
Computer Science and Information Systems 17(1):205–227 https://doi.org/10.2298/CSIS181220019V

Regression Verification for Automated Evaluation of
Students Programs

Milena Vujošević Janičić1 and Filip Marić1

University of Belgrade, Faculty of Mathematics, Studentski trg 16
11000 Belgrade, Serbia

{milena,filip}@matf.bg.ac.rs

Abstract. Regression verification is a form of software verification based on for-
mal static analysis of code, which is used, since recently, in several domains. In this
paper we examine potentials of using it in one novel domain — in automated eval-
uation of students programs. We propose an approach that provides precise assess-
ment of functional correctness of student programs (while it does not address nor
affect the teaching methodology). We describe our open-source, publicly available
implementation of the approach, which is built on top of the compiler infrastructure
LLVM and the software verification tool LAV. The results of evaluating the pro-
posed approach on two real-world corpora of student programs and on a number
of classic algorithms show that the proposed approach can be used as a precise and
reliable supplementary technique in grading of student programs at introductory
programming courses, algorithms courses and programming competitions.

Keywords: software verification, regression verification, automated evaluation of
student programs, computer-supported education

1. Introduction

Despite many successful applications of software verification techniques, their potential
is still to be explored in a number of new application domains. One domain are program-
ming courses where automated evaluation of student programs is becoming progressively
important. Namely, computer science is recognized as a fundamental field which is de-
livered in both universities and schools [69]. Also, the number of students enrolled at
programming courses has rapidly grown over the last years [3]. Everyone benefits from
automated evaluation [57,79]: the teachers get help in the grading process, while im-
mediate feedback helps students in acquiring knowledge. The importance of automated
evaluation is even more significant in the context of online learning where the adequate
assessment is recognized as a challenging problem since contact with a teacher is minimal
or even non-existent [61,73], while the number of students also grows quickly [56].

It is very important to provide a high quality, objective, precise and reliable automated
evaluation [55]. Automated grading must (i) correctly classify correct and incorrect stu-
dent solutions, (ii) correctly explain mistakes that students make, and (iii) run efficiently
in practice [37]. There are different approaches for automated evaluation of student pro-
grams [2,35,58], considering many important aspects (e.g. functional correctness, code
readability, modularity, complexity, efficiency). Various teachers and universities have
various grading policies depending on such factors. In most cases, functional correctness

206 M. V. Janičić and F. Marić.

is very highly valued [35] and in some educational settings is even essential. Such settings
are commonly encountered at the university level at programming courses for future com-
puter science majors and software engineers. Also, functional correctness is traditionally
a must at IOI and ACM style programming competitions1, which usually deal with prob-
lems that are very similar to problems taught at university level algorithms courses. Such
algorithmic, competition style problems are also highly valued for employment in the
high-end software companies and are usually asked at job interviews. In settings where
students are required to produce fully functionally correct code and where subtle errors
and hidden bugs are not allowed, attention must be put on all corner cases and it should
be ensured that the grading process takes them into account.

Classifying correct and incorrect solutions of algorithmic problems is usually based
on automated testing [17] and grading is performed solely by thorough testing on a num-
ber of test-cases. For example, this holds for online judges — web-platforms devoted to
training for programming contests and interviews [23,31,50,51,65,72]. However, assess-
ing functional correctness only by testing may give a misleading confidence since it may
be error prone: the obtained results are directly influenced by the choice of test cases
[78]. The problem is that the test cases are usually designed according to the expected
solutions, while the teacher cannot predict all possible solutions and all important paths
through a student solution. Moreover, no matter how well test cases are designed, testing
cannot guarantee functional correctness [16]. Therefore, if a reliable automated evalua-
tion is needed, it is necessary to apply some more involved techniques. A more promising
choice are software verification techniques and we propose a verification based approach
for improving classification of correct and incorrect solutions.

In this paper, we propose assessing functional correctness of students solutions by
checking equivalence with teacher solutions. We are interested in showing equivalence
of algorithmic problems that usually have short solutions, but can be very hard and com-
plicated, thus their correctness can often be at stake. We describe how to apply formal
static software verification techniques for assessing different kinds of equivalence of two
programs and we focus on regression verification techniques. Development of regression
verification techniques is often guided by applications in various industrial domains. The
existing algorithms are advanced and there are still no general purpose implementations
that are publicly available. Also, in the context of automated evaluation of programming
assignments, it is necessary to adjust solutions in a way that makes these algorithms ap-
plicable, which also contains some nontrivial steps. Therefore, our work aims at enabling
application of regression verification techniques in automated evaluation of programming
assignments. We describe characteristics of programs that can be evaluated this way. We
provide an open-source implementation of necessary transformations for automating this
process. We present lessons learned from applying regression verification on three differ-
ent corpora: a corpus of student solutions from an introductory programming course for
computer science majors, a corpus of solutions submitted during national programming
competitions, and a corpus of classic algorithms that are usually taught at algorithms
courses. We show that, by our approach, functional correctness of significant amount of
programs in introductory and algorithms courses can be automatically proved. We also
show that our approach makes a good supplementary technique, aimed at the best solu-
tions that successfully passed testing: it can reveal very subtle problems and point stu-

1 IOI: http://ioinformatics.org , ICPC: https://icpc.baylor.edu/

http://ioinformatics.org
https://icpc.baylor.edu/

Regression Verification for Automated Evaluation 207

dents to errors that they are not aware of. In the context of programming competitions,
it can break ties and help differentiating the very best few competitors that qualify for
next rounds. In some situations verification can even fully replace testing, eliminating the
effort necessary to prepare tests.

Overview of the paper. Section 2 contains information about related work. Section
3 introduces our approach and describes its implementation. Section 4 gives results of
experimental evaluation of the proposed approach with discussion of quantitative and
qualitative analysis of capabilities of the approach. It also discusses possible threats to
validity. In Section 5 we compare the proposed approach with other related approaches
and tools. Section 6 gives conclusions and outlines possible directions for future work.

2. Related work

In this section we give a brief overview of related approaches and tools, both in the field
of software verification and in automated evaluation of programming assignments.

Software verification and automated bug finding. Automated software verification
tools aim to automatically check correctness properties of a given program or to find
violations to some common features (the latter is known as automated bug-finding) [9].
There are different automated approaches [13,15,39] and there is a variety of tools based
on these approaches like PEX [71], JPF [75], KLEE [10], CBMC [12], LAV [77]. CBMC
and LAV are general purpose tools for statically verifying user-specified assertions and
locating bugs such as buffer overflows, pointer errors and division by zero. CBMC is
state of the art bounded model checker for C/C++ programs. LAV is primarily aimed
at analysing programs written in the programming language C, but for the purpose of
this work we have extended LAV with some constructs of C++ (used in the context of
programming competitions, and present in our corpus).

Equivalence checking. Functional correctness of a program can be formulated in
terms of precise formal specifications [32,43]. Also, it can be formulated in terms of the
behavior of another program: two programs are equivalent if they exhibit the same be-
havior in all relevant aspects on all input values [26]. This includes checking termination
and complexity of computation, but often only equivalence of outputs is considered [25].
The notion of correctness in this case has several positive aspects: it is not necessary to
formulate a specification and, in general, checking equivalence of two programs is less
computationally demanding than functional verification with respect to a formal speci-
fication [67]. Checking equivalence of two programs was considered already in 1960s
[32], but the progress has been limited and not always practically applicable. Recent ap-
proaches introduced new possibilities [20,27]. There are different variations of program
equivalence [25]. Programs are partially equivalent if any two terminating executions
which start from equal inputs produce equal outputs. Another, weaker, notion of equiv-
alence is k-equivalence — programs are k-equivalent if any two executions where loops
and recursions have at most k iterations or calls, which start on equal inputs, produce
equal outputs. The problem whether two programs are partially equivalent is an undecid-
able problem [68], while the problem whether two programs are k-equivalent (for some
specific k, assuming that finite variable-domains are used) is decidable [25].

