
Computer Science and Information Systems 16(2):541–564 https://doi.org/10.2298/CSIS180608009L

Reducing energy usage in resource-intensive Java-based

scientific applications via micro-benchmark based code

refactorings*

Mathias Longo1, Ana Rodriguez2, Cristian Mateos2, and

Alejandro Zunino2

1 University of Southern California,

1337 1/2 W Adams Blvd, Los Angeles (90007), United States

mathiasl@usc.edu

2 ISISTAN-CONICET-UNICEN,

Campus Universitario, Tandil (B7001BBO), Argentina

{ana.rodriguez,cristian.mateos,alejandro.zunino}@isistan.unicen.edu.ar

Abstract. In-silico research has grown considerably. Today’s scientific code

involves long-running computer simulations and hence powerful computing

infrastructures are needed. Traditionally, research in high-performance computing

has focused on executing code as fast as possible, while energy has been recently

recognized as another goal to consider. Yet, energy-driven research has mostly

focused on the hardware and middleware layers, but few efforts target the

application level, where many energy-aware optimizations are possible. We revisit

a catalog of Java primitives commonly used in OO scientific programming, or

micro-benchmarks, to identify energy-friendly versions of the same primitive. We

then apply the micro-benchmarks to classical scientific application kernels and

machine learning algorithms for both single-thread and multi-thread

implementations on a server. Energy usage reductions at the micro-benchmark

level are substantial, while for applications obtained reductions range from 3.90%

to 99.18%.

Keywords: Energy, Scientific application, Java, Micro-benchmarks, Code

refactoring.

1. Introduction

Scientific computing is a field that applies Computer Science to solve scientific

problems from other disciplines, such as Mathematics, Engineering, Biology, Physics

and Chemistry. Scientific computing is inherently associated with large-scale computer

modeling and simulation since it mainly concerns wisely using many computing

resources to quickly deliver results for ever-growing problem sizes. In fact, the high

popularity of this in-silico approach to research has significantly grown over the last

years, which gave birth to Computational Science, a relatively new multidisciplinary

* This is an extended version of https://doi.org/10.1007/978-3-319-31232-3_69

https://doi.org/10.1007/978-3-319-31232-3_69

542 Mathias Longo et al.

field that uses advanced computing capabilities and notably High-Performance

Computing (HPC) infrastructures to solve complex problems.

Irrespective of the computing infrastructure, research in HPC has traditionally

focused on executing computations as fast as possible. Much research spanning the

high-level architecture of such infrastructures including advances at the hardware level

(e.g., more/faster cores for CPUs), platform level (e.g., efficient/robust middleware-

level schedulers) and application level (e.g., parallel programming models) has been

conducted. Nevertheless, the area has already acknowledged the importance of energy

usage as well [6]. Energy consumption accounts for 15% of the operational

expenditures in datacenters [17]. Furthermore, the energy consumed in datacenters in

Western Europe will increase 100 TWh per year by 2020 [14], which is significant

considering that for example 108 TWh was the energy consumption of Netherlands

itself during 2014 according to the CIA World Factbook. This leads to huge operational

costs, reduced system stability and negative ecological consequences [7].

In response, there is a wide spectrum of research efforts at the hardware level. This

involves equipping processors with finer “C-states”/”P-states” and better

voltage/frequency scaling techniques. Other ambitious efforts have produced the first

ARM-based HPC cluster [35]. Moreover, efforts at the platform level include re-

designing operating systems for energy efficiency and providing parallel middlewares

to properly trade-off obtained performance and used energy for computations [1].

However, literature shows that there are few efforts focused on how HPC applications

should be coded to use less energy [31, 27].

We study the energy consumed by versions of micro-benchmarks representing

common programming operations found in scientific applications. To this end, we

revisit a recent study [36] that has catalogued such operations but measured their

implications in the context of Android programming. The experiments performed in this

paper using fixed hardware show that, for the same operation, there are versions which

are much more energy-efficient than others. We considered several scientific

applications [12] and refactored their implementation code using the energy-efficient

versions of micro-benchmarks, again obtaining energy savings. We limit the scope of

our research to Java, which is useful for developing HPC applications and middlewares

[41] because of its “write once, run anywhere” philosophy. This work is based on an

earlier conference version published in [25], but it introduces several pertinent

enhancements, namely:

1 A deeper analysis of the reasons behind the obtained differences in energy

consumption for the various micro-benchmarks and their variants.

2 The use of representative scientific application kernels (SFA) as scientific test

applications by basing on the well-known Phil Colella’s categorization [12, 4],

who identifies and delineates a set of scientific kernels which form the basis for

most of the existing scientific applications. We also consider Machine Learning

algorithms, the base of many real-world applications.

3 An active power versus computation time analysis of the above SFAs by

considering single-core and multi-core versions of the applications.

4 Statistical significance tests to ensure results validity.

 Reducing energy usage in Java-based scientific applications via code refactorings 543

Next Section discusses related works. Section 3 explains the micro-benchmarks and

details the SFAs used. Section 4 presents the experimental results. Section 5 presents

the conclusions and future works.

2. Related Work

In this section, we will describe relevant efforts to increase energy efficiency in

datacenters paying special attention to those focused on the latter, since our goal is

reducing energy consumption via code refactorings in HPC applications.

To analyze energy consumption it is necessary to know which hardware resources

consume more energy. The main part of power consumed by a server is accounted for

the CPU, followed by the memory [26]. Based on this, Chen and Shi [10] present a

process-level power profiling tool and a power-aware system module that eliminates

energy wasted by abnormal-behavior applications for which hardware information is

essential. The authors encourage the design of simple energy models to obtain real and

instant measurements to control energy consumed by applications.

Other scientists analyze energy consumption of both hardware manufacture and use,

and software execution [2]. For the use phase, Ardito and Morisio [2] present generic

guidelines to achieve energy efficiency at four different levels: Infrastructure,

Application, Operating System and Hardware. At the application level the guidelines

include Design efficient UI, Use event-based programming when possible, Use low-

level programming, Reduce data redundancy, Reduce QoS/scale dynamically and Use

power/energy profiling tools.

Pinto, Soares-Neto and Castor [33] review works in the area of mobile programming,

and they conclude that such works are focused on 6 issues to reduce energy

consumption: user interface, CPU offloading, HTTP requests, software piracy,

continuously running apps, and I/O operations. The authors also review efforts in the

area of parallel programming, identifying 3 issues: excessive copy chains, embrace

parallelism and GPU programming. However, authors do not analyze works based on

servers. Besides, unlike [2] and [33], we study concrete energy-aware programming

primitives in HPC code.

The work reported in [38] studies OO design patterns energy consumption in server

applications. A new tool for measuring the power consumption and mapping between

energy usage and design patterns is proposed. The authors focus on 15 creational,

structural and behavioral patterns. Notable conclusions are the usage of design patterns

can both increase and decrease the amount of energy used by an application and the

usage of design patterns within a category impact energy usage differently.

With regards to application detailed design, Dhaka and Singh [13] study how much

the correction of a wrong design affects energy consumption based on code smells,

namely god class, feature envy and long method. The authors show that code smell

removal permutations yield varying levels of energy consumption for the resulted

software versions. It is also observed that the order in which smells are removed affects

energy consumption differently. In addition, the authors propose the best sequence that

generates a better design code and consumes the least energy possible.

