
Computer Science and Information Systems 17(1):1–27 https://doi.org/10.2298/CSIS180829021T

Run-time Interpretation of Information System
Application Models in Mobile Cloud Environments

Nikola Tanković1 and Tihana Galinac Grbac2

1 Faculty of Informatics, Juraj Dobrila University of Pula
nikola.tankovic@unipu.hr

2 Faculty of Engineering, Juraj Dobrila University of Pula
tihana.galinac@unipu.hr

Abstract. Application models are commonly used in the development of informa-
tion systems. Recent trends have introduced techniques by which models can be
directly transformed into execution code and thus become a single source for appli-
cation design. Inherently, it has been challenging for software developers to become
proficient in designing entire systems due to the complex chain of model transfor-
mations and the further refinements required to the code generated from the models.
We propose an architectural framework for building the distributed information sys-
tem applications in which the application models are directly interpreted during ex-
ecution. This approach shortens the evaluation cycles and provides faster feedback
to developers. Our framework is based on a holistic application model represented
as a graph structure complemented with a procedural action scripting language that
can express more complex software behavior.
We present the implementation details of this framework architecture in a mobile
cloud environment and evaluate its benefits in eleven projects for different cus-
tomers in the retail, supply-chain management and merchandising domain involving
300 active application users. Our approach allowed engaging end-users in the soft-
ware development process in the phase of specifying executable application models.
It succeeded in shortening the requirements engineering process and automating the
configuration and deployment process. Moreover, it benefited from the automatic
synchronization of application updates for all active versions at the customer sites.

Keywords: model-driven development, MDD, cloud computing, information sys-
tem, model interpretation, application graph model

1. Introduction

The information systems (IS) development process includes numerous repeating patterns
such as constructing database schema, designing user interfaces for data display and ma-
nipulation, building communication services [1], etc. These and similar patterns arise dur-
ing the process of human or semi-automatic translation of the system model artifacts to
machine-executable code. Application modeling has become extremely relevant—not just
for supporting analysis and design phases—but in serving as the primary source for au-
tomatic application generation [2]. Therefore, Model-Driven Development (MDD) advo-
cates the automation of repetitive software development tasks.

In addition, such automation opens new opportunities for end-users to actively par-
ticipate in the software development process, offloading the development tasks that were

2 Nikola Tanković and Tihana Galinac Grbac

exclusive to software engineers [3]. Figure 1 depicts a generic scenario of how this is
applied. The software developers can steer their focus on providing generic components
and/or model transformation procedures that are actively reused through different appli-
cation models defined by the end-user developers.

End-user
Developer

Software
Developer

Model

Reusable
Components

AGM
system

Application
End-user

Fig. 1. Offloading the software developers by introducing modeling techniques
understandable to end-users

Additionally, the cloud computing paradigm facilitates software provisioning by en-
abling software providers with large-scale infrastructure resources paid on a per usage
basis [4]. The cloud services benefit from offloading software and system engineers due
to the high level of automation.

This paper proposes an approach to alleviate the role of end-users in the development
process of information systems. This goal is achieved by interpreting application models
at runtime on a highly automated distributed cloud environment. We strive to gain benefits
from: (1) enabling adaptive and rapid-feedback modeling in which changes can be made
quickly and applied easily, (2) enabling easier software maintenance and distribution, and
(3) runtime application version management with quick transition times between different
end-application versions. Our approach is targeted primarily at small-to-medium-sized
projects that require fast development cycles and a greater degree of exploration during
the requirements-gathering phase.

To achieve model interpretation, we devised a technique that represents models at
runtime as directed graphs, called the Application Graph Model (AGM). To supplement
AGM for building more complex solutions, we provide a complementary action scripting
language targeted to advanced users with a software programming skillset. This paper de-
scribes the AGM execution architecture and evaluates it with a concrete implementation
for building mobile-enabled information systems [5] in the retail, supply chain manage-
ment, and the merchandising domain.

The rest of this paper is organized as follows: Section 2 provides the rationale behind
the model interpretation. Section 3 lays a conceptual foundation for interpreting models in
the information system application domain. The implementation details are presented in
Section 4 together with a discussion concerning our experiences of AGM usage in practice
and an example application model. The limitations of our approach are disseminated in

Run-time Interpretation of IS Models in Mobile Cloud 3

Section 5. Related work is reviewed in Section 6. Finally, Section 7 concludes the paper
and elaborates on the possibilities for further research.

2. Background

Two major strategies exist for transforming models to executable applications [6]: (1) the
generative approach, in which models undergo a series of transformations that result in
executable application code, and (2) the interpretative approach, in which models are ex-
ploited through runtime interpretation. Generative solutions yield better end applications
performance-wise because runtime interpretation of models comes with additional execu-
tion cost. The existing strategies, such as the Model-Driven Architecture initiative (MDA)
and the Eclipse Modeling Framework (EMF), focus primarily on the generative approach.
Though application performance is superior, the generative approach requires the defini-
tion of a series of model transformation steps using different templates for compiling the
higher-level model to lower-level programming code. Specifying such transformations
can be extremely challenging [7]. Consequently, it involves a broader spectrum of highly
specialized engineers. While such involvement is essential for large-scale software prod-
ucts, at the same time, such characteristics hinder large-scale MDD adoption.

Another ongoing research challenge associated with the generative approaches is the
manual source-code refinement typically applied after the initial model to code transfor-
mations. While the code generated from models covers the majority of generic application
functionalities, some parts of applications still require the implementation of specific busi-
ness logic. These highly specific portions of applications are difficult to represent using
high-level abstract models [8]. Therefore, specific functionality is often implemented af-
ter the initial code has been generated from the models. This post-model-generation code
refinement requirement has several inherent drawbacks: (1) it impacts the synchronization
between the model and the application source code, (2) it requires specialized software
programming skills, and (3) it imposes a burden on model and application change and
deployment management, because it requires additional housekeeping for each version of
the model, transformation rules, code templates and customized code to maintain their
compatibility [8]. To address these drawbacks, some solutions have proposed modeling
specific functionalities by providing an abstract action domain-specific language [9,10]
that is also transformed to concrete programming code through compilation. This ap-
proach works in keeping the models synchronized but raises other difficulties. For exam-
ple, specifying model transformation rules requires expert knowledge and has a massive
impact on the customer-engineer requirements negotiation process. Rapid prototyping be-
comes almost impossible: the time required for generating code, compiling, installing and
restarting existing systems can range from several minutes to several hours [11].

3. AGM Solution

As we briefly discussed in a previous research paper [12], AGM reuses the Object and
Process modeling approach [13] standardized in Automation systems and integration—
the Object-Process Methodology, ISO/PAS 19450:2015. Object Process Methodology
(OPM) is a holistic graphical modeling language applicable to a large variety of domains.

4 Nikola Tanković and Tihana Galinac Grbac

The main advantage of OPM is its ability to capture the dynamic and static aspects of
a system within a single model. The OPM approach handles model complexity through
refinement techniques [14] and alternative model views rather than splitting the model-
ing process using several semantically orthogonal modeling languages. The underlying
model in OPM is holistic: it captures the complete end-solution within a single model.

Our solution builds upon the OPM research in several ways:

– We emphasize the holistic model idea derived from a reflexive meta-model; that is, a
model that can describe itself. The Meta-Object Facility (MOF) [15] from the Model-
Driven Architecture (MDA) initiative is also reflexive, but it is used to derive a set of
semantically and not necessarily compatible models.

– We built the AGM meta-model in a manner similar to the OPM meta-model, but it
possesses specialized constructs for defining mobile information system applications.

In the following subsections, we present the framework for realizing the runtime
model interpretation, followed by an explanation of the AGM meta-model and, finally,
the details of how model interpretation is achieved.

3.1. AGM Framework Architecture

Third Party Services

Application Graph Model (AGM)

Interface ViewData View Process View

Artifacts Repository

Data Processing
 Components
Repository

User Interface
Components
Repository

Execution Platform

Data Persistence
Adapter

Process
Executor

Infrastructure
Manager

User Interface
Generator

Orchestrator

Infrastructure

Computing
Resources

Storage
Resources

Fig. 2. AGM Framework Architecture

The AGM framework architecture for runtime interpretation is presented in Figure 2.
The framework consists of an application graph model (AGM) interpreted by the execu-
tion platform that references components available at artifacts repository.

Run-time Interpretation of IS Models in Mobile Cloud 5

The Application graph model (AGM) provides a set of notations by which an end-user
developer can specify the application models. An information system application model
is constructed by using the Data view, Process view and Interface view notations in a
holistic model. A Data view involves defining runtime invariant data structures, while the
Process view and Interface view are assembled using constructs that reference artifacts
stored in an artifact repository. These models respectively represent the graphical user
interface (GUI) and the data-flow of the information system.

The Execution platform interprets the AGM model. It consists of a User Interface
Generator, a Process Executor, a Data Persistence Adaptor, an Infrastructure Manager
and an Orchestrator. The User Interface Generator interprets the part of the AGM model
that defines GUI elements within the Interface view. The Process Executor interprets the
information system application model and orchestrates the data-flow components avail-
able in the artifacts repository. The data-flow components are connected with the GUI
components to represent information system data. The Data Persistence Adapter provides
permanent data storage functionality based on structures defined in the information sys-
tem application within a Data view. The Infrastructure Manager provisions the infrastruc-
ture resources required for the interpretation processes and data processing components.
It ensures that non-functional requirements such as application performance are met by
providing sufficient resources. Finally, the Orchestrator binds all the above components
and switches control according to the current system state.

The Artifacts repository contains a set of reusable artifacts (generic parts of an infor-
mation system application). These components are divided into user interface-related and
data processing-related functionality. The User interface components represent application-
specific information through a set of user interface (UI) elements that enable interaction
with end-application users. Note that there could be several different types of UIs de-
pending on the client platform (e.g. smartphone, tablet, or personal computer), and these
components can be specialized for specific client platforms. Data processing components
are used for data management. They provide real-time integration with external systems
for persistent data storage.

