
Computer Science and Information Systems 16(2):469–489 https://doi.org/10.2298/CSIS180601007L

Density-Based Clustering with Constraints

Piotr Lasek1 and Jarek Gryz2

1 University of Rzeszow, Poland
lasek@ur.edu.pl

2 York University, Canada
jarek@cse.yorku.ca

Abstract. In this paper we present our ic-NBC and ic-DBSCAN algorithms for data
clustering with constraints. The algorithms are based on density-based clustering
algorithms NBC and DBSCAN but allow users to incorporate background knowl-
edge into the process of clustering by means of instance constraints. The knowledge
about anticipated groups can be applied by specifying the so-called must-link and
cannot-link relationships between objects or points. These relationships are then in-
corporated into the clustering process. In the proposed algorithms this is achieved by
properly merging resulting clusters and introducing a new notion of deferred points
which are temporarily excluded from clustering and assigned to clusters based on
their involvement in cannot-link relationships. To examine the algorithms, we have
carried out a number of experiments. We used benchmark data sets and tested the
efficiency and quality of the results. We have also measured the efficiency of the
algorithms against their original versions. The experiments prove that the introduc-
tion of instance constraints improves the quality of both algorithms. The efficiency
is only insignificantly reduced and is due to extra computation related to the intro-
duced constraints.

Keywords: data mining, data clustering, semi-supervised clustering, clustering with
constraints, instance-level constraints

1. Introduction

Clustering is a well-known and often used data mining technique. Its goal is to assign data
objects (or points) to different clusters so that objects that are assigned to the same cluster
are more similar to each other than to objects assigned to other clusters [10].

Clustering algorithms can operate on different types of data sources such as databases,
graphs, text, multimedia, or on any other datasets containing objects that could be de-
scribed by a set of features or relationships [2]. Performing a clustering task over a dataset
can lead to a discovery of unknown yet interesting and useful patterns or trends in the
dataset. Since clustering algorithms do not require any external knowledge as input (ex-
cept certain parameters such as k in the k-Means algorithm), the process of clustering, in
contrast to classification, is often referred to as an unsupervised learning. However, there
has always been a natural need to incorporate already collected knowledge into algorithms
to make them better both in terms of efficiency and quality of results. This need led to the
construction of a new branch of clustering algorithms based on constraints. Constraint-
based clustering algorithms utilize the fact, that in many applications, the domain knowl-
edge in the form of, say, labeled objects is already known or could be easily specified
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by domain experts. Moreover, in some cases such knowledge can be automatically de-
tected. Initially, researchers focused on algorithms that incorporated pairwise constraints
on cluster membership or learned distance metrics. Subsequent research was related to
algorithms that used many other kinds of domain knowledge [5].

In [12] and [13] we presented the implementation of two neighborhood-based cluster-
ing algorithms ic-NBC and ic-DBSCAN. These two algorithms combined the well-known
NBC [20] and DBSCAN [8] algorithms with two instance-level constraints, must-link and
cannot-link. In this paper, we build upon our previous work. In particular, in Section 4,
we provide a formal background behind the algorithms. The standard concepts used in
ic-NBC and ic-DBSCAN (e.g. k-neighborhood, dense point, direct neighborhood-based
density reachability, neighborhood-based density reachability, cluster, noise, nearest clus-
ter, parent cluster, etc.) had to be adjusted to the new context of instance constraints and
required new definitions. To improve readability, we have introduced a number of exam-
ples and figures illustrating the new concepts. Last but not least, we have added an entirely
new section with experimental results to verify both quality as well as efficiency of the
algorithms.

The paper is divided into six sections. In Section 2 we give a brief introduction to
clustering with constraints and describe the related work in the field of constrained clus-
tering – especially related to density-based clustering. In Section 3, the classic DBSCAN
and NBC algorithms are described. In Section 4 we present our own method. Section 5
contains an experimental evaluation of our algorithms. Conclusions and further research
is discussed in Section 6.

2. Constraints

2.1. Instance-level constraints

In clustering algorithms with constraints, background or expert knowledge can be incor-
porated into algorithms by means of different types of constraints. [5]. Several types of
constraints have been identified so far, for example, instance constraints describing re-
lations between objects or distance constraints such as inter–cluster δ–constraints and
intra–cluster ε–constraints [2]. Nevertheless, the hard instance-level constraints seem to
be most useful since the incorporation of just few constraints of this type can improve
clustering accuracy. (We use the Silhouette score to measure clustering quality in our
experiments.)

In [16] authors introduced two kinds of instance-level constraints, namely: the must-
link and cannot-link constraints. These constraints are simple yet have interesting prop-
erties. For example must-link constraints are symmetrical, reflexive and transitive: if two
points, p0 and p1 are in a must-link relationship, that is, c=(p0, p1) (see Table 1 for nota-
tion), then these points should be assigned to the same cluster. On the other hand, if two
points r0 and r1 are in a cannot-link relationship, that is, c6=(r0, r1), then these points
must not be assigned to the same cluster.

Consider the following example based on Figure 1. In Figure 1.a we present a sample
dataset with two must-link constraints c=(p0, p1) and c=(p2, p3). Each pair of points
should be assigned to the same cluster.In Figure 1.b we present a sample dataset with
one cannot-link constraint c6=(p0, p1). The dataset should be clustered so that points p0
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Table 1. Notation related to instance-level constraints used in the paper and auxiliary
variables used in pseudo-code of the algorithm.

Notation Description
C(p) The cluster to which a point p was assigned. If a point has not been decided yet to which

cluster it should be assigned then C(p) returns UNCLASSIFIED. If p is a noise point, then
C(p) = NOISE.

C= The set of pairs of points that are in a must-link relation.
c=(p0, p1) Two points p0 and p1 are in a must-link relation (must be assigned to the same resulting

cluster).
C=(p) The set of points which are in a must-link relation with point p.

