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Abstract. Identification and location of defects in software projects is an 

important task to improve software quality and to reduce software test effort 

estimation cost. In software fault prediction domain, it is known that 20% of the 

modules will in general contain about 80% of the faults. In order to minimize cost 

and effort, it is considerably important to identify those most error prone modules 

precisely and correct them in time. Machine Learning (ML) algorithms are 

frequently used to locate error prone modules automatically. Furthermore, the 

performance of the algorithms is closely related to determine the most valuable 

software metrics. The aim of this research is to develop a Majority Vote based 

Feature Selection algorithm (MVFS) to identify the most valuable software 

metrics. The core idea of the method is to identify the most influential software 

metrics with the collaboration of various feature rankers. To test the efficiency of 

the proposed method, we used CM1, JM1, KC1, PC1, Eclipse Equinox, Eclipse 

JDT datasets and J48, NB, K-NN (IBk) ML algorithms. The experiments show 

that the proposed method is able to find out the most significant software metrics 

that enhances defect prediction performance. 

Keywords: software fault prediction, majority voting, machine learning algorithm 

1. Introduction 

Prediction of software defects with the use of software fault prediction models is a cost-

effective approach in the usage of limited project resources. Static software measures, 

i.e. size, coupling, cohesion, inheritance, complexity measures and defect data collected 

may be used to construct machine-learning methods to predict faults in practice. Quality 

of software modules are predicted as fault-prone (fp) and not-fault-prone (nfp). In this 

context, if an error is acquired during module tests, the corresponding module is marked 

as fp otherwise nfp. Defects in software projects lead to failures that increase the total 

cost of the project. From software developer point of view, usage of efficient fault 

investigation methods is important to predict defect-prone modules and thus improve 

software quality [1-3]. Software prediction models make use of historical software 

project faults and its corresponding software metrics to identify quality of an upcoming 

project/module from similar domain. Prediction performance of a software quality 

model depends on the information represented with software metrics. Therefore, 

software quality estimation models require selection of relevant metrics to improve their 

discrimination ability. Feature selection methods are used to obtain a subset of valuable 
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software attributes among all. In this context, development of a feature selection model 

is the main focus of this study [3]. 

Investigation of relevant metrics is a search problem and the answer to this problem 

is the exploration of software metric space with the use of feature selection strategies. 

The feature selection process attempt to locate the feature subsets that represent the data 

at least as good as the original data with all features. In particular, the feature selection 

strategies are classified in two groups, i.e. filtering and wrapper feature subset selection 

algorithms [4]. Filtering based algorithms makes use of some statistical criteria to 

arrange attributes according to their importance or weights. On the other hand, wrapper 

methods locate the most predictive feature subset with the use of search algorithms. It is 

expected that relevant feature subsets may produce a better prediction ability compared 

to the features alone [5]. In this study, we evaluate filtering based feature selection 

algorithms to obtain an effective feature subset. 

The problem with subset selection is that evaluation of whole candidate metric 

subsets is ineffective in terms of computational resources. Therefore, we explain our 

Majority Vote based Feature Selection (MVFS) strategy in having two steps. First we 

rank the metrics according to their relative importance with the help of 4 well-known 

feature filtering strategies, i.e. Information Gain (IG), Symmetrical Uncertainty (SU), 

ReliefF (RLF) and Correlation-based (CO) [6], second, we select the relevant metric 

subset with a voting scheme borrowed from ensemble learning domain [7]. In this 

strategy, each feature in the subset is obtained with the majority votes of the feature 

filtering algorithms on the feature. Having obtained feature subsets with the proposed 

strategy, we make use of 3 machine learning algorithms i.e. Naïve Bayes (NB), 

Decision Tree (J48), and K Nearest Neighbor (K-NN/IBk) [8], to evaluate the defect 

prediction ability of corresponding software metrics. The experimental results show that 

gradual decrease of software metric space with the proposed MVFS algorithm increases 

performance of the models. 

The main contribution of the study is following: Basic feature filtering strategies are 

better to be combined in some way to obtain an improved fault prediction performance. 

In the software fault prediction literature, there are many hybrid strategies that combine 

feature selection strategies to obtain hybrid methods. To the best of our knowledge, this 

is the first study that makes use of a voting mechanism to investigate the most relevant 

features. The remainder of the paper is organized as follows. In section 2, we briefly 

discuss related work. The evaluation dataset and related information is given in Section 

3. In Section 4, we present ranker based filters and the machine learning algorithms 

used in the study. Section 5 gives details about proposed feature selection algorithm, 

detailed results of the conducted experiments, and ANOVA test employed for 

statistically validate the obtained results. In Section 6, validity threats of the study are 

presented. The article ends with conclusion and as well a list of references. 

2. Related Work 

There is an increasing effort on developing Search Based Software Engineering (SBSE) 

oriented algorithms for Software Product Lines (SPLs). SBSE addresses software 

engineering problems such as requirement analysis, predictive modeling, software 

project management, design, testing, refactoring and repair [9]. In the context of this 
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study, one of the most important fields of SBSE searches is related with the obtaining 

optimum feature model. In other words, a valuable search field in SBSE is to find 

alternative methods for selecting effective features. In this paper, as an answer to SBSE 

optimum feature model problem, we propose a hybrid feature selection strategy, i.e. 