The Infrastructure resources involved in provisioning information system applications
can be divided into computing resources and storage resources. The computing resources
provision the CPU-intensive parts of information systems such as data processing, while
the storage resources are specialized for data management.

3.2. AGM meta-model

Figure 3 displays an AGM meta-model we developed for modeling information sys-
tem applications. The AGM meta-model is extensible because of its reflexive nature—it
completely defines itself [12,16]. This characteristic enables extending AGM capabilities
beyond the three views described in the following subsections. For example, additional
views could be defined for other types of interfaces (e.g., special resources and domain-
specific devices). The meta-model is defined using UML class model semantics [17].

Data view A Data view defines the data structures from which different static artifacts
can be derived (e.g. the information system database schema, web service interfaces, ...).
It is derived both from the Structure - Classes specification contained within UML Super-
structure model [17] and the OPM meta-model [13].

6 Nikola Tanković and Tihana Galinac Grbac

Object

name : String
value : String

Relationship <<enumeration>>
LinkType

Association
Aggregation

Cardinality

minimum : Number
maximum : Number

outbound

1

*

inbound

1

*

Link

name:String
type:LinkType

outbound
*1

SpecializationAttribute

name : String

attributes

*

*

AttributeType

name : String

type
*

1

inbound
1 1

Element

(a) Data view meta-model

LayoutItem

configuration:String

Object

Layout

name:String

0..1

*
Widget

name:String
sourceURI:String

Screen

name:String1*

* 1

Container

name:String
sourceURI:String

*

1

*

1

1

*

Attribute

*

*

Link

*

*

UIElement

(b) User interface view meta-model

Process

name : String
code : String
sourceURI:String
environment:String

Event

name:String

Element

ObjectProcess
Relationship

type:OPRType

1
1

1

1

<<enumeration>>
OPRType

Creates
Displays
Modifies
Removes
Uses
Searches

*

*
runs

<<enumeration>>
PERType

OnStart
OnEnd

UIElement

Screen redirects
*1

*

1

interface

ProcessEvent
Relationship

type:PERType

1 1

1

1
*

*

triggers

(c) Process view meta-model

Fig. 3. AGM Meta-model

Each entity represented within the data structure is represented by an Object con-
struct. Each Object can have multiple Attributes and Relationships to other objects. A
Relationship can be a Specialization, representing attribute and link inheritance (as in
object-oriented programming) or a Link representing connections between objects. The
Cardinality quantifies the minimal and maximal number of Objects connected by Links.
Unbounded cardinality is achieved by omitting a maximum quantity in the Cardinality
object.

User interface view A User interface view defines a GUI used to manage the informa-
tion and conduct business processes defined in a Process view. User interface generation
combines information stored in the AGM with the current application context (e.g. cur-
rently running processes) and composes the graphical user interface using a reusable set
of components, referred to as Widgets [18]. Widgets can be connected either to whole
Objects or to their Attributes and Links through LayoutItems which serve to select and
order the displayed data. For example, table-like widgets can display entire Object in-
stances, whereas text-input widgets display only certain Attributes. A set of LayoutItem
objects comprises a Layout that can be placed directly into an application Screen or into

Run-time Interpretation of IS Models in Mobile Cloud 7

a Container. A Container is a user interface component used to organize information on
Screens, e.g. a tabular form with many tabs. The location of the source code of the Widget
implementation is contained within sourceURI attribute.

Process view A Process view represents the modeling concepts used to implement dy-
namic application aspects. A Process either models a user activity within the application
(which usually corresponds to real-life business process - or activity we wish to electron-
ically document) or a background task that does not require user interaction (e.g. calcula-
tions and connection to remote services). A process can also run additional processes, all
of which are contained in the application context within a process stack.

Every instantiated Process node is linked with an Element (Object, Attribute or Link)
on which it operates through an ObjectProcessRelationship. The nature of this relation-
ship is denoted by an OPRType enumeration: Processes can create, display, use, modify,
remove and search for Elements. Processes can also emit Events, which are represented
by ProcessEventRelationships that can be a PERType (triggered on process start or end).
User interface components or Widgets can also trigger Events, usually as a result of user
interactions. Throughout the user interfaces, processes that involve end-application users
are represented by the Screen constructs from an Interface view. These processes collect
and display information to/from end-users through a series of user interface forms. In con-
trast, processes that are not linked with Screens are considered as background processes.
Process nodes can either directly represent generic components through their sourceURI
attribute or contain action scripts used for expressing additional functionalities stored in
a Code attribute. Currently, our proposal assumes that action scripts are written in an in-
ternal domain-specific language (DSL) [19], namely JS-DSL, that runs on top of existing
procedural code that is also interpreted at runtime.

For the purposes of our evaluation case-study, the mobile cloud IS, or Processes, have
an additional attribute intended to specify the environment in which they should be exe-
cuted, which can be local (on the client side) or remote (in the cloud). Remote process
execution is vital for maintaining a consistent and secure system since the scripts at the
front-end are exposed and easy to manipulate.

3.3. AGM representation

To describe the methods and algorithms for interpreting the AGM, we first define it using
a directed property graph. AGM thus becomes an ordered quadruple consisting of edges,
vertices and mapping functions denoting their type (class from meta-model):

GAGM = (V,E, TE , TV)

where V is a set of vertices V = {x1, x2, x3, . . . , xn} , xi ∈ D, and D represents a set
of concepts from the modeled domain (e.g. customer, product, ...); whereas E ⊆ X ×X
represents a set of ordered vertex pairs E = {(xi, xj)|i 6= j, xi, xj ∈ E} that represent
the edges (links) from xi to xj . Mapping functions are defined as TE : E →ME , which
represents the node types in the AGM meta-model, and TV : V → MV , denoting the
vertex types. According to the AGM meta-model defined in the previous section,

ME = {Object, Process, Event, Layout, Screen . . . } (1)
MV = {Association,Aggregation, Inheritance, Uses,Modifies, . . . } (2)

8 Nikola Tanković and Tihana Galinac Grbac

Object nodes are the primary building blocks for the structural aspects of a system
(Data view). Node types such as Process and Event represent dynamic (Process view)
behaviors and node types such as Layout and Screen represent User interface views.
AGM provides full modeling capability for the structural aspects of a system, including
schemes for data storage and user interface definitions. The structural model is complete,
meaning that the interpreter can execute them without requiring additional programming
code to render database schema [20] or augment the user interfaces. For dynamic system
definition, the AGM is supplemented by action scripts contained in Process nodes, mean-
ing that an additional mapping exists from each Process node to executable artifacts or
source code, if required.

The biggest advantage of representing models as holistic graphs is that we can use
all the well-known concepts from graph theory, including graph traversal, graph match-
ing, and querying for subgraphs. Our graph model interpreters use such capabilities to
efficiently and reliably execute end applications.

We will demonstrate runtime traversal in a Data view. The Algorithm 1 is used to
build a subgraph with the structural model defined for the requested Object. The input
to the algorithm is the node that represents a certain Object, for which a complete list of
attributes and links is extracted by traversing the AGM graph. The resulting subgraph can
then be used to enable Object serialization (e.g., XML or JSON), or to generate SQL-
language data manipulation queries to communicate with underlying databases.

Data: GAGM = (X,V), and starting node xs where TE (xs) ∈ {Object}
Result: G′

AGM = (X ′, V ′) where X ′ ⊆ X and V ′ ⊆ V represent the complete structural
model of concept xs

begin
X ′ ← {xs}, V ′ ← ∅
for x ∈ X ′ do

Ssuccessors ← {xj |xj ∈ Γ+(x), TV (x, xj) = Specialization}
X ′ ← X ′ ∪ Ssuccessors

for s ∈ Ssuccessors do
V ′ ← V ′ ∪ (x, s)

end
end
for x ∈ X ′ do

Ssuccessors ← {xj |xj ∈ Γ+(x), TV (x, xj) ∈
{Association,Aggregation,Attribute}}

for s ∈ Ssuccessors do
V ′ ← V ′ ∪ (x, s)

end
end

end
Algorithm 1: Traversal of subgraph containing the structural definition of a modeled
concept

Run-time Interpretation of IS Models in Mobile Cloud 9

A similar concept is applied to extract interface compositions and their relationships
from Screen, Layout and Widget nodes, and to conduct processes defined by Process
and Event nodes.

3.4. Interpretation principles

Model interpretation consists of three interpreters, a server-side interpreter (SSI), a client-
side process interpreter (CSPI), and a client-side user interface interpreter (CSUII) as de-
picted in Figure 4. The SSI serves as the Process Executor and is responsible for executing
defined processes on the server side and for creating web service endpoints for bindings
with client-side interpreters. On the client side, the CSPI serves both as a Process Ex-
ecutor and as an orchestrator for conducting processes locally in the client environment.
The CSUII is a User Interface Generator used to render user interface (UI) elements.
AGM models, when interpreted, are stored as graphs (see Section 3.3) in a Graph DB.
To minimize the communication between client and server, and to enable the application
to work in situations when the client is disconnected from the network, we also imple-
mented a local database (Local DB) that contains serialized portions of the AGM model
and application data.