In these lines, some works measure, control and compare energy consumption of

languages, libraries, algorithms and applications. The work in [29] presents the

544 Mathias Longo et al.

POWERAPI architecture which working together with power modules allows

developers to calculate the power consumption of both processes and applications. With

this, authors conclude that Java using the default options is quite energy-efficient in

comparison to other programming languages, the energy efficiency of Pascal is at the

same level as C or C++, and Perl is the most energy-consuming language. The work in

[45] goes even further and analyzes execution time, memory consumption and energy

consumption of 27 different programming languages over 10 different problems from

the Computer Language Benchmarks Game1. To increase significance, the authors

employ state-of-the-art compilers, virtual machines, interpreters and libraries. The main

finding is that C remains as the fastest and most energy efficient language, together with

compiled languages in general. In addition, Java is among the top-five most energy-

efficient languages, while the least efficient ones are all interpreted.Other works

evaluate common practices use or choices when developing applications. Procaccianti,

Fernández and Lago [34] evaluate two practices: use of efficient queries (i.e. avoiding

indexation mechanisms or unnecessary ordering operations such as SQL ’ORDER BY’)

and put applications to sleep to reduce CPU (and energy) utilization at the expense of

increased execution time. They measure the impact using the Apache WebServer and

the MySQL Server. In [27] an exhaustive evaluation of the energy consumption and

performance of the NAS parallel benchmarks (NPB) is reported. The authors focus on

the impact of multithreading and consider different number of threads and compilers.

Authors conclude that it is difficult to balance performance and energy even for

relatively simple benchmark as NBP.

Other works study the role of data structures and collections. Energy consumption of

operations done on Java List, Map, and Set abstractions (e.g., insertion, iteration,

random access) has been evaluated in [19]. Authors found that choosing the wrong

Collections type in an application can consume 300% more energy than the most

efficient collection. Second, Manotas, Pollock and Clause [24] describe an automated

energy optimizer based on code-level changes. Consequently, the authors propose a

framework that a) generates different versions of the same code combining all

Collections instantiations, b) performs power-monitored executions of all generated

versions, c) analyzes the results, and d) generates an optimized version of the original

code. In the same line, jStanley [43] is a static code analyzer, implemented as a plug-in

for the Eclipse IDE, which focus on reducing energy consumption by replacing Java

collections for alternative, more efficient ones. The plug-in finds and quantifies method

calls to collections in an application's code (maps, lists, and sets), computes normalized

method calls costs, and suggests optimizations. Normalized costs are taken from a

previous study from the same authors [44], where they tested the energy costs of 24

implementations of Java sets, lists and maps, considering 42 different methods in total.

Interestingly, jStanley allows the user to focus on energy-driven or time-driven

optimizations. Reported energy gains using real applications range from 2% to 17%.

3. Common Operations in Scientific Applications

We study eight groups of micro-benchmarks because of their recurrent use in standard

and specifically scientific OO programming, namely array copying, matrix traversal,

1 http://benchmarksgame.alioth.debian.org/

 Reducing energy usage in Java-based scientific applications via code refactorings 545

string handling, use of arithmetic operations, exception handling, object field access,

object creation and use of primitive data types.

Over the years several built-in facilities were developed in diverse OO languages

such as Java and C++ [32]. Then, we determine particularly energy improvement using

such facilities to copy an array over implementing manually the same functionality.

Additionally, matrices and related operations are important in linear algebra algorithms

[28]. Regarding string manipulation, concatenation is the most important operation [11].

Concerning the fourth group, several studies have focused on optimizing arithmetic

operations or involve large numbers of them [36]. Exceptions represent a widely used

mechanism for elegant error handling. Method invocation was chosen since in OO

programming methods must be called to use any subroutine associated with a class. In

addition, we chose object creation because it involves costly memory management

chores, such as garbage collection in Java or explicit object disposal in C++. Finally, the

last group is the use of primitive data types versus (heavier) object-based data types.

3.1 Array Copying (AC)

Most languages include reusable libraries and built-in functionality such as data

structure sorting or image manipulation. Using this support has advantages over using

ad-hoc implementations since efficiency of such libraries tends to improve over time,

which motivated us to compare the use of System.arraycopy method with a manual

solution for the same functionality. Arrays are very important in scientific code, e.g. in

mathematics arrays are used for representing polynomials.

3.2 Matrix Traversal (MT)

Matrices have many different uses such as writing problems conveniently and

compactly or helping to solve problems with linear and differential equations.

Additionally, in graph theory an adjacency matrix can be naturally associated to each

graph where the position [i,j] indicates if vertex i is connected with vertex j.

Indeed scientific programmers use these structures quite frequently. Matrices are

used to store any data type for information handling (i.e., primitive data types or

objects) and are a common structure in rendering applications, where they are often

used to represent and apply transformations to images. Basically, we tested micro-

benchmarks where NxM matrices are traversed by rows and columns. Specifically, both

micro-benchmarks involve instantiating a matrix in main memory with numeric values,

using a nested loop to iterate the matrix, and accessing each cell while placing the cell

value in a local variable.

Java represents n-dimensional arrays by using nested 1-dimensional arrays, which

involves in principle more instantiated objects. In addition, the way this nested structure

is traversed in a code might exercise the memory hierarchy differently.

546 Mathias Longo et al.

3.3 String Handling (SH)

Java applications use the String class to save/read data or display messages to the user.

Concatenating smaller data chunks is necessary to create bigger data chunks, thus we

work with the “+” operator versus using the StringBuilder class, which exploits

buffering. Despite the string concatenation operator is optimized by the compiler using

the StringBuilder class, to operate using the String class and its operator “+” might yet

be an inefficient practice since each concatenation with this operator implies creating a

StringBuilder instance. The operator applied on n strings has O(n2) complexity, and

requires memory space to maintain intermediate concatenations. We consequently

expect an energy improvement using StringBuilder.

3.4 Use of Arithmetic Operations (AO)

Arithmetic operations are commonplace in scientific applications. This is illustrated for

instance by data compression and mathematical applications. Also, scientific

applications often need millions of calculations. Thus, the more energy-efficient the

arithmetic operations are, the lower the energy consumption becomes. Since addition is

one of the commonest arithmetic operation CPUs solve, we measure energy

consumption of adding primitive types (int, long, float and double). Specifically, the

micro-benchmark performs the successive addition into a local variable of the content

of another variable whose value does not change and is set upon executing the micro-

benchmark. Both variables are of type T, with T ∈ {int, long, float, double}. In addition,

we used proper default values for the second variable (i.e. using suffixes/floating point

literals) to avoid implicit upcasting/downcasting operations. Since integer operations are

more efficient than floating point operations due to the greater inherent computational

complexity of the later, we aim at quantifying the reduced energy consumption.

3.5 Exception Handling (EH)

Exceptions are used to manage any unexpected event in the code, while ensuring code

readability. When an object is in a condition it cannot handle, it raises an exception to

be captured by another object. The Java Virtual Machine (JVM) searches backward

through the call stack to find methods that do can handle the exception. Sadly,

exception handling is expensive and involves object creation. Then, we analyze two

equivalent approaches to trigger error or exceptional situations: one using exceptions

and one without these to increase energy efficiency. The tested code checks whether a

numeric parameter is even and if so it always raises an exception in the inefficient

version of the code, and always returned a value indicating the situation in the efficient

version. In practice, the second approach implies e.g. returning an error code, an error

message or an invalid value, which is a simple task for programmers. The first approach

intuitively is less efficient, but the goal of the experiment is to quantify how much can

be reduced by employing the second approach.

 Reducing energy usage in Java-based scientific applications via code refactorings 547

3.6 Object Field Access (OFA)

Classes comprise attributes/fields, and methods with behavior. The OO paradigm

encourages information hiding, so each class should provide special public methods

(accessors) used by other classes to access fields in the declaring class. However,

invoking accessors also has a negative impact on performance and clearly consumes

energy. For our purposes we measured the energy consumption to obtain a non-static

attribute value, which in one case is performed through a method call, and in the other is

performed directly, i.e., without having accessors.

3.7 Object Creation (OC)

Object creation is inherent to OO because different entities with different states coexist

in memory at runtime, but this involves some computational –and hence energy– cost.

However, sometimes developers can avoid creating new objects of the same class by

reusing objects of that class no longer used after resetting their attributes.

We analyze the impact of object creation versus reuse on energy consumption. In

other words, this means creating a new instance of an application class each time it is

needed, or reusing the same instance while resetting its internal state. As the

possibilities to evaluate this aspect are quite diverse because of the different classes and

reset behaviors that could be implemented, we chose Lists, which are often used in

applications to store data in memory and are constituting parts of other data structures.

