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Abstract. The paper presents an empirical study of multidimensional visualization
techniques. The study is motivated by the problem of decision making in PACS
(Picture Archiving and Communications System) design. A comprehensive survey
of visualizations used in literature is performed and these survey results are then
used to produce the final set of considered visualizations: tables (as control), scat-
terplots, parallel coordinates, and star plots. An electronic testing tool is developed
to present visualizations to three sets of experimental subjects in order to determine
which visualization technique allows users to make the correct decision in a sample
decision making problem based on real-world data. Statistical analysis of the results
demonstrates that visualizations show better results in decision support than tables.
Further, when number of dimensions is large, 2D parallel coordinates show the best
results in accuracy. The contribution of the presented research operates on two lev-
els of abstraction. On the object level, it provides useful data regarding the relative
merits of visualization techniques for the considered narrow use-case, which can
then be generalized to other similar problem sets. On the meta level above, it con-
tributes an enhanced methodology to the area of empirical visualization evaluation
methods.
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1. Introduction

This paper presents an empirical study of visualization techniques used in the evaluation
of medical image compression. It aims to select a dominant visualization technique in the
considered context, validate this choice (through analysis of literature and direct testing),
and demonstrate that visualization is sufficiently useful to be a dominant component in
decision support systems. Further, its results are intended to be generalized to multidi-
mensional data visualization as such. The study employs statistically-analyzed empirical
data as well as domain expert use case analysis and provides a comprehensive overview of
current work in the field. The paper consists of five sections: introduction, related work,
proposed approach, data analysis, and conclusion. This introductory section will cover
motivation for the research by presenting the problem of image compression in medicine
by way of PACS (Picture Archiving and Communications System) as well as outline the
general methodology of the study.
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1.1. Motivation

This study, while aiming for generalizability, was motivated by the question of decision
making in PACS design. A PACS is a very complex system which covers all the aspects
of image workflow in one or more medical institutions [4], including mobile medicine
and telemedicine applications [29]. PACS is the dominant paradigm in the medical field
and remains so, despite occasional criticism [26]. Designing one, naturally, brings to the
forefront the question of compression. Image compression in PACS is, generally speak-
ing, desirable because of the relaxation of storage and transmission requirements and the
increase of image turnaround time [19]. Compression also allows for the use of lower-
capability devices in medicine and telemedicine applications [16]. Lower-capability de-
vices are still relevant despite the recent explosion in device capabilities because telemedi-
cal applications are of great interest in less developed countries. This is due to the need for
the efficient use of a small number of doctors and the markedly high market penetration
of mobile telephony in those regions [49].

Choosing a suitable image compression technique for a PACS is a complex decision-
making problem which must take into account various requirements [15], imposed and
evaluated by a heterogenous group of stakeholders. Requirements rely on various metrics
of quality [14] with over 250 being attested in the literature, though usually only a subset
is used [17]. To simplify this considerable task, the authors of the paper have developed
a decision-support system called SICEP (Still Image Compression Evaluation for PACS)
which can be used to integrate disparate metrics and requirements into a unified data set
amenable to analysis.

No matter how unified this data set is, it is still an intimidating amount of information
which needs to be presented to stakeholders in PACS design. Contrary to business intelli-
gence (BI) analytics [10], once the unified data set is defined, not even the pre-processing
techniques applied in BI (such as data aggregation, drill-downs, or OLAP) can lead to fur-
ther dimensionality reduction and a solution for presenting the data to stakeholders needs
to be found in data visualization techniques [54]. Stakeholders, while experts in their var-
ious domain specialties, are not experts in the evaluation of the metrics used, most of
which present interacting tradeoffs in properties which require a technical education to
merely understand. Our desire was to permit for control on the part of the stakeholders
allowing the decision to be entirely theirs while minimizing the cognitive load. Therefore
we chose data visualization [47] as a suitable shortcut, and we began to develop a sub-
system for data visualization we named VisSys. This, however, raised a new difficulty:
how to select a visualization technique to use as the dominant one in our system and how
to validate that (a) that technique is the correct choice and that (b) a visualization helps
at all compared to presenting the data directly. This paper presents the studies we have
performed to find satisfactory answers to both of those questions.

To summarize, the fundamental contribution of the research operates on two levels of
abstraction. On the object level it provides useful data regarding the relative merits of vi-
sualization techniques for this narrow use-case which can then be generalized to a limited
but substantial degree to other similar problem sets (see 2.1). On the meta level above
it contributes an enhanced methodology to the area of empirical visualization evaluation
methods.

For the studies to be clear, a quick introduction to SICEP/VisSys is required. The
image compression evaluation process is guided by the requirements an image compres-
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sion technique must meet in a specific PACS. Individual metrics are grouped into one or
more requirement indicators to indicate how well compression performed against a given
requirement. The SICEP system can adapt to the needs of any PACS by modifying re-
quirements and requirement indicators. This means that VisSys should express the same
flexibility as the SICEP system by enabling easy selection of requirement indicators and
their modification.

Each of the individual metrics chosen for the SICEP system is important for reaching
valid decisions [14]. Therefore, each of them should be represented with an individual
dimension in VisSys visualizations. Also, since a requirement indicator can have an arbi-
trary number of metrics from a total number of observed metrics which is also arbitrarily
large, VisSys should accommodate a variable number of dimensions. Thus, designing Vis-
Sys required grappling with the problem of multidimensional evaluation which, further,
can operate on arbitrarily-created sub-groups of dimensions.