Client EnvironmentServer Environment

Server-side
Interpreter (SSI)Graph DB

Database
Adapter

Relational
DB

R
E

S
T

 A
P

I

Local DB

Client-side
Process

Interpreter (CSPI)

Client Side UI
Interpreter (CSUI)

R
E

S
T

 C
lie

nt

Fig. 4. A high-level view of the server-client architecture for interpreting the AGM

The server side includes a Database Adapter module to enable access to relational
databases for manipulating data in persistent storage according to a defined Data view
structure in the AGM. This module implements a Data Persistence Adapter from the
framework presented in Figure 2. Because our approach supports runtime changes, hold-
ing relational schema solely within the Relational DB hinders instant adaptations to new
models. Instead, every model change in a Data view yields incremental relational schema
updates. The Database Adapter analyses model changes and issues updates to relational
schema. However, because schema updates are a sensitive process that may result in data
losses, it is possible to turn off automatic schema changes and rely on a semi-automatic
approach after the initial application release.

Runtime model interpretation makes it possible to link stored data with a specific
AGM model version. Multiple AGM model versions can be stored in Graph DB due to
the continuous evolution of the modeled system. As an information system evolves from
version to version, data structure mismatches may be introduced between the older and
newer model versions.

The interpretation process transforms an AGM model into an information systems ap-
plication at runtime. The resulting information system application may include a number

10 Nikola Tanković and Tihana Galinac Grbac

of UI forms (we will use the term application screens), where users process presented
information and decide on their next action. We refer to presentation and interaction be-
tween application users and application screens as interpretation cycles.

State Machine
Mechanism

Application
User G

en
er

at
ed

 In
te

rfa
ce

AGM model

Reusable
components

Reusable
components

Graph Queries and
Transformations

2.

1.

Execution Platform Reusable
components

Third Party Services

3.

Fig. 5. AGM interpretation cycle

Figure 5 shows the steps that the AGM interpreter must take to execute each inter-
pretation cycle. Each cycle begins by querying the AGM model for a definition of the
UI and a set of possible user actions (Step 1). This definition is used to construct a state
machine (SM) used to implement communication with the user (Step 2). Finally, the UI
is generated for the application user (Step 3). Figure 6 shows a simplified version of the
states and transitions for an SM. The SM is initialized to a start state that triggers UI ren-
dering (application screen); then, it enters a wait-for-user state. For each Process node
and connected Event, a transition and a new state is added to SM and can be executed.

The algorithm 2 shows how a state machine is generated for each interpretation cycle.
To provide user interaction for each application screen, the CSUII traverses AGM model
from the Screen nodes in a User interface view to all connected Process and Event nodes
that serve as input for defining state machine states and transitions. Three default states
are always present: (1) an sRI state in which the user interface is rendered, (2) a sWU

state that represents user think time, and (3) sNC , which is a final state that occurs when
the CSPI makes a switch to the next interpretation cycle. Additional states are defined
for each process obtained while traversing the AGM. Transitions correspond to incident
Event nodes that trigger those processes.

The UI is constructed according to a User interface view in the AGM. It consists of
multiple Screen nodes that define the appearance of each end-application UI component.
Each Layout specifies a mapping between object attributes and widgets. It is important for
widgets to be developed using generic programming approaches, allowing them to serve
as templates that display different information based on linked Attributes from Objects.
We provide different Widget types according to the cardinality between an Object and its
Attribute or Link.

Run-time Interpretation of IS Models in Mobile Cloud 11

Data: sRI - render interface state, sWU - wait for user state, sNC - next cycle state, and
Pe = {(p, e)} - set of process-event pairs from AGM for current cycle,
p ∈ P, e ∈ E

Result: generated state machine (Σ,S, s0, δ, F) where Σ is set of transition events, S is
set of possible states, s0 is a start state, and δ is a set of transitions δ : S ×Σ → S

begin
s0 ← sRI , F ← {sNC} S ← {sRI , sNC , sWU}, Σ ← ∅ δ ← ∅
for (p, e) ∈ Pe do

S ← S ∪ {sp}
Σ ← Σ ∪ {ve}
Σ ← Σ ∪ {vfinish}
if isInterfaceTriggered(e) then

δ ← δ ∪ {δ(sWU , ve)→ sp}
end
else if isDataTriggered(e) then

δ ← δ ∪ {δ(sRI , ve)→ sp}
end
if redirects(p) then

δ ← δ ∪ {δ(sp, vfinish)→ sNC}
end
else if updatesInterface(p) then

δ ← δ ∪ {δ(sp, vfinish)→ sRI}
end
else

δ ← δ ∪ {δ(sp, vfinish)→ sUW }
end

end
end

Algorithm 2: Constructing a cycle state machine from a set of processes and events
linked to each application screen

Execute
Process(es)

Wait for
user input

Render
Interface

predefined event

user event

finish

update

finish navigate

End of
cycle

Fig. 6. A state machine is constructed for each interpretation cycle

12 Nikola Tanković and Tihana Galinac Grbac

4. Implementation and Evaluation

In this section, we describe the implementation of the presented framework for execut-
ing business applications in a mobile cloud context. IS applications contain numerous
repeated patterns, which we have identified over the past ten years of professional soft-
ware development3 in the retail, supply-chain and merchandising domains. To automate
the software development processes, we abstracted these patterns and now provide them
as generic components through the AGM. Figure 7 shows an overview of our imple-
mentation. The AGM interpreter is divided into a Mobile interpreter and a Cloud server
interpreter. The Cloud server interpreter additionally manages infrastructure resources
using an Infrastructure API provided by the cloud provider. The main challenge in this
type of implementation was the distributed nature of mobile cloud applications because
it requires keeping the AGM models and application data synchronized in a distributed
mobile execution environment.

AGM Interpreter

Mobile
Interpreter

Mobile
Interpreter

Infrastructure API

Worker nodes

Cloud Server
Interpreter

...

DB1
DB2

DBn

Database nodes

AGM

End-User Developer

Internet

Fig. 7. AGM concept in the mobile cloud computing environment

Because AGM is a directed graph structure, we sought a semantically similar solution
to manage it efficiently and reliably. We decided to use a graph database called Neo4j
[21], which supports efficient queries because of its specialized graph-structure storage
scheme. Neo4j provides a property graph model for storing data. This model allows each
node and vertex to be associated with its own key-value data-store that can hold additional
information. This capability was used to represent the mappings TE and TV from GAGM

3 One of the authors was associated with a Croatian software company Superius d.o.o., dedicated to building
mobile cloud information systems

Run-time Interpretation of IS Models in Mobile Cloud 13

as well as other additional values associated with certain model nodes (e.g., Object nodes
contain names and values, and Process nodes can contain action script source code (see
Figure 3).

Currently, mobile interpreters have been implemented for Android and iOS platforms
using a hybrid development approach that combines native platforms with web application
components [22]. The server-side interpreter is built as a Java application running on (but
not limited to) Apache Tomcat application servers.

4.1. Data persistence

To manage stored data, we implemented DatabaseAdapters for three relational databases:
PostgreSQL, Oracle, and MSSQL. A generative tool is used to construct database schema
from AGM models, allowing us to keep the database schema synchronized with the AGM
models.

In the current implementation, the scalability and elasticity limitations of the rela-
tional databases are a drawback, since these relational databases do not typically provide
elastic capabilities [23]. Our execution engine does not currently control database elas-
ticity, hence the database components need to be provisioned according to planned work-
loads. Obviously, this is not something that end-user developer can achieve, and thus this
steps requires specialized infrastructure personnel for on-premises usage of AGM. On the
other hand, if one wishes to use public cloud providers, one can use a managed relational
database such as Amazon RDS 4 or DigitalOcean PostgreSQL 5. Achieving cloud-native
automatically elastic persistence for AGM is a great future challenge, where we could
also explore NoSQL solutions like document databases (e.g. MongoDB 6).

4.2. Action Scripting Language Implementation

Process nodes from AGM are enriched with an action scripting language called JS-DSL.
JS-DSL is an internal domain-specific language (DSL) developed on top of JavaScript.
Figure 9 represents a block of JS-DSL code from one of our applications that sums up the
total charges in an invoicing process. JS-DSL provides special constructs for accessing
and manipulating user-level data. Figure 8 displays how JS-DSL can be used to customize
user interfaces.

To create JS-DSL we followed the guidelines for creating internal DSLs proposed in
[24], [25] and [19]. JS-DSL currently provides the following capabilities:

a) It can make runtime changes to UI widgets (e.g., emphasizing certain information
using color, controlling widget behavior, and navigating through the application).

b) It can access data stored in background services (e.g., data persisted on a smartphone
client or from remote servers),

c) It can apply a set of simple mathematical operators to data (e.g. sum, average, min,
and max).

d) It can invoke remote third-party services.

4 Amazon RDS, available at https://aws.amazon.com/rds/
5 DigitalOcean cloud provider, available at https://www.digitalocean.com/
6 MongoDB, available at https://www.mongodb.com/

https://aws.amazon.com/rds/
https://www.digitalocean.com/
https://www.mongodb.com/

14 Nikola Tanković and Tihana Galinac Grbac

Retail Invoice

Invoice Number

Date Salesperson

Item 1

Invoice Lines

Quantity

Item 2 Quantity

Item 3 Quantity

Item 4 Quantity

Retail Total

Uses

Modifies

Process

set (' I nvoi ce Ret ai l Tot al ') . t o(
 sumOf (' Ret ai l Tot al ') . al l (' I nvoi ce Li nes')
)

Process

f et chLast (" Ret ai l I nvoi ce")
. get (" I nvoi ce Number ") . i ncr ement ()

Event

t ype: onDi spl ay

Modifies

Fig. 8. Example of Process nodes combined with JS-DSL in specifying custom
application behavior

1 set(’Invoice Retail Total’).to(
2 sumOf(’Retail Total’).all(’Invoice Line’)
3)
4 set(’Lines Count’).to(
5 all(’Invoice Line’).count()
6)

Fig. 9. A sample of JS-DSL source code for a Process node.

When desired actions are not available within JS-DSL, designers can rely on classical
JavaScript code, which exploits the benefits of adopting a DSL embedded in the under-
lying JavaScript language. Note that such extensions require a more advanced user skill
set.