C 6= The set of pairs of points that are in a cannot-link relation.
c 6=(r0, r1) Two points r0 and r1 are in a cannot-link relation (must not be assigned to the same resulting

cluster).
C6=(r) The set of points which are in a cannot-link relation with point r.

ClusterId The auxiliary integer variable used for storing currently-created clusters identifier.
p.ClusterId By using such a notation we refer to a ClusterId related to point p.

p.ndf Such a notation is used to refer to a value of the NDF factor associated with point p.
Rd, Rt The auxiliary variables for storing deferred points.
DPSet The variable for storing dense points. It is used for in an iterative process of assigning points

to clusters.

and p1 will not be assigned to the same cluster.In Figure 1.c and Figure 1.d we illustrate
basic features of instance constraints such as transitivity, reflexiveness, symmetry as well
as entailment. �

2.2. Related Work

In constrained clustering algorithms, background or expert knowledge can be incorpo-
rated into algorithms by means of different types of constraints. Over the years, several
methods of using constraints in clustering algorithms have been developed [5]. Constraint-
based methods proposed so far employ techniques such as modifying the clustering objec-
tive function including a penalty for satisfying specified constraints [6], clustering using
conditional distributions in an auxiliary space, enforcing all constraints to be satisfied
during clustering process [17] or determining clusters and constraints based on neighbor-
hoods derived from already available labelled examples [1]. In the distance-based meth-
ods, the distance measure is designed so that it satisfies given constraints [11,4]. Among
algorithms proposed so far, a few represent modifications of density based algorithms,
such as C-DBSCAN [15], DBCCOM [7] or DBCluC [18].

C-DBSCAN [15] is an example of a density-based algorithm using instance-level con-
straints where constraints are used to dictate whether some points may appear in the same
cluster or not. In the first step, the algorithm partitions the dataset into subspaces using the
KD-Tree [3] and then enforces instance-level constraints within each tree leaf producing
so-called local clusters. Next, under cannot-link constraints, adjacent local clusters are
merged enforcing must-link constraints. Finally, adjacent clusters are merged hierarchi-
cally enforcing remaining cannot-link constraints.

DBCluC [18] which was also based on the DBSCAN [8] employs an obstacle mod-
elling approach for density-based clustering of large two–dimensional datasets. By means
of the modelling it is also capable of detecting clusters of arbitrary shape and is not sensi-
tive to the order of points in a dataset, constraints and noise. The efficiency of clustering
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Fig. 1. An illustration of (a) must-link constraints connecting points p0 and p1 as well as
p2 and p3. Points that are connected by must-link constraint have to be assigned to the
same cluster; (b) cannot-link constraint connecting points p1 and p2. In spite of the fact
that points may be located relatively closely, if there is a cannot-link relation between
them, they cannot by assigned to the same cluster; (c) transitive, reflexive and
symmetrical features of must-link constraints. p0 and p1 as well as p0 and p2 are
connected by must-link constraints, thus p1 and p2 are also connected by a must-link
constraint; (d) entailed cannot-link constraints. All points from clusters s0 and s1 cannot
be assigned to the same cluster because of c 6=(p0, p1) constraint

is leveraged by a reduction of polygons modelling the obstacles – the algorithm simply
removes unnecessary edges from the polygons making the clustering faster in terms of
number of constraints to be analysed. Nevertheless, the mechanism of obstacle reduction
requires a complex preprocessing to be done before clustering.

The DBCCOM algorithm [7] pre-processes an input dataset by modeling the presence
of physical obstacles - similarly to DBCluC. It also detects clusters of arbitrary shapes
and size and is also considered to be insensitive to noise as well as an order of points
in a dataset. The algorithm comprises of three steps: first, it reduces the obstacles by
employing the edge reduction method, then performs the clustering and finally applies
hierarchical clustering on formed clusters. The obstacles in the algorithm are represented
as simple polygons and however the algorithm uses a more efficient polygon edge reduc-
tion algorithm than DBCluC. The results reported by the authors algorithm confirm that
it can perform polygon reduction even faster than DBCCOM and can produce a hierarchy
of clusters.

3. Density-based clustering

Density-based clustering algorithms use density functions to identify clusters. Clusters are
dense regions separated by regions of empty space or low density called noise or outliers.
Clusters generated in this way can be of arbitrary shape. In this section we describe two
density-based algorithms: DBSCAN and NBC.

3.1. DBSCAN

The DBSCAN algorithm [8] is a well known density-based clustering algorithm. The al-
gorithm takes three input parameters: D – the set of data points, ε – the radius of the
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neighborhood, MinPts – the minimal number of points within ε-neighborhood. Each
point in D has an attribute called ClusterId which stores the cluster’s identifier and ini-
tially is equal to UNCLASSIFIED. The key definitions related to the DBSCAN algorithm
shown below will be used in the sequel. Again, the general notation is given in Table 1.

Definition 1 (ε–neighborhood, or εNN(p) of point p). ε–neighborhood of point p is the
set of all points q in dataset D that are distant from p by no more than ε; that is,

εNN(p) = {q ∈ D|dist(p, q) ≤ ε},

where dist is a distance function.

Clusters in DBSCAN are associated with core points which can be considered as seeds
of clusters.

Definition 2 (core point). p is a core point with respect to ε if its ε-neighborhood contains
at least MinPts point; that is, |εNN(p)| ≥MinPts.

The point p2 in Figure 3a is a core point as its ε–neighborhood contains 6 points (we
assume MinPts = 6 in this case).

Definition 3 (directly density-reachable points). Point p is directly density reachable
from point q with respect to ε and MinPts if the following two conditions are satisfied:
a) p ∈ εNN(q)
b) q is a core point.

Figure 3a illustrates the concept of direct reachability.

Definition 4 (density-reachable points). Point p is density-reachable from a point q with
respect to ε and MinPts if there is a sequence of points p1, ..., pn such that p1 = q,
pn = p and pi+1 and is directly density-reachable from pi, i = 1 . . . n− 1.