The method we chose to select an appropriate visualization technique is as follows.
First, we would perform a literature review to determine which methods theoretically sat-
isfied our goals of visualization with an indefinite number of dimensions as well as which
methods are being used in the literature. Second, we would compare in an empirical test
commonly used methods, a table view of the data as a control, and the methods we chose
based on theory. Then we would compare whatever performed best in this initial test to
the leading multidimensional data visualization solutions and, as a control for basic visu-
alization, bar graphs. This we would do in two tests: one with a low number of dimensions
and one with a higher number of dimensions in play. This comparison would be accom-
plished with a statistical procedure based on robust statistical methods, specifically for
the data on the continual level of measurement a dependent robust bootstrapped ANOVA
with trimmed means, a post-hoc test based on Yuen’s modification of Student’s T-test with
Rom’s faimilywise error correction method. For data on the categorical measurement level
a combination of McNemar’s tests preformed iteratively with Holm’s correction, a mul-
tilevel logistical regression, and testing proportional confidence intervals. This procedure
is explained in detail in section 3.5.

Lastly, we would show the visualizations most successful at the empirical tests to
actual stakeholders in a PACS and then observe them as they used it to reach a decision,
interviewing them about their experience. This method is outlined in further sections of
the paper, specifically 2.1 and 3.

2. Related Work

This section presents all aspects of previous work done in this field and related fields
which substantially informed the work presented in this paper. It consists of subsections
relating to multidimensional data visualization as such, and a section on visualization
evaluation.

2.1. Multidimensional Data Visualization

In this paper, we define multidimensional data visualization (MDV) as visualization of a
set of variables measured according to continuous or discrete measurement scales where
all variables in the set must be visible simultaneously for relationships to be visualized,
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and the number of variables exceeds by a significant margin the number of spatial dimen-
sions available for mapping. In the most common type of visualization two variables are
shown at the same time, highlighting the relationship between them, such as in a simple
line graph where one variable is time and another something we measure. If interactive
computer-based tools or 3D printing is used, one additional spatial dimension can be used.
To these two or three spatial dimensions, a number of visual variables—as discussed in [7]
(which evaluates the use of variables as a basis of visualization) [25] (which evaluates
the use of similar mapping in geographical visualizations) and [33] (which proposes an
expansion of the visual variable concept into the dynamic domain)—can be added, each
being mapped to a dimension of the data. This gives us an absolute upper limit of nine
dimensions present at the same time, though, of course, practical concerns tend to reduce
that to no more than five.

To overcome this problem, MDV techniques employ something else apart from spatial
dimensions to map data dimensions to. Examples include star plots [48] which use axes
distributed radially in order to map data, Fig. 1, as well as parallel plots in 2D which are
discussed in [27] (which presents the general concept), [30] (which reviews the literature),
and [53] (which discusses as one of their salient features their ability to reveal structure
in data). Further, parallel coordinates are available in 3D [27], and there is some use
of techniques like 3D glyphs [11,23], and Chernoff faces [6,42]. Parallel coordinates
are especially commonly used when very large data sets need to be displayed [50]. 3D
parallel coordinates are an extension of 2D parallel coordinates into the third dimension,
which is difficult because of the necessity of a rule for connecting axes. In the case of 2D
coordinates direct comparison only works between axes which are neighbors, and which
axes are neighbors is simple to determine. In the 3D case the situation is more complex,
because if all axes are to be connected to all other axes the display becomes too cluttered.
A method for resolving this issue is the use of axis connecting rules. One commonly
used rule is used to generate a type of display known as clustered multi-relational parallel
coordinates (CMRP). This rule chooses one axis and compares all the other ones to it
by placing the chosen axis in the center and connecting the remaining n — 1 axes to be
visualized around it, forming a regular n — 1 sided prism, see [22].
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Fig. 1. Star plot, public domain image from NASA for illustrative purposes only
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This is much less cluttered and it would suit us to use it but, unfortunately, it did
not fulfill our requirements. It shows not the full » dimensions and their relations but,
very specifically, the relations of n — 1 dimensions to one baseline dimension which does
not fit our requirements. We still wanted to use a 3D analogue for parallel coordinates,
and so extended CMRP coordinates in such a way that there is no central coordinate.
Instead, n-dimensional space is presented by mapping n values onto sides of a n-sided
regular prism. A point in such a space is then presented by way of a polyline connecting
all the axes along the sides forming a regular prism with a slice taken out of it, Fig. 2
(right). This is contrasted with 2D parallel coordinates visible on the left. Clearly, one
can only interconnect those values sharing a side of the prism, but this still exceeds the
capabilities of non-extended CMRP. These extended CMRP coordinates (ECMRP) are
only fully usable using a custom tool to display them interactively [18]. To simplify the
nomenclature we will refer to the ECMRP subvariant as simply 3D parallel coordinates.

-

Fig. 2. Parallel coordinates: 2D (on the left) and 3D (on the right) in modified form as extended
Clustered Multi-Relational Parallel Coordinates, image from [18]

Star plots, in Fig. 1, and 2D parallel plots in Fig. 2 (left), both use essentially the same
method: instead of using spatial dimensions to map data dimensions to, they instead use
equally spaced axes, either radially or in parallel arrangement. 3D glyphs and Chernoff
faces on the other hand map the dimensions of the data to a specific visual feature of the
glyph, in case of 3D glyphs, and on facial features of cartoon faces, in the case of Chernoff
faces.

Chernoff faces are a special case of glyph which use facial features specifically in
the hope that this will allow access to the preliminal processing characteristic of human
facial recognition, thus dramatically increasing data efficiency, especially when presented
extremely quickly. This, however, is yet to be shown as actually working, as studies de-
signed to detect this feature have failed to record any effect [42].