4.3. Defining AGM models

To construct application models and load them to an execution platform we provide an
additional DSL, called AGM-DSL. AGM-DSL is a one-to-one textual representation of an
AGM model. Each model view has associated AGM-DSL commands (e.g., a Data view is
associated with a DEF command). A BNF specification for a DEF command is presented
in Figure 10, and Figure 11 shows an example DEF command used in an application from
the retail domain.

4.4. Reusable components

Client-side user interface interpreter (CSUII) interprets the AGM model and composes
the user-interface using the reusable generic components - widgets. Widgets are designed
to be the gatekeepers of complexity towards the end-user developers. They are engineered

Run-time Interpretation of IS Models in Mobile Cloud 15

〈define statement〉 |= DEF object 〈inheritance〉 〈newline〉 〈attribute list〉
〈attribute list〉 |= 〈attribute〉 〈newline〉 〈attribute list〉 | 〈attribute〉
〈Inheritance〉 |= : inheritedObject

〈attribute〉 |= 〈tab〉attribute name : attribute type 〈card〉 〈nl〉
〈card〉 |= 〈quantity〉..〈quantity〉 | 〈quantity〉

〈quantity〉 |= numeric value | *
〈nl〉 |= \n

〈tab〉 |= \t

Fig. 10. BNF specification for DEF command in AGM DSL

1 DEF Product :Resource
2 Name: Name 1..1
3 Unit Of Measure: Unit Of Measure 0..1
4 Wholesale Price: Number 0..1
5 VAT: Number 0..1
6 Retail Price: Number 0..1
7 Stock: Number 0..1
8 Stock Date: Date 0..1
9 Code: Number 0..1

10 Weight: Number 0..1
11 Tax: Number 0..1
12 Package Weight: Number 0..1
13 Pallet Weight: Number 0..1
14 Barcode: Number 0..1
15 Package Quantity: Quantity 0..1

Fig. 11. Excerpt from the AGM-DSL defining a product in a retail domain

with classical software engineering methods by professional teams to conform to the pre-
defined component specification. AGM achieves extensibility through the development
of new widget components paired with their meta-models - connection points to the rest
of the AGM model. Some widgets like InputTextWidget have a single connection
point (e.g. the attribute of the object that needs to be provided by the user), while some
widget can have multiple connection points (e.g. LabelWidget can represent multiple
objects’ attributes).

Widget component-model interface is derived from the port-based interface component-
model [26]. The deviation from port-based interfaces is the introduced connection be-
tween components and the meta-data. This enables turning generic components into spe-
cific representations based on the context. The widget interface is displayed in Figure
12. Each widget implementation is complemented with an AGM node inherited from
a Widget node. The meta-data connection within IM are referencing the data-view el-
ements (Fig. 3a) refined through LayoutItem nodes. The data that flows through data-

16 Nikola Tanković and Tihana Galinac Grbac

Widget

IM = (m1, m2, . . .)
<latexit sha1_base64="+UbMM1YV6SNA3om/hGkPTLjA/QE=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyEB84DkCHubTbJk78HunhCOfAUbv4qNhRJs7ez8Fn4E95IUmjgw8Jv/zLA7fy8SXGnH+bIyS8srq2vZ9dzG5tb2jr27V1NhLCmr0lCEsuERxQQPWFVzLVgjkoz4nmB1b3Cd9usPTCoeBvd6GDHXJ72Adzkl2kihfQC30IY7QHBl8hR8U2E4N5xSMSV0Yqqztp13Cs4k0CLgGeRLduV7DADltv3Z6oQ09lmgqSBKNbETaTchUnMq2CjXihWLCB2QHmsaDIjPlJtMLhqhY6N0UDeUJgONJurvjYT4Sg19z0z6RPfVfC8V/+s1Y929dBMeRLFmAZ0+1I0F0iFK7UEdLhnVYmiAUMnNXxHtE0moNibmjAl4/uRFqBUL2CngCs6XHJhGFg7hyNiL4QJKcANlqAKFR3iGV3iznqwXa2y9T0cz1mxnH/6E9fED8JGVLw==</latexit><latexit sha1_base64="x812LHS8cvp6pkd1xeG/dr0DcCc=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyGCeUByhL3NXrK492B3TwhHvoKNX8XGQhFbOzu/jXvJFZo4MPCb/8ywO38vFlxpx/m2CguLS8srxdXS2vrG5pa9vdNUUSIpa9BIRLLtEcUED1lDcy1YO5aMBJ5gLe/+Muu3HphUPArv9ChmbkAGIfc5JdpIkb0H19CDG0BwYfIYAlNhODWcUTUjdGSqk55ddirOJNA84BzKkEe9Z391+xFNAhZqKohSHezE2k2J1JwKNi51E8ViQu/JgHUMhiRgyk0nF43RoVH6yI+kyVCjifp7IyWBUqPAM5MB0UM128vE/3qdRPvnbsrDONEspNOH/EQgHaHMHtTnklEtRgYIldz8FdEhkYRqY2LJmIBnT56HZrWCnQq+xeWak9tRhH04MPZiOIMaXEEdGkDhEZ7hFd6sJ+vFerc+pqMFK9/ZhT9hff4A0MqS3g==</latexit>

IM = (m1, m2, . . .)
<latexit sha1_base64="+UbMM1YV6SNA3om/hGkPTLjA/QE=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyEB84DkCHubTbJk78HunhCOfAUbv4qNhRJs7ez8Fn4E95IUmjgw8Jv/zLA7fy8SXGnH+bIyS8srq2vZ9dzG5tb2jr27V1NhLCmr0lCEsuERxQQPWFVzLVgjkoz4nmB1b3Cd9usPTCoeBvd6GDHXJ72Adzkl2kihfQC30IY7QHBl8hR8U2E4N5xSMSV0Yqqztp13Cs4k0CLgGeRLduV7DADltv3Z6oQ09lmgqSBKNbETaTchUnMq2CjXihWLCB2QHmsaDIjPlJtMLhqhY6N0UDeUJgONJurvjYT4Sg19z0z6RPfVfC8V/+s1Y929dBMeRLFmAZ0+1I0F0iFK7UEdLhnVYmiAUMnNXxHtE0moNibmjAl4/uRFqBUL2CngCs6XHJhGFg7hyNiL4QJKcANlqAKFR3iGV3iznqwXa2y9T0cz1mxnH/6E9fED8JGVLw==</latexit><latexit sha1_base64="x812LHS8cvp6pkd1xeG/dr0DcCc=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QsBGCyGCeUByhL3NXrK492B3TwhHvoKNX8XGQhFbOzu/jXvJFZo4MPCb/8ywO38vFlxpx/m2CguLS8srxdXS2vrG5pa9vdNUUSIpa9BIRLLtEcUED1lDcy1YO5aMBJ5gLe/+Muu3HphUPArv9ChmbkAGIfc5JdpIkb0H19CDG0BwYfIYAlNhODWcUTUjdGSqk55ddirOJNA84BzKkEe9Z391+xFNAhZqKohSHezE2k2J1JwKNi51E8ViQu/JgHUMhiRgyk0nF43RoVH6yI+kyVCjifp7IyWBUqPAM5MB0UM128vE/3qdRPvnbsrDONEspNOH/EQgHaHMHtTnklEtRgYIldz8FdEhkYRqY2LJmIBnT56HZrWCnQq+xeWak9tRhH04MPZiOIMaXEEdGkDhEZ7hFd6sJ+vFerc+pqMFK9/ZhT9hff4A0MqS3g==</latexit>

ID = (d1, d2, . . .)
<latexit sha1_base64="bt5iypJ+wjtAa4SqaLSkgPiCq5I=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhLo02QkAL7RIwD0iOsLe3lyzZe7C7J4QjX8HGr2JjoQRbOzu/hR/BvSSFJg4M/OY/M+zO3405k8qyvozc0vLK6lp+vbCxubW9Y+7uNWSUCELrJOKRaLlYUs5CWldMcdqKBcWBy2nTHVxn/eYDFZJF4b0axtQJcC9kPiNYaSkyD+AOunADCK50noKnKxvONWdUzgid6OqsaxatkjUJtAj2DIoVs/Y9BoBq1/zseBFJAhoqwrGUbduKlZNioRjhdFToJJLGmAxwj7Y1hjig0kknF43QsVY85EdCZ6jQRP29keJAymHg6skAq76c72Xif712ovxLJ2VhnCgakulDfsKRilBmD/KYoETxoQZMBNN/RaSPBSZKm1jQJtjzJy9Co1yyrZJds4sVC6aRh0M40vbacAEVuIUq1IHAIzzDK7wZT8aLMTbep6M5Y7azD3/C+PgBxR2VFA==</latexit><latexit sha1_base64="rXx+12PlvUulov8Pw5XnWobt1OY=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QkAL7SKYByRH2NvbSxb3HuzuCSHkK9j4VWwsFLG1s/PbuJdcoYkDA7/5zwy78/cSwZV2nG+rsLC4tLxSXC2trW9sbtnbO00Vp5KyBo1FLNseUUzwiDU014K1E8lI6AnW8u4vs37rgUnF4+hODxPmhqQf8YBToo0U23twAz24AgQXJo/BNxWGU8MZVTNCR6Y66dllp+JMAs0DzqEMedR79lfXj2kaskhTQZTqYCfR7ohIzalg41I3VSwh9J70WcdgREKm3NHkojE6NIqPgliajDSaqL83RiRUahh6ZjIkeqBme5n4X6+T6uDcHfEoSTWL6PShIBVIxyizB/lcMqrF0AChkpu/IjogklBtTCwZE/DsyfPQrFawU8G3uFxzcjuKsA8Hxl4MZ1CDa6hDAyg8wjO8wpv1ZL1Y79bHdLRg5Tu78Ceszx+lVpLD</latexit>