Particularly, we compare the energy consumption of creating a new list (specifically

ArrayList) object and insert a String into it, versus creating an instance of ArrayList

once, adding the String and using the clear() method to reset the list instance to its

empty state.

3.8 Use of Primitive Data Types (PDT)

Past programming languages only had primitive data types (integers, booleans and

strings) and procedures. Developers could define their own procedures and chain them

to build larger programs based on primitives data types only, but abstract types

appeared later. Java has classical primitive data types that are not classes per se, but in

addition each of them has a corresponding object data type (e.g., int → Integer). We

then evaluate the energy consumption using primitive data types versus using object

data types. For this, we test the common behavior of accumulating several values

(primitive long values) into a variable V. In one case, V is of type Long, and in another

case V is defined as long.

3.9 Energy-efficient Micro-benchmarks: Test Applications

We also studied savings when refactoring real-world scientific applications based on the

energy-efficient versions of the micro-benchmarks. The source code was modified

considering our energy-driven optimizations only, to avoid introducing potential bias

548 Mathias Longo et al.

due to unintentional inclusion of other optimizations that might also contribute to

further reduce energy (e.g. removing program console output). Specifically, we

refactored code by just removing all occurrences of the less-efficient micro-benchmarks

to apply the most efficient ones instead, which implied for example removing all

exceptions and use return values in methods, resetting the same object state rather than

creating a new instance each time, using primitives data types instead of wrapper

classes, and so forth.

We framed our application selection based on the Phil Colella’s categorization [12,

4], who identifies a set of scientific application kernels which form the basis for most

existing scientific applications. We also included Machine Learning (ML) algorithms

since they are widely used in a broad range of areas, such as Bioinformatics, Natural

Language Recognition and Economics. To select actual projects implementing these

applications, we analyzed several sources: the Ibis/Satin parallel middleware [22], the

GitHub code repository and the Weka ML library [18].

From GitHub we used JAligner2 and gradient-descent. This later is no longer

available at GitHub at the time of writing this paper, and due to licencing issues, only

the binary version of gradient-descent is provided by us together with the software for

reproducing our experiments. From Weka we used the Bayes Network Classifier.

Lastly, another four applications were extracted from the Ibis/Satin middleware.

3.9.1 Scientific Application Kernels (SFA)

Broadly, SFAs are a set of patterns that can represent broad types of scientific

applications. They are in general very CPU-intensive and use primitive data structures,

such as arrays and matrices.

Phil Colella’s work [12] identifies a list of seven high-level numerical methods

(dwarfs) that represent the majority of HPC science and engineering applications, and

have persisted over time. That list was enlarged in [4] to consider 6 new SFAs. To both

cover some of the SFAs from [12] and [4] via applications that might benefit from as

many of the micro-benchmark groups explained above as possible, we using the

following concrete applications:

1. Fast Fourier Transform (FFT), which can be categorized as Spectral Methods

[12]. Spectral Methods are a set of techniques to solve certain differential

equations, and for that purpose they use FFT.

2. Matrix Multiplication (MMult): [4] this SFA is considered as Dense Linear

Algebra one, level 3 (matrix-matrix operations). These SFAs often include

access to all the elements of the data structures.

3. Knapsack (KP): This problem lays in the Backtracking and Branch & Bound

category since this is a combinatorial optimization problem. Backtracking and

Branch & Bound SFAs are used in Integer Linear Programming and Boolean

Satisfiability as well.

4. N-Queens (NQ): This problem is one of the most characteristic type of problems

found in Backtracking and Branch & Bound. It solution involves using a

2 JAligner Web page: https://github.com/ahmedmoustafa/JAligner

https://github.com/ahmedmoustafa/JAligner

 Reducing energy usage in Java-based scientific applications via code refactorings 549

modified version of Backtracking to place the queens in the different possible

positions of a board.

5. Sequence Alignment (SA): This is an algorithm used to align two DNA

sequences in order to analyze their similitude. To this end, Sequence Alignment

algorithms usually rely on Dynamic Programming.

Table 1. Test applications. Columns are AC (Array copying), MT (Matrix traversal), SH (String

handling), AO (Use of arithmetic operations), EH (Exception handling), OFA (Object field

access), OC (Object creation) and PDT (Use of primitive data types)

Application AC MT SH AO EH OFA OC PDT

FFT (Fast Fourier

Transform)
- - Yes Yes Yes Yes Yes Yes

MMult (Matrix

Multiplication)
- Yes - Yes Yes - Yes Yes

KP (Knapsack) Yes Yes - Yes Yes - Yes Yes
NQ (N-Queens) - Yes - Yes Yes - - Yes
SA (Sequence

Alignment)
- Yes - Yes - Yes Yes Yes

Table 1 summarizes the characteristics of these applications. The first column lists

the test applications, while the rest of the columns are AC (Array copying), MT (Matrix

traversal), SH (String handling), AO (Use of arithmetic operations), EH (Exception

handling), OFA (Object field access), OC (Object creation) and PDT (Use of primitive

data types). The cells indicate whether each micro-benchmarks group was present

(“Yes”) or not (“-”) in the various applications, and hence whether the associated

energy-aware refactoring opportunities apply or not. The extent to which each

application uses each micro-benchmarks group naturally varies across applications. For

example, FFT instantiates more objects at runtime than the rest of the applications.

Applications on the other hand do not contain many input/output operations (disk

usage) that might introduce noise in the energy measurements.

FFT. It computes the discrete Fourier transform, which has an impact on different

areas such as image (JPEG) and audio (MP3) processing, reduction of noise in signals,

analysis of frequency of discrete signals, among others. Being x0, x1, ..., xn-1 complex

numbers, directly evaluating the well-known discrete Fourier transform (DFT) formula

requires O(n2) arithmetic operations. However, Gauss proposed a method that requires

O(n log n) steps to evaluate it, called FFT.

The algorithm in this paper is a recursive decomposition of the FFT in simple

functions until obtaining 2-element functions with k={0 or 1}. Once these simple

transforms are solved, the algorithm groups them in other top level computations to be

solved again until the highest recursive level is reached. Lastly, the results must be

reorganized obtaining the same results as the original FFT.

Mmult. It takes as parameters two matrices (A, B) containing numbers and returns

another matrix (C) which holds the result of multiplying the first two matrices. Each cell

cij is the addition of the products of each element in row i in matrix A with the

corresponding element in column j in matrix B.

To produce the C matrix, the application used in this paper first divides each input

matrix into four quadrants. This division is recursive until the last level where there is

an nxn matrix with n given as a parameter. The result at any level can be computed as

550 Mathias Longo et al.

C11 = A11 * B11 + A12 * B21; C12 = A11 * B12 + A12 * B22; C21 = A21 * B11 + A22 * B21; C22

= A21 * B12 + A22 * B22. We used n=1 to evaluate the impact of the micro-benchmarks

in the most extreme case.

KP. This is an NP-complete combinatorial optimization problem whose goal is to

optimize the total value that a backpack can contain. The backpack can support a default

weight W. The backpack is filled with elements each having a value v and a weight w.

The problem arises constantly in Engineering [3] and has several applications in

operation management and logistics. The version used in this paper divides the initial N

elements into two subproblems recursively for N−1 elements, one with the lost item

placed in the backpack, and the other without it. This runs recursively until the

backpack is full or there are not elements left.

NQ. Implements a classic NP-hard problem where n queens are placed on a NxN

board so that queens can be attacked considering the chess rules. The problem has been

broadly used as part of more complex applications such as OS deadlock prevention and

register allocation, traffic control, robot placement for maximum sensor coverage, and

many others. N-Queens is also used in many other Physics, Computer Science and

industrial applications [39]. The variant used in this paper searches for every possible

solution, so it is very CPU intensive.

SA. Given two DNA sequences identifies the similarity regions. A sequence is

represented by a string of characters, being each a residue. If two DNA sequences are

arranged next to one another and their most similar elements juxtapose, they are

aligned. There are two types of alignment methods: global and local. The former

performs the alignment of all the residues of every sequence at the same time. The local

approach looks into some parts of each sequence and compares them with one part of

the other. This paper focuses on the Smith-Waterman [40] local alignment algorithm,

which is based on dynamic programming.

