Table 6 and Figure 5 is evaluated together, top 10 software metrics obtained

with MVFS method result in higher GM values.

528 Emin Borandag et al.

Fig. 5. Illustration of Experimental Results of Table 6

CM1, another NASA projects, is evaluated with the same scheme explained before. The

results of the experiments and the corresponding sum up figure is given as Table 7,

Figure 6 respectively.

Table 7. Experimental Results for Project CM1

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.843 0.843 0.851 0.835 0.848

J48 0.855 0.850 0.851 0.850 0.850

NB 0.857 0.856 0.856 0.862 0.866

CO

IBk 0.843 0.843 0.836 0.837 0.832

J48 0.855 0.855 0.859 0.850 0.851

NB 0.857 0.857 0.855 0.857 0.866

RF

IBk 0.843 0.843 0.838 0.847 0.830

J48 0.855 0.854 0.853 0.845 0.856

NB 0.857 0.857 0.855 0.855 0.855

SY

IBk 0.843 0.843 0.851 0.835 0.840

J48 0.855 0.855 0.851 0.850 0.851

NB 0.857 0.857 0.856 0.862 0.870

FS

Method

Classifier 19 out of 20 13 out of 15 9 out of 10 4 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.843 0.843 0.848 0.851 0.861

J48 0.855 0.855 0.856 0.850 0.856

NB 0.857 0.857 0.855 0.869 0.872

From Table 7 and Figure 6, we may observe that, the proposed method does not

improve the results at first glance. However, it retains the classification performance

metrics at top 10 and top 5 features.

MVFS Algorithm in Software Fault Prediction 529

Fig. 6. Illustration of Experimental Results of Table 7

The evaluation results of Eclipse Equinox dataset, is provided in Table 8 and

corresponding Figure 7.

Table 8. Experimental Results for Project Eclipse Equinox Core Dataset

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.799 0.819 0.804 0.804 0.801

J48 0.805 0.824 0.823 0.818 0.845

NB 0.827 0.833 0.841 0.840 0.840

CO

IBk 0.799 0.808 0.805 0.797 0.775

J48 0.805 0.812 0.802 0.820 0.832

NB 0.827 0.827 0.839 0.840 0.840

RF

IBk 0.799 0.787 0.788 0.802 0.743

J48 0.805 0.806 0.811 0.805 0.758

NB 0.827 0.843 0.839 0.829 0.754

SY

IBk 0.799 0.816 0.809 0.811 0.794

J48 0.805 0.814 0.819 0.830 0.834

NB 0.827 0.835 0.841 0.843 0.838

FS

Method

Classifier 18 out of 20 13 out of 15 10 out of 10 3 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.799 0.810 0.812 0.804 0.798

J48 0.805 0.825 0.828 0.848 0.842

NB 0.827 0.838 0.842 0.840 0.848

The results of the experiments show a fairly increase in GM metrics, in particular at

top 10 and top 5 software metrics selected with MVFS.

530 Emin Borandag et al.

Fig. 7. Illustration of Experimental Results of Table 8

The evaluation results of last dataset, Eclipse JDT dataset, is provided in Table 9 and

in the corresponding Figure 8.

Table 9. Experimental Results for Project Eclipse JDT Dataset

FS

Method

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features

Name GM GM GM GM GM

IG

IBk 0.709 0.704 0.708 0.692 0.698

J48 0.721 0.722 0.719 0.744 0.734

NB 0.720 0.719 0.716 0.720 0.720

CO

IBk 0.709 0.721 0.707 0.691 0.686

J48 0.721 0.729 0.726 0.732 0.732

NB 0.720 0.719 0.722 0.723 0.722

RF

IBk 0.709 0.703 0.704 0.687 0.674

J48 0.721 0.729 0.727 0.716 0.691

NB 0.720 0.723 0.720 0.725 0.683

SY

IBk 0.709 0.711 0.708 0.689 0.695

J48 0.721 0.716 0.718 0.739 0.737

NB 0.720 0.718 0.716 0.719 0.716

FS

Method

Classifier 17 out of 20 12 out of 15 8 out of 10 1 out of 5

Name GM GM GM GM GM

Majority

Vote

IBk 0.709 0.718 0.709 0.684 0.693

J48 0.721 0.732 0.737 0.739 0.738

NB 0.720 0.720 0.720 0.722 0.723

The results of the experiments show a considerable increase in GM metrics, in

particular at top 20, top 15 and top 5 software metrics selected with MVFS.