Figure 3b illustrates the concept of reachability.

Definition 5 (cluster). A cluster is a non-empty set of points in D which are density-
reachable from the same core point.

Although Definition 5 is formulated somewhat differently than the definition provided
in [8], the resulting clusters are identical in both cases.

Points that are not in dense areas are not associated with any clusters and are consid-
ered noise.

Definition 6 (noise). Noise is the set of all points in D that are not density-reachable
from any core point.

DBSCAN proceeds as follows. Firstly, the algorithm generates a label for the first
cluster to be found. Next, the points in D are read. The value of the ClusterId attribute
of the first point read is equal to UNCLASSIFIED. While the algorithm analyzes point
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Fig. 2. Illustration of a sample execution of the DBSCAN algorithm. The neighborhood
of the first core point is assigned to a cluster (a). Subsequent assignment of
density-reachable points forms the first cluster; initial seeds are determined for the
second cluster (b). The second cluster reaches its maximum size; the initial seeds are
determined for the third cluster (c). The third cluster reaches its maximum size; the
initial seeds are determined for the fourth cluster. Finally, DBSCAN labels noise points
represented here by empty dots (d).

after point, it may happen that the ClusterId attributes of some points may change be-
fore these points are actually analyzed. Such a case may occur when a point is density-
reachable from a core point examined earlier. Such density-reachable points will be as-
signed to the cluster of a core point and will not be analyzed later. If a currently ana-
lyzed point p has not been classified yet (the value of its ClusterId attribute is equal to
UNCLASSIFIED), then the ExpandCluster function is called for this point. If p is a core
point, then all points in C(p) are assigned by the ExpandCluster function to the cluster
with a label equal to the currently created cluster’s label. Next, a new cluster label is gen-
erated by DBSCAN. Otherwise, if p is not a core point, the attribute ClusterId of point p
is set to NOISE, which means that point p will be tentatively treated as noise. After ana-
lyzing all points inD, each point’s attribute ClusterId stores a respective cluster label or
its value is equal to NOISE. An illustration of a sample execution of DBSCAN has been
ploted in Figure 2.

3.2. Neighborhood-based clustering

The Neighborhood-Based Clustering (NBC) [20] algorithm also belongs to the class of
density based clustering algorithms. The characteristic feature of NBC compared to DB-
SCAN is its ability to measure relative local densities. Hence, it is capable of discovering
clusters of different local densities and of arbitrary shape. The algorithm has two param-
eters: the set of points D and the number k which is used to describe density of a point.

The key definitions related to the NBC algorithm are presented below; k–neighborhood
and k+–neighborhood, defined below, are parameters used to describe dense neighbor-
hoods.

Definition 7 (k–neighborhood, or kNN(p)). k–neighborhood of point p is a set of k
(k > 0) points satisfying the following conditions:

|kNN(p)| = k, and

∀o′∈D\kNN(p)∀o∈kNN(p) dist(p, o
′ ≥ dist(p, o).
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Definition 8 (k+–neighborhood, or k+NN(p)). k+–neighborhood of point p is equal
to ε′NN(p) where:

ε′ = max({dist(p, v)|v ∈ kNN(p)}).

k+–neighborhood is similar to εNN(p) (see Def. 3.1). However, ε is not a parameter
given a priori to the algorithm, but a property of dense neighborhoods relative to a given
data set.

Definition 9 (punctured k+–neighborhood). Punctured k+–neighborhood of point p
k+NN(p−) is equal to k+NN(p) \ {p}; that is:

k+NN(p−) = k+NN(p) \ {p}.

The concept of k+–neighborhood of p is illustrated in Figure 4a.

Definition 10 (reversed punctured k+–neighborhood of a point p). Reversed punc-
tured k+–neighborhood of a point p Rk+NN(p) is the set of all points q 6= p in dataset
D such that p ∈ k+NN(q−); that is:

Rk+NN(p) = {q ∈ D|p ∈ k+NN(q−)}.

(a) p0 is directly
density-reachable
from core point p1; p0
is density-reachable
from p2
(MinPts = 6).

(b) Both p0 and p5 are
density-reachable
from core point p2, so
p0 and p5 belong to
C(p2)
(MinPts = 6).

Fig. 3. Illustration of some of the concepts
of DBSCAN

(a) q6 is directly
neighborhood-based
density reachable
from p because
q6 ∈ k+NN(p−).

(b) Point q12 is
neighborhood-based
density reachable
from point q3.

Fig. 4. Illustration of some of the concepts
of NBC algorithm.

Definition 11 (neighborhood-based density factor of a point – NDF (p)). Neighbor-
hood-based density factor of a point p is defined as

NDF (p) = |Rk+NN(p)|/|k+NN(p−)|.

Points having the value of the value of NDF factor equal to or greater than 1, are
considered dense.

Definition 12 (dense point). Point p is called a local dense point if itsNDF (p) is greater
than 1.
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Definition 13 (directly neighborhood–based density reachable). A point p is directly
neighborhood–based density reachable from point q if p ∈ k+NN(q−) and q is a dense
(core) point.

Point q6 in Figure 4a is directly neighborhood–based density reachable from point p.

Definition 14 (neighborhood-based density reachable). A point p is neighbor-hood-
based density reachable from r if p is directly neighborhood-based density reachable
from q and r is directly neighborhood-based density reachable from q.

Point q12 in Figure 4b is directly neighborhood–based density reachable from point q3.

Definition 15 (cluster). A cluster is a maximal non-empty subset of D such that for two
points p and q in the cluster, p and q are neighborhood-based density-reachable from a
local core point with respect to k, and if p belongs to cluster C and q is neighborhood-
based density connected with p with respect to k, then q belongs to C.

Definition 16 (noise). Noise is the set of all points in D that do not belong to any cluster.
In other words, noise is the set of all points inD that are not neighborhood-based density-
reachable from any local core point.