Regression verification. Applying testing to check whether two similar programs are
equivalent is widely and intensively used in software development and is called regres-

208 M. V. Janičić and F. Marić.

sion testing [53]. Regression verification [20,67] attempts to achieve the same goals, but
using techniques from formal verification. Here, checking equivalence means formally
proving a mathematical statement about two programs that usually corresponds to some
weaker form of equivalence. If successful, regression verification gives higher reliability
since it guarantees full coverage [27]. Also, that it does not require additional expenses to
develop and maintain a test suite. Since the problem of determining partial equivalence is
undecidable [68], automating this process is challenging. Development of regression ver-
ification techniques is often guided by the application in different concrete areas, like se-
curity verification applications [4,62], multimedia systems [74], backward compatibility
and refactoring [80], cryptographic algorithms [8,59], and hardware design [34]. General
purpose automated regression verification techniques [6,20,27] are developed for large
scale systems. These techniques consist of two steps: efficiently identifying functions that
are affected by changes, and proving functional equivalence of these functions.

Functional correctness in automated evaluation. Automated testing is the most
common way of evaluating student programs [17]. Test cases are usually supplied by the
teacher and/or randomly generated [47]. Testing is used as an evaluation component of a
number of web-based submission and evaluation systems [11,18,23,31,33,50,51,65,72].
Aside from checking functional correctness, testing can also be used for analysing effi-
ciency, memory violations and run-time errors [1]. Software verification techniques are
getting more commonly used in automated evaluation, usually for automated bug finding
or for automated test case generation [36,37,71,78]. One formal approach for assessing
functional correctness of student solutions, is based on rewriting techniques [40]. In this
approach, it is necessary to write a formal specification of a desired solution.

Other important aspects in automated evaluation. There are other important as-
pects that are impossible or difficult to test or to be assessed by verification techniques,
but that have to be taken into account in precise and high quality evaluation. For exam-
ple, these are coding style, the design of the program, modularity, performance issues
and the algorithm used. Therefore, other techniques are required for their assessment
[29,52,54,70,78]. These techniques usually compare a predefined solution to the student
solution. New approaches emphasize the importance of generating useful feedback for
students [24,28,29,38,41,48,60]. Usually, the feedback is generated by failed test-cases
or by peer-feedback [19,42,46]. Some approaches use both reference implementation and
error model consisting of potential corrections to errors that students might make [64]
and with this additional information are capable of making feedback that suggests pos-
sible corrections to incorrect student solution. Another kind of feedback is generated by
computing behavioral similarity between two programs [45]. In this case, different met-
rics are used to calculate similarity to the model solution, which is then used as a measure
of student progress. Machine learning techniques can be used for syntactically classifying
similar solutions [55] or for clustering similar solutions by static and dynamic analysis
[24]. The feedback is then generated by the teacher but only for each group of solutions.

3. Proposed approach and its implementation

In this section we discuss our open-source implementation based on regression verifica-
tion techniques which is implemented on top of the software verification tool LAV [77],
the LLVM system [44] and its C-language front-end Clang. We describe its implementa-

Regression Verification for Automated Evaluation 209

tion, as regression verification techniques are still rather new and advanced, and there are
no implementations that are publicly available. Although regression verification is orig-
inally used for showing equivalence between two versions of the evolving program, we
shall use it to show equivalence between the student and the teacher solution. The same
techniques could be used for showing equivalence between different student solutions.
The techniques described in this section and parts of our implementation can be adapted
to work with other underlying verification systems by making an extension for specifying
that some function calls should be encoded as uninterpreted functions calls.

Finding parts of code that are potentially equivalent is an important task for regression
verification tools. There are different techniques for solving it (based on the analysis of
control flow graphs and function names that preserve equivalent in different versions of
programs [6,20,27]). In our setting, that problem is simple as corresponding functions are
the teacher’s and the student’s solutions.

3.1. Regression verification in LAV

The input to the system LAV is a C program that may contain assertions, which can be
accompanied by some assumptions (given width assert/assume function calls). Such
assumptions are used to limit verification only to the cases allowed by the problem speci-
fication. User can put limits on the input variables in a way that subtle details get ignored
or important preconditions are enforced (e.g., that some array is sorted). By enforcing
additional assumptions, verification can be done against an arbitrary input specification.

In regression verification we try to prove the equivalence between the two solutions
that are encoded by different functions that share the same interface. The implementa-
tion of these functions can be quite different (concerning used algorithms, computation
that can be split into different auxiliary functions, etc.). Figure 1 contains different im-
plementations of the function for finding maximum of three given numbers (these are all
real-world examples, taken from our corpus described in Section 4.1, and reflect the pos-
sible diversity in solutions even for a very simple problem). To check equivalence of the
functions maxA and maxB from Figure 1 using the system LAV, it is sufficient to verify
the program illustrated in Figure 2. Calling the assert function in this program refers
to the equality check of return values of these two functions (for arbitrary input values).
Similarly, the function maxC can be shown to be equivalent to maxA and maxB. How-
ever, the function maxD contains a subtle bug and is not equivalent to the previous three
ones. Since the C language does not allow returning arrays as function results, checking
equivalence of functions that modify arrays is done by multiple assertions (Figure 2).

To verify an assertion, LAV encodes the asserted expression as a first-order logic for-
mula and checks its validity by an underlying SMT solver [7]. We will focus on integer
variables that are modelled either by the theory of linear arithmetic (LA), or by the the-
ory of bit-vector arithmetic (BVA). Although there are important semantic differences
between LA and BVA, in the context of education some of these differences are not rele-
vant (for example, at introductory level, overflows/underflows are usually not considered).
LA is very efficient, but does not support many operators that BVA supports and that are
used in C-programs. For efficiency reason, BVA will be used only when that is necessary.
We will focus on programs containing loops and/or recursive functions, since their treat-
ment is the most delicate aspect in verification. Since loops are not supported in SMT
formulas, functions have to be transformed into some loop-free form. We will consider

210 M. V. Janičić and F. Marić.

int maxA(int x, int y, int z) {
int m = x;
if(y > m) m = y;
if(z > m) m = z;
return m;

}

int maxC(int i, int j, int k) {
int max;
if(i>j && i>k) max= i;
else if(j>k) max = j;
else max = k;
return max;

}

int maxB(int a, int b, int c) {
int max;
max = a;
if (b>max && b>c) max=b;
else if(c>max) max=c;
return max;

}

int maxD(int o, int p, int q) {
if(o>p && o>q)

return o;
else if(p>o && p>q)

return p;
else

return q;
}

Fig. 1. Different implementations for determining the maximum value

#include "maxAB.h"
int main() {
int a, b, c;
scanf("%d%d%d",

&a, &b, &c);
assert(maxA(a,b,c) ==

maxB(a,b,c));
return 0;

}

#include "modifyAB.h"
int main() {
int i; char s[MAX], t[MAX];
scanf("%s",s);
for(i = 0; s[i]; i++)
assume(t[i] == s[i]);

resultA = modifyA(s); resultB = modifyB(t);
assert(resultA == resultB);
for(i = 0; s[i]; i++)
assert(t[i] == s[i]);

return 0;
}

Fig. 2. Checking equivalence of two functions: (left-hand side) functions from the Figure
1 and (right-hand side) functions that modify contents of arrays

two different techniques for loop elimination: (i) loop unrolling for proving k-equivalence
(ii) transforming loops into recursive functions and then using uninterpreted functions to
express the inductive hypothesis [27,67].
K-equivalence by loop unrolling. Functions that contain loops with a fixed upper bound
can be transformed into equivalent functions that do not contain loops. However, unrolling
loops a large number of times may introduce complex formulas that cannot always be
efficiently reasoned about. Checking equivalence of functions with arbitrary loops is a
major challenge and is generally not solvable. Therefore, we must resort to using some
approximation. For example, instead of proving equivalence of two functions we can try
proving their k-equivalence. In such case, loops are unrolled k times, for some given value
k. Figure 3 shows a loop that is unrolled k = 3 times. When proving k-equivalence, the
choice of an appropriate value for k is very important. Higher values of k are giving a
higher level of confidence to the code under evaluation, but increasing k can introduce
scalability issues. On the other hand, some verification tools rely on common experience
that many errors can be discovered in only one loop iteration [5,21]. Note that the number
k often corresponds to the length of the input series for which the algorithm is verified,
although this need not be the case always (for example, in binary search, unrolling loop
for k times guarantees the correctness for the arrays with at most 2k elements). In our
experiments, we usually used k = 5, as for this value the analysis was efficient and results
showed to be reliable. We discuss this choice in more details in Section 4.1. Similar to loop
unrolling is the recursive function call unrolling. However, recursive function unrolling