MVFS Algorithm in Software Fault Prediction 531

Fig. 8. Illustration of Experimental Results of Table 9

As a sum up of this section, we summarize the results of the experiments and

compare the performance of our method with conventional feature rankers based on GM

metric in Table 10.

Table 10. Overall Evaluation of Experimental Results based on GM

 Top20 Top 15 Top 10 Top 5

KC1 same better worse same

PC1 worse same same better

JM1 same same better worse

CM1 same worse better better

Eclipse Equinox Core worse same better better

Eclipse JDT better better worse better

As the Table 10 is examined, it is seen that the proposed method is eligible to

discriminate most valuable software metrics that are functional in software fault

prediction detection. Table 10 provides the comparative results of proposed MVFS

algorithm and standard rankers, i.e., IG, SU, RF and CO.

For all datasets, MVFS algorithm yields similar results compared to conventional

rankers for top 20 and top 15 features. Furthermore, as it can be observed from Table

10, our approach is able to find the most informative software metrics at top 10 or top 5

features. As an overall summary, we may draw a conclusion from Table 10 that the

proposed method either increases the prediction of the algorithms or keep their

performance as the same.

We have moreover calculated mean and medians of the predictions of the classifiers

from the related tables to compare overall results. The results of these statistical

calculations are given in Table 11.

As the Table 11 is inspected with median and mean perspectives, it can easily be

observed that the proposed method is almost better than the remaining algorithms in

terms of fault prediction.

532 Emin Borandag et al.

Table 11. Median and Mean Calculations of Classier Results based on GM

 Top20 Top 15 Top 10 Top 5

KC1

Mean Value 0.839 0.834 0.831 0.834

Median Value 0.839 0.835 0.833 0.834

Majority Value 0.840 0.839 0.835 0.837

Median Base Result better better better better

Mean Base Result better better better better

PC1

Mean Value 0.921 0.918 0.920 0.928

Median Value 0.921 0.919 0.920 0.928

Majority Value 0.921 0.920 0.923 0.935

Median Base Result same better better better

Mean Base Result same better better better

JM1

Mean Value 0.783 0.786 0.788 0.791

Median Value 0.784 0.786 0.788 0.791

Majority Value 0.784 0.791 0.809 0.788

Median Base Result better better better worse

Mean Base Result same Better better worse

CM1

Mean Value 0.856 0.856 0.859 0.864

Median Value 0.857 0.856 0.859 0.866

Majority Value 0.857 0.856 0.869 0.872

Median Base Result better same better better

Mean Base Result same same better better

Eclipse

Equinox Core

Mean Value 0.834 0.840 0.838 0.820

Median Value 0.834 0.840 0.840 0.839

Majority Value 0.838 0.842 0.848 0.848

Median Base Result better better better better

Mean Base Result better better better better

Eclipse JDT

Mean Value 0.724 0.722 0.735 0.723

Median Value 0.725 0.722 0.735 0.733

Majority Value 0.732 0.737 0.739 0.738

Median Base Result better better better better

Mean Base Result better better better better

5.3. ANOVA Test and Validation

Analysis of variance (ANOVA) test was used to statistically validate the results of

empirical analysis. In this study, two-way ANOVA test is employed to determine

whether the differences between multiple groups of results are statistically significant

based on independent factors. In the ANOVA test, feature selection methods, classifiers,

feature sets and datasets are taken as the factors of the analysis. In addition, the

interactions (interactions through order 2) between different factors are also taken into

consideration. Namely, feature selection method and classifier interaction, feature

selection method and feature set interaction, feature selection method and dataset

interaction, classifier and feature set interaction and classifier and dataset interaction are

also considered. In the analysis, a GM values are taken as the response values. The

MVFS Algorithm in Software Fault Prediction 533

hypothesis regarding the method performed on Minitab statistical software. The

statistical values of ANOVA test are given in Figure 9. Parameters of the test, namely,

DF, SS, MS, F and p-value correspond to degrees of freedom, adjusted sum of squares,

adjusted mean square, F-statistics and probability value, respectively [51].