MVFS, to investigate effective software metrics for fault-prediction [9, 10]. 

There are many feature selection methods used to obtain the most relevant subset of 

features particularly for improving defect discrimination performance of prediction 

algorithms [11]. Many studies from literature surveys feature selection strategies and in 

general feature selection algorithms are classified as filters, wrappers and hybrid 

methods [12]. Filter based feature methods makes ranking of features from the most 

relevant to the least relevant with the use of statistical and entropy-based correlation 

criteria [13]. Chi-square (CS), Gain Ratio (GR), Information Gain (IG), Symmetrical 

Uncertainty (SU) and ReliefF (RLF) are widely used feature ranker methods [14].  

Though filter rankers are classifier independent feature selection methods, wrappers 

help to obtain relevant feature subset depending on the classification accuracy of a core 

classifier. The methods search whole feature space adding or removing features to 

calculate the estimated accuracy of the core classifier. Generally, an exhaustive search is 

impractical, and therefore non-exhaustive, search methods such as e genetic algorithms, 

greedy stepwise, best first or random search are often preferred. Since filtering based 

selection approaches are independent of a classifier they are more efficient from 

computational cost of view. However, this relative gain is obtained with the loss of 

awareness of possible dependency between features and the prediction algorithm [15].  

The wrapper algorithms propose solution to take account this dependency while 

obtaining feature subset at the expense of a computational cost. Hybrid feature selection 

strategies are trade-off solutions for both feature selection domains. They have made 

combination of multi feature selection approaches to acquire the best feature subset. 

One particular benefit of hybrid solutions help the use of benefits of filter and wrapper 

approaches. For instance a combination of filter selection methods is used in [16] to 

obtain a promising feature subset. The authors have developed a hybrid similarity 

measure based on defect categories and compare the performance of their metric with 

IG, GR and RLF on Area Under the Curve (AUC) metric. They have made use of 11 

NASA Promise datasets and they have obtained about 70 % better values in terms of 

number of projects with the use of their hybrid similarity measure in comparison to 

classical filtering approaches. In an another two-step hybrid feature selection strategy 

[17], the authors have used CS, SU and RLF to determine relevance of the software 

metrics in tandem with a clustering strategy to obtain the optimum subset of features 

from Eclipse and NASA KC1 projects. They have utilized AUC and F-measure metrics 

to evaluate their results and they have stated that their hybrid methodology has 

increased the fault prediction performance compared to relevancy measures alone. In the 

literature, there are many feature selection studies that makes a combination of filter and 

wrapper approaches in some way to obtain the most valuable feature subset. [18] is an 

empirical study that investigates value of hybrid feature selection strategies. 

Having introduced the basis of general feature selection strategies, we now survey 

related work conducted in software defect prediction domain. One of the early studies in 

this context is the study conducted in [19]. The authors made use of filters ranker an 

empirical study to eliminate irrelevant features and they show that only a few software 

metrics are enough to build an effective defect predictor. In another feature selection 

study for software defect prediction, authors use an artificial immune system search for 
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building a wrapper model to evaluate a software fault predictor [20]. Jacob et al. 

propose a hybrid selection method combining information gain ratio and correlation 

based feature selection applied on NASA datasets [21]. In their detailed empirical work, 

Catal et al. investigate effects of various feature selection techniques on public datasets 

from PROMISE repository with the use of RF and NB algorithms [22]. In their recent 

work [23], the authors use a multivariate linear regression stepwise forward feature 

selection as a wrapper fashion to obtain optimal set of source code metrics. Another 

recent work makes use of a hybrid feature selection to improve fault prediction 

performance of machine learning algorithms [24]. As a last study from literature, Chen 

et al. improves performance of their machine learning algorithms with two-step hybrid 

feature selection methodology [25].          

There are many studies in the software engineering domain making use of feature 

selection methods to improve defect prediction accuracies of the algorithms. One of the 

key points observed in the recent studies is that hybrid of feature selection strategies are 

preferred to take benefit of multiple extraction techniques at the same time. The 

rationale behind this approach is similar to ensemble learning methodologies that rely 

on the performance of ensemble learners rather than a single learner [26]. In this 

context, hybrid feature selection strategies are continuously explored particularly in 

software fault prediction domain. Our feature-selection combination strategy, i.e. 

MVFS, is explained in section 5.1 is an extension to the ongoing search. 

3. Software Measurement Data 

In this study, we have used datasets from PROMISE repository [27], Eclipse Equinox 

[28] and Eclipse JDT R3.1 [29] bug prediction datasets given in Table 1. First four 

datasets are from NASA software projects which were developed in C/C++ language for 

spacecraft instrument, storage management, flight and earth orbiting. Eclipse Equinox 

Bug Prediction Dataset which was developed in Java language for the infrastructure of 

the Java IDE. The brief descriptions of the datasets are presented in Table 1.  