3.9.2 Machine Learning Algorithms

Machine Learning (ML) involves algorithms to allow the computer to “learn”. They

take as input a structured dataset, with several properties (features) to build a model able

to make estimations for new data. Supervised ML algorithms are designed for datasets

where each entry has associated a set of feature values and an output –usually a

category. Supervised algorithms can be further divided into classification algorithms,

which target discrete outputs, and regression algorithms, which target continuous

outputs. Unsupervised algorithms are applied in datasets with features data but no

output. Their purpose is to find relationships among the data and split it into different

cohesive groups.

ML algorithms are CPU-intensive, and may take a long time to come up with a

model. In addition, they are usually modeled with matrices, and lots of operations are

done with those matrices. Particularly, we will study with Gradient Descent and Bayes

Network Classifier. The first algorithm is the basis for many other ML algorithms and

can be categorized as Dense Linear Algebra according to [12]. Bayes Network

Classifier is a classification algorithm that uses the Bayes theorem as the basis to build

the model, and is classified as Construct Graphical Models according [4].

 Reducing energy usage in Java-based scientific applications via code refactorings 551

Table 2. ML applications.

Application AC MT SH AO EH OFA OC PDT

Bayes Yes Yes - Yes - Yes Yes Yes
GD (Gradient Descent) - Yes - Yes Yes Yes Yes Yes

Table 2 summarizes the two ML applications employed. The first column lists the

ML applications used, while the rest of the columns are AC (Array copying), MT

(Matrix traversal), SH (String handling), AO (Use of arithmetic operations), EH

(Exception handling), OFA (Object field access), OC (Object creation) and PDT (Use

of primitive data types). Cell values are interpreted as those in Table 1.

Gradient Descent (GD). When dealing with several variables in a function, it is

computationally expensive to determine its derivative to find the global minimum.

Gradient Descent iteratively optimizes until convergence the search of the local

minimum for a function based on the function’s gradient. In fact, most ML algorithms

base their calculations on this approach or on a modified version of it [8], such as

Logistic Regression, Neural Networks and Deep Learning. There are basically three

types of Gradient Descent: Batch, Stochastic and Mini-batch. The first one takes into

consideration the whole dataset at each iteration. The second variant performs an update

round for each data point of the dataset. This is usually much faster than Batch Gradient

Descent and can also be used in online learning algorithms, but it may not converge to

the local minimum every time. The third approach takes groups or batches of k data

points. Thus, it takes the best of the two previous alternatives (fast convergence and

good solution quality).

Bayes Network Classifier (Bayes). The Bayes Network Classifier is an ML

supervised classification algorithm that takes advantage of the well-known Bayes

theorem to classify instances in a dataset. The dataset is processed to learn the

importance that each feature has in determining the category of an instance and thus

classify unknown instances. Bayes Network classifiers are used in a wide range of

areas, such as information retrieval, Bioinformatics, or image processing.

The commonest variant is the Naïve Bayes Classifier, which assumes that each

feature is conditionally independent from all the other random features. This usually

generates a high bias in the model and reduces effectiveness. Therefore, an alternative

approach [15] considers the concept of Bayes Network, which depicts the dependencies

between each feature in the model.

4. Experiments

We measured the individual impact of micro-benchmarks on energy consumption

(Section “Micro-benchmarks Results”) and their effect on the real code described earlier

(Section “Test Application Results”).

The JVM includes a dynamic compiler that optimizes the parts of a program that are

most frequently used [5], and a garbage collector, periodically launched to free unused

memory. These features introduce “noise” when profiling programs, especially when

these programs perform fine-grained operations, like our micro-benchmarks do. Thus,

we used Google’s Caliper [16], a framework for running benchmarks that deals with

these problems. This research considered Java 8.

552 Mathias Longo et al.

The seven applications –SFAs– were also run in multi-thread mode. Given a single-

thread SFA, its multi-thread counterpart was obtained by creating several instances of

the SFA in a black-box fashion, one per available core in the host computer. This was

done using the Executor support of Java. For the sake of uniformity, each instance was

parametrized with the same parameters as the single-thread version (primitive values or

object instances depending on the case). Measuring the energy consumption of the

applications running in parallel would show whether there is a relationship between

energy consumption and either exploiting one CPU core or multiple CPU cores.

Note that this black-box, embarrassingly-parallel scheme to run instances of a single-

thread code is actually a very popular way of conducting simulation-based experiments

among scientists and engineers [46]. Many of such simulations execute the same

application code (e.g. a metal deformation model) in parallel with varying values for

certain parameters (e.g. applied tension) resulting in different output results (e.g. did the

piece broke in each case?).

With respect to quantifying energy, the PowerMeter device3 was used. It takes 2,000

samples (voltage, amperage, active power and apparent power) per second. We plugged

a host computer –4-core AMD A8-5600K APU processor (running @3600 MHz), 8 GB

RAM DDR3 and Ubuntu 17.04– to the device, which was in turn plugged to the power

line. The computer connects to the device via a MODBUS RS232 port. Note that this

setting means that the device cannot differentiate how much how power is consumed by

a given experiment and the bare system (i.e. the software which runs when the computer

is idle, mainly the operating system). In consequence, the power measured in an

experiment corresponds to the whole system (computer). To quantify as accurately as

possible the impact of the reduced power consumption introduced by refactoring code,

we aimed to reduce the consumption levels of the computer by turning off both the

network card and the screen in the computer. Running an application involved several

iterations, for the sake of decreasing statistical errors. Upon executing an iteration, we

force the application to wait until the JVM is warmed up, i.e., the state at which

necessary data structures, user-level threads and internal JVM threads have been

initialized. We chose iterations = 10, which yielded deviations < 2% for all tests.

In addition, we noted that some readings from PowerMeter were invalid (i.e.,

apparent power was close to 2^16), so proper support was included in our

experimentation software to discard such readings. Given an individual measurement

log, which therefore has stored measures corresponding to the iterations of an

application, only the lines having invalid apparent power values were deemed

inconsistent and hence not considered upon processing the active power readings from

the log. This could be done since the standard deviation of the remaining (valid) lines

was, in terms of active power, below 2%, as explained above. These actions, together

with the use of Caliper, allowed us to obtain correct and usable measurements.

The experimentation software (mainly bash scripts and to a lesser extent Python

code), the code itself to talk to the measurement device (written in C), and the

source/binary code used in the experiments are available at a GitHub repository4.

3 PowerMeter Web page: http://www.powermeter.com.ar/eco/
4 https://github.com/cmateos/Experiments-ComSIS-2019

http://www.powermeter.com.ar/eco/

 Reducing energy usage in Java-based scientific applications via code refactorings 553

4.1 Micro-benchmarks Results

Table 3 depicts the average power consumption (in Ws) of each micro-benchmark

version. Table 4 depicts the same for the Use of arithmetic operations micro-

benchmark. Within each micro-benchmark least to most efficient versions are ordered

from top to bottom. EnergyUsageReduction per micro-benchmark was defined as:

() ()

()
100*

iterations of #

execWs

ecimprovedExWsexecWs

i

ii











 −




 (1)

where Ws(execi) is the consumption of iteration i of the original version of a micro-

benchmark, and Ws(improvedExeci) is the consumption of an individual iteration of an

improved micro-benchmark version. Ws consumed by an individual iteration is the

sustained active power (in Watts) as measured from the power device considering valid

readings, multiplied by the time it takes to execute the iteration (in seconds). Since the

power device outputs a line of data every second, the sustained active power is the

average power measured during the iteration, which was possible to use as a meaningful

statistical indicator since as explained low deviations were observed even discarding the

invalid readings in each iteration. In the formula, we sum up all the Ws values and then

divide by the number of iterations since clearly such values might be different between

individual iterations.