In order to find clusters, NBC starts with calculating values of NDF factors for each
point pi in a database D, i = 0, 1, . . . , |D|. Next, for each pi, a value of NDF is checked.
If it is greater than or equal to 1, then pi is assigned to the currently created cluster c
(identified by the value of ClusterId). Next, the temporary variable DPSet for stor-
ing references to points, is cleared and each point, say q, belonging to k+NN(p−i ) is
assigned to c. If q.ndf is greater than or equal to 1, then q is also added to DPSet.
Otherwise, q is omitted and a next point from k+NN(p−i ) is analyzed. Further, for each
point from DPSet, say r, k+NN(r−) is computed. All unclassified points belonging
to k+NN(r−) are assigned to c and points having values of NDF greater than or equal
to 1 are added to DPSet. Next, r is removed from DPSet. When DPSet is empty,
ClusterId is incremented and a next point from D, namely pi+1, is analyzed. Finally,
if there are no more points in D having values of NDF factor greater than or equal to
1, then all unclassified points in D are marked as NOISE.

4. Clustering with Constraints

In this section we present two density-based algorithms with constraints based on
DBSCAN and NBC. The main modification in both algorithms is the introduction
of the DEFERRED points. The deferred points are in ε–neighborhood (for DBSCAN
algorithm) or k+–punctured neighborhood (for the NBC algorithm) of points in-
volved in cannot-link relationship. The original algorithms are then first executed
without the deferred points after which the points are assigned to appropriate
clusters to satisfy their cannot-link constraints.

The must-link constraints are handled in a simple way. In the original algorithms, the
construction of clusters originates from the core points. These points are kept in appropri-
ate lists which are then updated in subsequent iterations of the algorithm. If a given core
point p is involved in a must-link relationship with another core point r, then r is added
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to the cluster originating in p. In this way, the algorithm can connect two remote regions
via a bridge defined by the pair of points in a must-link relationship.

Our interpretation of the instance constraints is slightly different from most of the ex-
isting approaches which stop execution of the clustering algorithms upon the discovery
of conflicting constraints. We believe that instance constraints do not necessarily have
to be fully satisfied. ic-NBC and ic-DBSCAN use techniques similar to DBCluC [18]
where the concept of so-called obstacle points was introduced. Obstacle points are ig-
nored during the process of clustering. In our algorithms, we treat cannot-link constraints
(along with their nearest neighbors) as points which constitute similar obstacles, but we
do not ignore them completely during clustering

Thus, in the process of clustering, if a conflicting constraints exists, the algorithm
does not have to be stopped, and conflicting points are labeled as NOISE.

4.1. ic-DBSCAN

In this subsection we offer a modified version of DBSCAN with constraints. First we intro-
duce a definition of deferred points (Definition 17) and then present modified definitions
of cluster and noise - Definition 18 and Definition 21, respectively.

Definition 17 (deferred point). A point p is called deferred if it is in a cannot-link rela-
tionship with any other point or it belongs to a ε–neighborhood εNN(q), where q is any
point in a cannot-link relationship (q ∈ C 6=). In the latter case we call q a parent point.

Definition 18 (cluster). A cluster is a maximal non-empty subset of D such that:
– for two non-deferred points p and q in the cluster, p and q are neighborhood-based

density-reachable from a local core point with respect to k, and if p belongs to cluster
C and q is also neighborhood-based density connected with p with respect to k, then
q belongs to C;

– a deferred point p is assigned to a cluster C if the 1st-nearest punctured neighbour of
p belongs to C (1−NN(p−) ∈ C), otherwise, p is considered as a noise point.

Definition 19 (nearest cluster). A nearest cluster of a given point p is a cluster C to
which p belongs.

Definition 20 (parent cluster). A parent cluster of a given point p (gp) is a cluster C to
which a parent point of p belongs.

Definition 21 (noise). The noise is the set of all points in D such that each of them is:
– not density-reachable from any core point or
– is a deferred point that has two or more neighbours at the same distance from it and

thus can not be unambiguously assigned to a cluster.
In other words, noise is the set of all points in D that are not neighborhood-based

density-reachable from any local core point and deferred points points that could not be
assigned to any cluster.

In the first phase, ic-DBSCAN algorithm (Figure 6a) omits all points which are in-
volved in any cannot-link relationship and marks them as DEFERRED. Then, it adds
those points to an auxiliary list called Rd which will be later used in the main loop of
the algorithm using the AssignDeferredPoints function.
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Fig. 5. An illustration of definitions of deferred points (a), parent point (b), nearest and
parent cluster (c,d).

Then the algorithm iterates through all UNCLASSIFIED points from D except those
which were added toRd. For all of those points it calls the ExpandCluster function (Figure
6c) and passes all necessary parameters. The main modifications of the ExpandCluster
function (compared to the classic DBSCAN algorithm) is in how the must-link constraints
are processed. When a must-link point is processed and it is a core point or belongs to a
neighbourhood of a point which is a core point, then it is assigned to seeds or curSeeds
lists (containing seed points) depending on which part of the ExpandCluster function is
currently executed. ( The seeds and curSeeds are lists containing of points that belong
to ε–neighborhoods of currently processed point in the ExpandCluster function and the
number of points in the neighborhood is greater or equal to MinPts.)

The last part of the algorithm is to process the set of DEFERRED points. This is done
by means of the AssignDeferredPoints function (Figure 6b). For each point q from Rd

(a list of points which were marked as DEFERRED in the main algorithm method) the
function determines what would be the parent cluster gp of q. Next, it finds a point p6=
involved in cannot-link relationship and similarly determines its parent cluster gp 6= . Then,
if those two parent clusters are the same (gp = gp 6= ) the DEFERRED point q cannot
be assigned to the nearest cluster gp and is labeled as NOISE. Otherwise, if two par-
ent clusters are different q is assigned to gp.

4.2. ic-NBC

In this subsection we offer our new neighborhood-based constrained clustering algorithm
called ic-NBC. The algorithm is based on the NBC algorithm [20] but uses both must-link
and cannot-link constraints for incorporating knowledge into the algorithm.