Table 1. The description of datasets 

Dataset Number of modules Non-Defective Defective % Defect 

CM1 498 449 49 9.83 

JM1 10885 8779 2106 19.35 

KC1 2109 1783 326 15.45 

PC1 1109 1032 77 6.94 

Eclipse Equinox 997 791 206 20.66 

Eclipse JDT R3.1 3883 2611 1272 32.75 

 

NASA datasets contain 22 attributes composed of 4 McCabe metrics [30], 9 base 

Halstead measures [31], 8 derived Halstead measures [32], and the last attribute is 

‘defect’ with 2 classes (false or true, whether a software module is defective or not) 

[33]. The definition and description of these metrics are presented in Table 2. 
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Table 2. Description of NASA software metrics 

Metric type Software metrics Description 

McCabe 

LOC Line count of code 

v(g) Cyclomatic complexity 

ev(g) Essential complexity 

iv(g) Design complexity 

Derived Halstead 

N Total operators + operands 

V Volume 

L Program length 

D Difficulty 

I Intelligence 

E Effort to write code 

B Effort estimate 

T Time estimator 

Basic Halstead 

IOCode Line count 

IOComment Comment count 

IOBlank Blank line count 

IOCodeAndComment Number of code and comment lines 

uniq_Op Number of unique operators 

uniq_Opnd Number of unique operands 

total_Op Number of total operators 

total_Opnd Number of total operands 

branchCount Number of branch counts 

Class defects 
Describing whether a software 

module is defective or not 

 

On the other hand, Eclipse Equinox consists of 38 metrics: 6 Chidamber & Kemer 

(CK) metrics [34], 11 Object-Oriented (OO) metrics [35], 5 entropy metrics [35], 15 

change metrics [36, 37], and the last metric is ‘bug’ that describing whether a file is bug 

or not. The brief description of these metrics is given in Table 3. 

Table 3. Description of Eclipse Equinox software metrics 

Metric type Software metrics Description 

CK Metrics 

WMC Weighted method count 

DIT Depth of inheritance tree 

RFC Response for class 

NOC Number of children 

CBO Coupling between objects 

LCOM Lack of cohesion in methods 

OO Metrics 

Fan-In Number of other classes that reference the class 

Fan-Out Number of other classes referenced by the class 

NOA Number of attributes 

NOAI Number of attributes inherited 

NOPA Number of public attributes 

NOPRA Number of private attributes 

LOC Number of lines of code 

NOM Number of methods 
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NOMI Number of methods inherited 

NOPM Number of public methods 

NOPRM Number of private methods 

Entropy 

Metrics 

HCM Entropy of code changes 

WHCM Weighted entropy 

LDHCM Linearly decayed entropy 

LGDHCM Logarithmically decayed entropy 

EDHCM Exponentially decayed entropy 

Change 

Metrics 

NR Number of revisions of a file 

NFIX Number of times file was involved in bug-fixing 

NREF Number of times file has been refactored 

NAUTH Number of authors who committed the file 

LOC_ADDED Sum over all revisions of the LOC added to a file 

maxLOC_ADDED Maximum number of LOC added for all revisions 

avgLOC_ADDED Average LOC added per revision 

LOC_REMOVED 
Sum over all revisions of the LOC removed from a 

file 

max LOC_REMOVED Maximum number of LOC removed for all revisions 

avg LOC_REMOVED Average LOC removed per revision 

codeCHU Sum of code churn over all revisions 

maxCodeCHU Maximum code churn for all revisions 

avgCodeCHU Average code churn per revision 

AGE Age of a file in weeks 

WAGE Weighted age 

Class Bugs Describing whether a file is bug or not 

 

The features of Eclipse JDT R3.1 dataset is taken from the study Mausa et al. [29].  

4. Majority Vote Feature Selection Algorithm in Software Fault 

Prediction 

In the literature, feature selection strategies are divided in three main groups, i.e. filters, 

wrappers, hybrid approaches, as aforementioned. The goal of the feature selection 

strategies is two-sided: (i) gain increase in the interpretability of the domain via 

decrease in feature space and (ii) obtain an improvement in the performances of the 

machine learning algorithms. With MVFS method, we explore a subset of software 

metrics that serve these two enhancements. In our method, we make use of 

combinations of filter approaches that are explained in the following sub-sections. 
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4.1. Feature Filtering Methods 

4.1.1. Information Gain 

Information Gain (IG) is a widely used feature selection method based on Shannon’s 

entropy which describes the level of importance between random variable Y and a given 

information X [38]. In machine learning, IG is used to measure the attribute’s 

information gain with respect to the class label. This method can be work with both 

nominal and numerical feature values with an appropriate normalization. IG score of an 

attribute A can be calculated as follows. 

 

𝐼𝐺(𝐴) = 𝐻(𝑆) − ∑
𝑆𝑖

𝑆
𝐻(𝑆𝑖)

𝑖

 (1) 

 

where H(S) is the total entropy of the dataset and H(Si) is the entropy of the ith subset 

generated by partitioning S based on feature A. 