Fig. 9. Two-way ANOVA test results

Fig. 10. Main Effects Plot for G-means

As indicated in Figure 9, the better predictive performance obtained by the proposed

new feature selection method is statistically significant at 99% confidence level.

Regarding the test results presented in Figure 9, there are statistically significant

differences among the factors of the analysis (such as Classifier, Feature selection

method, Dataset, etc.). Hence, it can be seen clearly in Figure 9 that most of the values

obtained are statistically significant at 99% confidence level. However, there is no

534 Emin Borandag et al.

statistically significant difference between the GM values for feature selection method

and classifiers. That is, differences for predictive performance of different feature sets

do not exhibit a varying pattern based on the classifiers.

In Figure 10, the main effects plots for classification GM values of the empirical

analysis is given. It summarizes comparatively the main findings of the study based on

the average results of experiments. As it can be seen from Figure 10, the highest

performance in terms of accuracy values were obtained by the proposed majority voting

based feature section method. Regarding the performance of classification algorithms,

the highest predictive performance (in terms of GM) was achieved by J48 algorithm.

Regarding the datasets utilized in the empirical analysis, PC1 dataset yields the highest

performance. In Figure 11, the histograms of residuals for all empirical results (in terms

of GM) are presented to examine the distribution of empirical results. As it can be

observed, the patterns for residuals of all observations exhibit a skewed distribution,

which validate the statistical differences obtained by two-way ANOVA test results

presented in Figure 11.

Fig. 31. Histogram of Residuals

6. Threads to Validity

This empirical study uses six bug prediction datasets. Four from PROMISE repository,

and two from Eclipse domain. One of the main threads of such empirical studies is that

the generalization capability of the methods may be insufficient and domain dependent.

Naturally, the proposed feature selection method may provide varying results in

different software domains. Furthermore, the success of empirical software analysis

strategies is highly dependent on the quality of selected metrics. The main emphasis of

this study is to develop an ensemble feature selection strategy that combines various

selection algorithms to obtain the best feature subset. Being a pre-processing step, the

selection of classifiers probably has minor influence on the final decisions. Though not

guaranteed, this feature selection strategy is expected to provide better results compared

with the results of a single feature selection method. Finally, the significance of the

proposed method is supported with statistical tests.

MVFS Algorithm in Software Fault Prediction 535

Selection of classifier parameters, being another thread, have also influence on the

corresponding results. Even the same classifier with different parameters may affect the

related fault-detection performance and therefore selection of the set of classifier

parameters are also evaluated in the study.

One more important thread is that the classifier fault-detection performances may

vary with the selected subset of metrics. In this context, our proposed method uses a

voting ensemble strategy to obtain an optimal set of metrics. The method makes use of a

majority combination rule to select the most significant metrics from the results of four

different widely used ranker algorithms. Voting based ensembles may also be obtained

with averaging or weighting combination mechanisms that may influence the results.

Other empirical studies may take advantage of various combinations to obtain the best

subset of software metrics [52].

This study makes use of various feature selection algorithms, their ensemble

combinations. The quality of the obtained subset of features is evaluated with various

classifiers. To reduce modeling errors to minimum, the experiments and statistical

investigation were conducted by only one skilled researcher.

7. Conclusion

Quality in selection of software metrics is critical in the fault detection performance of

prediction models. Therefore intelligent selection of software metrics is the first step to

obtain an accurate model. We present a collaborative feature selection model to

discriminate the most informative software metrics and eliminate other irrelevant

metrics. We made use of six software projects and three machine learning algorithms in

order to compare performance of or MVFS algorithm with four conventional rankers.

As a result, it is empirically observed in the sum up Table 10 that the proposed method

is either increases the fault detection performance or retain it as the same compared to

the performance of the standard feature selection methods. The obtained experimental

results are statistically supported with two-way ANOVA test conducted for GM values.

As a future work, we want to test the performance of the proposed MVFS algorithm

with the use of another software projects to demonstrate its efficiency.