ID = (d1, d2, . . .)
<latexit sha1_base64="bt5iypJ+wjtAa4SqaLSkgPiCq5I=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhLo02QkAL7RIwD0iOsLe3lyzZe7C7J4QjX8HGr2JjoQRbOzu/hR/BvSSFJg4M/OY/M+zO3405k8qyvozc0vLK6lp+vbCxubW9Y+7uNWSUCELrJOKRaLlYUs5CWldMcdqKBcWBy2nTHVxn/eYDFZJF4b0axtQJcC9kPiNYaSkyD+AOunADCK50noKnKxvONWdUzgid6OqsaxatkjUJtAj2DIoVs/Y9BoBq1/zseBFJAhoqwrGUbduKlZNioRjhdFToJJLGmAxwj7Y1hjig0kknF43QsVY85EdCZ6jQRP29keJAymHg6skAq76c72Xif712ovxLJ2VhnCgakulDfsKRilBmD/KYoETxoQZMBNN/RaSPBSZKm1jQJtjzJy9Co1yyrZJds4sVC6aRh0M40vbacAEVuIUq1IHAIzzDK7wZT8aLMTbep6M5Y7azD3/C+PgBxR2VFA==</latexit><latexit sha1_base64="rXx+12PlvUulov8Pw5XnWobt1OY=">AAACEXicbZA7SwNBEMfn4ivG1/nobBaDoiDhNo02QkAL7SKYByRH2NvbSxb3HuzuCSHkK9j4VWwsFLG1s/PbuJdcoYkDA7/5zwy78/cSwZV2nG+rsLC4tLxSXC2trW9sbtnbO00Vp5KyBo1FLNseUUzwiDU014K1E8lI6AnW8u4vs37rgUnF4+hODxPmhqQf8YBToo0U23twAz24AgQXJo/BNxWGU8MZVTNCR6Y66dllp+JMAs0DzqEMedR79lfXj2kaskhTQZTqYCfR7ohIzalg41I3VSwh9J70WcdgREKm3NHkojE6NIqPgliajDSaqL83RiRUahh6ZjIkeqBme5n4X6+T6uDcHfEoSTWL6PShIBVIxyizB/lcMqrF0AChkpu/IjogklBtTCwZE/DsyfPQrFawU8G3uFxzcjuKsA8Hxl4MZ1CDa6hDAyg8wjO8wpv1ZL1Y79bHdLRg5Tu78Ceszx+lVpLD</latexit>

EOUT = (eO
1 , eO

2 , . . .)
<latexit sha1_base64="BYDTKq+Ek0dbNzO2kwvHldY99vQ=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYsmTRtQzMPkoxQhv6KCP6KGxeKdCf+jJm2grYeuHDOufeS3OOGnEllWZ9GamFxaXklvZpZW9/Y3DK3d6oyiAShFRLwQNRdLClnPq0opjith4Jiz+W05vavkn7tgQrJAr+sBiF1PNz1WYcRrLQVmPtwDS2I4RYqUIYhILjQdQQU7rXXAhtOtf5RhUShQ+0ct8yclbfGQPPEnpJcMds8eQKAUsscNdsBiTzqK8KxlA3bCpUTY6EY4XSYaUaShpj0cZc2NPWxR6UTjy8cogPttFEnELp8hcbu740Ye1IOPFdPelj15GwvMf/rNSLVOXdi5oeRoj6ZPNSJOFIBSuJCbSYoUXygCSaC6b8i0sMCE6VDzegQ7NmT50m1kLetvH1n54qXMEEa9iCrY7bhDIpwAyUdP4FHeIE3eDeejVfjwxhNRlPGdGcX/sD4+gYcqZf6</latexit><latexit sha1_base64="XouKAc99DikfcyLW6KVdpw0jsTs=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYcMmnahmYeJBmhDP0L1278FTcuFOmu+DOmD0GtBy6cc+69JPd4EWdSWdbISC0sLi2vpFcza+sbm1vm9k5VhrEgtEJCHoq6hyXlLKAVxRSn9UhQ7Huc1rze1bhfe6BCsjAoq35EHR93AtZmBCttheY+XIMLCdxCBcowAAQXuo6Awr32XLDhVOtvVRgrdKidY9fMWXlrAjRP7BnJFbPNk8dRsV9yzWGzFZLYp4EiHEvZsK1IOQkWihFOB5lmLGmESQ93aEPTAPtUOsnkwgE60E4LtUOhK1Bo4v7cSLAvZd/39KSPVVf+7Y3N/3qNWLXPnYQFUaxoQKYPtWOOVIjGcaEWE5Qo3tcEE8H0XxHpYoGJ0qFmdAj235PnSbWQt628fWfnipcwRRr2IKtjtuEMinADJR0/gSd4gTd4N56NV+PDGE5HU8ZsZxd+wfj8AiYTmYA=</latexit><latexit sha1_base64="XouKAc99DikfcyLW6KVdpw0jsTs=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIrQoilJmutGNUBTBnRX6gnYcMmnahmYeJBmhDP0L1278FTcuFOmu+DOmD0GtBy6cc+69JPd4EWdSWdbISC0sLi2vpFcza+sbm1vm9k5VhrEgtEJCHoq6hyXlLKAVxRSn9UhQ7Huc1rze1bhfe6BCsjAoq35EHR93AtZmBCttheY+XIMLCdxCBcowAAQXuo6Awr32XLDhVOtvVRgrdKidY9fMWXlrAjRP7BnJFbPNk8dRsV9yzWGzFZLYp4EiHEvZsK1IOQkWihFOB5lmLGmESQ93aEPTAPtUOsnkwgE60E4LtUOhK1Bo4v7cSLAvZd/39KSPVVf+7Y3N/3qNWLXPnYQFUaxoQKYPtWOOVIjGcaEWE5Qo3tcEE8H0XxHpYoGJ0qFmdAj235PnSbWQt628fWfnipcwRRr2IKtjtuEMinADJR0/gSd4gTd4N56NV+PDGE5HU8ZsZxd+wfj8AiYTmYA=</latexit><latexit sha1_base64="T9u5snkU6/o9bIHjfu8pEepDy5Y=">AAACIXicbVDLSgMxFL1TX7W+Rl3qIlgUBSkz3ehGKIrgzgp9QTsOmTStoZkHSUYoQ3/Fjb/ixoUi3Yk/Y6YdQVsPXDjn3HtJ7vEizqSyrE8jt7C4tLySXy2srW9sbpnbOw0ZxoLQOgl5KFoelpSzgNYVU5y2IkGx73Ha9AZXab/5SIVkYVBTw4g6Pu4HrMcIVtoKzX24BhcSuIU61GAECC50HQOFe+25YMOp1j+qnCp0pJ0T1yxaJWsCNE/sjBQhQ9U1x51uSGKfBopwLGXbtiLlJFgoRjgdFTqxpBEmA9ynbU0D7FPpJJMLR+hQO13UC4WuQKGJ+3sjwb6UQ9/Tkz5WD3K2l5r/9dqx6p07CQuiWNGATB/qxRypEKVxoS4TlCg+1AQTwfRfEXnAAhOlQy3oEOzZk+dJo1yyrZJ9Zxcrl1kcediDAx2zDWdQgRuo6vgJPMELvMG78Wy8Gh/GeDqaM7KdXfgD4+sbCiqWcQ==</latexit>

EIN = (eI
1, e

I
2, . . .)