Below we present the definition of deferred point as well as modified definitions of
cluster and noise - Definition 23 and Definition 24, respectively.

The ic-NBC algorithm employs the same definitions as NBC which are used
in a process of clustering to assign points to appropriate clusters or mark them
as noise. In NBC three types of points can be distinguished: unclassified, classi-
fied and noise points. In ic-NBC, we also employ a concept of DEFERRED points
although defined slightly different than before.

Definition 22 (deferred point). A point p is deferred if it is involved in a cannot-link rela-
tionship with any other point or it belongs to a k+–punctured neighborhood k+NN(q−),
where q is any point involved in a cannot-link relationship.
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Algorihtm ic-DBSCAN (D, k, C=, C 6=)

Rd = ∅1.

label all points in D as UNCLASSIFIED;2.

ClusterId = label of a first cluster;3.

for each point q involved in any constraint from C6= do4.

label q and points in εNN(q) as DEFERRED;5.

endfor;6.

add all DEFERRED points to Rd;7.

foreach point p in set D \Rd do8.

if (p.ClusterId = UNCLASSIFIED) then9.

if ExpandCluster(D, p, ClusterId, ε, MinPts) then10.

ClusterId = NextId(ClusterId);11.

endif ;12.

endif ;13.

endfor;14.

AssignDefferedPoints(D, p, ClId, MinPts, ε, C=, C6=);15.

(a) The ic-DBSCAN algorithm.
Function AssignDeferredPoints(D, Rd, C 6=)

for each point q ∈ Rd do1.

p← GetParent(q);2.

gp ← NearestCluster(p);3.

p 6= ← C 6=(p);4.

gp 6= = NearestCluster(p 6=);5.

if gp = gp 6= then6.

mark q as NOISE;7.

else if8.

assign point q to gp;9.

end if ;10.

remove q from Rd;11.

end for;12.

(b) Assigning deferred points to clusters.

Function ExpandCluster(D, p, ClId, MinPts, ε, C=, C 6=)

seeds = Neighborhood(D, p, ε);1.

if |seeds| < MinPts then2.

p.ClusterId = NOISE;3.

return FALSE;4.

else do5.

for each point q in seeds do6.

q.ClusterId = ClId;7.

add C=(q) to seeds;8.

endfor9.

delete p from seeds;10.

while |seeds| > 0 do11.

curPoint = first point in seeds;12.

curSeeds = Neighborhood(D, curPoint , ε);13.

if |curSeeds| ≥MinPts then14.

for each point q in curSeeds do15.

add C=(q) to seeds;16.

if q.ClusterId = UNCLASSIFIED then17.

q.ClusterId = ClId;18.

append q to seeds;19.

else if q.ClusterId = NOISE then20.

q.ClusterId = ClId;21.

end if;22.

end for;23.

end if;24.

delete curPoint from seeds;25.

end while;26.

end else;27.

(c) The ExpandCluster function.

Fig. 6. The pseudo-code of the ic-DBSCAN algorithm using instance constraints.

Definition 23 (cluster). A cluster is a maximal non-empty subset of D such that:

– for two non-deferred points p and q in the cluster, p and q are neighborhood-based
density-reachable from a local core point with respect to k, and if p belongs to cluster
C and q is also neighborhood-based density connected with p with respect to k, then
q belongs to C;

– a deferred point p is assigned to a cluster C if the nearest neighbour of p which is not
in cannot-link relationship with p belongs to C, otherwise p is considered as a noise
point.

Definition 24 (noise). Noise is the set of all points in D that:

– have not been assigned to any cluster or
– each of them is a deferred point p whose 1+NN(p−) neighborhood contains points

assigned to different clusters and thus can not be unambiguously assigned to a par-
ticular cluster.

In other words, noise is the set of all points inD that are not neighborhood-based density-
reachable from any local core point and deffered points points which could be assigned
to two or more clusters.

ic-NBC (Figure 7a) can be divided into two main steps. In the first step the algorithm
works very similarly to NBC. It calculates NDF factors and performs clustering. The
main difference between ic-NBC and NBC is that the former:
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Algorithm C-NBC (D, k, C=, C 6=)

Rd ← ∅1.

ClusterId = 0;2.

label all points in D as UNCLASSIFIED;3.

CalcNDF (D, k);4.

for each point q involved in any constraint from C= or C6= do5.

label q and points in k+NN(q−) as DEFERRED6.

add q to Rd;7.

endfor8.

ClusterId = 0;9.

for each unclassified point p in D such that p.ndf ≥ 1 do10.

p.ClusterId = ClusterId;11.

clear DPSet;12.

for each point q ∈ k+NN(p−) \Rd do13.

q.ClusterId = ClusterId;14.

if (q.ndf ≥ 1) then add q to DPset; endif15.

add all points r from C=(q) such that16.

r.ndf ≥ 1 to DPset;17.

endfor18.

while (DPSet 6= ∅) do19.

s = first point in DPset;20.

for each unclassified point t in k+NN(s−) \Rd do21.

t.ClusterId = ClusterId;22.

if (t.ndf ≥ 1) then add t to DPset; endif23.

add all points u from C=(t) such that24.

u.ndf ≥ 1 to DPset;25.

endfor26.

remove s from DPset;27.

endwhile28.

ClusterId + +;29.

endfor30.

label unclassified points in D as NOISE;31.

AssignDeferredPointsToClusters(D, Rd, k, C 6=);32.

(a) The ic-NBC algorithm.

Function AssignDefferedPointsToClusters(D, Rd, C 6=)

Input:

D - the input dataset (not clustered)

Rd - the set of points marked as deferred

k - the parameter of the C-NBC algorithm

C 6= - the set of cannot-link constraints

Output:

The clustered set with clusters satisfying cannot-link and

must-link constraints.

Rt ← Rd;1.

do begin2.