Of course, the situation is dramatically altered in the case of dimensionality reduction.
It is possible to reduce the number of dimensions shown and, thus, fundamentally alter
the factors that affect the choice of a visualization. Normally dimensionality reduction is
only to be discussed on the per-case basis, though work has been done on using artificial
intelligence [38] to prioritize certain subsets of multidimensional relationships as ones to
show to the user as the most ’interesting’ where ’interest’ is defined as those that provide
optimal separation. This, however, is outside the scope of this paper.
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2.2. Approaches to Visualization Evaluation

A lot of previous work has gone into analyzing possible approaches to visualization eval-
uation including Lam’s comprehensive taxonomy of approaches [37] buttressed by a lit-
erature review [28], as well as a comprehensive review by Carpendale [8]. Using Lam’s
taxonomy, visualization evaluations can be divided into: understanding environments and
work practices (UWP), evaluating visual data analysis and reasoning (VDAR), communi-
cation through visualization (CTV), evaluating collaborative data analysis (CDA), evalu-
ating user performance (UP), evaluating user experience (UE), and evaluating visualiza-
tion algorithms (VA).

Based on this taxonomy and on the already-described requirements of our work on
VisSys certain methods are preferable to others. VDAR is simply impossible since it re-
quires a system already used in practice. CTV does not fit our requirements since we do
not aim to exclusively communicate via visualization but, instead, wish to facilitate the
comparison between things visualized. CDA does not fit the scope of our tests since we
must first validate our choice for single users before we consider the impact on the group.
VA would suit us well, requirement-wise, but we do not know which objectively analyz-
able features of visualization algorithm output correspond to insight in our users. We also
rejected the, otherwise excellent, laboratory driven approach of Engelke et al. [20] out of
fear that a sensitive statistical test such as one we would have to do and which are exten-
sively used in UP-coded visualization scenarios [37] would amplify unconscious biases
in the experimental setup which we could not fight with a Bayesian [2, 41] approach due
to lacking the data to establish suitable priors.

In the end, the method we chose was a hybrid of several approaches: First, UWP for
the initial selection which takes after a tradition of papers like the work by Freitas et
al. [24] or the seminal work by Keim and Kriegel [34] who codified the priors of their
investigation by introducing a set of criteria based partially on own work and partially on
existing literature in the vein of the work by Pillat [44]. Second we employ a rigorous
literature review, followed by a multi-stage combination of UP and UE tests as a part of
a controlled empirical study following in a tradition of empirical studies typified by the
likes of Cawthon [9] and finished with a UP/UE interview with domain experts/PACS
stakeholders.

3. The Proposed Approach

This section outlines the proposed approach to the study based on previous work in the
field. It outlines how candidate visualization studies were chosen in the first two sections,
first by a modified UWP approach (see 2.2) and then by a statistical analysis of published
papers in the field. It then describes the test to be undertaken through the outline of the
test, a discussion of methodology, and finally a discussion on statistical procedure.

3.1. Requirements-based Analysis

While we did not have sufficient access to PACS stakeholders to execute many field
interviews—they are by the nature of their responsible positions people with limited time
for other people’s research—having designed SICEP we had data on what would be the
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subject of VisSys visualization and based our decisions on this. The requirements that
VisSys visualization has to fulfil are:

— Dimensional scalability (DS). The visualization technique should be such that it
easily adapts to very large numbers of data dimensions.

— Lens support (LS). The visualization technique should be such that it allows for the
easy selection and analysis of regions of interest.

— Comparison in isolation (CI). The visualization technique should be such that it
can be fully used if comparing only two entities.

Although some of these requirements can be fulfilled in pre-processing stage, such as
the ones in business intelligence (BI) data analytics, we previously established that once
the unified data set is defined, no further reduction is possible, therefore, these require-
ments have to be supported using a visualization technique. Based on these requirements
and the literature which covers glyphs[11, 23], star coordinates[12, 48], parallel coordi-
nates[22,27, 53], and Chernoff faces[42], it was relatively easy to formulate an evaluation
of these visualization types based on these criteria.

Star plots definitely implement the LS and CI criteria, but implement the DS criterion
only partially. Parallel plots implement all three criteria, while glyphs and Chernoff faces
implement none of them. The only point of possible contention is saying that the star plot
only implements DS partially. We feel this is correct, however, because it is impossible to
find more than 360 degrees in a circle. Our preliminary research suggested possible issues
in examples with extremely high-dimensionality.

The question that now arises is whether to use 2D or our modified version of 3D par-
allel coordinates. 2D coordinates have the advantage of simplicity and naturally fit 2D
based displays which we would naturally have to use. On the other hand, 3D visualiza-
tion has a lot to recommend it, especially in reducing cognitive distance in the case of
multidimensional data [12,31]. In the end, we decided to use both 2D and 3D parallel
coordinates.

3.2. Statistical Literature Review

A sample of 591 papers drawn from image compression literature was reviewed by the
authors and each visualization technique employed was noted including tables which, for
the purposes of this survey, were counted as visualization methods. Listing the contents
of the sample is far beyond the scope of this paper, but the raw data used is available
on request. Of the 591 assessed papers, 26.40% were conference papers, 72.59% were
journal papers, 0.51% were monographs, and 0.34% were technical reports. Of the pa-
pers in the sample, 4.23% are from the period of 1995-1999, 15.57% from 2000-2004,
44.67% from 2005-2010, and 35.36% from 2010 to 2016. A simple statistical analysis
was then performed on the data, computing visualization method frequencies and their
95% confidence intervals (see table ??).

As can be seen the result is weighed towards tables, scatterlines/scatterplots (two
names for, fundamentally, the same plot: scattered points with optional trend or connect-
ing lines), and bar graphs to an extreme degree.