Array copying. To compare the efficiency of System.arraycopy we used a manual

implementation of the same functionality with an array of 8KB, i.e., the default internal

array size in Java for buffered readers, which are extensively used for data streams. The

built-in implementation reduces energy consumption by a 37.9%. These results are in

line with previous studies on Java optimization [42], where using the System.arraycopy

function instead of manual array copy for the entire Java I/O piped stream subsystem

resulted in likewise performance gains.

Table 3. Micro-benchmarks results (Use of arithmetic operations not included)

Micro-benchmark Version Consumption (Ws) Energy reduction (%)

Array copying Manual array copy 102.8

 System array copy 63.8 37.9
Matrix iteration By-column iteration 53,776.8

 By-row iteration 102.6 99.8
String handling String concatenation (+) 4,456.1

 String builder 271.7 93.9
Exception Use Exception 14,108.6

handling No Exception 28.1 99.8
Object field access Accessor-based access 9,190.0

 Direct access 1,700.8 81.4
Object creation On-demand creation 813.1

 Object reuse 461.6 43.2
Use of primitive Use of object data types 3,082.3

data types Use of primitive data types 2,356.2 23.5

554 Mathias Longo et al.

Table 4. Use of arithmetic operations micro-benchmark results

Version Consumption

(Ws)
Energy reduction (%)

 Versus double Versus float Versus long

Add constant to double 5,152.5 - - -

Add constant to float 5,089.3 1.2 - -

Add constant to long 3,643.5 29.2 28.4 -

Add constant to int 838.8 83.7 83.5 76.9

Fig 1. Two-dimensional array representation and traversing in Java

At the JVM level, using manual array copy implies copying array elements one by

one, whereas invoking System.arraycopy delegates the copy to a native method. A

native method be implemented differently by each JVM runtime and can be optimized

in several ways that are not a possibility for Java developers. For example, the copy of

the array can be done with a single memcpy/memmove low-level primitive from a native

method, instead of n distinct copy operations.

Matrix traversal. This paper uses NxM matrix structures and compares traverse by

rows versus traverse by columns. Specifically, a matrix of 1024x1024 was used to run

tests. A key advantage of these micro-benchmarks is the simplicity of changing the

traverse mode in an existing code. The results show an improvement (energy reduction)

of 99.8% using the traverse by row version.

Java represents two-dimensional matrices via an array, where each cell points to

another object array (Fig. 1). Overall, when a matrix is traversed by row, all the cells of

arr [0] are traversed first, continuing with arr[1] and so on. When reading arr[0][0], the

CPU caches the cells that are close by (arr[0][0] to arr[0][n] and may cache some cells

from the next row). When the matrix is traversed by row, the next cell (arr[0][1]) is

likely cached, which is faster than fetching the cell from main memory. But, when

traversing by column, some of the next cell accesses (arr[1][0], arr[2][0], ..., arr[n][0])

are likely to cause a cache miss.

String handling. Table 3 shows that using the class StringBuilder directly instead of

the “+” operator yields a very good improvement (1,000 concatenations were used).

String literals in Java are instances of String, which are immutable meaning that their

characters cannot be changed after created. Using the “+” operator involves the creation

of a StringBuilder object that maintains a single internal mutable array of characters.

Besides, the method using “+” also instantiates the StringBuilder class to handle

concatenation, but performs four method calls whereas the efficient version performs

three method calls.

 Reducing energy usage in Java-based scientific applications via code refactorings 555

Use of arithmetic operations. This micro-benchmark group, whose results are shown

in Table 4, involved adding a constant value c to a numerical variable declared by

varying their data type. Specifically, we resolved X + c using float, double, int and long

variables and constants. As a result, using the float, long and int data types yields a

reduction of 1.2%, 29.2% and 83.7% respectively over relying on the double data type.

Then, double and long data types consume more energy than float and int data types,

respectively, because the former provide greater accuracy and larger range of values.

This means more bits to represent values and therefore more processing time. In

practice, programmers should of course to keep accuracy and precision as low as

possible for numerical data types in order to reduce energy consumption while not

compromising the semantics of the whole application.

Exception handling. The results in Table 3 confirm that energy can be saved by

avoiding exceptions. The creation of objects and the limited optimizations to the

exception mechanism made by the JVM, produce higher energy consumption. To

ensure minimum consumption, exceptions must be reserved only for error situations

where cannot be dealt with other mechanism, for example when using third-party

libraries within the application code that are designed to communicate error situations

via exceptions.

An operation that includes an exception throwing executes the same lines as the same

operation without exceptions but it also adds an object creation and new JVM

instructions processing. Developers should define error statuses instead of using

exceptions whenever possible to deal with abnormal execution flows.

Object field access. Directly reading a frequently-accessed class field yields an

improvement (81.4%) because the accessor method invocation is avoided. Despite this,

programmers must determine to what extent it is valuable to violate object

encapsulation to favour energy efficiency. However, there are common cases in which

encapsulation is not affected and energy can be reduced, e.g., accessing a class field

directly from the same class or inner classes.

Object creation. By reusing objects an energy reduction of 43.2% was obtained. At

the JVM level, the cost to create a new object is usually higher than the cost necessary

to reset an already created object. In particular, reusing an instance of ArrayList only

involves invoking its clear() method. This latter is efficiently implemented by just

zeroing the head pointer in the internal array.

This result means developers concerned with minimizing energy consumption should

not create objects arbitrarily in the code but reuse instances whenever convenient.

However, energy reductions may vary depending on the objects to create: those with

costly “reset” methods could outweight the benefit. In these cases, a deeper pros-cons

analysis is necessary. Indeed, when running the same micro-benchmark by using Vector

and LinkedList, which together with ArrayList are three of the most popular linear data

structures in Java, the gain of the performed refactoring for Vector is very close to that

of using ArrayList, but the refactoring increments energy usage by 1% when using

LinkedList.

Use of primitive data types. The use of primitive data types yielded an energy saving

of up to 23.5%. If primitive data types are used, the creation of new objects by the JVM

to maintain object types is avoided. Indeed, in the previous micro-benchmark, it was

shown that object creation leads to higher energy consumption. In addition, extra energy

is saved since autoboxing and unboxing operations are not needed when using primitive

556 Mathias Longo et al.

types. Autoboxing/unboxing is the conversion by the JVM from/to primitive types to

their corresponding object type.

4.2 Test Applications Results

Table 5 and Fig. 2 show the resulting energy consumption, where the reductions in % of

the refactored versions according to our micro-benchmarks with respect to the original

ones have been quantified as explained earlier. Multi-thread code used the 4 cores

available. Next we discuss in detail the obtained results.

FFT (Fast Fourier Transform). The main refactoring on this application was the

elimination of immutable classes. This was possible through the modification of a class

named Complex, which was immutable in the original test application. In the new

version, Complex class instances can change the values of their attributes without

creating a large number of immutable instances of such class. Also, the attributes

precision of the Complex class (i.e. its real and imaginary part) was decreased from

double to float without altering the FFT algorithm itself.

It is worth noting that by changing from double to float we are potentially losing

precision. In Java, the double data type is 64-bit wide, with precision of up to 15 to 16

decimal points. The float data type is 32-bit wide, with precision of up to 6 to 7 decimal

points. All in all, whether losing precision is problematic will depend on the application

exploiting the FFT algorithm. For example, 32-bit precision suffices many audio

processing related tasks.

Mmult (Matrix Multiplication). The main aspect to avoid in this test application was

object creation. However, in this test application the instantiation of different classes

(matrices) is performed at the beginning of the code. The matrix structure was

redesigned decreasing the number of object creations: not using a recursive structure

has the advantage of requiring fewer objects in memory.

KP (Knapsack). In this test application we reduced the number of objects in memory

by a half. In the original version instances of the class OrcaRandom and Knapsack class

were created, while in the refactored version only instances of Knapsack were created,

which included the behavior of OrcaRandom.

NQ (N-Queens). This application is algorithmically rather simple. There is only one

class which implements the algorithm itself, so the main refactoring for this particular

case was to change the non-primitive data types and to avoid some object creation in

very specific cases.