Regression Verification for Automated Evaluation 211

float mean_valueA(int a[], int n) {
float s = 0;
int i;
for (i=0; i<n; i++)

s += a[i];
return s/n;

}

float mean_valueB(int a[], int n) {
int i;
float m;
m = i = 0;
while(i < n)

m = m + a[i++];
m = m/n;
return m;

}

float mean_valueA_k3(int a[], int n) {
float s = 0; int i;
i = 0;
if(i < n) {
s += a[i];
i++;
if(i < n) {
s += a[i];
i++;
if(i < n) {
s += a[i];
i++;

}
}

}
return s/n;

}

Fig. 3. Calculating the mean value of an array (left-hand side), unrolling k = 3 times a
loop of the function mean valueA (right-hand side)

can lead to significantly slower verification, due to introduced stack-frame modeling, and
due to exponential code growth when there is more than one recursive call.
Partial equivalence by uninterpreted functions. Instead of loop unrolling, in some situ-
ations we can use inductive reasoning to prove partial equivalence between the two func-
tions by using uninterpreted functions to model inductive hypothesis [27]. To succeed in
proving partial equivalence by uninterpreted functions in programs that contain loops it
is necessary to have solutions where entry point, exit condition, and loop invariant are the
same (while the body of the loop can differ).

Preprocessing. There are several constructs in C that complicate elimination of loops
(e.g., break, continue and return), and in the preprocessing phase we automati-
cally transform the program to eliminate such constructs. Also, we transform all loops to
the while loop. Removing return statements is illustrated in Figure 4. If the return
statement occurs within a nested loop, the transformation is applied once for each loop,
starting from the innermost loop. This transformation introduces a special value RET_UNDEF
that cannot occur as the return value of the function. Similar transformations are applied
to eliminate break and continue statements.

while(<cond>) {
....

<return> <val>;
....

}

<retvar> = RET_UNDEF;
while (<cond> && <retvar> == RET_UNDEF) { ...

<retvar> = <val>;
if (<retvar> == RET_UNDEF)

...}
if (<retvar> != RET_UNDEF)

return <retvar>;

Fig. 4. Preprocessing transformations: return statement elimination

Introducing uninterpreted functions. Consider the functions given on top of Figure
5 (also taken from our corpus). After preprocessing the next step is to transform loops
into recursive functions (as illustrated in the middle of Figure 5). An important require-
ment (that is often satisfied) is that the loop changes exactly one variable that is alive
after the loop (its value is read and used before it is eventually changed). In the function

212 M. V. Janičić and F. Marić.

idx_minA, the variable min is such a variable and in the function idx_minB, the vari-
able idx is such a variable. Then, the recursive equivalent of the loop will be a function
whose return value will be exactly that variable. The function can have many input pa-
rameters (the variables that are accessed within the loop, except the ones that are declared
in the loop or are always assigned a value before their value is read). Equivalence of the
recursive functions can be proved by induction on the number of recursive calls made
during their execution. The base case is when no recursive calls are made. As the induc-
tion hypothesis we can assume that the statement will hold for recursive calls i.e., that
recursive calls return the same values. Under that assumption and the definition of the re-
cursive functions it should be proved that the statement holds i.e., that the functions return
the same values in the case when recursive calls are made (in the code on Figure 5, that is
when i < n). The crucial part of the technique is to encode such induction hypothesis
by replacing recursive calls by a call to an uninterpreted function (as illustrated at the bot-
tom of Figure 5). After those replacements, we are left with a loop-free and recursion-free
functions that can be shown equivalent using the techniques for loop-free, recursion-free
programs. Once the recursion is removed, there is no need to have auxiliary functions
representing loops, thus, for simplicity, they can be inlined back (as illustrated on the bot-
tom of Figure 5). A more complicated example from our corpus is given in Figure 6. An
important question is how to order parameters of uninterpreted functions (since solutions
must use the same order of parameters). The names of the variables, and the order of
their declarations can vary between alternative solutions, therefore some kind of semantic
matching between the corresponding variables is needed. Currently, to solve this problem,
our transformation uses a heuristic: parameters are first ordered by their type, and then by
their name. In most cases students use canonical variable names (e.g., min for a mini-
mum value), and the heuristic works. However, when it fails, all possible combinations of
parameter ordering can be checked (usually there are not many parameters).

3.2. Interpreting results of regression verification

When using regression verification in evaluation process, it is crucial to correctly interpret
obtained results and to understand relationship between different evaluation techniques.

Function calls. Inlining is the only fully precise technique for modeling function calls.
Other techniques incur loss of information about the exact program behavior. Therefore,
when other techniques are used, it might not be possible to prove the equivalence.

K-equivalence vs partial equivalence. The fact that functions are k-equivalent for
some value k, does not guarantee that these functions are partially equivalent, or even
k-equivalent for some larger value k. It only guarantees that these functions will give
same outputs for each input value, if restricted to k or less loop iterations. However,
in our experimental evaluation in both our corpora, we did not find two functions that
were k-equivalent and not partially equivalent (with exception to the functions that used
unmodelled library function calls, which were detected independently). This is partially
due to the fact that these programs were also thoroughly tested and checked for bugs
before checked for k-equivalence. However, if two functions are not k-equivalent for some
value k, then that means that these functions are not equivalent. In our corpora, there were
several cases where k-equivalence discovered a bug that the testing missed (Section 4.1).

K-equivalence vs testing. Like testing, k-equivalence can always be applied. Proving
k-equivalence is usually much stronger information than information obtained by testing.

Regression Verification for Automated Evaluation 213

int idx_minA(float a[], int n) {
int min = 0; int i;
for (i = 1; i < n; i++)

if (a[i] <= a[min])
min = i;

return min;
}

int idx_minB(float a[], int n) {
int i, idx; float min;
for (i = 1, min = a[0], idx=0;

i < n; i++)
if (min >= a[i]) {
min = a[i];
idx = i;

}
return idx;

}

float idx_minA(float a[], int n) {
int min = 0; int i = 1;
min = idx_minA_loop(a, n, i, min);
return min;

}

float idx_minA_loop(float a[],
int n,
int i,
int min) {

if (i < n) {
if (a[i] <= a[min])

min = i;
i++;
min = idx_minA_loop(a, n, i, min);

}
return min;

}

float idx_minB(float a[], int n) {
int i, idx; float min;
i = 1, min = a[0], idx=0;
idx = idx_minB_loop(a, n, i, min, idx);
return idx;

}

int idx_minB_loop(float a[], int n,
int i, int min,
int idx) {

if (i < n) {
if (min >= a[i]) {

min = a[i];
idx = i;

}
i++;
idx = idx_minB_loop(a, n, i,

min, idx);
}
return idx;

}

float idx_minA(float a[], int n) {
int min = 0; int i = 1;
if (i < n) {
if (a[i] <= a[min])

min = i;
i++;
min = uf(a, n, i, a[min], min);

}
return min;

}

float idx_minB(float a[], int n) {
int i, idx; float min;
i = 1, min = a[0], idx=0;
if (i < n) {
if (min >= a[i]) {

min = a[i];
idx = i;

}
i++;
idx = uf(a, n, i, min, idx);

}
return idx;

}

Fig. 5. Finding the index of the minimum element: implementation, transformation into
recursive function and replacement by an uninterpreted function

By testing, it is checked that for one single set of inputs the functions give the same
outputs. Here we are not restricted to the possible inputs, but just for the number of loop
iterations. For example, if we prove that functions shown in Figure 3 are k-equivalent
for k = 5, that means that for each array of the size 5 or less, these functions calculate
the same outputs. This is equivalent to testing the functions with Σ5

i=1(2
(sizeof(int)))i

different test cases, which, for sizeof(int) = 32, approximately equals to 1.46 × 1048.
Also, complete path coverage is achieved in all cases were loop iterations are restricted
to k. However, there are situations when checking k-equivalence does not provide better
information compared to testing, like if there is only one input value and the number of
loop iterations together with the resulting values are controlled only by this value.