Based on the above, we decided that the final test must include tables (which we
already wanted as a control), a scatterplot of some sort, and bar graphs. We also added star
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Type Frequency [%] Lower Bound [%] Upper Bound [%]
2D/3D bar graph 0.1692 -0.1621 0.5006
3D bar graph 0.1692 -0.1621 0.5006
Color code 0.1692 -0.1621 0.5006
Pixel map 0.1692 -0.1621 0.5006
Pie chart 0.1692 -0.1621 0.5006
Hosaka plot 0.3384 -0.1298 0.8066
Star plot 0.3384 -0.1298 0.8066
ROC 1.184 0.3122 2.057
3D plane 1.184 0.3122 2.057
Interquartille range 1.861 0.7716 2.951
Scatterplot 8.122 5.919 10.32
Bar graph 16.41 13.43 194
Scatterline (2D line) 54.65 50.64 58.67
Table 84.43 81.51 87.36

Table 1. 95% Confidence intervals for visualization technique use frequencies, n = 591

plots to the consideration because they are the only plot we have found in the literature at
all that can be said to be fulfilling our requirements outlined in subsection 3.1. Therefore,
the final selection of visualization methods to test is: table, scatterplot, bar graph, parallel
coordinates, and starplot. We specifically decided on two subvariants of the starplot: a
’dense’ one and a ’sparse’ one. The dense form has multiple measurements on one graph
and corresponds to parallel coordinates in information density, while the sparse form has
only one measurement per graph and corresponds to the bar graph in information density.

3.3. Test Outline

Four tests were planned: three to be done with large groups, and a final study of the use of
the visualization, if any, that proved best in the tests by a panel of PACS-domain experts.
The group tests all had the same form: experimental subjects were presented with a web
tool for visualization evaluation we developed. They were offered instructions both in
text form and in the form of a video presentation lasting 9 minutes 47 seconds. Then, they
were presented with four visualizations of the same data set, though they were not told
that they would be analyzing the same data set nor what the data represents. They were
then asked to choose the "best’ entity and estimate how certain they were of their choice.
The choice of "best’ is informed based on multidimensional comparison between entities
where all data was industry data, and all axes were scaled to be uniform. This is a task
which, in real use, would be covered by the SICEP system. The time they spent on each
test page was measured.

The three tests were planned to be the initial test (stage 1), low-impact test (stage 2),
and high-impact test (stage 3). The groups used for these tests were planned to be sixty
people for each, but technical issues meant that final data analyzed had, respectively,
60, 43, and 59 people involved. The groups were strictly non-overlapping, anonymous,
voluntary and comprised of an equal mix of adults ranging from ages of 20 up to 65
and of all walks of life. The members were pre-screened for relevant expertise by asking
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before the test if they worked with visualizations in a professional capacity, and the groups
are composed of 46.67% men and 53.33% women in the first stage, 62.79% men and
37.21% women in the second, and 47.46% men and 52.54% women in the third stage. No
test-takers expressed any other gender identity. In stage 1, the requirement-based choice
(parallel coordinates, 2D and 3D) is tested against the baseline (table) as well as the most
popular visualization choice found in the literature (scatterplot). This is done on a data set
with a relatively small number of dimensions. The idea behind this choice is to make it as
fair towards what is used in the literature as possible, and make the requirements-based
choice justify the need for it.

In stage 2, the *winner’ of stage 1 was to be pitted against a visualization we knew was
not suited to the task as a control (bar graph which was attested in the literature), as well
as the best possible competition found in the literature (star plots in both dense and sparse
forms). Stage 2 keeps the 'low dimensionality’ condition (specifically ten dimensions in
three requirement indicators) in which, it is expected, nearly all visualizations will do
well.

The techniques tested in stage 3 are the same as in stage 2, but the data is high-
dimensional. Specifically, the used data have 25 dimensions in six requirement indicators,
as presented in Fig. 3 (top) and (bottom). In this condition, it was expected that the most
suitable visualization method would separate itself out from the competition and the con-
trol would do markedly worse.

= K10 + K1 A K12

= K4 * K5 A K6

Fig. 3. Cropped screenshot of the visualization evaluation tool showing the high-dimensionality
data set visualized using 2D parallel coordinates (top) and dense star plots (bottom)

Fig. 3’s values labeled with a K and a number are deliberately anonymized to avoid
any possibility of any sort of context outside of the visualization itself affecting the test
subject’s judgement. To provide a fair comparison between tests all visualizations are
based on the same data. K3 and K10, for example, are exactly the same requirement
indicator much in the same way K4/K11 and K5/K12 are. They are labeled differently
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to stop previous tests from influencing the thought-process of the test subject. The K-
values are the outputs of requirement indicators devised as a part of SICEP and their full
definition exceeds the scope of this article, and their exact values are wholly irrelevant
to the purpose of the study. The only relevant datum involved is that, universally, higher
values mean that the choice presented by them is preferable and that the test subjects were
informed of this by way of video training and verbal briefing. Details of how requirement
indicators are derived are available in [17] and [15] with [18] providing background on
the practicalities of how they were displayed.

Expert verification had to be limited to the final stage because our access to actual
PACS stakeholders was limited. We resolved to show them only those visualizations
which proved themselves the best and gather their experiences in a field-interview set-
ting. This stage could only function to verify that we have not made some sort of mistake
in previous stages and therefore produced an unusable result.

3.4. Methodological Caveats and Considerations

When doing empirical studies relying on statistical analysis, the risk of error is consid-
erable. This is especially due to psychological reasons, e.g., that of false positive results
either by subconscious interference from the researcher or by amplifying an effect that is
orthogonal to that which was to be studied. To forestall these issues, we made sure to deal
with boredom and practice effects, and eliminate researcher bias and user bias insofar as
that is possible.