Table 5. Application results. From top to bottom, applications are listed in the order of Section

“Energy-efficient Micro-benchmarks: Test Applications”

App. Version Consumption (Ws) / Time (s) Energy usage reduction %
 Single-thread Multi-thread Single-thread Multi-thread

FFT Original 1,784.76/ 27.9 947.57 / 8.1

 Refactored 1,714.99 / 26.4 813.14 / 7 3.90 14.19
MMult Original 34,315.15 / 496.2 22,692.00 / 183

 Refactored 13,123.99 / 185.7 8,261.35 / 66 61.75 63.59
KP Original 5,181.22 / 71.3 4,320.79 / 36

 Refactored 104.94 / 1.5 103.41 / 1 97.97 97.61

 Reducing energy usage in Java-based scientific applications via code refactorings 557

NQ Original 55,753.39 / 854 34,394.70 / 300

 Refactored 40,315.14 / 605 22,374.64 / 189.5 27.69 34.95
SA Original 40,813.78 / 613.6 61,832.88 / 680.7

 Refactored 906.92 / 13.1 508.52 / 4.3 97.77 99.18
GD Original 6,361.87 / 94 3,630.05 / 29.1

 Refactored 3,131.95 / 44.8 1,920.94 / 15.5 50.76 47.08
Bayes Original 14,566.14 / 114.1 1,1599.18 / 110.4

 Refactored 11,733.39 / 88.8 1,0415.26 / 8.1 19.44 10.20

Fig 2. Consumptions for single-thread (left) and multi-thread (right) modes. Bars are log10-scaled

SA (Sequence Alignment). In the original code there is a recurrently-used class

(Matrix), which is a two-dimension array of instances of the Float object type. So the

most important refactoring was to use primitive data types. There were also

modifications in the main class to avoid new object creations and method invocations.

Note that the unrefactored multi-thread version consumed much more energy than its

single-thread counterpart. As mentioned earlier, we produced multi-thread versions of

applications by cloning the original application and feeding each clone with the same

parameter values or instances, depending on the case. For SA, this particularly meant

passing on the same object instances (two Sequence objects, representing human and

mouse protein sequences), which in turn led to high memory contention among threads.

However, we aimed at leaving the application code “as is” prior to refactor them and

using the same multi-thread scheme for all applications, without introducing solutions

to mitigate this contention. In fact, avoiding object data types and reducing object

creations decreased memory usage in the refactored single-thread version.

GD (Gradient Descent). GD is a machine learning algorithm that basically learns

(approximates) a multi-variable function using training data. The implementation of GD

used is based on two matrices: an NxM matrix with N the number of variables and M

the training set size, and another Mx1 matrix with the values of the training set. The

original version of these matrixes were implemented using a Matrix class with a

Collection with non-primitive data types (Double). The applied refactoring was to

replace this collection with arrays of primitive data types. Thus, two further

optimizations were also applied in consequence to create the optimized code. Firstly,

there are less objects since one Matrix instance itself is an object.

558 Mathias Longo et al.

Second, elements can be read by directly indexing an array position, i.e. without

accessors. Note that this change is possible since the amount of elements in the matrices

is known a priori, thus an accessor is not needed. This is possible since machine

learning algorithms are usually trained with data with dimensions and sample numbers

known in advance.

Bayes (Bayes Network Classifier). The implementation maps each entry of the

dataset into Instance objects. Each of these objects are then processed to train the

classifier. The whole set of instances (dataset) are kept in another class called Instances,

which provides the methods to get or put information into it and is mainly composed by

a List. In addition, similar to GD, it is possible to know the size of the dataset a priori.

Thus, the refactoring applied was again eliminating the List and using an array instead.

4.2.1 Results Summary

Energy spent by an application version is computed based on active power (Watts) and

runtime (seconds). For each triple T=<app, v, th>, app ∈ {FFT, MMult, KP, NQ, SA,

GD, Bayes}, v ∈ {original, refactored} and th ∈ {single-thread, multi-thread}, we

obtain two lists, LP and LT. LP has the active power samples from i iterations, and LT

contains i elapsed times in seconds. Since our power device outputs a line of raw

measurement data every one second, the size of LP is ∑˩(LTj).

To illustrate the amount of samples in the lists, please refer to Table 5. The triple

TGD,o,s=<GD, ‘original’, single-thread> took 94 seconds to execute in average.

LP(TGD,o,s) will then have approximately 94*10=940 samples (recall we used i=10 in all

experiments). On the other hand, the triple TGD,r,s=<GD, ‘refactored’, single-thread>

took 44.8 seconds to execute in average, so LP(TGD,r,s) will have around 440 samples.

Lastly, both LT(TGD,o,s) and LT(TGD,r,s) will have 10 elements, one per iteration.

We studied the source of energy reductions by performing statistical tests given

T1=<app, ‘original’, th> and T2 =<app, ‘refactored’, th>. This means determining

whether there are statistically significant differences between samples of LP(T1) versus

that of LP(T2), and samples of LT(T1) versus that of LT(T2).

For energy samples, we took the active power samples lists LP(T1) and LP(T2) and

since the lists might differ in length we run the two-tailed Mann-Whitney-Wilcoxon for

unpaired data. This difference in length stems from the fact that ∑˩LT(T1)j is usually

different than ∑˩LT(T2)j, and hence the sizes of LP(T1) and LP(T2) also differ. For

instance, the size of LP(TGD,o,s) and LP(TGD,r,s) is 940 and 440, respectively.

For elapsed times, and since the lists LT(T1) and LT(T2) have the same length and

samples differ from each other in that a treatment (refactoring) is applied, we used the

two-tailed Wilcoxon test for paired/matched data. This resembles the kind of test often

applied on the same subject –in our case application- before and after a treatment has

been applied. This is, before the treatment is applied, the application code is the original

one, while after the treatment is applied, the code has been refactored. Note that each

element in LT(T1) and LT(T2) are sampled independently, but for the sake of the

statistical test they are matched, which means that the Wilcoxon test uses as input a

single list with the element-wise difference of both lists.

Table 6 shows the test outcomes. Since refactored code (T2) tended to demand more

active power but less time to run than original code (T1), we in fact tested the

 Reducing energy usage in Java-based scientific applications via code refactorings 559

significance of active power increment and elapsed time decrement of the refactored

code over the original code.

Table 6. Active power and elapsed time differences: Statistical significance test outcomes (Y =

Yes, N = No)

App. Original vs refactored round Active power decrement Elapsed time decrement
 At 0.01? At 0.05? At 0.01? At 0.05?

FFT Single-thread / Multi-thread Y / N Y / N Y / Y Y / Y

MMult Single-thread / Multi-thread Y / N Y / Y Y / Y Y / Y

KP Single-thread / Multi-thread N / Y N / Y Y / Y Y / Y

NQ Single-thread / Multi-thread Y / Y Y / Y Y / Y Y / Y

SA Single-thread / Multi-thread Y / Y Y / Y Y / Y Y / Y

GD Single-thread / Multi-thread Y / N Y / N Y / Y Y / Y

Bayes Single-thread / Multi-thread Y / Y Y / Y Y / Y Y / Y

Table 5 shows that, considering single-thread code runs, the refactored versions

demanded more active power than the original versions (2-4%). The exception to this is

KP, whose refactored version had 3.72% less active power. For multi-thread code, this

overall trend does not hold and in fact refactored versions introduced average active

power reductions compared to original code in four cases, i.e., 0.70% (FFT), 13.83%

(KP), 23.18% (SA) and 0.65% (GD), which are statistically significant at the 0.01 and

0.05 confidence levels.

Another observation is that multi-thread code used more active power (between

90.83 Watts and 125.17 Watts) than single-thread code (between 63.36 Watts and 72.66

Watts). Since Energy=ActivePower * RunTime, these results show that the studied

micro-benchmarks do not reduce Energy as a side product of Runtime only, but also

ActivePower is altered.