214 M. V. Janičić and F. Marić.

int strcspnA(char s[], char t[]) {
int i, j;
for(i=0; s[i]; i++) {
for(j=0; t[j]; j++)

if(s[i] == t[j])
return i;

}
return -1;

}

int strcspnA (char s[], char t[]) {
int i, j;
i = 0; int ret1 = RET_UNDEF;
if (s[i] && ret1 == RET_UNDEF) {
j = 0; int ret2 = RET_UNDEF;
if (t[j] && ret2 == RET_UNDEF) {
if (s[i] == t[j]) ret2 = i;
if (ret2 == RET_UNDEF) j++;
ret2 = uf1(ret2, i, j, s, t);

}
if (ret2 != RET_UNDEF) ret1 = ret2;
if (ret1 == RET_UNDEF) i++;
ret1 = uf2(ret1, i, s, t);

}
if (ret1 != RET_UNDEF) return ret1;
return -1;

}

Fig. 6. Transforming a function with double for loop and a return inside

Partial equivalence vs uninterpreted functions. For proving partial equivalence by
uninterpreted functions, it is necessary to perform the described transformation. If equiv-
alence of two transformed functions is proved, then the original functions are also equiv-
alent. Both the entry point to a loop and the loop-exit condition influence the proof of this
equivalence [27]. Therefore, it can be useful to have several model solutions. If equiva-
lence of the two functions cannot be proved, then that does not imply that the original
functions are not equivalent: it may happen that their equivalence only cannot be proved
this way. There is a number of such examples [27], but, in practice, there are many cases
where this technique can be successfully applied (discussed in Section 4.2).

Uninterpreted functions vs k-equivalence. The obvious advantage of using uninter-
preted functions to k-equivalence is that partial equivalence is a stronger property. Also,
using uninterpreted functions is usually more efficient than loop unrolling with a high
value for k. However, uninterpreted functions model only changes captured by a single
scalar return value. Therefore, they cannot be applied when more than one variable is
modified in a loop that is live after the loop, or when the loop modifies values of an array.

4. Evaluation and results

To illustrate applicability of regression verification, we analyzed two corpora of problems
solved by students and a corpus of classic algorithms that are usually taught at introduc-
tory and algorithms courses. Regression verification, in the first context, refers to deter-
mining equivalence of solutions provided by the teacher and by the student, and in the
second between all pairs of different proposed solutions. All experiments were performed
on a computer with an Intel Core i3-4000M on 2.40GHz and with 3.9GB of RAM.

4.1. Verifying student solutions

We have conducted an experimental evaluation on two real-world corpora: one from an
university introductory programming course for computer science majors (we call this
corpus exam corpus), and the other from the national programming competitions (we call
this corpus competition corpus). We chose to use these corpora as automated evaluation

Regression Verification for Automated Evaluation 215

is especially important when the number of enrolled students is large, and these are good
examples of such situations. In both corpora we analyzed the programs that: (i) success-
fully compile; (ii) pass all manually designed test cases (12 per problem for the first, and
between 15 and 25 for the second corpus);2 (iii) where a bug-finding tool (we used LAV)
does not find any bugs. We chose to use such programs since they are expected to be
functionally correct: programs that fail to meet the above requirements are obviously not
functionally equivalent to the model solutions, thus there is no need to further analyze
them. Also, another important reason for using these corpora is that testing (sometimes
enhanced by automated bug finding) is an established approach widely used for auto-
mated evaluation. Therefore, by using corpora that successfully pass manually designed
test cases and where a bug-finding tool does not find any bugs, we wanted to demonstrate
that the proposed approach can add value to preciseness of the automated evaluation.

Both corpora, problem descriptions and the used test cases are publicly available [76].
Statistics showing the number of problems, distribution of number of solutions per prob-
lems, lines of code and cyclomatic complexity [49] are given in Table 1.

Table 1. Distribution of number of solutions per problem, lines of code (LOC) and cyclo-
matic complexity (CC) per solution

Exam corpus
12 problems, 224 solutions, 4104 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 3 44 18.67 18 12.84
LOC
per sol. 5 62 18.32 19 11.54
CC
per sol. 1 17 6.22 6 4.01

Competition corpus
10 problems, 214 solutions, 4857 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 4 39 21.4 22.5 12.26
LOC
per sol. 5 83 22.7 21 11.97
CC
per sol. 1 50 9.01 8 6.86

Classic algorithms
59 problems, 159 solutions, 2007 LOC

Min Max Avg. Med. Std. dev.
Solutions
per prob. 2 7 2.69 2 1.16
LOC
per sol. 3 36 12.78 11 6.95
CC
per sol. 2 28 5.85 4 4.07

A) Description of the corpora
Exam corpus consists of programs written by students, during programming exams

in the programming language C [78]. Originally 1277 solutions to 15 given problems
were collected. Programs that do not compile or do not pass testing (1011 solutions), and
programs that contain memory violations or other bugs (additional 35 solutions) were
eliminated. Three problems (28 solutions) were not suitable for regression verification (in
two cases it was more efficient to thoroughly test these solutions, as described in Section
3.2, while in one case the problem requires complex data structures not supported by our
verification tool). The filtered corpus consists of 12 problems (203 solutions).

Competition corpus consists of programs written by primary school pupils (aged 12
to 16) competing at the national competitions in Serbia (in 2017).3 This competition is
organized in accordance to International Olympiad in Informatics (IOI) guidelines, and
scoring and ranking is done solely based on results obtained by automated testing on test-
cases, prepared in advance. Among four stages, we considered the second and the third

2 Test cases were carefully designed for grading purposes and contain different important usage scenarios. For
all teacher solutions, 100% of code coverage is achieved by these tests, measured by gcov tool [22].

3 The competition is organised by Mathematical Society of Serbia which is a member of European Mathemat-
ical Society. The site of the competition is https://dms.rs/informatika-osnovne-skole/

https://dms.rs/informatika-osnovne-skole/

216 M. V. Janičić and F. Marić.

stage. For the first stage, there was no central repository of solutions, while for the forth
stage there were just a few solutions that passed testing. We considered 10 different prob-
lems with 629 solutions written in C/C++ (that was around 80% of all submitted solutions,
other solutions were written in Pascal, Small Basic and C#). After the programs that do
not compile or pass testing (411 solutions) and the programs where the bug finding tool
detected bugs (4 solutions) were eliminated, the final corpus consists of 214 programs.

Differences between these two corpora. In the exam corpus, student solutions are
required to be robust and report errors for incorrect inputs, while in the competition corpus
it was allowed to assume that the input is always correct (in accordance to the problem
specification). Also, after the testing-phase, student solutions were manually inspected
and modularity, readability and other aspects were additionally graded. On the other hand,
structure and modularity of programs written during competition was quite bad (usually
everything was contained in the main function), which made them harder to verify.

Preparing for verification. To aid verification, the teacher and the student solution
should be represented as separate functions that take their input and return output solely
through function parameters and the return value. However, in most cases the student so-
lution was implemented within a function that reads the data from the standard input and
writes the results on the standard output (especially in the competition corpus). Therefore,
our implementation supports an automatic transformation that does the function extrac-
tion. The transformed programs are also publicly available [76].

The functions that read the input data and contain assertions that teacher and student
solution match (like in the programs from Figure 2) were manually written. In the exam
corpus, these functions were simple, including only necessary assertions, while in the
competition corpus, these functions contained all necessary additional constraints on input
values (imposed by problem descriptions).