4.1.2. Symmetrical Uncertainty 

Symmetrical Uncertainty (SU) is the normalized form of Information Gain [39] and is 

calculated with the following equation. 

 

𝑆𝑈(𝑆, 𝐴) = 2 ∗
𝐼𝐺(𝑆|𝐴)

𝐻(𝑆) + 𝐻(𝐴)
 (2) 

 

The SU method works similarly to IG. In addition to the score calculated for 

information gain, it defines the information content of a particular attribute, including 

definitions of the attribute and the entropy structure of the class. 

4.1.3. ReliefF 

ReliefF feature selection method measures the importance of an attribute by repeatedly 

sampling an instance and taking into account the value of the given attribute for its two 

nearest instances, one instance from the same class, and the other instance from the 

different class [40]. This method is very effective when working with large amounts of 

data. Since the number of performed sampling trials is constant, ReliefF feature 

selection method can run quicker than other methods. The algorithm of ReliefF method 

for a given m number of sampled instances and k number of features is shown in Figure 

1. 

 

Set all weights W[Ai] = 0.0; 

for j = 1 to m do begin 

   randomly select an instance X; 

   find nearest hit H and nearest miss M; 

   for I = 1 to k do  
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 W[Ai] = W[Ai] – diff(Ai, X, H) / m + diff(Ai, X, M) / 

m 

end; 

Fig. 1. ReliefF Algorithm 

4.1.4. Correlation based approach 

Correlation based feature selection approach evaluates the importance of an attribute by 

measuring the Pearson's correlation between the attribute and the target class [41]. This 

method simply measures linear correlation between features. The following formula 

indicates the calculation of Correlation Coefficient (R) between the attribute A and class 

C. 

𝑅(𝑓𝑖, 𝑦) =
𝑐𝑜𝑣(𝑓𝑖 , 𝑦)

√𝑣𝑎𝑟(𝑓𝑖) 𝑣𝑎𝑟(𝑦)
 (3) 

4.2. Machine Learning ClassifiersNaïve Bayes 

Naïve Bayes (NB) is a well-known machine learning classifier based on statistical 

Bayes Theorem and conditional probability [42]. Bayes theorem provides to calculate 

the posterior probability, P(c | x), from P(c), P(x), and P(x | c). NB classifier presumes 

that the impact of the value of a feature (x) on a given class (c) is independent of the 

values of other attributes. This assumption is called class conditional independence and 

calculated with following equations. 

 

𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
 (4) 

  

𝑃(𝑐|𝑥) = 𝑃(𝑥1|𝑐) ∗ 𝑃(𝑥2|𝑐) ∗ … ∗ 𝑃(𝑥𝑛|𝑐) ∗ 𝑃(𝑐)  (5) 

 

where P(c | x) is the posterior probability of class given feature. P(c) is the prior 

probability of class. P(x | c) is the likelihood which is the probability of feature given 

class. P(x) is the prior probability of attribute. 

4.2.2. Decision Tree 

Decision tree is a supervised learning approach that classifies the test data by creating a 

flowchart-like decision tree based on a training set. In the constructed decision tree, 

internal nodes, branches, and leaflets indicate the features of dataset, values of features, 

and classification labels respectively. The main advantage to the use of decision trees is 

the class-oriented visualization of dataset. In this study, J48 decision tree learning 

algorithm which is a version of well-known Iterative Dichotomiser (ID) 3 is utilized 

[43]. 
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4.2.3. K-Nearest Neighbor 

K-Nearest Neighbor (K-NN) is a simple instance-based and lazy learning classification 

algorithm having no training phase [44]. The distance between the test data and 

remaining instances is calculated, finally the class having maximum count is selected 

from the nearest k samples. In K-NN, Euclidean and Cosine similarity measures are the 

most common algorithms to calculate the distance [45]. In the proposed study, a Weka 

implementation of K-NN algorithm called IBk is employed. 

4.2. Evaluation Criteria 

Different criteria are employed to evaluate the performance of classifiers in Machine 

Learning. All criteria are formulized using a confusion matrix that contains actual and 

predicted class labels. True Positives (TP), True Negatives (TN), False Positives (FP), 

and False Negatives (FN) indicates the four different prediction outcomes [46]. In 

software fault prediction literature, Geometric Mean - 1 (GM) is used by researchers 

such as  Ma et al[46] and Cagatay et al[47] for the valuation of prediction systems to 

benchmark ML algorithms [48]. In this study, we therefore have used GM to evaluate 

performance of our algorithms. GM is also a good performance indicator when the 

datasets are imbalanced and it is used for the evaluation of fault prediction systems [47]. 

GM metric is calculated using Eq. 6. 