Table 6 shows that all significant tests regarding elapsed time confirm that refactored

code run faster than original code. Let us measure such improvements using the well-

known speedup metric, which is the ratio between the time it takes to run an

unoptimized code versus the time to run its optimized counterpart, i.e. original times

over refactored times in our case. Speedups values ranged from [1.05-47.53] (single-

thread) and [1.15-158.30] (multi-thread). Overall, we obtained per-iteration absolute

average energy savings of 69 Ws to 39900 Ws (single-thread) and in the range of 134

Ws to 61300 Ws (multi-thread). Even when multi-thread refactored code naturally

consumes more Active Power than single-thread refactored code, in the former case

each core runs a refactored –and hence rather faster– version of the original code.

Again, since Energy=ActivePower * RunTime the multiplicative, beneficial effect on

energy consumption of using many threads can be also appreciated.

To put these savings in context, virtualization technologies –particularly Xen and

KVM– and container technologies –particularly LXC and Docker– consume between

126 and 128 Ws to run eight simultaneous idle virtual guests [30]. Likewise, the energy

to send 27 MB of data via TCP in metropolitan-area networks where round-trip time is

up to 50 milliseconds ranges from 921 to 43000 Ws [21]. Lastly, 30000 Ws is the

energy necessary to execute Kmeans clustering algorithm from the benchmark in [9] by

splitting the work to do under a 50-50 scheme between a CPU and an Nvidia GeForce

8800 GTX GPU [23].

560 Mathias Longo et al.

To conclude our analysis, we should also mention that the potential energy savings in

an application is only an angle from which to evaluate whether it is convenient to

refactor the application code or not regarding some micro-benchmarks. This way,

another important angle is analysis scope, which refers to the quantity of code units that

users have to analyze to determine where to apply refactorings without affecting the

application functionality, and hence it is a qualitative measure of refactoring difficulty.

This analysis might involve looking only the sections of the code where the refactoring

opportunities appear, or additionally more elements like methods that call those sections

or other classes. The analysis scope can be at the Statement, Method or Application

levels. The Statement level particularly requires less effort from the user. For example,

when refactoring for the OFA micro-benchmark, users have to change all Getter method

calls by direct accesses to involved attributes (Statement level). For the MT micro-

benchmark, changing the traverse orientation is a trivial task in terms of code, but it is

not a trivial task at the time of analyzing the semantic of the traverse. This involves

looking the method implementing the algorithm where the traverse is performed

(Method level). For example, the traverse in a matrix multiplication code cannot be

changed. However, after an analysis, developers could transpose the matrices and, then,

change the traverse. Finally, refactoring for the AO micro-benchmark clearly implies to

analyze the feasibility of reducing data types precision at the Application level.

Table 7 summarizes the micro-benchmarks based on these two angles. We have

considered a qualitative indication of the energy savings that can be obtained from each

micro-benchmark. In practice, this represents a prioritization for users willing to exploit

our micro-benchmarks, since those yielding the best energy savings and being the most

easy to apply in the code should be tackled first (e.g. OFA, EH, MT and PDT).

Table 7. Studied micro-benchmarks: energy savings and analysis scope difficulty

Micro-benchmark Energy savings Application scope

Array copying (AC) Good Application

Matrix iteration (MT) Excellent Method

String handling (SH) Excellent Application

Use of arithmetic operations (AO) Very low-very good Application

Exception handling (EH) Excellent Method

Object field access (OFA) Very good Statement

Object creation (OC)

Use of primitive data types (PDT)

Good

Good

Application

Statement

5. Conclusions

We have empirically assessed the energy impact of energy-friendly versions of common

primitives in Java scientific code. We also show that refactoring code driven by such

energy-friendly versions yield energy gains both for single-thread and multi-thread

refactored applications. This gives Java scientific developers hints to build energy-

efficient software for servers, which complements energy-aware approaches already

proposed at the platform and hardware levels.

It is worth noting that our research benefits end user scientific applications, i.e.

software whose primary purpose is not to be heavily reused (as opposed to software

 Reducing energy usage in Java-based scientific applications via code refactorings 561

libraries). In practice, refactoring an application would essentially mean modifying the

original code and then properly testing the refactored code to avoid introducing bugs.

However, modifying code that is aimed at being reused from other applications requires

a wider view upon refactoring code to avoid breaking clients.

Consequently, if we analyze the potential impact of micro-benchmarks driven

refactoring in software that is aimed at being reused, they can be grouped into those that

are harmless and those that might break the software. In the former group is Array

copying, Matrix iteration and String handling. Refactoring based on these micro-

benchmarks means changing the way certain tasks are implemented, but software

design is not broken.

Contrarily, the micro-benchmarks in the second group, i.e. the rest, might break the

software design. In many cases, the library interface is affected thus breaking clients

(Exception handling, Object field access, Use of primitive data types), internal object

states might be violated or made inconsistent (Object creation) or what the client

expects from the library might be semantically altered (Use of arithmetic operations).

This does not mean our micro-benchmarks cannot be applied in libraries as well, since

they would be applicable in libraries where a clear, defined separation between interface

(API) and implementation exists. In this way, refactorings could be applied in principle

within the boundaries of the library implementation while ensuring that the API is left

untouched (both syntactically and semantically).

Finally, future work will investigate how to automatically preprocess existing code to

exploit our findings. For some micro-benchmarks (e.g., object field access) this is trivial

but for others (e.g., reusing objects) modification/recognition is highly challenging. We

are also exploiting these ideas for mobile device programming. Preliminary works

studied the rate at which micro-benchmarks versions deplete batteries [36] and the

trade-off between code smell-free OO designs versus the inherent energy costs [37] in

Java-based Android applications. The motivation of these works is that mobile devices

can act as resource providers in edge environments to run scientific applications [20], so

coding energy-aware tasks becomes crucial. In addition, we will test other common

situations not covered by the micro-benchmarks code utilized in this paper. For

example, these include other arithmetic operations (AO micro-benchmark), checking if

a method return value is correct as opposed to having an exception (EH micro-

benchmark), accessing static versus non-static object attributes (OFA micro-benchmark)

and exclusively using wrapper classes in an application since boxing is avoided (PDT

micro-benchmark).

Acknowledgements. We thank the anonymous reviewers for their comments to improve

the paper. We acknowledge the financial support by ANPCyT through grant PICT no.

PICT-2012-0045 and CONICET through grant PIP no. 11220170100490CO.

References

1. S. K. Abd, S. Al-Haddad, F. Hashim, A. B. Abdullah, S. Yussof, An effective approach for

managing power consumption in cloud computing infrastructure, Journal of Computational

Science 21 (2017) 349–360.

562 Mathias Longo et al.

2. L. Ardito, M. Morisio, Green it available data and guidelines for reducing energy

consumption in it systems, Sustainable Computing: Informatics and Systems 4 (1) (2014)

24–32.

3. J. Zhang, Comparative study of several intelligent algorithms for knapsack problem,

Procedia Environmental Sciences 11 (2011) 163–168.

4. K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.

Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., The landscape of parallel

computing research: A view from berkeley, Tech. rep., University of California (2006).

5. A. Barisone, F. Bellotti, R. Berta, A. De Gloria, Jsbricks: a suite of microbenchmarks for the

evaluation of java as a scientific execution environment, Future Generation Computer

Systems 18 (2001) 293–306.

6. R. Basmadjian, P. Bouvry, G. Da Costa, L. Gyarmati, D. Kliazovich, S. Lafond, L. Lefevre,

H. De, J.-M. P. Meer, R. Pries, J. Torres, T. Trinh, S. Khan, Green data centers, Large-Scale

Distributed Systems and Energy Efficiency: A Holistic View (2015) 159–196.

7. J. Brożyna, G. Mentel, B. Szetela, Renevable energy and economic development in the

european union, Acta Polytechnica Hungarica 14 (7) 11-34.

8. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender,

Learning to rank using gradient descent, in: 22nd International Conference on Machine

learning, ACM, 2005.

9. S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, K. Skadron, Rodinia: A

benchmark suite for heterogeneous computing, in: IEEE International Symposium on

Workload Characterization, IEEE, 2009.

10. H. Chen, Y. Li, W. Shi, Fine-grained power management using process-level profiling,

Sustainable Computing: Informatics and Systems 2 (1) (2012) 33–42.