B) Results
The results are summarized in Table 2. The problems from both corpora can be divided

into two types. The first type of problems (denoted as A) does not require using loops in
their solutions or only requires the use of bounded loops. For this type of programs, the
used approach is exact, i.e. it does not make neither false positives nor false negatives.
The second type of problems (denoted as B) requires the use of loops in their solutions.
These do not have upper bounds or have high upper bounds that cannot be completely
unrolled due to time and memory limits.

Table 2. The results of regression verification applied on exam and competition corpus

Type of Corpus Num. of Num. of solutions Num. of Equivalent Non-equivalent
problem problems (total / per problem) functions by RV/manually by RV/manually
(A) Problem Exam corpus 6 136 / [3,7,18,31,33,44] 136 129 / 129 7 / 7
requires using Competition corpus 5 88 / [4,4,12,29,39] 88 77 / 80 8 / 8
bounded loops
or no loops Total 11 224 224 206 / 209 15 / 15
(B) Problem Exam corpus
requires using – UF + k-equivalence 2 41 / [20,21] 62 38 + 16 / 54 8 / 8
high upper – only k-equivalence 4 26 / [4,5,7,10] 26 20 / 20 6 / 6
bounds or no Competition corpus
bounds – only k-equivalence 5 126 / [16,20,25,32,33] 126 106 / 111 15 / 15

Total 11 193 214 180 / 185 29 / 29

Regression Verification for Automated Evaluation 217

Exam corpus. The exam corpus contains 6 problems with 136 solutions of type A.
LAV successfully shows equivalence for 129 (correct) solutions and finds 7 solutions
that are not functionally equivalent to the model solutions. The exam corpus contains 6
different problems with 67 solutions of type B.

Partial equivalence using uninterpreted functions: For two problems with 41 solutions
and 62 pairs of checked functions, it was possible to check equivalence by uninter-
preted functions and in 38 cases the equivalence is proved. For remaining 24 func-
tions, equivalence cannot be proved by uninterpreted functions. In these cases, we
checked for k-equivalence for k = 5, and 16 functions are proved k-equivalent, while
8 functions (in five different solutions) are proved to be non k-equivalent.

k-equivalence by loop unrolling: The remaining 4 problems with 26 solutions cannot
be modelled by uninterpreted functions. We tried proving k-equivalence, and decided
to use k = 5 as we find it a reasonable compromise between scalability and reliability
of obtained results (scalability is discussed in Section 4.2). In many cases, k = 5 cor-
responds to equivalence checking of an algorithm that is applied on all arrays of the
maximum size 5 and obtains full path coverage in such cases. Knowing the nature of
these problems, we expected that there should not be a significant difference between,
for example, an array of the size 5 and an array of a bigger size, and our experimen-
tal results confirmed this assumption, showing that even smaller values for k could
have been used without compromising preciseness of the results. LAV successfully
proved k-equivalence of 20 solutions which are indeed functionally equivalent (based
on manual check). For the remaining 6 solutions, LAV proved non k-equivalence. All
non k-equivalent solutions could have been found already with k = 2.

The time for program transformation was negligible. The average time for verification per
solution was 0.7s, while the median value was 0.05s. The LA theory was used whenever
it was possible, as it provides faster verification. Otherwise, BVA was used. For example,
LAV generates formulas and verifies functional equivalence of functions maxA and maxB
(from Figure 1) with respect to the theory of LA and the Z3 SMT solver in 0.02 seconds.
If a solver for the BVA theory is used, then the time necessary for proving this equivalence
is 0.16 seconds with the SMT solver Boolector, and 0.84 seconds with the SMT solver
Z3. In an analogous way, LAV can also prove that the functions maxA and maxD are
not functionally equivalent. The time needed for this is 0.02 seconds in the context of
linear arithmetic, and 0.09 in the context of the theory of bit-vectors. LAV generates a
counterexample (a = 29, b = 29, c = 30), i.e. the values of the variables for which this
equivalence does not hold. This counterexample can be useful for understanding the bug
in the function maxD. Proving partial equivalence by using uninterpreted functions was
usually faster than showing k-equivalence. Proving partial equivalence of functions from
Figure 5 takes 0.028 seconds in the context of LA, and proving 5-equivalence of functions
from Figure 3 takes 0.068 seconds.

Competition corpus. Results for the competition corpus are very similar. Because
of the poor modularity and almost total absence of user defined functions in the code,
on this corpus we could not apply regression verification with uninterpreted functions. In
order to check the claim that similar verification tools can also be used for this purpose, in
addition to LAV, we ran the CBMC tool. As expected, we got the same results. There were
8 solutions in this corpus that contain library function calls that are not precisely modelled

218 M. V. Janičić and F. Marić.

by both tools or that contain advanced C++ concepts (from standard template library) that
are unsupported by both tools. Therefore, these solutions were not considered. The results
are summarized in Table 2. The average time per solution for CBMC was 1.4s, while for
LAV it was 7s. The median value for CBMC was 0.8s and for LAV was 0.7s. We also
applied random testing to all programs in this corpus (we generated fresh 25 random tests
for each task), but random testing detected bugs in only 2 solutions.

C) Discussion
We performed a quantitative analysis of the obtained results to assess in what extent

the proposed approach can add to quality of automated evaluation. We also performed a
detailed qualitative analysis of the obtained results to detect in what situations it can be
expected to get the most from the proposed approach.

Quantitative analysis of results. The percentage of non-equivalent solutions is ap-
proximately the same in both corpora: it is around 10% of all solutions that have been
analyzed (and graded as being functionally correct). It is relatively low since programs
were thoroughly tested and bug finding tool was applied.4 However, it is definitely not
negligible and reveals that in spite of very thorough testing and bug-finding, around 10%
of programs still contain bugs that go undetected. This illustrates the limited power of
these approaches and shows that the proposed approach can add to the quality and preci-
sion of automated evaluation.

Qualitative analysis of results. We manually analyzed all programs that were shown
to be non-equivalent to the model solution, in order to detect what kind of bugs are found
by regression verification. In the following text we summarize such examples.

Completely different logic valid in most cases. There were some solutions that are very
different from the expected solution and which work for most input values. For ex-
ample, one model solution required calculating dx3 e · d

y
3 e while a student submitted a

solution with 47 lines of code that introduced 9 auxiliary variables, with 10 different
branches. Another example (found in several solutions) is comparison of two dates
by converting them to integers, using the formula d+m · 30 + y · 365.

Missing branches. In several cases, students introduced unnecessary branching which
left the input uncovered. One such example is illustrated on Figure 7 where the branch
forK < 5 andR = 5 is missing. It is hard to cover such situations by test-cases, since
the branching is not the part of the problem semantics, but is artificially introduced
by the student. In some cases, branching ends with an else branch and all missing
branches will execute its code. For example, the function maxD in Figure 1 contains
such an error, i.e. the branch for o = p and q < o is missing.

Specific input series. Some errors were due to wrong behavior of programs when the
input series of numbers were specific in some sense, for example, series containing
just a single element or series containing elements in some specific order. Although
such errors could be caught by careful testing, it is hard to predict all such special
inputs in advance. Applying regression verification removes the burden from the test
designer, making grading much more reliable.

4 Automated bug-finding in this context searched for bugs such as buffer overflows, division by zero or null
pointer dereferencing. For the exam corpus, a detailed testing and automated bug finding is described in [78].
The same approach is applied in the case of the competition corpus.

Regression Verification for Automated Evaluation 219

if(K<5 && R<5)
i=(K/2)*(R/2);

else if(K<5 && R>5)
i=(K/2)*(((R-1)/3)+1);

else if(K>=5 && R<5)
i=(((K-1)/3)+1)*(R/2);

else if(K>=5 && R>=5)
i=(((K-1)/3)+1)*(((R-1)/3)+1);

int y;
while (yr > 0) {
y = y + 1;
yr = yr - 3;

}

Fig. 7. A missing branch (left-hand side) and uninitialized variable (right-hand side)

Uninitialized variables. In several cases uninitialized local variables were used, like the
solution from the competition corpus which contained the code shown on Figure 7.
Although the initial value of local variables at run-time cannot be predicted, in many
cases it is zero (and it is usually the correct initial value) and the tests pass.