References

1. Koru, A. G., Liu, H.: Building Effective Defect-Prediction Models in Practice. IEEE

Software. 22(6): 23-29. (2005)

2. Azeem, N., Usmani, S.: Defect Prediction Leads to High Quality Product. Journal of

Software Engineering and Applications. 4(11): 639-645. (2011)

3. Gao, K., Khoshgoftaar, T. M., Wang, H., Seliya, N.: Choosing software metrics for defect

prediction: an investigation on feature selection techniques. Software Practice and

Experience. 41(5): 579-606. (2011)

4. Wang, H., Khoshgoftaar, T. M., Gao, K., Seliya, N.: Mining Data from Multiple Software

Development Projects. IEEE International Conference on Data Mining Workshops

(ICDMW '09). (2009)

536 Emin Borandag et al.

5. Mandal, P., Ami, A. S.: Selecting Best Attributes for Software Defect Prediction. IEEE

International WIE Conference on Electrical and Computer Engineering (WIECON-ECE).

(2015)

6. Khoshgoftaar, T. M., Gao, K., Napolitano, A.: An Empirical Study of Predictive Modeling

Techniques of Software Quality. In: Suzuki J., Nakano T. (eds.) Bio-Inspired Models of

Network, Information, and Computing Systems. Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering. vol. 87. Springer.

Berlin, Heidelberg, pp. 288-302. (2012)

7. Onan, A., Korukoğlu, S., Bulut, H.: A multiobjective weighted voting ensemble classifier

based on differential evolution algorithm for text sentiment classification. Expert Systems

with Applications. 62(C): 1-16. (2016)

8. Witten, I. H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques

with Java Implementations. 2nd edition. Morgan Kaufmann. (2005)

9. Harman, M., Jia, Y., Krinke, J., Langdon, W. B., Petke, J., Zhang, Y.: Search based

software engineering for software product line engineering: a survey and directions for

future work. Proceedings of the 18th International Software Product Line Conference. vol. 1.

pp. 5-18. (2014)

10. Shahpar, Z., Khatibi, V., Tanavar, A., Sarikhani, R.: Improvement of effort estimation

accuracy in software projects using a feature selection approach. Journal of Advances in

Computer Engineering and Technology. 2(4): 31-38. (2016)

11. Chu, C., Hsu, A-L., Chou, K-H., Bandettini, P., Lin, C-P.: Does feature selection improve

classification accuracy? Impact of sample size and feature selection on classification using

anatomical magnetic resonance images. NeuroImage. 60(1): 59-70. (2012)

12. Jović, A., Brkić, K., Bogunović, N.: Review of feature selection methods with applications.

38th International Convention on Information and Communication Technology. Electronics

and Microelectronics (MIPRO). (2015)

13. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal of

Machine Learning Research. vol. 3. pp. 1157-1182. (2003).

14. Novaković, J., Strbac, P., Bulatović, D.: Toward Optimal Feature Selection Using Ranking

Methods and Classification Algorithms. Yugoslav Journal of Operations Research. 21(1):

119-135. (2011).

15. Janecek, A. G. K., Gansterer, W. N., Demel, M. A., Ecker, G. F.: On the Relationship

between Feature Selection and Classification Accuracy. Proceedings of the 2008

International Conference on New Challenges for Feature Selection in Data Mining and

Knowledge Discovery. vol. 4. pp. 90-105. (2008)

16. YU .Q., JIANG S., WANG R., WANG H. : A feature selection approach based on a

similarity measure for software defect prediction. Frontiers of Information Technology &

Electronic Engineering. pp. 1744-1753 (2017)

17. Chen J., Liu S., Chen X., Gu Q., Chen D. Empirical Studies on Feature Selection for

Software FaultPrediction, 5th Asia-Pacific Symposium on Internetware, (2013)

18. Afzal, W., Torkar, R.: Towards Benchmarking Feature Subset Selection Methods for

Software Fault Prediction. Computational Intelligence and Quantitative Software

Engineering, pp. 33-58. (2016)

19. Wang, H., Khoshgoftaar, T. M., Seliya, N.: How Many Software Metrics Should be

Selected for Defect Prediction?. Proceedings of the Twenty-Fourth International Florida