Rt ← Rd; // a temporary set for storing deferred points3.

// assigned to any cluster4.

foreach point p in Rt do begin5.

foreach point q in k+NN(p−) do6.

if (q.ndf ≥ 1 and q.ClusterId > 0 and q ∈ Rd)7.

if (CanBeAssigned(p, q.ClusterId)) and8.

// checking if p can be assigned9.

// to a cluster identified by q.clusterId10.

(CanBeAssigned(11.

p.nearestCannotLinkPoint,12.

q.ClusterId)) then13.

p.ClusterId = q.ClusterId;14.

add p to Ra;15.

break;16.

endif17.

endif18.

endfor19.

remove Ra from Rt;20.

endfor21.

while (Ra 6= ∅)22.

(b) The AssignDefferedPointsToClustesrs
function.

Fig. 7. The pseudo-code of the ic-NBC algorithm.

– determines which points will be considered as DEFERRED;
– excludes these points from all calculations (except to compute the values of NDF

factors); and
– merges areas of clustered dataset according to must-link constraints.

The ic-NBC algorithm starts with the CalcNDF function. After calculating the NDF
factors for each point from D, the deferred points are determined by scanning pairs of
cannot-link connected points. These points are added to an auxiliary set Rd.

Then, the clustering process is performed in the following way: for each point pwhich
was not marked as DEFERRED, it is checked if p.ndf is less than 1. If p.ndf < 1, then
p is omitted and a next from DPSet is checked. If p.ndf ≥ 1, then p as a dense point is
assigned to the currently-created cluster identified by the current value of ClusterId.

Next, the temporary variable DPSet is cleared and each non-deferred point, say q,
belonging to k+NN(p−)\Rd is assigned to the currently-created cluster identified by the
current value of the ClusterId variable. Additionally, if q.ndf ≥ 1, then it is assigned to
DPSet as well as all dense points which are in a must-link relation with q.

Next, for each unclassified point from DPSet, say s, its punctured k+–neighborhood
is determined. Each point, say t, which belongs to this neighborhood and has not been
labeled as deferred yet is assigned to the currently created cluster and if its value ofNDF
is equal to or greater than 1, is added to DPSet. Moreover, all dense points which are in
a must-link relation with t are added to DPSet as well. Later, s is removed from DPSet
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(a) k = 75, s = 0.063 (b) k = 100, s = 0.305 (c) k = 125, s = 0.434

(d) k = 75, s = 0.068 (e) k = 100, s = 0.303 (f) k = 125, s = 0.424

Fig. 8. Results of clustering for the Birch1 dataset using NBC (a-c), and ic-NBC (d-f).
Colors represent mined clusters. k is a parameter if the algorithm. s is a value of the
Silhouette factor computed for the given clustering result. Red dashed lines denote
cannot-link constraints.

and next point from DPSet is processed. When DPSet is emptied, then ClusterId is
incremented. After all points from D are processed, unclassified points are marked as
noise by setting the values of their ClusterId attribute to NOISE. However, in order to
process the deferred points, the AssignDeferredPointsToCluster function is invoked. The
function performs so that for each deferred point p it finds the nearest point q assigned to
any cluster and checks whether it is possible (in accordance with cannot-link constraints)
to assign p to the same cluster as q. Additionally, the function checks if the assignment of
p to a specific cluster will not violate previous assignments of deferred points.

5. Experiments

In this section we present results of the experiments we performed to test the quality and
efficiency of the proposed methods. We divided the experiments into two parts. First we
focused on quality of clustering, then on the efficiency.
Datasets. For the experiments we used three standard two dimensional clustering bench-
marking datasets (Birch) [19] with 100 000 points and 100 clusters. We examined three
different versions of the Birch dataset containing clusters in regular grid structure (Birch1
- Figures 8-9), clusters at a sine curve (Birch2 - Figures 10-11) and random sized clus-
ters in random locations (Birch3 - Figures 12-13).
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(a) Eps = 6000.0, minPts =
15, s = 0.186

(b) Eps = 6500.0, minPts =
15, s = 0.035

(c) Eps = 7000.0, minPts = 15,
s = -0.470

(d) Eps = 6000.0, minPts =
15, s = 0.192

(e) Eps = 6500.0, minPts = 15,
s = 0.077

(f) Eps = 7000.0, minPts = 15,
s = -0.369

Fig. 9. Results of clustering for the Birch1 dataset using DBSCAN (a-c), and ic-DBSCAN
(d-f). Colors represent mined clusters. Eps and minPts are parameters of the algorithm.
s is a value of the Silhouette factor computed for the given clustering result. Red dashed
lines denote cannot-link constraints.
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(a) k = 900, s = 0.724

(b) k = 950, s = 0.456

(c) k = 1000, s = -1.000

(d) k = 900, s = 0.739

(e) k = 950, s = 0.683

(f) k = 1000, s = 0.346

Fig. 10. Results of clustering for the Birch2
dataset using NBC (a-c), and ic-NBC (d-f).
Colors represent mined clusters. k is a
parameter if the algorithm. s is a value of
the Silhouette factor computed for the
given clustering result. Red dashed lines
denote cannot-link constraints.