<latexit sha1_base64="idZBVgxTM8DIIgUgozdue63xWIU=">AAACH3icbVDLSgMxFL3js9aqoy67CRZFoZSZbnQjFETQjbRgH9COJZOmbWjmQZIRytBv8Adc6K+4caGIuOvfmGkraOuBC+ecey/JPW7ImVSWNTaWlldW19ZTG+nNzNb2jrm7V5NBJAitkoAHouFiSTnzaVUxxWkjFBR7Lqd1d3CR9Ov3VEgW+LdqGFLHwz2fdRnBSluBmYVLaEMM13ADI0BwrusYKNxppw025LX+UcVEoSPtnLTNnFWwJkCLxJ6RXCnzUHkCgHLb/Gp1AhJ51FeEYymbthUqJ8ZCMcLpKN2KJA0xGeAebWrqY49KJ57cN0KH2umgbiB0+QpN3N8bMfakHHqunvSw6sv5XmL+12tGqnvmxMwPI0V9Mn2oG3GkApSEhTpMUKL4UBNMBNN/RaSPBSZKR5rWIdjzJy+SWrFgWwW7YudKeZgiBVk40DHbcAoluIIyVIHAI7zAG7wbz8ar8WF8TkeXjNnOPvyBMf4GbNaXpw==</latexit><latexit sha1_base64="GCLN+/pSJugOXfteFpW5shcOBaQ=">AAACH3icbVBNS0JBFL3PvsysrJZCDElRIPKem9oEQgS1CYX8ADWZN446OO+DmXmBPPwN7aNN+35FmxZFRDv/TDRPDUo7cOGcc+9l5h7b50wq0xwZsYXFpeWV+GpiLbm+sZna2q5ILxCElonHPVGzsaScubSsmOK05guKHZvTqt0/i/rVWyok89xrNfBp08Fdl3UYwUpbXioN59CCEC7hCoaA4FTXIVC40U4LLMhq/aPykUIH2jlqpTJmzhwDzRNrSjKF5F3p6f5rt9hKfTbaHgkc6irCsZR1y/RVM8RCMcLpMNEIJPUx6eMurWvqYofKZji+b4j2tdNGHU/ochUau783QuxIOXBsPelg1ZOzvcj8r1cPVOekGTLXDxR1yeShTsCR8lAUFmozQYniA00wEUz/FZEeFpgoHWlCh2DNnjxPKvmcZeaskpUpZGGCOKRhT8dswTEU4AKKUAYCD/AMr/BmPBovxrvxMRmNGdOdHfgDY/QNxrSZaQ==</latexit><latexit sha1_base64="GCLN+/pSJugOXfteFpW5shcOBaQ=">AAACH3icbVBNS0JBFL3PvsysrJZCDElRIPKem9oEQgS1CYX8ADWZN446OO+DmXmBPPwN7aNN+35FmxZFRDv/TDRPDUo7cOGcc+9l5h7b50wq0xwZsYXFpeWV+GpiLbm+sZna2q5ILxCElonHPVGzsaScubSsmOK05guKHZvTqt0/i/rVWyok89xrNfBp08Fdl3UYwUpbXioN59CCEC7hCoaA4FTXIVC40U4LLMhq/aPykUIH2jlqpTJmzhwDzRNrSjKF5F3p6f5rt9hKfTbaHgkc6irCsZR1y/RVM8RCMcLpMNEIJPUx6eMurWvqYofKZji+b4j2tdNGHU/ochUau783QuxIOXBsPelg1ZOzvcj8r1cPVOekGTLXDxR1yeShTsCR8lAUFmozQYniA00wEUz/FZEeFpgoHWlCh2DNnjxPKvmcZeaskpUpZGGCOKRhT8dswTEU4AKKUAYCD/AMr/BmPBovxrvxMRmNGdOdHfgDY/QNxrSZaQ==</latexit><latexit sha1_base64="AdLVp61vftaCp6WzrwwBRSI/ooY=">AAACH3icbVDLSgMxFL3js9bXqMtugkVRKGWmG90IBRF0IxXsA9pxyKRpG5p5kGSEMvRP3PgrblwoIu76N2baEbT1wIVzzr2X5B4v4kwqy5oYS8srq2vruY385tb2zq65t9+QYSwIrZOQh6LlYUk5C2hdMcVpKxIU+x6nTW94mfabj1RIFgb3ahRRx8f9gPUYwUpboVmAK3AhgRu4hTEguNB1AhQetOOCDSWtf1QlVehYO6euWbTK1hRokdgZKUKGmmt+dbohiX0aKMKxlG3bipSTYKEY4XSc78SSRpgMcZ+2NQ2wT6WTTO8boyPtdFEvFLoChabu740E+1KOfE9P+lgN5HwvNf/rtWPVO3cSFkSxogGZPdSLOVIhSsNCXSYoUXykCSaC6b8iMsACE6UjzesQ7PmTF0mjUratsn1nF6ulLI4cFOBQx2zDGVThGmpQBwJP8AJv8G48G6/Gh/E5G10ysp0D+ANj8g0ABZXb</latexit>

Fig. 12. Interface for UI components - Widgets

interface ID conforms to data-view elements from IM . The set of input and output events
(EIN , EOUT) is also linked to Event nodes from the process-view model (Fig. 3c).

Currently, widget components are implemented in JavaScript, HTML, and CSS and
executed strictly on the client-side, at the user-interface level. Since our mobile application
engine is implemented as a hybrid web application using PhoneGap [27], all widgets are
both working on Android, as well as iOS smart-phones. By using PhoneGap, we can
provide an embedded web browser (e.g. Android WebView) as an integral part of the client
application engine such that JavaScript interpreter is always available and enabled.

4.5. Performance considerations

Implementing interpreters with solid execution performance is challenging; it took us
four developer-years to develop the proposed framework and obtain a satisfying user ex-
perience from a performance perspective (e.g. application load-time, GUI rendering-time,
and communication-time). We encountered issues with the limited computing power of
smartphones, resulting in slow UI rendering and slow execution of defined Process nodes.
We compared AGM-modeled applications with previous generation non-modeled appli-
cations and noticed severe performance degradation. We tracked the main performance
bottlenecks in the preparation process for executing the code contained in Process nodes
and added caching mechanisms that stored the state machine specifications for each in-
terpretation cycle as well as generated user interface code. After introducing such mech-
anisms, the interpreted model exploits performance benefits previously available only to
generative approaches; the cached data represents compiled fragments of AGM mod-
els. Caching introduced drastic performance improvements to the initial prototype and
reduced the performance penalty to only 15–20% compared to classically developed non-
modeled applications. Our approach to the AGM model interpretation can be considered
as a form of just-in-time (JIT) compilation.

4.6. Reference application

In order to better illustrate the applicability of the AGM framework, we will disseminate
an AGM model example and the resulting mobile application derived from it. The ap-
plication presented is a subset of the typical application in the domain of supply chain

Run-time Interpretation of IS Models in Mobile Cloud 17

management. The application is used by the field operatives from the distribution com-
pany in the supply chain process that are visiting end distributors (noted PoS - Point of
Sales) and collecting orders for products that should be distributed. Orders that are col-
lected are sent through the Internet and stored in the central database where the integration
modules are used to transfer those orders into existing systems. The integration compo-
nents are currently not provided by the AGM system due to the vast differences between
different ERP vendors.

Figure 13a displays the main part of the AGM application model from the process-
view and interface-view perspective. We can observe that the application consists of four
main processes: (a) Visit process - where the users select a Point of Sales and can create
a new Order, (b) Create Order process for the actual user-input of a new order, (c) View
Order process for displaying previous orders, and (d) Messages for internal communica-
tion between organization members (this process is not further disseminated for brevity).
Figure 13b displays the details of the Create Order process including the elements of the
user interface and their links to the objects and attributes of the order object. We can ob-
serve that the PoS object required no widget since it is automatically extracted from the
context of the Visit process which requires PoS to be defined.

Figure 14 displays the resulting user interface screens:

(a) a Home screen which is rendered from the specification of the Home Screen element
that contains the Menu widget,

(b) PoS selection screen which is not explicitly modeled but inferred from the fact that the
Visit process that is selected requires a PoS object to be selected. The user interface
for selecting a PoS instance is not specified so it is automatically derived.

(c) Visit screen which is specified with Visit Menu screen from the model,
(d) and (e) - Order insertion screens which are specified with the Create Order nodes and

their connections with different user-interface and data-view nodes.

18 Nikola Tanković and Tihana Galinac Grbac

VisitP

Uses

PoSO

1..1

Visit MenuS

interface

HomeS

Main menuW

ButtonW onClick

ButtonW

ButtonW

Create OrderP

OrderO

onClick

Creates

View OrderP

onClick

Views

New OrderS

interface

View messagesP

ButtonW

onClick

(a) The process and interface for navigating through application

Create OrderP OrderO

Creates

New OrderS

interface

DateW

DropdownW

DropdownW

DateA

DeliveryA

SalespersonO

Order ItemO

1..*

CatalogueW

1..1

ItemO

1..1

NumericW

GroupO

1..1

1..*

QuantityA

A

O

W

DATA-VIEW

Object

Attribute

P

PROCESS-VIEW

INTERFACE-VIEW

S

Process

Screen

Widget

Layout

Container

Composition

Aggregation

Event

PoSO
1..1

NumericW

Order TotalACalculateP

onChange

Updates

Uses

(b) The process for creating order

Fig. 13. The AGM source model for the example application

Run-time Interpretation of IS Models in Mobile Cloud 19

Store visit

FieldOrders

Messages

Logout

(a) Application home screen

LocationBack

 Search…

Example store #1
Address #1
City #1

Example store #2
Address #2
City #2

Example store #3
Address #3
City #3

(b) Selecting a store to visit

Orders

Back

Example store #1
Address #1
City #1

New order

(c) The menu with activities
when a store is selected

Cancel Save

2019/01/01

Date

Salesperson

Mark

General Items

Delivery option

Fast (< 3 days)

(d) Inserting new order

Back Save

ItemsGeneral

Item Group #1

Item G1 Qty.

Item G2 4
Item G3 Qty.

Item Group #2

Item Group #3

Order Total: 476,00

(e) Selecting the items for
the new order

Fig. 14. Example mobile cloud application in the supply chain domain.

20 Nikola Tanković and Tihana Galinac Grbac

4.7. Evaluation
We applied the AGM approach in implementing eleven projects for Southern European
customers in the retail, supply chain management, and merchandising domains. The projects
included building mobile information systems integrated with existing customer infor-
mation systems. Combined, the projects involved over 300 end-application users with
Android-based smartphones. In the retail domain, application functionality included col-
lecting product orders and inspecting current stock levels in retail shops. The merchan-
dising domain applications included conducting various surveys at points of sale to gain
input on product quality, shelf placement, exposure metrics, and retail prices from com-
petitive products. The sizes of the projects varied from 80 to 170 modeled entities, and
from 8 to 27 modeled business processes. The largest project stored approximately 2–3
million transactions each month.

Table 1. A list of software development process improvements introduced by AGM
Before AGM After introducing AGM

Requirements Defi-
nition

UML semantics were hard for our customers
to understand

Visual application feedback on a graphical
user-interface level

Implementation Applications were implemented according
to defined UML models. Software evolution
meant additional effort for keeping the UML
models in sync

The model itself is the implementation; imple-
mentation process leaves on implementing the
specific JS-DSL action scripts which are inte-
gral to model itself

Verification and
Validation

Each functionality point required a set of unit
tests across all architecture layers (storing
and representing information)

Unit tests are executed on a per predefined
component level. New tests are required only
when introducing new user-interface or data-
processing components.

Distribution Each new functionality point required the
repackaging and redistribution of whole sys-
tem.

New functionality points are introduced with
new application model versions which are syn-
chronized automatically upon application load.
Repackaging and redistribution was required
only when new modeling artifacts are intro-
duced.

By using AGM, our application development team achieved noticeable time-savings.
Although we have not yet reached a point where our customers have been able to develop
their own information system applications, we have enabled our software analysts to de-
fine nearly complete end-applications. The only point at which software engineers were
required was when using the JS-DSL to fine-tune the models.