Potential errors in variable range. In some cases, solutions used constructs that could
potentially introduce integer overflows. In the concrete tasks, limits were such that
those solutions were detected to be safe. However, if the assumptions for the limits are
removed, the verification detects non-equivalence and this could be used to signal po-
tential errors to novice programmers. For example, for sorting three integer variables
some solutions found the minimum, the maximum, and calculated the middle one as
the sum minus the minimum and the maximum. A similar situation was comparing
dates by converting them to integers using the formula 1000 · y+50 ·m+ d or when
maximum/minimum is initialized to arbitrary values (in our corpus, we have seen
minimum being initialized to 1000000000, 454545454, 1000, 9990000, 12345, and
99999999). Regression verification detects these solutions as non-equivalent when no
additional assumptions are given, and that can be used to warn programmers about
bad programming style and potential errors.

Most of the errors were found in programs containing rich branching structure. Programs
that do not contain branching (whether or not they contain loops) and that pass testing,
usually do not contain errors or contain only errors detected by bug finding (buffer-
overflows, division by zero etc.). On the other hand, programs where control flow can
follow various paths are much harder to verify only by testing and applying regression
verification is most beneficial in such situations. A good indicator where regression ver-
ification can be beneficial is the presence of solutions that fail just in a few test cases.
That indicates that some solutions failed only in some branches, and it is reasonable to
expect that the solutions that passed all the tests could also contain errors (in some other
branches that were not covered by test cases).

4.2. Verifying classic algorithms

To illustrate the type of problems that can be assessed by regression verification, we have
applied regression verification to same standard algorithms that are usually covered in
introductory and algorithms courses [14,63]. Detailed problem descriptions and corre-
sponding source codes are available on web page [76] together with the two other corpora.
Statistics summarizing the number of problems and solutions, their length, and cyclomatic
complexity are given in Table 1.

220 M. V. Janičić and F. Marić.

A) Description of the corpus
We applied our approach on some loop free algorithms (most of them based on differ-

ent forms of branching, like branching based on discrete values, intervals, lexicographic
comparison, or hierarchical nested branching) and on some programs with loops, using
the technique of uninterpreted functions (algorithms that calculate statistics, perform lin-
ear search and filter series, map all series elements by applying a given transformation,
and various combinations of such algorithms).K-equivalence can be successfully applied
on a wide set of problems. We examined 15 problems with 59 fundamentally different so-
lutions that yielded 100 pairs that were checked for k-equivalence. For example, we have
considered the problem of finding a sub-array of contiguous elements with the maxi-
mal sum and have shown k-equivalence between the brute-force solution, its optimized
variant based on two-pointer technique, the solution based on Kadane’s (dynamic pro-
gramming) algorithm, the solution based on maximizing the difference between the array
partial sums, and a solution based on the recursively implemented divide-and-conquer
approach.

B) Results
Times needed for showing partial equivalence are summarized in Table 3, showing that if

this approach is applicable, then the verification is usually very fast. Distribution of times
needed for showing k-equivalence for different values of k in more advanced algorithms
using CBMC are summarized in Table 4. Table shows that required verification times
quickly grow. Verifying recursive solutions is the most time consuming: all 10 cases where
the timeout of 60 seconds was violated for k = 5 involved at least one recursive solution.
We also applied LAV on 32 non-recursive solutions (since it does not support recursive
function unrolling) and the results were very similar.

Table 3. Partial equivalence of classic algorithms: number of problems, solutions and
checked pairs of solutions; minimum, maximum and median time in seconds

Group name Num. of problems Num. of solutions Num. of pairs Min. Max. Median
Loop free programs 14 36 33 0.01 0.27 0.01
Loops – unininterpreted functions 30 64 35 0.01 2.68 0.01

C) Discussion
Proving functional equivalence of two equivalent solutions is more time demanding

than finding a difference between two non-equivalent solutions. The reason is that in
proving functional equivalence all possible paths through two different solutions must be
analyzed, while for finding a difference all possible paths through solutions are analyzed
only in the worst case. Since our analysis applied on classic algorithms corpus included
only functionally equivalent solutions, this suggests that the same or less amount of time
is needed in case of considering non-equivalent solutions of the proposed problems, which
is an important use-case in context of students solutions.

Regression Verification for Automated Evaluation 221

Table 4. k-equivalence of classic algorithms for different values of k, where each pair of
solutions is checked for equivalence — first row: a number of proved pairs (time out set to
60 seconds) vs. number of all pairs; second row: min.–max.(median) times (in seconds)

Problem name proved/all pairs
(Num. of solutions) min - max (median)

k = 3 k = 4 k = 5 k = 6

1. Search (5) 10/10 10/10 9/10 7/10
0.17 - 9.6 (0.42) 0.23 - 13.79 (2.94) 0.4 - 43.31 (1.86) 0.59 - 21.49 (4.68)

2. Sort (7) 21/21 21/21 13/21 6/21
0.18 - 3.35 (1.44) 0.44 - 22.93 (6.29) 1.56 - 58.07 (38.86) 11.16 - 21.89 (17.57)

3. K-th element (3) 3/3 3/3 2/3 0/3
0.35 - 3.14 (1.03) 1.45 - 55.04 (4.96) 12.34 - 25.87 (19.105) -

4. Majority (3) 3/3 3/3 3/3 3/3
0.12 - 0.31 (0.3) 0.15 - 0.63 (0.63) 0.18 - 1.17 (1.12) 0.26 - 3.82 (2.95)

5. Fibonacci (4) 6/6 6/6 6/6 6/6
0.09 - 0.36 (0.22) 0.1 - 0.72 (0.4) 0.1 - 1.58 (0.78) 0.1 - 3.82 (1.79)

6. Longest increasing 6/6 6/6 6/6 6/6
subsequence (4) 0.14 - 0.22 (0.18) 0.16 - 0.46 (0.34) 0.3 - 1.31 (0.69) 0.53 - 6.32 (2.48)

7. Min. coins (6) 15/15 15/15 15/15 15/15
0.28 - 0.29 (0.28) 0.41 - 0.43 (0.42) 0.9 - 0.93 (0.92) 5.84 - 5.93 (5.86)

8. Stock span (2) 1/1 1/1 1/1 1/1
0.15 - 0.15 (0.15) 0.34 - 0.34 (0.34) 1.14 - 1.14 (1.14) 5.63 - 5.63 (5.63)

9. Max. segment 10/10 10/10 10/10 5/10
- sum (5) 0.12 - 0.56 (0.18) 0.3 - 2.35 (0.56) 0.83 - 24.85 (5.48) 2.79 - 29.56 (20.2)

10. Num. of segments 3/3 3/3 3/3 0/3
(3) 0.21 - 0.25 (0.22) 1.36 - 2.83 (1.66) 13.75 - 56.06 (22.75) -

11. Num. of pairs 3/3 3/3 3/3 3/3
- sum (3) 0.15 - 0.33 (0.24) 0.25 - 0.59 (0.49) 0.66 - 1.69 (1.23) 1.44 - 4.29 (3.78)

12. Num. of pairs 3/3 3/3 3/3 0/3
- diff (3) 0.28 - 0.70 (0.43) 1.78 - 6.45 (3.05) 14.87 - 45.67 (39.9) -

13. MaxPairing (5) 10/10 10/10 10/10 6/10
0.18 - 0.31 (0.26) 0.32 - 1.01 (0.61) 0.66 - 7.99 (1.52) 1.64 - 4.91 (3.19)

14. Longest palindromic 3/3 3/3 3/3 3/3
substring (3) 0.17 - 0.55 (0.41) 0.26 - 1.96 (1.52) 0.4 - 6.84 (5.10) 0.6 - 19.89 (15.43)

15. Prefix - suffix (3) 3/3 3/3 3/3 3/3
0.13 - 0.14 (0.13) 0.16 - 0.20 (0.18) 0.28 - 0.34 (0.28) 0.41 - 0.55 (0.43)

Total (59) 100/100 100/100 90/100 64/100
0.09 - 9.6 (0.28) 0.1 - 55.04 (0.53) 0.1 - 58.07 (1.46) 0.1 - 29.56 (5.27)

4.3. Threats to validity

Our experimental results give good promises for real-world applications in education, but
their generalization to other situations have to be discussed.