We dealt with boredom and practice effects by counterbalancing the design and pre-
senting the experimental subjects with problems in random order with answers likewise
randomized using the Fisher-Yates shuffle to ensure fair permutation. We did our best to
eliminate researcher bias by double-blinding our research protocol. The data was prepared
by one of the authors, but the tests were conducted by another author who did not know
what the results were meant to be, nor had the opportunity to see what the user sees. The
statistical analysis, too, was conducted on anonymized data meaning that the researcher
who performed the analysis did not know what result he *wanted.” A possible source of
bias was the initial choice of data which was limited by only using actual data: all the
data presented to the users was data extracted from the literature on PACS design and
was, thus, not amenable to distortion. The data was assembled from sources such as [5,
35] that evaluated support for region of interest (ROI) coding, [13, 52] that evaluate error
resilience, and [36, 40, 43, 46] that evaluated lossy and lossless compression techniques.

We tried to limit the effect of the peculiarity of individual test subjects by completely
anonymizing the data: the subjects did not know what the data represented so domain
knowledge, if any, did not interfere with the results. We also made sure that users knew
that nobody would ever be able to connect them to individual answers meaning that they
did not feel ashamed of not knowing an answer, which proved an issue in pre-study inter-
views.

3.5. Statistical Procedure

Tests were performed on time and on error rate. For the time measurement, dependent
robust bootstrapped ANOVA with trimmed means [39, 51] was used, followed by a robust
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post hoc test based on the Yuen modification of Student’s T-test corrected for familywise
error rate by the approach of Rom according to the work by Wilcox [39, 51]. The setup for
the ANOVA is based on the visualization group dummy variable as the predictor (when
viewing ANOVA as a special case of the General Linear Model) and the time as the
outcome variable. The predictor, therefore, is categorical and the outcome is measured on
the continuous interval measurement level.

In the case of error rate, the test is a bit more particular since it represents a robust anal-
ysis of dependent categorical data, which is an infrequently explored case. The method
employed here is to use three parallel tests. The first is to simply compute the confidence
intervals of the proportions and check for overlap (overlap being of course a sign that they
are impossible to distinguish). The second is to perform a multilevel logistic regression
with mixed effects and a randomly varying Sy [3] and to estimate the relative quality of
techniques by the confidence interval of their fitted parameter as compared to a baseline
(which is either a table or a bar graph which were there for control purposes to begin
with). The third statistical method is to perform multiple McNemar’s x2 tests [1] and
then correct for the familywise error rate by using Holm’s correction.

To avoid the possibility of fishing for p-values, all three tests had to be positive for
the result to count as positive. The fact that they all measure the same thing but by very
different methods should serve to limit the chance of Type I errors.

4. Results and Data Analysis

This section contains the results of the study and their statistical analysis presented with
minimal interpretation. It consists of three sections: an analysis of time taken, an analysis
of accuracy, and the results of PACS domain expert interviews upon using the visualiza-
tion to make decisions. As a part of this section to save space we will be using abbre-
viations for visualization technique names. Specifically, we will call the bar graph ’bar,
the scatterplot just ’scatter,” the parallel coordinates X2d and X3d for the 2D and 3D ver-
sion, and as for the starplot we will differentiate between the Star3k and Star9kz version
depending on whether it is the dense or sparse variant, as in Section 3.2.

4.1. Analysis of Time Taken

Fig. 4 (a) shows the time taken results for stage one as a mean plot with 95% CI error bars.
Predictably, the figure shows that the table is slowest, and that parallel coordinates are the
fastest. An unexpected result is that 3D parallel coordinates prove to be much slower than
they were expected to be providing no improvement over the table which is meant to be a
control.

If these results are subjected to statistical analysis, with the null hypothesis being that
the mean of all the visualization times taken is equal, and the alternative being that they
differ, an ANOVA test reports a test statistic of F(2.5, 87.66) = 22.3918 and a p-value of
0 i.e. too small to compute, allowing us to reject the null hypothesis. Table ?? shows the
results of a post hoc test, testing a set of null hypotheses that all pairs of means are equal.

Fig. 4 (b) shows the results for time-taken in stage two as a mean plot with 95% CI
error bars. Quite visibly, there is no real difference among the values.
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Fig. 4. Mean plot of the time taken to reach a result: (a) stage 1 (N = 60), (b) stage 2 (N = 43), (c)
stage 3 (N = 59) all with value labels.

Comparison

P-value Critical p-value Significant

Table vs. Scatter 0.00003
Table vs. X2d  0.00000
Table vs. X3d  0.70336
Scatter vs. X2d 0.00085
Scatter vs. X3d 0.00158
X2d vs. X3d 0.00000

0.01270
0.01020
0.05000
0.01690
0.02500
0.00851

Yes
Yes
No
Yes
Yes
Yes

Table 2. Post hoc testing results, stage 1 (N = 60)
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If these results are subjected to statistical analysis, with the null hypothesis being that
the mean of all the visualization times taken is equal, and the alternative being that they
differ, an ANOVA test predictably reports a test statistic of F(2.65, 69) = 0.5134 and a
p-value of 0.65215. This means we cannot reject the null hypothesis of all values being
the same, and there’s no call for a post hoc test.

Fig. 4 (c) shows the time-taken results for stage three as a mean plot with 95% CI
error bars. Mostly there is no real difference, except in the case of Star3k which seems
quite close to being (barely) the fastest.

If these results are subjected to statistical analysis, with the null hypothesis being that
the mean of all the visualization times taken is equal, and the alternative being that they
differ, an ANOVA test reports a test statistic of F(2.93, 105.38) = 4.2831 and a p-value of
0.00722. This means that not all of the values are the same, which is to say that we may
reject the null hypothesis of all means being equal. Table ?? shows the results of a post
hoc test, testing a set of null hypotheses that all pairs of means are equal.