11. A. S. Christensen, A. Moller, M. I. Schwartzbach, Precise analysis of string expressions, in:

10th International Static Analysis Symposium, 2003.

12. P. Colella, Defining software requirements for scientific computing, Tech. rep., DARPA’s

High Productivity Computing Systems (HPCS) (2004).

13. G. Dhaka, P. Singh, An empirical investigation into code smell elimination sequences for

energy efficient software, in: 23rd Asia-Pacific Software Engineering Conference, 2016.

14. European Commission, Code of conduct on data centres energy efficiency, Tech. rep.,

Institute for Energy, Renewable Energies Unit, v2.0 (2009).

15. N. Friedman, D. Geiger, M. Goldszmidt, Bayesian network classifiers, Machine learning 29

(2-3) (1997) 131–163.

16. Google, Caliper, https://github.com/google/caliper/wiki/ProjectHome.

17. A. Greenberg, J. Hamilton, D. A. Maltz, P. Patel, The cost of a cloud: research problems in

data center networks, ACM SIGCOMM Computer Communication Review 39 (1) (2008)

68–73.

18. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The weka data

mining software: an update, ACM SIGKDD explorations newsletter 11 (1) (2009) 10–18.

19. S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of java

collections classes, in: 38th International Conference on Software Engineering, 2016.

20. M. Hirsch, J. M. Rodriguez, A. Zunino, C. Mateos, Battery-aware centralized schedulers for

cpu-bound jobs in mobile grids, Pervasive and Mobile Computing 29 (2016) 73–94.

21. M. Usman, D. Kliazovich, F. Granelli, P. Bouvry, P. Castoldi, Energy efficiency of tcp: An

analytical model and its application to reduce energy consumption of the most diffused

transport protocol, International Journal of Communication Systems 30 (1).

22. R. V. van Nieuwpoort, G. Wrzesińska, C. J. Jacobs, H. E. Bal, Satin: A high-level and

efficient grid programming model, ACM Transactions on Programming Language and

Systems 32 (3) (2010) 1–39.

23. K. Ma, Y. Bai, X. Wang, W. Chen, X. Li, Energy conservation for gpu–cpu architectures

with dynamic workload division and frequency scaling, Sustainable Computing: Informatics

and Systems 12 (2016) 21–33.

 Reducing energy usage in Java-based scientific applications via code refactorings 563

24. I. Manotas, L. Pollock, J. Clause, Seeds: A software engineer’s energy-optimization decision

support framework, in: 36th International Conference on Software Engineering, ACM, 2014.

25. C. Mateos, A. Rodriguez, M. Longo, A. Zunino, Energy implications of common operations

in resource-intensive java-based scientific applications, in: New Advances in Information

Systems and Technologies, Springer, 2016, pp. 739–748.

26. L. Minas, B. Ellison, Energy Efficiency for Information Technology: How to Reduce Power

Consumption in Servers and Data Centers, Intel Press, 2009.

27. A. E. Trefethen, J. Thiyagalingam, Energy-aware software: Challenges, opportunities and

strategies, Journal of Computational Science 4 (6) (2013) 444–449.

28. A. Nicolaos, K. Vasileios, A. George, M. Harris, K. Angeliki, G. Costas, A data locality

methodology for matrix-matrix multiplication algorithm, Journal of Supercomputing 59

(2012) 830–851.

29. A. Noureddine, A. Bourdon, R. Rouvoy, L. Seinturier, A preliminary study of the impact of

software engineering on greenit, in: 1st International Workshop on Green and Sustainable

Software, 2012.

30. R. Morabito, Power Consumption of Virtualization Technologies: An Empirical

Investigation, in: IEEE/ACM 8th International Conference on Utility and Cloud Computing

(UCC), 2015.

31. A.-C. Orgerie, M. D. d. Assuncao, L. Lefevre, A survey on techniques for improving the

energy efficiency of large-scale distributed systems, ACM Computing Surveys (CSUR) 46

(4) (2014) 47.

32. S. Papadimitriou, K. Terzidis, S. Mavroudi, S. Likothanassis, Exploiting java scientific

libraries with the scala language within the scalalab environment, IET Software 5 (2011)

543–551.

33. G. Pinto, F. Soares-Neto, F. Castor, Refactoring for energy efficiency: A reflection on the

state of the art, in: 4th International Workshop on Green and Sustainable Software, GREENS

’15, IEEE Press, 2015.

34. G. Procaccianti, H. Fernández, P. Lago, Empirical evaluation of two best practices for

energy-efficient software development, Journal of Systems and Software 117 (2016) 185–

198.

35. N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, M. Valero, Supercomputing

with com modity cpus: Are mobile socs ready for hpc? International Conference on High

Performance Computing, Networking, Storage and Analysis, ACM, 2013.

36. A. Rodriguez, C. Mateos, A. Zunino, Improving scientific application execution on android

mobile devices via code refactorings, Software: Practice and Experience 47 (5) (2017) 763–

796.

37. A. Rodriguez, C. Mateos, A. Zunino, M. Longo, An analysis of the effects of bad smell-

driven refactorings in mobile applications on battery usage, in: Modern Software

Engineering Methodologies for Mobile and Cloud Environments, IGI Global, 2016, pp. 155–

175.

38. C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh,

Initial explorations on design pattern energy usage, in: 1st International Workshop on Green

and Sustainable Software, 2012.

39. P. San Segundo, New decision rules for exact search in n-queens, Journal of Global

Optimization 51 (3) (2011) 497–514.

40. T. F. Smith, M. S. Waterman, Identification of common molecular subsequences, Journal of

Molecular Biology 147 (1) (1981) 195–197.

41. G. L. Taboada, S. Ramos, R. R. Exposito, J. Tourino, R. Doallo, Java in the high

performance computing arena: Research, practice and experience, Science of Computer

Programming 78 (5) (2013) 425 – 444.

42. J. Zhang, J. Lee, P. K. McKinley, Optimizing the java piped i/o stream library for

performance, in: International Workshop on Languages and Compilers for Parallel

Computing, Springer, 2002.

564 Mathias Longo et al.

43. R. Pereira, P. Simao, J. Cunha, J. Saraiva, jStanley: Placing a Green Thumb on Java

Collections. 33rd ACM/IEEE International Conference on Automated Software Engineering,

ACM, 2018.

44. R. Pereira, M. Couto, J. Saraiva, J. Cunha, J. Fernandes, The Influence of the Java Collection

Framework on Overall Energy Consumption. 5th International Workshop on Green and

Sustainable Software, ACM, 2016.

45. R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. Fernandes, J. Saraiva, Energy

Efficiency Across Programming Languages: How Do Energy, Time, and Memory Relate?

10th ACM SIGPLAN International Conference on Software Language Engineering, ACM,

2017.

46. D. Monge, E. Pacini, C. Mateos, C. García Garino. Meta-heuristic based Autoscaling of

Cloud-based Parameter Sweep Experiments with Unreliable Virtual Machines Instances.

Computers & Electrical Engineering - Special Issue on 7th special section on Cloud

Computing 69 (2018) 364-377.

Mathias Longo holds a BSc. in Systems Engineering from the UNICEN, and he is

currently pursuing an MSc. in Data Science at the University of Southern California.

Ana Rodriguez holds a BSc.in Systems Engineering from the UNICEN, and a Ph.D. in

Computer Science from the UNICEN (2018), working under the supervision of

Alejandro Zunino and Cristian Mateos.

Cristian Mateos holds an MSc. and a Ph.D. in Computer Science from the UNICEN.

He is an adjunct professor at the UNICEN and researcher at the CONICET. He is

interested in parallel and distributed programming, middlewares, and mobile/service-

oriented computing.

Alejandro Zunino holds an MSc. and a Ph.D. in Computer Science from UNICEN. He

is an adjunct professor at the UNICEN and researcher at the CONICET. His research

areas include grid computing, service-oriented computing, Semantic Web services, and

computer security.

Received: June 08, 2018; Accepted: June 01, 2019