Languages C/C++ are present at introductory programming and algorithms courses at
many leading universities, but are not the most popular choices [30]. Although the tools
we use are tailored for C/C++, the proposed approach can be adapted for other languages.

We do not consider equivalence of bigger sized projects, but this issue could be ad-
dressed by showing equivalence of their smaller parts (like modules or functions). The
problem of detecting and aligning parts of code is discussed in regression verification
[6,20,27], but that is an orthogonal problem to the one we studied. Also, different solu-
tions of students projects might be completely different, as such projects are usually not
given by strict specifications, while a certain level of creativity is even expected.

Finally, there is a question of the number of errors that are undetected by testing and
bug finding and are found by regression verification. In our experiments, percentage of
such programs was around 10% in both corpora. Obviously, the percentage depends on

222 M. V. Janičić and F. Marić.

how test-cases are designed, but since our corpora are taken from real-world exams and
competitions, we expect that these are representative or at least very illustrative examples.
By the detailed analysis of the detected errors, we have shown that there are situations
where test cases are very hard or almost impossible to predict in advance. Therefore,
applying the proposed approach releases the burden of creating such tests.

5. Relationship to other approaches

In Section 2 we identified all important aspects of the related work, and here we discuss
them in the context of the proposed approach.

Regression verification techniques customized for specific domains [4,8,34,59,62,74,80]
are usually only semi-automated and require additional information from an expert (like
inductive invariants). However, it is not likely that students, or even teachers, would be
able to provide such expertise. Therefore, these customized techniques do not seem ap-
plicable for the evaluation of student solutions. In regression verification of large systems
[6,20,27], program behavior is usually checked only for k-equivalence [6], while we con-
sider both k-equivalence and partial equivalence in order to get more accurate results. In
regression verification of student programs, the code is usually short and, in contrast to
regression verification of large systems, it is not difficult to determine which functions
should be checked for equivalence. On the other hand, checking equivalence of matched
functions in our context can be very challenging since these functions did not evolve from
the same code and therefore may have a high level of diversity.

The rewriting-based approach [40] for verification of student programs requires for-
mal specifications to be available. An evaluation of this approach was performed on a
corpus consisting of 41 programs (all chosen to be functionally correct) – solutions of
5 different simple problems. The student solutions were transformed manually and the
system successfully verified 27 programs out of 41. The downside of this approach is
that it can be difficult task for a teacher to create formal specifications. In our approach,
code transformations are performed automatically. The corpora used in our evaluation are
bigger and wider, hence lead to more conclusive results.

Concerning evaluation based on automated testing [11,18,23,31,33,50,51,65,72] and
automated bug-finding [36,37,71,78], our approach is complementary and it gives an ad-
ditional confidence on functional correctness of the program. We think that the best way
to use it is to apply it on programs where cheaper techniques such as testing and auto-
mated bug-finding did not discover any bugs. Still, it can also be used complementary to
the grading techniques which do not asses functional correctness (e.g. grading techniques
based solely on machine learning [66]).

Concerning other important aspects that should be taken into account within a de-
tailed evaluation of programs (see Section 2), our approach, in some cases, can be used
for these purposes, too. For example, given that partial equivalence between the student
solution and some particular predefined solution has been proven, it confirms that these
programs share main characteristics of the used algorithms. Also, our approach can be
used for generating failing test-cases (as illustrated in Section 4.1) as a useful feedback
for students, as it is done in approaches based on automated testing. Although the main
purpose of our approach is to provide high-quality and precise grading at final tests or
at competitions, it can be also used as a support for clustering of programs, potentially

Regression Verification for Automated Evaluation 223

leading to a finer feedback for specific clusters (e.g. in synergy with approaches for clas-
sification and clustering of programs based on static or dynamic analysis [24,55]).

6. Conclusions and further work

There is a significant theoretical and practical progress that has been made recently in
the field of regression verification. We have shown that regression verification can be suc-
cessfully used in automated evaluation of programs at introductory programming courses,
more advanced algorithms courses, and programming competitions, and that it can be very
useful for both teachers and students (without affecting the teaching methodology itself).
Showing equivalence with the teacher solution gives a much higher confidence in the cor-
rectness of student program. We find that regression verification should be used as an
extension of classical evaluation process. Moreover, for loop-free programs, regression
verification may even replace testing, as results obtained for such programs are definite.

The implementation of the proposed approach transforms C/C++ programs and pre-
pares them for regression verification. We have shown that our system LAV can be suc-
cessfully used in this context. The presented results have shown that our tools were able
to automatically show some kind of equivalence for almost all student programs that are
equivalent to model solutions (except a few of those that used unmodeled library func-
tions). For loop-free programs, the total equivalence was shown, while for programs with
loops, in some cases a very strong relation of partial equivalence was fully automati-
cally shown, and in all other cases k-equivalence was shown. In 10% of the programs
from the two considered real world corpora regression verification found bugs that were
not previously discovered by testing and automated bug finding. This shows that even
when test-cases are carefully manually crafted and achieve complete code coverage of the
model solutions, testers fail to predict all possible situations where the student solution
might go wrong and bugs can go undetected. Therefore, regression verification can add
to quality and precision of automated evaluation, offering an important complement to
testing and, in some cases, even a good alternative for a hard and time-consuming job of
manually designing test-cases. The precision of the obtained results shows that these tech-
niques could be integrated into a grading system that would be more reliable than those
based on testing. We have analyzed functionally non-equivalent solutions and identified
that we can get the most from regression verification in situations where solutions have
rich branching structure (either imposed by problem definition or artificially introduced
by students). We have described some of the most common sources of bugs and we have
analyzed and described the types of problems that can be efficiently assessed by regres-
sion verification. Uninterpreted functions can be successfully applied to showing partial
equivalence in some cases, but not always.

We are planning to introduce other, more powerful, regression verification techniques
[20] and also to develop new ones, such that regression verification can be successfully
applied to a wider set of problems. We are also planning to improve our tool for automated
transformation of programs and to integrate fully automated regression verification into
our set of techniques for automated evaluation of students programs.
Acknowledgements. This work was partially supported by the Serbian Ministry of Sci-
ence grant 174021 and by the COST action CA15123.

224 M. V. Janičić and F. Marić.

References

1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-functional
system properties. Information and Software Technology 51(6), 957–976 (2009)

2. Ala-Mutka, K.M.: A Survey of Automated Assessment Approaches for Programming Assign-
ments. Computer Science Education 15, 83–102 (2005)

3. Allen, I.E., Seaman, J.: Learning on demand: Online education in the United Statesf. Tech. rep.,
The Sloan Consortium (2010)

4. Amtoft, T., Bandhakavi, S., Banerjee, A.: A logic for information flow in object-oriented pro-
grams. In: POPL. pp. 91–102. ACM (2006)

5. Babic, D., Hu, A.J.: Calysto: Scalable and Precise Extended Static Checking. In: ICSE. pp.
211–220. ACM (2008)

6. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification using impact sum-
maries. In: SPIN’13. pp. 99–116 (2013)

7. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo Theories. In: Hand-
book of Satisfiability. vol. 185, pp. 825–885. IOS Press (2009)

8. Barthe, G., Grégoire, B., Kunz, C., Lakhnech, Y., Béguelin, S.Z.: Automation in computer-
aided cryptography: Proofs, attacks and designs. In: CPP. pp. 7–8 (2012)

9. Beyer, D.: Automatic Verification of C and Java Programs: SV-COMP 2019. In: Tools and
Algorithms for the Construction and Analysis of Systems. pp. 133–155. Springer (2019)

10. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In: OSDI. pp. 209–224. USENIX (2008)

11. Cheang, B., Kurnia, A., Lim, A., Oon, W.C.: On Automated Grading of Programming Assign-
ments in an Academic Institution. Computers and Education 41(2), 121–131 (2003)

12. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: TACAS. pp.
168–176. Springer (2004)