The main benefit was accrued from the quicker development cycle, which enabled vi-
sual exploration and negotiation while gathering requirements with our customers. Model
interpretation enabled rapid visual feedback of the end system; thus, it allowed quicker
convergence to the end-stage requirements. A more detailed set of improvements grouped
by software development process phases is given in Table 1.

AGM also made the installation and distribution of end-applications application users
easier because the users all shared the same mobile interpreter. After installation on the
users’ smartphones, the client interpreters loaded their AGM models from the associated
cloud environment. This facilitated the configuration management process in the sense
that we were able to reduce the number of client application versions and releases.

Run-time Interpretation of IS Models in Mobile Cloud 21

Software evolution also became easier because the interpreters always pull the latest
model changes at run-time. The previous classically-built client applications binaries were
over 10 MB in size which made remote transport and installation on each smartphone dif-
ficult because some users did not have solid, stable cellular network connections. This is
a common issue in mobile cloud computing [28]. Introducing the AGM solution required
synchronizing only new model versions, which was considerably faster. The AGM mo-
bile interpreter occupies slightly more than 1 MB and is redistributed to users only upon
new AGM meta-model element releases or when new reusable components are added. In
comparison, the generative approach typically generates source code compiled the same
or similar to classical methods, meaning that every model update requires a complete
re-installation.

The downside of the AGM approach is in the large investment required to implement
the distributed interpreter. A single software defect in the interpreter is usually manifested
among all end-applications and solving such problems involves redistributing the inter-
preter to all end-application users. The greatest challenge was implementing an interpreter
that was both fast and energy efficient enough for use in the mobile cloud domain. It was
essential for end-application users to be able to use the application throughout an 8–10-
hour business day without having to recharge their smart-phones or tablets. As mentioned
earlier, just-in-time interpretation and caching are essential in achieving that goal.

5. Limitations

Our research demonstrates an end-user developer friendly framework for building infor-
mation system applications in the cloud. There are some limitations that need to be con-
sidered both in terms of the system itself, and the way we have conducted the evaluation.
We present these separately together with our current belief and future plans on how these
limitations could be circumvented.

5.1. AGM limitations

There are two drawbacks to the current implementation of the AGM. The first drawback is
using the textual AGM-DSL language in defining the data, process and interface structure.
The users are required to learn the syntax of the language which is achieved by using
existing examples of the language constructs and the way these are mapped to resulting
applications. We are working on a visual representation of the language which follows the
AGM meta-model. Visually, the language will resemble the visual representation used in
Figure 13. This will also enable even faster visual feedback where the resulting application
can be rendered side-by-side to the model itself.

The second challenge for end-users is using the action language embedded in Javascript
which requires a basic knowledge of the JavaScript itself. This is a serious limitation
and a significant learning step for an end-user developer. Although this language only
uses a small subset of vanilla JavaScript in the form of basic control flow statements and
data-structures (e.g. we require no regular expressions, higher-order functions, Document
Object Model, modules&packages, callbacks, or closures), end-users have a significant
problem to understand the basic concepts of programming. This design choice results in

22 Nikola Tanković and Tihana Galinac Grbac

the fact that these scripts were needed to be additionally composed by software devel-
opers. While we can still report significant time savings in the development of the end
applications, the development process cannot be 100% offloaded to end-user developers.
We plan to build a visual representation language in order to specify the behavior needed.
A good example we are considering is the Blueprints language7 which should be adapted
so that it fits our AGM meta-model.

5.2. Research methods limitations

There are also some threats to the validity of this research that also should be considered
[29].

Construct validity There are many forms of mobile applications that can be built. Our
approach currently targets the data-collection applications which complement the existing
information systems. Currently, the AGM framework has limited support for the data
transformation, analysis, and reporting of the higher-level data aggregations.

Internal and external validity Our study did not perform controlled experiments on the
degree of usability in designing the applications compared to the classical methods. We
plan to conduct these experiments once we complete the framework with visual modeling
and action script programming parts.

Conclusion validity Based on that controlled experiments were not conducted, a more
general conclusion on the applicability of our results to the general case of mobile soft-
ware development cannot be reported with significant confidence. A full scale controlled
experiment on a convincing number of different application domains is required.

6. Related Work

Information systems modeling has been well researched within the generative MDD field.
Table 2 lists some of the well-established general-usage MDD tools, the majority of which
follow a generative MDD approach. For building information systems, Milicev proposed
an approach using an executable UML profile called Object-Oriented Information Sys-
tems (OOIS) [2]. After the models are compiled, they can be used in a special runtime
Java-based environment. SOLOist is a tool based on OOIS that uses Java code for appli-
cation customization.

Unlike OOIS, which uses Java, Popovic et al. [9] developed a DSL to specify appli-
cation customization code at a platform independent model (PIM) level. Similar to AGM,
PIM is targeted at information systems, and its approach is also generative but uses a
pre-generated application interface and database. Dimitrieski et al. [30] also took a gen-
erative approach in their Multi-Paradigm Information System Modeling Tool (MIST) for
building information systems through the simultaneous use of three different approaches.

7 Blueprints language is used in the Unreal Engine 4 engine, which is available at https://www.
unrealengine.com/en-US/

https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/

Run-time Interpretation of IS Models in Mobile Cloud 23

The selected approach can thus depend on the problem domain and on the knowledge and
personal preferences of an IS designer. MIST translates models to a relational data model
or a class model.

MIDAS is a model-driven generative methodology proposed by Cáceres et al. [31] for
developing web-based information systems. MIDAS is a specific application of Model-
Driven Architecture (MDA) for Web platforms that uses XML and object-relational method-
ology. Currently, however, MIDAS provides only structural modeling of information sys-
tems.

Boyd and McBrien [32] also used graph structures for model representation. They
proposed a hypergraph data model (HDM) structure for data model representation. HDM
concentrates only on the data model of application and alleviates the need for model-to-
model transformations used in previous generative approaches. AGM also uses a directed
property graph, but unlike HDM, it is interpreted at runtime.

Many studies have emphasized end-user involvement in application development.
Cappiello et al. [33] developed a UI-centric model that enables end-user developers to cre-
ate mashup applications by applying WYSIWYG (what-you-see-is-what-you-get) spec-
ifications of data integration and service orchestration. They argued that user interfaces
function as the medium most easily understandable by end-users. Vera [34] suggested that
MDD methodology can be simplified by using a set of user interface components con-
figured to define system behavior. Francese et al. [35] proposed an approach for model-
driven development of portable applications based on a finite-state machine for specifying
GUIs, transitions, and data-flow. Rivero et al. [36] proposed an MDD approach to cap-
ture requirements from end-users faster by using user interface prototypes that end-users
completely understand. Garzotto [37] also promoted end-user development by propos-
ing an approach that combined Model-Driven and End-user Development paradigms in
modeling web applications in cultural heritage and cultural tourism domains.

There are few tools intended to perform model interpretation. Mendix, a commercial
MDD tool, exploits runtime model interpretation for modeling web applications [38];
however, we are unaware of the internal details of the Mendix interpreter’s operation
because it is a closed-source commercial product.

The idea of directly executing UML models was introduced by Riehle et al. [11], who
proposed a UML virtual machine; the biggest issue with this approach was that UML
is too abstract to specify the behavioral aspects of applications. Following the work of
Shlaer and Mellor [39], the OMG issued two important standards: an executable subset of
the UML language called Foundational UML (fUML) [40] and the Action Language for
Foundational UML (Alf) [41]. These standards enabled designers to create UML mod-
els with detailed behavioral specifications that could be effectively transformed into ex-
ecutable programs. This capability enables graphical specification of UML models sup-
plemented by textual semantically related Alf code. Because fUML and Alf are novel
specifications, few tools support them yet, especially tools targeted toward the IS domain.
There has been some research proposing Alf transformation [10], but to best of our knowl-
edge, no tools for interpretation of these standards yet exist, especially in the domain of
modeling mobile cloud applications. However, because these standards are aligned with
our proposal, we are exploring ways to integrate fUML and Alf when specifying AGM
models.

24 Nikola Tanković and Tihana Galinac Grbac

Table 2. Some of available MDD Tools
Product Url

Generative approach
WebRatio http://www.webratio.com
WebML http://www.webml.org
EMF http://www.eclipse.org/modeling/emf
AndroMDA http://www.andromda.org
IBM Rational Rhapsody http:/ibm.com/software/awdtools/rhapsody
OpenMDX http://www.openmdx.org
MetaEdit+ http://www.metacase.com
Cloudfier https://cloudfier.com/
SOLOist http://www.soloist4uml.com/

Interpretative approach
Mendix http://www.mendix.com

Hybrid approach
System Vision http://www.mentor.com/products/sm
OOA Tool http://ooatool.com/OOATool.html

7. Concluding Remarks

In this paper, we proposed an approach that enables faster development of information
system applications. The developed models are then interpreted directly at runtime.

We presented an architectural framework for an Application Graph Model (AGM),
which is used to model IS applications using generic components and an action scripting
language contained directly within the model. Through model interpretation, we enabled
run-time adaptations of modeled systems, resulting in faster prototyping and rapid soft-
ware delivery.

Implementing the AGM framework in concrete industrial projects resulted in sev-
eral improvements. We enabled software analysts and developers to cooperate in imple-
menting information systems, which drastically improved requirements negotiation and
reduced the team size to a single analyst and engineer. However, we did measure a 15–
20% performance penalty, which is especially noticeable in smartphone execution envi-
ronments. This performance penalty is due to the overhead associated with querying the
model for interpretation and run-time interface generation.