(a) Eps=2000.0, minPts=15, s = 0.464

(b) Eps=2500.0, minPts=15, s = 0.325

(c) Eps=3000.0, minPts=15, s = 0.263

(d) Eps=2000.0, minPts=15, s = 0.671

(e) Eps=2500.0, minPts=15, s = 0.612

(f) Eps=3000.0, minPts=15, s = 0.659

Fig. 11. Results of clustering for the Birch2
dataset using DBSCAN (a-c), and
ic-DBSCAN (d-f). Colors represent mined
clusters. Eps and minPts are parameters
of the algorithm. s is a value of the
Silhouette factor computed for the given
clustering result. Red dashed lines denote
cannot-link constraints.
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(a) k = 30, s = 0.107 (b) k = 50, s = 0.224 (c) k = 70, s = 0.282

(d) k = 30, s = 0.113 (e) k = 50, s = 0.240 (f) k = 70, s = 0.288

Fig. 12. Results of clustering for the Birch3 dataset using NBC (a-c), and ic-NBC (d-f).
Colors represent mined clusters. k is a parameter if the algorithm. s is a value of the
Silhouette factor computed for the given clustering result. Red dashed lines denote
cannot-link constraints. Black solid lines are must-link constraints. In the experiment 12
must-link and 43 cannot-link constraints were used.
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(a) Eps = 5000.0, minPts =
15, s = 0.128

(b) Eps = 6000.0, minPts =
15, s = 0.146

(c) Eps = 7000.0, minPts = 15,
s = 0.031

(d) Eps = 5000.0, minPts =
15, s = 0.154

(e) Eps = 6000.0, minPts = 15,
s = 0.194

(f) Eps = 7000.0, minPts = 15,
s = 0.171

Fig. 13. Results of clustering for the Birch3 dataset using DBSCAN (a-c), and
ic-DBSCAN (d-f). Colors represent mined clusters. Eps and minPts are parameters of
the algorithm. s is a value of the Silhouette factor computed for the given clustering
result. Red dashed lines denote cannot-link constraints. Black solid lines are must-link
constraints. In the experiment 12 must-link and 43 cannot-link constraints were used.

0 20 40 60 80 100
0

50

100

150

200

250

The ic-DBSCAN runtimes

Birch1 Birch2 Birch3

Number of constraints

T
im

e 
[s

ec
.]

(a) ic-DBSCAN.
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(b) ic-NBC.

Fig. 14. Charts with the results of experiments for testing efficiency of ic-DBSCAN (a)
and ic-NBC (b) for datasets Birch1, Birch2, and Birch3.
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Table 2. Results of exeriments. Def - number of deferred points; Count - number of
discovered clusters; Silh. - a value of the Silhouette score; Ind. - time of index building;
Clust. - time of clustering; Tot. = Ind. + Clust. Times are given in milliseconds.
Data Alg. Param. Ind. Clus. Def. Cnt. Tot. Silh.
birch1 NBC 75 10145 63372 47 73517 0.063
birch1 ic-NBC 75 9006 67731 6537 49 76737 0.068
birch1 NBC 100 8980 61405 72 70385 0.305
birch1 ic-NBC 100 10399 74341 9877 73 84740 0.303
birch1 NBC 125 8934 67587 89 76521 0.434
birch1 ic-NBC 125 8791 80985 13542 89 89776 0.424
birch1 DBSCAN 6000.0, 15 9892 29946 223 39838 0.186
birch1 ic-DBSCAN 6000.0, 15 8879 34089 4518 216 42968 0.192
birch1 DBSCAN 6500.0, 15 9702 30969 152 40671 0.035
birch1 ic-DBSCAN 6500.0, 15 8885 34726 5386 146 43611 0.077
birch1 DBSCAN 7000.0, 15 9323 31151 73 40474 -0.470
birch1 ic-DBSCAN 7000.0, 15 9648 37155 6778 74 46803 -0.369
birch2 NBC 900 8955 108149 99 117104 0.724
birch2 ic-NBC 900 9260 187205 77742 100 196465 0.739
birch2 NBC 950 9011 118442 64 127453 0.456
birch2 ic-NBC 950 10281 210245 88899 92 220526 0.683
birch2 NBC 1000 9446 120449 1 129895 -1.000
birch2 ic-NBC 1000 9402 205044 87771 43 214446 0.346
birch2 DBSCAN 2000.0, 15 9370 46691 63 56061 0.464
birch2 ic-DBSCAN 2000.0, 15 9026 68285 26811 89 77311 0.671
birch2 DBSCAN 2500.0, 15 8807 51681 46 60488 0.325
birch2 ic-DBSCAN 2500.0, 15 9470 98568 55157 82 108038 0.612
birch2 DBSCAN 3000.0, 15 9243 56087 39 65330 0.263
birch2 ic-DBSCAN 3000.0, 15 8991 144539 101349 85 153530 0.659
birch3 NBC 30 9093 71470 52 80563 0.111
birch3 ic-NBC 30 8848 72752 213 48 81600 0.090
birch3 NBC 50 8712 78941 54 87653 0.234
birch3 ic-NBC 50 9984 79111 450 50 89095 0.149
birch3 NBC 70 8871 84654 50 93525 0.282
birch3 ic-NBC 70 10469 101585 622 45 112054 0.199
birch3 DBSCAN 5000.0, 15 9132 61933 118 71065 0.133
birch3 ic-DBSCAN 5000.0, 15 8482 63644 247 111 72126 -0.014
birch3 DBSCAN 6000.0, 15 9136 62968 80 72104 0.153
birch3 ic-DBSCAN 6000.0, 15 8644 72144 316 78 80788 0.020
birch3 DBSCAN 7000.0, 15 9293 67478 57 76771 0.031
birch3 ic-DBSCAN 7000.0, 15 8464 72594 515 57 81058 0.069

(a) Results of experiments designed to
examine quality of proposed constrained
algorithms compared to the original
versions of the algorithms using the
Silhouette score.