Comparison P-value Critical p-value Significant
Bar vs. X2d 0.04678  0.01270 No
Bar vs. Star3k 0.00086  0.00851 Yes
Bar vs. Star9kz ~ 0.94928 0.05000 No
X2dvs. Star3k  0.24238  0.01690 No
X2d vs. Star9kz  0.27513 0.02500 No
Star3k vs. Star9kz 0.00267 0.01020 Yes

Table 3. Post hoc testing results, stage 3 (N = 59)

The post hoc test results show that despite the appearance of the graph there is no
statistically significant difference between 2D parallel coordinates and a dense star plot.

4.2. Analysis of Accuracy

Fig. 5 (a) shows the relative accuracies of visualization techniques in stage 1 data with
blue representing the percentage of correct answers. It is clearly visible that 2D parallel
coordinates provided the best result by a significant margin, while 3D parallel coordinates
did not display the effectiveness we expected, being no better than the control technique.
As predicted, the scatter visualization technique is between the table and parallel coordi-
nates in accuracy.

Table ?? shows the actual value of the proportions, their confidence intervals, and the
corresponding coefficients in the logistic model comparing them to the control technique
(here table), and their confidence intervals. We will test these values using three separate
statistical tests, all of whom take as their null hypothesis that the proportions of accuracy
are the same, and as their alternative hypothesis that they differ. In case of the iterated
McNemar’s test the null hypothesis is expanded to a set where there are several Hy being
considered, each proposing that the proportions of accurate answers are equal between any
two techniques studied. The alternative hypotheses are, therefore, that the proportions are
not equal. The proportion confidence intervals do not overlap with any other technique
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Fig. 5. Proportion of correct answers for techniques: (a) stage 1 (N = 60), (b) stage 2 (N = 43), (c)
stage 3 (N =59)

only for 2D parallel coordinates, so based on this test we can suggest that 2D parallel
coordinates are significantly more accurate than any other tested here. As for logistic
regression coefficients, compared to the table, the confidence interval does not include 1
(doing so indicates insignificance) for the scatterplot and 2D parallel coordinates, with the
2D parallel coordinates showing the largest effect size. This can be interpreted to mean
that the odds that the answer will be valid increase by 28.5 times (compared to the table)
if the technique used is 2D parallel coordinates.

Visualization Proportion Log. reg. coeff.

From Value To From Value To
Table 27.604% 40.000% 52.396% N/A N/A N/A
Scatter 56.563% 68.333% 80.104% 1.529 3.237 6.853
X2d 89.485% 95.000% 100%+ 7.998 28.500 101.556
X3d 32.412% 45.000% 57.588% 0.594 1.227 2.534

Table 4. Proportion and coefficient confidence intervals, stage 1 (N = 60)

Table ?? shows the results of a Holm-corrected McNemar 2 test. The results that
are marked significant are X2d compared to everything else, while scatter is only not
significant compared to X3d. This corresponds nicely to the results in Table ??.

Based on these results and according to the criterion outlined in 3.5, we can claim with
statistical significance that two dimensional parallel coordinates are the most accurate
technique.

Fig. 5 (b) shows the relative accuracies of visualization techniques in stage 2 data with
blue representing the percentage of correct answers. We will test these values using three
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Comparison Adjusted p value Significant
Table vs. Scatter  0.0062267 Yes
Table vs. X2d 0.0000002 Yes
Table vs. X3d 0.7277235 No
Scatter vs. X2d 0.0031849 Yes
Scatter vs. X3d 0.0605206 No
X2d vs. X3d 0.0000015 Yes

Table 5. Results of iterated McNemar test with Holm correction, stage 1 (N = 60)

separate statistical tests, all of whom take as their null hypothesis that the proportions of
accuracy are the same, and as their alternative hypothesis that they differ. In case of the
iterated McNemar’s test the null hypothesis is expanded to a set where there are several
Hj being considered, each proposing that the proportions of accurate answers are equal
between any two techniques studied. The alternative hypotheses are, therefore, that the
proportions are not equal. The surprising result here is the success of the bar graph. The
interpretation that seems obvious is that the bar graph is the most familiar visualization
here and this seems dominant in this low-impact test case.

Table ?? shows the actual value of the proportions, their confidence intervals, and the
corresponding coefficients in the logistic model comparing them to the control technique
(here bar graph), and their confidence intervals. As can be seen, there are only the slightest
indications of significance, chiefly with Star3k being noticeably worse than the others.

Visualization Proportion Log. reg. coeff.
From Value To From Value To
Bar 66.911% 79.070% 91.229% N/A N/A N/A
Star3k 38.580% 53.488% 68.397% 0.102 0.278 0.759
Star9kz 61.377% 74.419% 87.460% 0.268 0.757 2.136
X2d 72.687% 83.721% 94.755% 0.450 1.385 4.263

Table 6. Proportion and coefficient confidence intervals, stage 2 (N = 43)

Table ?? shows the results of a Holm-corrected McNemar x2 test which is nowhere
significant.

The result of the above according to the criterion outlined in section 3.5 is that we can-
not claim that any technique is significantly more accurate than any other. The results of
the low-impact test show, as was expected, that at this level of dimensionality familiarity
outstrips nearly all other factors. It can be noted that, while we cannot claim a statisti-
cally significant difference, 2D parallel coordinates did do the best in absolute terms and,
crucially, did no worse than any other tested visualization.