 

Geometric Mean1 = √(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙) (6) 

 

In 6, Precision is the ratio of correctly predicted positive instances and total predicted 

positive instances. Furthermore Recall is the defined as the ratio of correctly predicted 

positive instances and total number of correctly observed positive instances. Precision 

and Recall are calculated with Eq. 7 and 8 respectively. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(8) 

5. Experimental Study and Analysis 

5.1. Design 

In this section, we supply a detailed pseudocode that explains the details of MVFS 

algorithm. 
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Input: 
 

D: array [KC1, PCI, JM1, CM1, EclipseCore, EclipseJDT]: Datasets 

S: Full feature set of selected dataset 

MLA: array [IBK, NB, J48]: Machine learning algorithms 

SMLA: Selected machine learning algorithm 

Rt  array [IG, CO, RF, SU]: Feature selection techniques 

r: Number of ranker 

voting: Number of voting 
 

Output: 
 

o1: Specifies Gm (G-means) 
 

Method: 
 

(1) S = D[Selected data set] // A dataset is selected. 

(2) o1 = MLA[smla(S)], o2= MLA[smla(S)]  // Selected machine learning algorithms are 
trained  and tested.  

     Gm = o1 // The value of o1 measure is obtained. 

(3) S = D[Selected data set] // Dataset is selected once again for feature selection.  

(4) o1 = Rt(MLA[smla(S)], r),  o2 = Rt(MLA[smla(S)], r)  

     Gm = o1 // Gm performance metric is obtained. 

(5) while (Rt((S), r) for each dataset) 

    { 

 if (voting = "2/4")  // Voting count is identified. 

  voting_count=2 

 else if (voting = "3/4") 

  voting_count=3 

 else if (voting = "4/4") 

  voting_count=4 

    } 

(6)  o1 =MLA[smla(voting(S), r)]  // 3 new datasets for each voting rule are obtained and 
machine learning algorithms trained and tested using cross validation. 

      Gm= o1 // Gm performance metric for all generated datasets is obtained. 
 

Fig. 2. The pseudocode of MVFS Algorithm. 

In brief terms, the proposed algorithm runs as follows: 

NASA and Eclipse projects are used with all features and tested with NB, J48 and 

IBK algorithms on top of 10-fold cross validation scheme to obtain GM metric. In the 

second phase IG, CO, RF and SY rankers are used to obtain top 20 software metrics and 

the experiments are revaluated. In this phase, MVFS algorithm is run using 2/4, 3/4 and 

4/4 voting rules and 3 new datasets with reduced features are obtained. The 

dimensionally reduced datasets are used and GM metric is obtained for NB, J48 and 

IBK classifiers. This cycle is repeated as follows: (i) obtain subset of features gradually 

20, 15, 10, 5 and run MVFS to obtain 3 new data sets for each voting rule, (ii) use 10-

CV train-test model for NB, J48 and IBK and obtain GM performance metric for all 

generated datasets. 

All the runs are performed using the implementations of NB, J48, and IBK 

algorithms in the WEKA (Waikato Environment for Knowledge Analysis) version 3.8.1 

[49]. The default parameters are used for each algorithm and the mentioned ranker 

methods since they produce promising results as stated in [50]. For NB having 
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continuous variables, any kernel method for prediction of the distribution is not used. 

The default parameters for IBK and J48 algorithm are also employed in the study. For 

IBK, the value of parameter k is selected as 1, distance weighting is not applied and 

Euclidean distance is chosen as distance function. 

5.2. Results 

In this section, we give details corresponding to the designed algorithm. The overall 

results corresponding to each project are given in related tables. However, we did not 

provide the results for all voting rules. We instead selected the best performance metrics 

for the sake of convenience. Additionally, in order to make interpretation of tables 

easier and illustrate the performance of the proposed algorithm more obvious, we 

produced recapping figures for each table. 

Table 4. Experimental Results for Project KC1 

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.838 0.839 0.829 0.832 0.810 
J48 0.835 0.839 0.830 0.833 0.837 

NB 0.819 0.819 0.823 0.824 0.827 

 

CO 

IBk 0.838 0.839 0.831 0.828 0.828 
J48 0.835 0.840 0.835 0.834 0.833 
NB 0.819 0.819 0.821 0.823 0.825 

 

RF 

IBk 0.838 0.838 0.832 0.839 0.831 
J48 0.835 0.833 0.835 0.833 0.836 
NB 0.819 0.819 0.819 0.818 0.816 

 

 

SY 

 

IBk 0.838 0.839 0.835 0.825 0.822 
J48 0.835 0.840 0.836 0.825 0.828 

NB 0.819 0.819 0.825 0.823 0.824 

FS 

Method 

Classifier   19 out of 20 8 out of 15 2 out of 10 1 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.838 0.839 0.833 0.826 0.829 
J48 0.835 0.840 0.839 0.835 0.834 

NB 0.819 0.819 0.822 0.823 0.837 

 

In Table 4, it is seen that MVFS yields acceptable values in terms of GM compared 

to the standard feature ranker algorithms. The results may be examined in Figure 3 more 

precisely.  
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Fig. 3. Illustration of Experimental Results of Table 4 

Table 5. Experimental Results for Project PC1 

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.921 0.919 0.912 0.916 0.913 

J48 0.925 0.921 0.917 0.919 0.934 

NB 0.895 0.894 0.897 0.894 0.895 

 