Data Alg. Param. Cons. Cnt. Ind. Clus. Def. Tot.
birch1 ic-NBC 100 10 62 8728 63990 359 73077
birch1 ic-NBC 100 20 55 9915 68614 803 79332
birch1 ic-NBC 100 40 39 9089 70127 1544 80760
birch1 ic-NBC 100 60 27 8896 65691 2054 76641
birch1 ic-NBC 100 80 15 9184 65275 2396 76855
birch1 ic-NBC 100 100 10 9746 66166 2661 78573
birch1 ic-DBSCAN 5000.0, 15 10 337 9319 28958 309 38586
birch1 ic-DBSCAN 5000.0, 15 20 337 9520 30872 712 41104
birch1 ic-DBSCAN 5000.0, 15 40 333 8739 29988 1192 39919
birch1 ic-DBSCAN 5000.0, 15 60 335 10501 31883 2002 44386
birch1 ic-DBSCAN 5000.0, 15 80 332 8738 31548 2533 42819
birch1 ic-DBSCAN 5000.0, 15 100 328 8960 31973 3216 44149
birch2 ic-NBC 50 10 92 9041 50207 117 59365
birch2 ic-NBC 50 20 81 8966 51558 237 60761
birch2 ic-NBC 50 40 65 10092 55825 633 66550
birch2 ic-NBC 50 60 49 8889 51154 708 60751
birch2 ic-NBC 50 80 32 9199 55838 942 65979
birch2 ic-NBC 50 100 22 9600 56700 1135 67435
birch2 ic-DBSCAN 1000.0, 15 10 94 9652 41497 3836 54985
birch2 ic-DBSCAN 1000.0, 15 20 82 11627 49121 6593 67341
birch2 ic-DBSCAN 1000.0, 15 40 68 9514 44713 12791 67018
birch2 ic-DBSCAN 1000.0, 15 60 53 9078 49770 18159 77007
birch2 ic-DBSCAN 1000.0, 15 80 36 9360 56373 24097 89830
birch2 ic-DBSCAN 1000.0, 15 100 39 9150 56351 26937 92438
birch3 ic-NBC 50 10 45 9050 81492 171 90713
birch3 ic-NBC 50 20 36 9494 80983 421 90898
birch3 ic-NBC 50 40 29 9165 81561 643 91369
birch3 ic-NBC 50 60 22 8499 80386 1097 89982
birch3 ic-NBC 50 80 15 10239 83934 1196 95369
birch3 ic-NBC 50 100 16 9206 83578 1627 94411
birch3 ic-DBSCAN 6000.0, 15 10 72 8711 90199 32349 131259
birch3 ic-DBSCAN 6000.0, 15 20 67 8621 90319 41090 140030
birch3 ic-DBSCAN 6000.0, 15 40 65 8433 91516 40586 140535
birch3 ic-DBSCAN 6000.0, 15 60 61 8815 109920 67327 186062
birch3 ic-DBSCAN 6000.0, 15 80 62 8760 107802 65545 182107
birch3 ic-DBSCAN 6000.0, 15 100 58 9075 124772 80327 214174

(b) Results of experiments testing the
efficiency of the proposed constrained
density based algorithms with respect to the
number of constraints and values of the
algorithms’ parameters.
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Implementation. Both implementations of the algorithms employ the same in-
dex structure – the R-Tree [9]. We implemented them in Java and performed
the experiments on MacBook Pro 2.8GHz eight-core Intel Core i7, 16GB RAM.
The source code can be found under the following link: http://github.
com/piotrlasek/clustering
Quality. To examine how quality of clustering could be improved by means of instance
constraints, we used the Silhouette score [14], a method of interpretation and validation
of consistency within clusters. The Silhouette score for a point i is given by the follow-
ing formula s(i) = (b(i)−a(i))

max{a(i),b(i)} , where a(i) is the avarage dissimilarity of i with all
other points within the same cluster, b(i) is the lowest average dissimilarity of i to any
other cluster to which i does not belong. The silhouette value measures cohesion and
separation that means of how similar an object is to its own cluster compared to other
cluster. The values of the silhouette score can range from −1 to +1, where a higher
value indicates that the object was correctly assigned to its cluster. We report the mean
Silhouette value over all objects in a dataset. Times and values of the Silhouette score
are reported in Table 2a and Figures 8-14.

The introduction of instance constraints improves the quality of both DBSCAN as well
as NBC; in most cases, the improvement is substantial. However, the clustering quality
rises much more for DBSCAN than for NBC. NBC is designed - contrary to DBSCAN
- to discover clusters with varying local densities (thanks to how the NDF factor was
defined). In other words, DBSCAN mines clusters based on a global notion of density,
NBC determines clusters using density calculated locally. For this reason, we do not see
as much improvement in employing constraints in NBC compared to DBSCAN.
Efficiency. In the second part of the experiments we focused on time efficiency
of clustering with respect to the number of constraints as well as values of algo-
rithms’ parameters (Table 2b, Figures 14a-b).

When performing experiments using ic-NBC we were changing the number of must-
link and cannot-link constraints from 10 to 100. Since the additional operations must
have been be performed in order to take the constraints into account, this was obvious
that constrained versions of the algorithms had to be less effective than the original ones.
However, as plotted in Figures 14a-b, the algorithms’ execution times are almost con-
stant with respect to the number of constraints used.

6. Conclusions

In this paper we have presented two clustering algorithms with constraints, ic-NBC
and ic-DBSCAN, which were designed to let users introduce instance constraints
for specifying background knowledge about the anticipated groups. In our approach
we treat must-link constraints as more important than cannot-link constraints. Thus,
we try to satisfy all must-link constraints (assuming, of course, that all of them are
valid) before incorporating any cannot-link constraints. When processing cannot-link
constraints, points which are contradictory (in terms of satisfying both must-link
and cannot-link constraints) are marked as noise.

We have performed a number of experiments to test the quality of clustering
and the efficiency of our algorithms by comparing them to their original versions.
The results of the experiments clearly show that constraints are useful in clustering.
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The experiments proved that the introduction of instance constraints improved the
quality of clustering in both cases. At the same time, due to additional computations
needed to process constraints, the performance of the algorithms was reduced but
only marginally. The experiments also showed that the number of constraints does
not have a critical impact on the algorithms performance.

In this work we have focused on of incorporating instance-level constraints into clus-
tering algorithms by modifying the algorithms. Nevertheless, there are other ways of in-
corporating constraints into the process of clustering. For example, the constraints can be
used to modify a distance matrix so that it reflects must-link and cannot-link relationships.
Such a matrix can then be used as an input to the original algorithm without constraints.
We believe that this is a promising area of research and we plan to explore it in future.
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