Fig. 5 (c) shows the relative accuracies of visualization techniques in stage 3 data with
blue representing the percentage of correct answers. We will test these values using three
separate statistical tests, all of whom take as their null hypothesis that the proportions of
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Comparison Adjusted p value Significant
Bar vs. X2d 1.000 No
Bar vs. Star3k 0.185 No
Bar vs. Star9kz 1.000 No
X2d vs. Star3k 0.053 No
X2d vs. Star9kz 1.000 No
Star3k vs. Star9kz 0.381 No

Table 7. Results of iterated McNemar test with Holm correction, stage 2 (N = 43)

accuracy are the same, and as their alternative hypothesis that they differ. In case of the
iterated McNemar’s test the null hypothesis is expanded to a set where there are several
Hj being considered, each proposing that the proportions of accurate answers are equal
between any two techniques studied. The alternative hypotheses are, therefore, that the
proportions are not equal. Obviously, the star plots are working in a broadly similar fash-
ion, and 2D parallel coordinates are clearly the best or nearly so, almost replicating their
result from stage 1.

Table ?? shows the actual value of the proportions, their confidence intervals, and the
corresponding coefficients in the logistic model comparing them to the control technique
(here bar graph), and their confidence intervals. The only consistently non-overlapping
interval is 2D parallel coordinates, and they also increase the odds of a correct answer the
most.

Visualization Proportion Log. reg. coeff.

From Value To From Value To
Bar 36.396% 49.153% 61.909% N/A N/A N/A
Star3k 69.390% 79.661% 89.932% 2.571 7.621 22.588
Star9kz 71.418% 81.356% 91.294% 2.898 8.861 27.089
X2d 91.992% 96.610% 100%+ 13.958 97.723 684.165

Table 8. Proportion and coefficient confidence intervals, stage 3 (N = 59)

Table ?? shows the results of a Holm-corrected McNemar y? test. Nearly all of the
differences are significant, the only exception being the difference between the star plots
which is to be expected. This fits perfectly with the results in Table ??, and fig. 5 (¢).

The result of the above according to the criterion outlined in 3.5 is that we can only
claim that 2D parallel coordinates are consistently more accurate than all other techniques.
Star plots are roughly the same and better than the bar graph in a statistically significant
manner.

4.3. Expert Use-case Verification

All the results thus far have been achieved using nonexpert users using anonymized data
which worked well to control a statistically-analyzed empirical study but also removed
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Comparison Adjusted p value Significant
Bar vs. X2d 0.0000020 Yes
Bar vs. Star3k 0.0034246 Yes
Bar vs. Star9kz 0.0026600 Yes
X2d vs. Star3k 0.0132796 Yes
X2d vs. Star9kz 0.0317227 Yes
Star3k vs. Star9kz ~ 1.0000000 No

Table 9. Results of iterated McNemar test with Holm correction, stage 3 (N = 59)

from consideration crucial elements of how this sort of system would be used in practice.
To rectify this, we created three real-world scenarios based on real data and modeled them
in SICEP. Then we visualized them using 2D parallel coordinates (because they were the
consistent winner in all our tests as shown by statistical analysis including but not limited
to ANOVA) and presented them to a panel of three experts. These experts were actual
stakeholders and users of PACS but, crucially, while they were domain experts, they had
absolutely no experience in image compression in general or in the context of PACS in
particular.

The panel consisted of a domain expert in healthcare, a domain expert in medical
information systems, and a domain expert in finance. Once the panel used the visualiza-
tions and the system to make their decision we interviewed them on their impressions and
compared their decisions to the industry consensus.

All the scenarios are based on choosing between some subset of JPEG2000, SPIHT,
lossy and lossless JPEG, and JPEG-LS, and differ on the requirements and the context.
The scenarios observed are:

— A regional medical center PACS that supports both telemedicine and mobile medicine.

— A local medical institution PACS with limited capacities. It is a system that does not
support lossless compression, telemedicine, or mobile medicine.

— A local medical institution PACS with extensive resources. This is a system that sup-
ports lossless image compression in order to decrease image turnaround time and for
more efficient image transmission [21]. Telemedicine and mobile medicine are not
supported.

These scenarios were modeled in SICEP by forming seven requirement indicators (vi-
sual acceptance of lossy image compression, lossy compression efficiency, lossy decom-
pression efficiency, lossless compression efficiency, lossless decompression efficiency, ac-
ceptability of region of interest coding, and error resilience of image compression) which
variously combined a total of fourteen dimensions. We provided the ability to visualize
this set either on the indicator level (which shows indicators) or the detail level (which
shows details of a single indicator either against an arbitrary condition of acceptability or
against other compressions being tested). This level also displays the explicit measured
values.

Fig. 6 illustrates the visualization shown to experts and displays all seven indicators
because, in the case of a regional PACS, all are relevant. Each sub-graph visualized with
2D parallel coordinates which, the empirical and statistical tests suggested, were optimal
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for this task, is labeled with the name of its indicator and the number of vertical axes rep-
resent the specific measurements which are a part of this indicator. To give an example,
in the case of the visual acceptance of lossy image compression visible in the top left, it
consists of four measurements (corresponding to the four axes), indicating the compres-
sion ratio, peak signal-to-noise ratio, structured similarity index, and receiver operating
characteristic. These are combined because they are all relevant to the decision to be made
regarding this particular indicator. Intelligent grouping made using SICEP is what allows
us to manage the number of dimensions used to display the data. This is done by group-
ing those axes, whose interactions interest us most, into convenient indicators representing
specific questions in the decision-making process being supported by this visualization.

Fig. 6 (top row) displays a subset of the data because the use case was modeled dif-
ferently in SICEP prioritizing certain factors and ignoring others. Since capabilities are
limited in the PACS studied here, lossy compression is the subject of focus.

Similarly to the earlier case, Fig. 6 (middle row) only shows the subset of the data of
interest according to the SICEP decision-supporting model. In the case of the local PACS
with extensive capabilities, the trade-off favors increased quality over speed and space,
and so only lossless factors are relevant.