CO 

IBk 0.921 0.919 0.916 0.910 0.915 

J48 0.925 0.921 0.920 0.923 0.922 

NB 0.895 0.894 0.896 0.897 0.895 

 

RF 

IBk 0.921 0.921 0.915 0.917 0.920 

J48 0.925 0.923 0.918 0.921 0.932 

NB 0.895 0.894 0.893 0.892 0.896 

 

 

SY 

 

IBk 0.921 0.919 0.915 0.916 0.912 

J48 0.925 0.921 0.920 0.919 0.925 

NB 0.895 0.894 0.895 0.894 0.900 

FS 

Method 

Classifier   19 out of 20 11 out of 15 10 out of 10 2 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.921 0.919 0.915 0.916 0.916 

J48 0.925 0.921 0.920 0.923 0.935 

NB 0.895 0.894 0.895 0.902 0.907 

 

While examining Table 5 for the experiments of project PCI, we may observe that 

MVFS technique improves the performance of the algorithms particularly for top 5 

software metrics. This improvement is observed in Figure 4 clearly. 
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Fig. 4. Illustration of Experimental Results of Table 5 

The experiment conducted on Project JM1 is given in Table 6 and the visualization of 

the results is provided in Figure5. 

Table 6. Experimental Results for Project JM1 

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.766 0.765 0.762 0.761 0.758 

J48 0.776 0.782 0.787 0.792 0.792 

NB 0.784 0.784 0.783 0.782 0.782 

 

CO 

IBk 0.766 0.766 0.762 0.759 0.764 

J48 0.776 0.776 0.785 0.787 0.790 

NB 0.784 0.783 0.783 0.784 0.787 

 

RF 

IBk 0.766 0.766 0.766 0.764 0.755 

J48 0.776 0.777 0.781 0.789 0.784 

NB 0.784 0.783 0.783 0.784 0.774 

 

 

SY 

 

IBk 0.766 0.765 0.761 0.760 0.752 

J48 0.776 0.783 0.791 0.786 0.798 

NB 0.784 0.784 0.783 0.781 0.785 

FS 

Method 

Classifier   18 out of 20 9 out of 15 7 out of 10 5 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.766 0.766 0.763 0.786 0.775 

J48 0.776 0.782 0.791 0.809 0.788 

NB 0.784 0.784 0.784 0.785 0.787 

 

As the Table 6 and Figure 5 is evaluated together, top 10 software metrics obtained 

with MVFS method result in higher GM values.  
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Fig. 5. Illustration of Experimental Results of Table 6 

CM1, another NASA projects, is evaluated with the same scheme explained before. The 

results of the experiments and the corresponding sum up figure is given as Table 7, 

Figure 6  respectively. 

Table 7. Experimental Results for Project CM1 

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.843 0.843 0.851 0.835 0.848 

J48 0.855 0.850 0.851 0.850 0.850 

NB 0.857 0.856 0.856 0.862 0.866 

 

CO 

IBk 0.843 0.843 0.836 0.837 0.832 

J48 0.855 0.855 0.859 0.850 0.851 

NB 0.857 0.857 0.855 0.857 0.866 

 

RF 

IBk 0.843 0.843 0.838 0.847 0.830 

J48 0.855 0.854 0.853 0.845 0.856 

NB 0.857 0.857 0.855 0.855 0.855 

 

 

SY 

 

IBk 0.843 0.843 0.851 0.835 0.840 

J48 0.855 0.855 0.851 0.850 0.851 

NB 0.857 0.857 0.856 0.862 0.870 

FS 

Method 

Classifier  19 out of 20 13 out of 15 9 out of 10 4 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.843 0.843 0.848 0.851 0.861 

J48 0.855 0.855 0.856 0.850 0.856 

NB 0.857 0.857 0.855 0.869 0.872 

 

From Table 7 and Figure 6, we may observe that, the proposed method does not 

improve the results at first glance. However, it retains the classification performance 

metrics at top 10 and top 5 features. 
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Fig. 6. Illustration of Experimental Results of Table 7 

The evaluation results of Eclipse Equinox dataset, is provided in Table 8 and 

corresponding Figure 7. 

Table 8. Experimental Results for Project Eclipse Equinox Core Dataset 

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.799 0.819 0.804 0.804 0.801 

J48 0.805 0.824 0.823 0.818 0.845 

NB 0.827 0.833 0.841 0.840 0.840 

 

CO 

IBk 0.799 0.808 0.805 0.797 0.775 

J48 0.805 0.812 0.802 0.820 0.832 

NB 0.827 0.827 0.839 0.840 0.840 

 

RF 

IBk 0.799 0.787 0.788 0.802 0.743 

J48 0.805 0.806 0.811 0.805 0.758 

NB 0.827 0.843 0.839 0.829 0.754 

 

 

SY 

 

IBk 0.799 0.816 0.809 0.811 0.794 

J48 0.805 0.814 0.819 0.830 0.834 

NB 0.827 0.835 0.841 0.843 0.838 

FS 

Method 

Classifier  18 out of 20 13 out of 15 10 out of 10 3 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.799 0.810 0.812 0.804 0.798 

J48 0.805 0.825 0.828 0.848 0.842 

NB 0.827 0.838 0.842 0.840 0.848 

 

The results of the experiments show a fairly increase in GM metrics, in particular at 

top 10 and top 5 software metrics selected with MVFS. 
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Fig. 7. Illustration of Experimental Results of Table 8 

The evaluation results of last dataset, Eclipse JDT dataset, is provided in Table 9 and 

in the corresponding Figure 8. 