Artificial Intelligence Research Society Conference. Palm Beach, Florida, USA. (2011)

20. Soleimani, A., Asdaghi, F.: An AIS based feature selection method for software fault

prediction. Iranian Conference on Intelligent Systems. IEEE. (2014)

MVFS Algorithm in Software Fault Prediction 537

21. Jacob, S., Raju, G.: Software Defect Prediction in Large Space Systems through Hybrid

Feature Selection and Classification. The International Arab Journal of Information

Technology, 14(2): 208-214. (2017)

22. Catal, C., Diri, B.: Investigating the effect of dataset size, metrics sets, and feature selection

techniques on software fault prediction problem, Information Sciences, 179(8): 1040-1058.

(2009)

23. Kumar, L., Rath, S., Sureka, A.: Using Source Code Metrics and Ensemble Methods for

Fault Proneness Prediction. https://arxiv.org/abs/1704.04383, (2017)

24. Alighardashi, F., Chahooki, M. A. Z.: The Effectiveness of the Fused Weighted Filter

Feature Selection Method to Improve Software Fault Prediction. Journal of

Communications Technology. Electronics and Computer Science. vol. 8. pp. 5-11. (2016)

25. Chen, J., Liu, S., Chen, X., Gu, Q., Chen, D.: Empirical Studies on Feature Selection for

Software Fault Prediction. Proceedings of the 5th Asia-Pacific Symposium on Internetware.

(2013)

26. Dietterich, T. G.: Ensemble Methods in Machine Learning. In: Multiple Classifier Systems.

Lecture Notes in Computer Science. vol. 1857. Springer, Berlin, Heidelberg, pp. 1-15.

(2000)

27. Software Defect Dataset, Promise Repository. January (2018). [Online]. Available:

http://promise.site.uottawa.ca/SERepository/datasets-page.html

28. Eclipse Bug Prediction Dataset. Eclipse Equinox. January (2018). [Online]. Available:

http://bug.inf.usi.ch/data/eclipse.zip

29. Mauša G., Grbac T. G., Bašić B. D., A Systematic Data Collection Procedure for Software

Defect Prediction, ComSIS Consortium vol 13, Issue 1 , (2016)

30. McCabe, T. J.: A complexity measure. IEEE Transactions on Software Engineering. 2(4):

308–320. (1976)

31. Halstead, M. H.: Elements of software science. Elsevier Computer Science Library.

Operating and Programming Systems Series. New York, Oxford, (1977)

32. Tutorial on McCabe and Halsted. January (2018). [Online]. Available:

http://openscience.us/repo/defect/mccabehalsted/tut.html

33. Rodriguez, D., Ruiz, R., Gallego, J. C., Aguilar-Ruiz, J.: Detecting Fault Modules Applying

Feature Selection to Classifiers. IEEE International Conference on Information Reuse and

Integration. (2007)

34. Basili, V. R., Briand, L. C., Melo, W. L.: A Validation of Object-Oriented Design Metrics

as Quality Indicators. IEEE Transactions on Software Engineering. 22(10): 751-761. (1996)

35. D’Ambros, M., Lanza, M., Robbes, R.: An Extensive Comparison of Bug Prediction

Approaches. 7th IEEE Working Conference on Mining Software Repositories. IEEE CS

Press. pp. 31-41. (2010)

36. Moser, R., Pedrycz, W., Succi, G.: A comparative analysis of the efficiency of change

metrics and static code attributes for defect prediction. Proceedings of the 30th International

Conference on Software Engineering. pp. 181–190. (2008)

37. Muthukumaran, K., Bhanu Murthy, N. L.: Impact of Restricted Forward Greedy Feature

Selection Technique on Bug Prediction. PeerJ Computer Science. (2015)

38. Yang, Y., Pedersen, J. O.: A comparative study on feature selection in text categorization.

Proceedings of the 14th International Conference on Machine Learning (ICML '97).

Nashville, Tenn, USA. Morgan Kaufmann. pp. 412–420. (1997)

39. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes in C.