The way the panel of experts used these visualizations was to be told, briefly, what
scenario they were engaged in and what their priorities are. The experts were then allowed
to interact with a visualization solution displaying the visualizations illustrated Fig. 6.
Also available was a zoomed-in detail level, which focused on only one indicator rather
than the overview of all indicators, as well as, if necessary, access to a table display of all
values. They could also choose to compare the data to an acceptability threshold (Fig. 7),
or simply view the visualization with an overlay containing the data values (Fig. 8).

During the test, the experts never asked for the table display, which the empirical tests
indicated would happen, and mostly focused on the indicator display, sorting their options
and identifying candidates to reject out of hand or to consider further. Only once was a
detail unclear and one of the panel experts, the domain expert in medical information sys-
tems, asked for a zoomed-in detail level in the case of lossless compression efficiency to
confirm a suspicion. This corresponds to the criteria derived from the survey of literature
and is precisely why 2D parallel coordinates were included in the empirical tests.

In all three cases, the panel reached the *correct’ (industry consensus) choice, serving
to strengthen the conclusion reached in the empirical and statistical testing phase. In the
first scenario, the choice of JPEG2000 was instant which made sense given how over-
constrained the problem was. In the other two, the selection took a while, but the correct
response was always found and, afterwards, was held with considerable confidence.

In an interview after the decision was made, user experience was solicited from the
panel and the general impressions are that the system is easy to use. This is largely because
it manages the amount of information visible at any one time (which is a property of
SICEP as well as the visualization being tested), and because the information is easily
distinguished without being all over the place, as one of the panel remarked. The fact that
all the information they needed to make their decision was within eye’s reach to, again,
quote a panel member, was the one factor the expert panel found to be of greatest use.
These additional observations serve to add a dimension that UP/UE testing scenarios we
used for the empirical and statistical tests could not capture by their very nature.
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Fig. 6. Indicator level of the regional PACS visualization presented to expert users visualized using
2D parallel coordinates according to the tests performed, demonstrating the end result of the
visualization evaluation process
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Fig. 7. Comparison of an individual compression technique with a specified threshold of

acceptability visualized using 2D parallel coordinates according to the tests performed,
demonstrating the end result of the visualization evaluation process
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Fig. 8. Comparison of compression techniques with an actual-value overlay visualized using 2D
parallel coordinates according to the tests performed, demonstrating the end result of the
visualization evaluation process
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5. Conclusion

Based on our research we can claim with considerable confidence that:

— The use of visualization as a primary component in this sort of decision support sys-
tem is justified.

— Out of the considered visualization techniques, the most accurate and the one that
requires the least time to produce a result in the considered context of medical im-
age compression is 2D parallel coordinates, followed by a dense star plot. No other
visualization technique compares in the examined use-case.

— The choice of visualization techniques in the reviewed literature is nowhere close to
optimal.

— Out of the considered visualization techniques, the best choice for the design of the
VisSys module is 2D parallel coordinates.

A question that immediately comes to mind is how applicable is this research outside
the relatively niche, if not unimportant, field of PACS design. It is our position that essen-
tially all the results presented herein are entirely applicable to any field which faces a prob-
lem of using multidimensional data sets to make choices between complexly-described
alternatives. Complexly-described alternatives, in this context, mean any entity that

— is described by a large number of attributes, where large is defined by significantly
exceeding the capacity of short-term memory [32],

— possesses some sort of structure including those attributes,

— has this structure, in aggregate, measure some sort of desirability of the entity pre-
senting tradeoffs and varying requirements.

So described desiderata of complexly-described alternatives must be compared and a
decision must be reached selecting one of the proposed alternatives based on the relative
values of attributes and arbitrary minimum requirements over those attributes.

Described abstractly it may seem like an unlikely contingency, but, in fact, any pur-
chasing decision one might agonize over is an example of using multidimensional data
sets to make choices between complexly-described alternatives: the desirability of a house
(corresponding to the quality of a compression technique) depends on a number of at-
tributes (area, price, availability of schools, facilities, and many others a moment’s re-
flection ought to furnish) which are both used to compare and to disqualify (such as a
maximum price or minimum area). This problem is complex enough that it is studied
through successive hierarchical decomposition [45]. The same could be said for the case
of selecting one of several proposals for public works. This is by no means a problem
limited to PACS design and we were cognizant of this fact when preparing the tests for
the study.

We have also learned that 3D visualization performs considerably worse than we have
expected. Based on this, as well as on poor results for bar graphs and tables, the data
studied suggests but does not guarantee that compactness of the data is a key feature that
allows for insight. The limiting factor in this sort of comparison visualization appears to be
short-term memory. This, in turn, suggests the first potential avenue of further research:
testing which features of these visualization techniques are salient, by using more user
telemetry, especially eye-tracking in order to determine the locus of user attention.
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Another area of research that presents itself is considering extremely large numbers of
dimensions. Since we have determined star plots and 2D parallel coordinates as the best
candidates, we should test how they behave in extreme-impact tests where the dimension-
ality exceeds 100. In the same vein, a potentially fruitful area of research would be to
re-run these tests or, perhaps, only stage 3 tests, using multiple sources of data in order
to determine if the same results hold for different data sets or if some feature of the data,
even if anonymized, influences the choice of suitable visualization technique.

Lastly, as the body of data gathered in these tests grows and this implementation of
visualization testing is refined and validated, it can find a new use by being used "back-
ward’ as it were: this methodology of gauging visualization quality can, if the quality of
the visualization is known, be used to evaluate perception. Thus, it would provide a way
to quantify the impact of visual perception disorders and disabilities by running tests,
much like the ones presented in this paper, using known-quantity visualization methods
alongside simulated disabilities and disorders of perception.
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