Table 9. Experimental Results for Project Eclipse JDT Dataset  

FS 

Method 

Classifier All Features Top 20 Features Top 15 Features Top 10 Features Top 5 Features 

Name GM GM GM GM GM 

 

IG 

IBk 0.709 0.704 0.708 0.692 0.698 

J48 0.721 0.722 0.719 0.744 0.734 

NB 0.720 0.719 0.716 0.720 0.720 

 

CO 

IBk 0.709 0.721 0.707 0.691 0.686 

J48 0.721 0.729 0.726 0.732 0.732 

NB 0.720 0.719 0.722 0.723 0.722 

 

RF 

IBk 0.709 0.703 0.704 0.687 0.674 

J48 0.721 0.729 0.727 0.716 0.691 

NB 0.720 0.723 0.720 0.725 0.683 

 

 

SY 

 

IBk 0.709 0.711 0.708 0.689 0.695 

J48 0.721 0.716 0.718 0.739 0.737 

NB 0.720 0.718 0.716 0.719 0.716 

FS 

Method 

Classifier  17 out of 20 12 out of 15 8 out of 10 1 out of 5 

Name GM GM GM GM GM 

 

Majority 

Vote 

IBk 0.709 0.718 0.709 0.684 0.693 

J48 0.721 0.732 0.737 0.739 0.738 

NB 0.720 0.720 0.720 0.722 0.723 

 

The results of the experiments show a considerable increase in GM metrics, in 

particular at top 20, top 15 and top 5 software metrics selected with MVFS. 
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Fig. 8. Illustration of Experimental Results of Table 9 

As a sum up of this section, we summarize the results of the experiments and 

compare the performance of our method with conventional feature rankers based on GM 

metric in Table 10. 

Table 10. Overall Evaluation of Experimental Results based on GM  

 Top20 Top 15 Top 10 Top 5 

KC1 same better worse same 

PC1 worse same same better 

JM1 same same better worse 

CM1 same worse better better 

Eclipse Equinox Core  worse same better better 

Eclipse JDT better better worse better 

 

As the Table 10 is examined, it is seen that the proposed method is eligible to 

discriminate most valuable software metrics that are functional in software fault 

prediction detection. Table 10 provides the comparative results of proposed MVFS 

algorithm and standard rankers, i.e., IG, SU, RF and CO.  

For all datasets, MVFS algorithm yields similar results compared to conventional 

rankers for top 20 and top 15 features. Furthermore, as it can be observed from Table 

10, our approach is able to find the most informative software metrics at top 10 or top 5 

features. As an overall summary, we may draw a conclusion from Table 10 that the 

proposed method either increases the prediction of the algorithms or keep their 

performance as the same. 

We have moreover calculated mean and medians of the predictions of the classifiers 

from the related tables to compare overall results. The results of these statistical 

calculations are given in Table 11.  

As the Table 11 is inspected with median and mean perspectives, it can easily be 

observed that the proposed method is almost better than the remaining algorithms in 

terms of fault prediction.  
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Table 11. Median and Mean Calculations of Classier Results based on GM 

  Top20 Top 15 Top 10 Top 5 

KC1 

Mean Value  0.839 0.834 0.831 0.834 

Median Value 0.839 0.835 0.833 0.834 

Majority Value 0.840 0.839 0.835 0.837 

Median Base Result better better better better 

Mean Base Result better better better better 

PC1 

Mean Value  0.921 0.918 0.920 0.928 

Median Value 0.921 0.919 0.920 0.928 

Majority Value 0.921 0.920 0.923 0.935 

Median Base Result same better better better 

Mean Base Result same better better better 

JM1 

Mean Value  0.783 0.786 0.788 0.791 

Median Value 0.784 0.786 0.788 0.791 

Majority Value 0.784 0.791 0.809 0.788 

Median Base Result better better better worse 

Mean Base Result same Better better worse 

CM1 

Mean Value  0.856 0.856 0.859 0.864 

Median Value 0.857 0.856 0.859 0.866 

Majority Value 0.857 0.856 0.869 0.872 

Median Base Result better same better better 

Mean Base Result same same better better 

Eclipse 

Equinox Core  

Mean Value  0.834 0.840 0.838 0.820 

Median Value 0.834 0.840 0.840 0.839 

Majority Value 0.838 0.842 0.848 0.848 

Median Base Result better better better better 

Mean Base Result better better better better 

Eclipse JDT 

Mean Value  0.724 0.722 0.735 0.723 

Median Value 0.725 0.722 0.735 0.733 

Majority Value 0.732 0.737 0.739 0.738 

Median Base Result better better better better 

Mean Base Result better better better better 

      