We are also working on building a graphical modeling environment for end-user de-
velopers [42] that will increase their productivity and reduce errors. Spreadsheet-like soft-
ware has amply demonstrated that the what-you-see-is-what-you-get concept is highly ap-
pealing; having a runtime interpretive model is the foundation for a similar solution when
designing IS systems. Our future work will also include efforts to implement a graph
analysis algorithm that could be used to propose optimally efficient cloud deployment
strategies [43] based on operational data inspections. Using this approach, a cloud execu-
tor could save costs by dynamically reassigning computation tasks among heterogeneous
cloud resources according to workload demands.

Acknowledgments. This work has been supported in part by Croatian Science Foundation’s fund-
ing of the project UIP-2014-09-7945.

http://www.webratio.com
http://www.webml.org
http://www.eclipse.org/modeling/emf
http://www.andromda.org
http:/ibm.com/software/awdtools/rhapsody
http://www.openmdx.org
http://www.metacase.com
https://cloudfier.com/
http://www.soloist4uml.com/
http://www.mendix.com
http://www.mentor.com/products/sm
http://ooatool.com/OOATool.html

Run-time Interpretation of IS Models in Mobile Cloud 25

References

1. Li, J., Rong, W., Yin, C., Xiong, Z.: Goal-oriented dependency analysis for service identifica-
tion. Computer Science & Information Systems 16(2) (2019)

2. Milicev, D.: Model-Driven Development with Executable UML. John Wiley & Sons (2009)
3. Harel, D., Marron, A.: The quest for runware: On compositional, executable and intuitive

models. Software and Systems Modeling 11(4) (2012) 599–608
4. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges.

Journal of Internet Services and Applications 1(1) (apr 2010) 7–18
5. Samad, J., Loke, S.W., Reed, K.: Mobile Cloud Computing. Cloud Services, Networking, and

Management (2015) 153–190
6. Tankovic, N., Vukotic, D., Zagar, M.: Rethinking Model Driven Development: analysis and

opportunities. In Luzar-Stiffler, V., Jarec, I., Bekic, Z., eds.: Information Technology Interfaces
(ITI), Proceedings of the ITI 2012 34th International Conference on, SRCE (2012) 505–510

7. Hailpern, B., Tarr, P.: Model-driven development: The good, the bad, and the ugly. IBM
Systems Journal 45(3) (2006) 451–461

8. Stahl, T., Völter, M., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software Development:
Technology, Engineering, Management. (2006)

9. Popovic, A., Lukovic, I., Dimitrieski, V., Djukic, V.: A DSL for modeling application-specific
functionalities of business applications. Computer Languages, Systems & Structures 43 (2015)
69–95

10. Ciccozzi, F., Cicchetti, A., Sjodin, M.: Towards Translational Execution of Action Language
for Foundational UML. 2013 39th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEPTEMBER) (2013) 153–160

11. Riehle, D., Fraleigh, S., Bucka-Lassen, D., Omorogbe, N.: The architecture of a UML virtual
machine. Environment 36(11) (2001) 327–341

12. Tanković, N., Vukotić, D., Žagar, M.: Executable graph model for building data-centric appli-
cations. Proceedings of the International Conference on Information Technology Interfaces,
ITI (2011) 577–582

13. Dori, D.: Object-Process Methodology: A Holistic Systems Paradigm; with CD-ROM. Vol-
ume 1. Springer Science & Business Media (2002)

14. Ma, Q., Kelsen, P., Glodt, C.: A generic model decomposition technique and its application to
the Eclipse modeling framework. Software & Systems Modeling (2013) 1–32

15. OMG: Meta Object FacilityTM (MOFTM) Version 2.5 Specification (2015)
16. Reinhartz-Berger, I., Dori, D.: A Reflective Meta-Model of Object-Process Methodology: The

System Modeling Building Blocks. Business Systems Analysis with Ontologies (2005) 130–
173

17. OMG: OMG Unified Modeling Language (OMG UML) Superstructure (2010)
18. Nicolaescu, P., Klamma, R.: A Methodology and Tool Support for Widget-Based Web Applica-

tion Development. In Cimiano, P., Frasincar, F., Houben, G.J., Schwabe, D., eds.: Engineering
the Web in the Big Data Era. Volume 9114 of Lecture Notes in Computer Science. Springer,
Cham (2015) 515–532

19. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional (2010)
20. Brdjanin, D., Banjac, D., Banjac, G., Maric, S.: Automated two-phase business model-driven

synthesis of conceptual database models. Computer Science & Information Systems 16(2)
(2019)

21. Miller, J.: Graph Database Applications and Concepts with Neo4j. Proceedings of the 2013
Southern Association for Information Systems (2013) 141–147

22. Charland, A., Leroux, B.: Mobile application development. Communications of the ACM
54(5) (may 2011) 49

26 Nikola Tanković and Tihana Galinac Grbac

23. Elmore, A.J., Das, S., Agrawal, D., El Abbadi, A.: Towards an elastic and autonomic multi-
tenant database. In: Proc. of NetDB Workshop. (2011)

24. Freeman, S., Pryce, N.: Evolving an embedded domain-specific language in Java. Companion
to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages,
and applications (2006) 855–865

25. Kossakowski, G., Amin, N., Rompf, T., Odersky, M.: JavaScript as an embedded DSL. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7313 LNCS (2012) 409–434

26. Crnkovic, I., Sentilles, S., Vulgarakis, a., Chaudron, M.R.V.: A Classification Framework for
Software Component Models. IEEE Transactions on Software Engineering 37(5) (2011) 593–
615

27. Wargo, J.M.: PhoneGap essentials: Building cross-platform mobile apps. Addison-Wesley
(2012)

28. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wireless Communications and Mobile Computing 13(18) (dec
2013) 1587–1611

29. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engineering.
Guide to Advanced Empirical Software Engineering (2008) 201–228

30. Dimitrieski, V., Čeliković, M., Aleksić, S., Ristić, S., Alargt, A., Luković, I.: Concepts and
evaluation of the extended entity-relationship approach to database design in a multi-paradigm
information system modeling tool. Computer Languages, Systems & Structures 44 (2015)
299–318

31. Cáceres, P., Marcos, E., Vela, B., Juan, R.: A MDA-Based Approach for Web Information
System Development. Methodology

32. Boyd, M., McBrien, P.: Comparing and Transforming Between Data Models via an Intermedi-
ate Hypergraph Data Model. Journal on Data Semantics IV 4 (2005) 69–109

33. Cappiello, C., Matera, M., Picozzi, M.: A UI-Centric Approach for the End-User Development
of Multidevice Mashups. ACM Transactions on the Web 9(3) (2015) 1–40

34. Vera, P.M.: Component Based Model Driven Development:. International Journal of Informa-
tion Technologies and Systems Approach 8(2) (jun 2015) 80–100

35. Francese, R., Risi, M., Scanniello, G., Tortora, G.: Model-Driven Development for Multi-
platform Mobile Applications. In Abrahamsson, P., Corral, L., Oivo, M., Russo, B., eds.:
Product-Focused Software Process Improvement. Volume 9459 of Lecture Notes in Computer
Science. Springer International Publishing, Cham (2015) 61–67

36. Rivero, J.M., Luna, E.R., Grigera, J., Rossi, G.: Improving user involvement through a model-
driven requirements approach. In: 2013 3rd International Workshop on Model-Driven Require-
ments Engineering (MoDRE), IEEE (jul 2013) 20–29

37. Garzotto, F.: Enterprise Frameworks for Data Intensive Web Applications: An End-User De-
velopment, Model Based Approach. Journal of Web Engineering 10(January) (2011) 87–108

38. Henkel, M., Stirna, J.: Pondering on the key functionality of model driven development tools:
The case of mendix. Perspectives in Business Informatics Research BIR 2010, (2010) 146–160

39. Shlaer, S., Mellor, S.J.: The Shlaer-Mellor Method. (1996) 1–13
40. OMG: Semantics of a Foundational Subset for Executable UML Models (FUML) Version 1.1

Specification (2013)
41. OMG: Action Language For Foundational UML (ALF) 1.0.1 Specification (2013)
42. Tankovic, N., Galinac Grbac, T., Zagar, M.: Experiences from building a EUD business por-

tal. In: 2014 37th International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), IEEE (may 2014) 551–556

43. Tanković, N., Galinac Grbac, T., Truong, H.l., Dustdar, S.: Transforming Vertical Web Appli-
cations Into Elastic Cloud Applications. In: International Conference on Cloud Engineering
(IC2E 2015), IEEE (mar 2015) 135–144

Run-time Interpretation of IS Models in Mobile Cloud 27

Nikola Tanković is a postdoctoral researcher at the Juraj Dobrila University of Pula. His
main research interests are directed to model-driven development of information systems,
quality optimisation of distributed systems, and generally black-box model optimisation
using soft computing and simulation. He is involved in several industry projects in devel-
oping predictive machine-learning models and web services in cloud.

Tihana Galinac Grbac is a full professor of computer science and the head Software
Engineering and Information Processing Laboratory (SEIP Lab) at the Juraj Dobrila Uni-
versity of Pula. Her main research interests are related to large scale and complex soft-
ware systems that are evolutionary developed. In a broader sense, she is also interested
in a variety of large scale complex systems including smart cities, telecommunication
networks and others. She is actively involved as the leader, management committee mem-
ber and researcher in a number of research projects funded by European Union, Croatian
government or industry partners. The results of her work are continously published in
international scientific journals and conferences.

Received: October 11, 2018; Accepted: September 17, 2019.

	Introduction
	Background
	AGM Solution
	AGM Framework Architecture
	AGM meta-model
	Data view
	User interface view
	Process view

	AGM representation
	Interpretation principles

	Implementation and Evaluation
	Data persistence
	Action Scripting Language Implementation
	Defining AGM models
	Reusable components
	Performance considerations
	Reference application
	Evaluation

	Limitations
	AGM limitations
	Research methods limitations
	Construct validity
	Internal and external validity
	Conclusion validity

	Related Work
	Concluding Remarks