Cambridge University Press. (1988)

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://bug.inf.usi.ch/data/eclipse.zip
http://openscience.us/repo/defect/mccabehalsted/tut.html

538 Emin Borandag et al.

40. Kononenko, I.: Estimating Attributes: Analysis and Extensions of RELIEF. In: Proceedings

of the 7th European Conference on Machine Learning, pp. 171–182. (1994)

41. Hall, M. A., Smith, L. A.: Feature selection for machine learning: comparing a correlation-

based filter approach to the wrapper. Proceedings of the Twelfth International Florida

Artificial Intelligence Research Society Conference. pp. 235-239. (1999)

42. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,

M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.: Scikit-learn: Machine learning

in Python. Journal of Machine Learning Research. vol. 12. pp. 2825-2830. (2011)

43. Khoshgoftaar, T. M., Seliya, N.: Tree-based software quality estimation models for fault

prediction. Eighth IEEE Symposium on Software Metrics. pp. 203-214. (2002)

44. Aha, D. W., Kibler, D., Albert, M. K.: Instance-based Learning Algorithms. Machine

Learning. 6(1): 37-66. (1991)

45. Qian, G., Sural, S., Gu, Y., Pramanik, S.: Similarity between Euclidean and cosine angle

distance for nearest neighbor queries. Proceedings of the 2004 ACM symposium on applied

computing. pp. 1232-1237. (2004)

46. Ma Y., Guo L., Cukic B., A Statistical Framework for the Prediction of Fault-Proneness,

Advances in Machine Learning Application in Software Engineering, Idea Group Inc., pp.

237-265, (2006)

47. Catal C., Performance Evaluation Metrics for Software Fault Prediction Studies, Acta

Polytechnica Hungarica vol. 9, no. 4, (2012)

48. Y. Ma, L. Guo, B. Cukic, A Statistical Framework for the Prediction of Fault-Proneness,

Advances in Machine Learning Application in Software Engineering, Idea Group Inc.,

2006, pp. 237-265

49. Witten IH., Frank E., Data Mining: Practical Machine Learning Tools and Techniques. San

Francisco, CA: Morgan Kaufman, (2005)

50. Amancio DR., Comin CH., Casanova D.,Travieso G.,Bruno OM.,Rodrigues FA.,Costa L.,

A systematic comparison of supervised classifiers. PloS one; 9(4): pp. 94-137 (2014).

51. Onan, A., Korukoglu, S., Bulut, H.: Ensemble of keyword extraction methods and

classifiers in text classification. Expert Systems with Applications. 57(C): 232–247. (2016)

52. Polikar R., Ensemble Based Systems in Decision Making IEEE Circuits And Systems

Magazinepp 21-45 (2006).

Emin Borandag is currently working as an Assistant Professor in the Department of

Software Engineering, Manisa Celal Bayar University, Manisa, Turkey. He received BS

and MS degrees in computer engineering from Maltepe University in 2003 and 2006,

respectively. He was awarded PhD in computer engineering from Trakya University in

2011. His research interests are the area of software quality assurance, software testing

and data mining.

Akin Ozcift is currently working as an Associate Professor in the Department of

Software Engineering, Celal Bayar University, Manisa, Turkey. He received BS and MS

degrees in Electronics Engineering from METU and Hacettepe Engineering in 1995 and

2000, respectively. He received PhD in Electronics Engineering from Firat University in

2011. His research interests focus on Machine Learning, Cyber Security and Big Data

analysis.

MVFS Algorithm in Software Fault Prediction 539

Deniz Kilinc is currently working as an Assoc Professor in the Department of Software

Engineering, Celal Bayar University, Manisa, Turkey. He received BS and MS degrees

in computer engineering from Dokuz Eylül University in 2002 and 2004, respectively.

He was awarded PhD in computer engineering from Dokuz Eylül University in 2010.

His research interests focus on information retrieval, software engineering, text mining

and social media

analysis.

Fatih Yücalar is currently working as an Assistant Professor in the Department of

Software Engineering, Manisa Celal Bayar University, Manisa, Turkey. He received BS

and MS degrees in computer engineering from Maltepe University in 2002 and 2006,

respectively. He was awarded PhD in computer engineering from Trakya University in

2011. His research interests focus on software engineering, software project

management, software quality assurance and testing.

Received: March 12, 2018; Accepted: December 31, 2018