5.3. ANOVA Test and Validation 

Analysis of variance (ANOVA) test was used to statistically validate the results of 

empirical analysis. In this study, two-way ANOVA test is employed to determine 

whether the differences between multiple groups of results are statistically significant 

based on independent factors. In the ANOVA test, feature selection methods, classifiers, 

feature sets and datasets are taken as the factors of the analysis. In addition, the 

interactions (interactions through order 2) between different factors are also taken into 

consideration. Namely, feature selection method and classifier interaction, feature 

selection method and feature set interaction, feature selection method and dataset 

interaction, classifier and feature set interaction and classifier and dataset interaction are 

also considered. In the analysis, a GM values are taken as the response values.  The 
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hypothesis regarding the method performed on Minitab statistical software. The 

statistical values of ANOVA test are given in Figure 9. Parameters of the test, namely, 

DF, SS, MS, F and p-value correspond to degrees of freedom, adjusted sum of squares, 

adjusted mean square, F-statistics and probability value, respectively [51]. 

 

 

Fig. 9. Two-way ANOVA test results 

 

Fig. 10. Main Effects Plot for G-means 

As indicated in Figure 9, the better predictive performance obtained by the proposed 

new feature selection method is statistically significant at 99% confidence level. 

Regarding the test results presented in Figure 9, there are statistically significant 

differences among the factors of the analysis (such as Classifier, Feature selection 

method, Dataset, etc.). Hence, it can be seen clearly in Figure 9 that most of the values 

obtained are statistically significant at 99% confidence level. However, there is no 
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statistically significant difference between the GM values for feature selection method 

and classifiers. That is, differences for predictive performance of different feature sets 

do not exhibit a varying pattern based on the classifiers. 

In Figure 10, the main effects plots for classification GM values of the empirical 

analysis is given. It summarizes comparatively the main findings of the study based on 

the average results of experiments. As it can be seen from Figure 10, the highest 

performance in terms of accuracy values were obtained by the proposed majority voting 

based feature section method. Regarding the performance of classification algorithms, 

the highest predictive performance (in terms of GM) was achieved by J48 algorithm. 

Regarding the datasets utilized in the empirical analysis, PC1 dataset yields the highest 

performance. In Figure 11, the histograms of residuals for all empirical results (in terms 

of GM) are presented to examine the distribution of empirical results. As it can be 

observed, the patterns for residuals of all observations exhibit a skewed distribution, 

which validate the statistical differences obtained by two-way ANOVA test results 

presented in Figure 11. 

 

 

Fig. 31. Histogram of Residuals 

6. Threads to Validity 

This empirical study uses six bug prediction datasets. Four from PROMISE repository, 

and two from Eclipse domain. One of the main threads of such empirical studies is that 

the generalization capability of the methods may be insufficient and domain dependent. 

Naturally, the proposed feature selection method may provide varying results in 

different software domains. Furthermore, the success of empirical software analysis 

strategies is highly dependent on the quality of selected metrics. The main emphasis of 

this study is to develop an ensemble feature selection strategy that combines various 

selection algorithms to obtain the best feature subset. Being a pre-processing step, the 

selection of classifiers probably has minor influence on the final decisions. Though not 

guaranteed, this feature selection strategy is expected to provide better results compared 

with the results of a single feature selection method. Finally, the significance of the 

proposed method is supported with statistical tests.  
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Selection of classifier parameters, being another thread, have also influence on the 

corresponding results. Even the same classifier with different parameters may affect the 

related fault-detection performance and therefore selection of the set of classifier 

parameters are also evaluated in the study.  

One more important thread is that the classifier fault-detection performances may 

vary with the selected subset of metrics. In this context, our proposed method uses a 

voting ensemble strategy to obtain an optimal set of metrics. The method makes use of a 

majority combination rule to select the most significant metrics from the results of four 

different widely used ranker algorithms. Voting based ensembles may also be obtained 

with averaging or weighting combination mechanisms that may influence the results. 

Other empirical studies may take advantage of various combinations to obtain the best 

subset of software metrics [52].   

This study makes use of various feature selection algorithms, their ensemble 

combinations. The quality of the obtained subset of features is evaluated with various 

classifiers. To reduce modeling errors to minimum, the experiments and statistical 

investigation were conducted by only one skilled researcher. 

7. Conclusion 

Quality in selection of software metrics is critical in the fault detection performance of 

prediction models.  Therefore intelligent selection of software metrics is the first step to 

obtain an accurate model. We present a collaborative feature selection model to 

discriminate the most informative software metrics and eliminate other irrelevant 

metrics. We made use of six software projects and three machine learning algorithms in 

order to compare performance of or MVFS algorithm with four conventional rankers. 

As a result, it is empirically observed in the sum up Table 10 that the proposed method 

is either increases the fault detection performance or retain it as the same compared to 

the performance of the standard feature selection methods. The obtained experimental 

results are statistically supported with two-way ANOVA test conducted for GM values. 

As a future work, we want to test the performance of the proposed MVFS algorithm 

with the use of another software projects to demonstrate its efficiency. 
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