13. Clarke, E.M.: 25 Years of Model Checking — The Birth of Model Checking. Springer (2008)
14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT (2009)
15. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In: POPL. ACM (1977)
16. Dijkstra, E.: Notes on structured programming. EUT report. WSK, Dept. of Mathematics and

Computing Science, Technische Hogeschool Eindhoven, 2nd ed. edn. (1970)
17. Douce, C., Livingstone, D., Orwell, J.: Automatic Test-based Assessment of Programming: A

Review. Journal on Educational Resources in Computing 5(3) (2005)
18. Ellsworth, C.C., Fenwick, Jr., J.B., Kurtz, B.L.: The Quiver System. In: SIGCSE. ACM (2004)
19. Ertmer, P.A., Richardson, J.C., Belland, B., Camin, D., Connolly, P., Coulthard, G., Lei, K.,

Mong, C.: Using Peer Feedback to Enhance the Quality of Student Online Postings: An Ex-
ploratory Study. Journal of Computer-Mediated Communication 12(2), 412–433 (2007)

20. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating regression verifi-
cation. In: ASE. pp. 349–360. ACM (2014)

21. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.: Extended Static
Checking for Java. SIGPLAN Not. 37(5), 234–245 (2002)

22. Foundation, F.S.: Using the GNU Compiler Collection: gcov — a Test Coverage Program
(1988-2019), https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

23. GeeksforGeeks: A CS portal for geeks (2019), https://www.geeksforgeeks.org/
24. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: Overcode: Visualizing variation in

student solutions to programming problems at scale. Comput.-Hum. Interact. 22(2) (2015)
25. Godlin, B.: Regression verification: Theoretical and implementation aspects (2008), masters

Thesis, Technion, Israel Institute of Technology
26. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th Annual Design

Automation Conference. pp. 466–471. DAC ’09, ACM, New York, NY, USA (2009)

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://www.geeksforgeeks.org/

Regression Verification for Automated Evaluation 225

27. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar pro-
grams. Softw. Test., Verif. Reliab. 23(3), 241–258 (2013)

28. Grivokostopoulou, F., Perikos, I., Hatzilygeroudis, I.: An educational system for learning
search algorithms and automatically assessing student performance. International Journal of
Artificial Intelligence in Education (1), 207–240 (2017)

29. Gulwani, S., Radiček, I., Zuleger, F.: Feedback generation for performance problems in intro-
ductory programming assignments. In: FSE. pp. 41–51. ACM (2014)

30. Guo, P.: Python is the Most Popular Introductory Teaching Language at Top U.S. Uni. (2014)
31. HackerRank: For devs, companies and schools. (2019), https://www.hackerrank.com
32. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10) (1969)
33. Huang, L., Holcombe, M.: Empirical investigation towards the effectiveness of Test First pro-

gramming. Information and Software Technology 51(1), 182–194 (2009)
34. Huang, S.Y., Cheng, K.T.: Formal equivalence checking and design debugging. Kluwer (1998)
35. Ihantola, P., Ahoniemi, T., Karavirta, V., Seppälä, O.: Review of Recent Systems for Automatic

Assessment of Programming Assignments. In: Koli Calling. pp. 86–93. ACM (2010)
36. Ihantola, P.: Creating and Visualizing Test Data From Programming Exercises. Informatics in

education 6(1), 81–102 (2007)
37. Juniwal, G., Donzé, A., Jensen, J.C., Seshia, S.A.: Cpsgrader: Synthesizing temporal logic

testers for auto-grading an embedded systems laboratory. In: EMSOFT (2014)
38. Kefalas, P., Stamatopoulou, I.: Using screencasts to enhance coding skills: The case of logic

programming. Comput. Sci. Inf. Syst. 15(3), 775–798 (2018)
39. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7) (1976)
40. Kop, C., Nishida, N.: Automatic constrained rewriting induction towards verifying procedural

programs. In: Programming Languages and Systems, LNCS, vol. 8858. Springer (2014)
41. Krusche, S., Seitz, A.: Artemis: An automatic assessment management system for interactive

learning. In: Proceedings of the 49th ACM Technical Symposium on Computer Science Edu-
cation. pp. 284–289. SIGCSE ’18, ACM (2018)

42. Kulkarni, C., Wei, K.P., Le, H., Chia, D., Papadopoulos, K., Cheng, J., Koller, D., Klemmer,
S.R.: Peer and self assessment in massive online classes. Comput.-Hum. Interact. 20(6) (2013)

43. Laski, J., Stanley, W.: Software Verification and Analysis: An Integrated, Hands-On Approach.
Springer, 1 edn. (2009)

44. Lattner, C.: The LLVM Compiler Infrastructure (2012), http://llvm.org/
45. Li, S., Xiao, X., Bassett, B., Xie, T., Tillmann, N.: Measuring code behavioral similarity for

programming and software engineering education. In: ICSE (2016)
46. Luxton-Reilly, A., Simon, Albluwi, I., Becker, B.A., Giannakos, M., Kumar, A.N., Ott, L., Pa-

terson, J., Scott, M.J., Sheard, J., Szabo, C.: Introductory programming: A systematic literature
review. In: Proceedings Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. pp. 55–106. ITiCSE 2018, ACM (2018)

47. Mandal, A.K., Mandal, C.A., Reade, C.: A System for Automatic Evaluation of C Programs:
Features and Interfaces. IJ. of Web-Based Learning and Teaching Technologies 2(4) (2007)

48. Marin, V.J., Pereira, T., Sridharan, S., Rivero, C.R.: Automated personalized feedback in in-
troductory java programming moocs. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). pp. 1259–1270 (2017)

49. McCabe, T.: Structured testing. Tutorial Texts Series, IEEE (1983)
50. Miguel A. Revilla: Uva online judge. (1995-2019), https://uva.onlinejudge.org/
51. Mike Mirzayanov: Codeforces (2010 - 2019), http://codeforces.com/
52. Moghadam, J.B., Choudhury, R.R., Yin, H., Fox, A.: Autostyle: Toward coding style feedback

at scale. In: ACM Conference on Learning @ Scale. pp. 261–266. L@S, ACM (2015)
53. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Publishing, 3rd edn.

(2011)
54. Naudé, K.A., Greyling, J.H., Vogts, D.: Marking Student Programs Using Graph Similarity.

Computers and Education 54(2), 545–561 (2010)

https://www.hackerrank.com
http://llvm.org/
https://uva.onlinejudge.org/
http://codeforces.com/

226 M. V. Janičić and F. Marić.

55. Nguyen, A., Piech, C., Huang, J., Guibas, L.: Codewebs: Scalable homework search for mas-
sive open online programming courses. In: WWW. pp. 491–502. ACM (2014)

56. Pappano, L.: The year of the MOOC (2012)
57. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M., Paterson,

J.: A Survey of Literature on the Teaching of Intr. Prog. In: WG reports on ITiCSE. ACM (2007)
58. Pieterse, V.: Automated assessment of programming assignments. In: CSERC (2013)
59. Post, H., Sinz, C.: Proving functional equivalence of two AES implementations using bounded

model checking. In: ICST. pp. 31–40 (2009)
60. Rivers, K., Koedinger, K.: Automating hint generation with solution space path construction.

In: 12th Intl. Conf. on Intelligent Tutoring Systems (2014)
61. Rizzardini, R.H., Garca-Pealvo, F.J., Kloos, C.D.: Massive open online courses: Combining

methodologies and architecture for a success learning. JUCS 21(5), 636–637 (2015)
62. Scheben, C., Schmitt, P.H.: Efficient self-composition for weakest precondition calculi. In: FM

2014: Formal Methods, LNCS, vol. 8442, pp. 579–594. Springer (2014)
63. Sedgewick, R., Wayne, K.: Algorithms. Addison-Wesley Professional, 4th edn. (2011)
64. Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for introductory

programming assignments. In: PLDI. pp. 15–26. ACM (2013)
65. Sphere Research Labs: Sphere Online Judge (SPOJ) (2019), http://www.spoj.com/
66. Srikant, S., Aggarwal, V.: A system to grade computer programming skills using machine learn-

ing. In: ACM KDD. pp. 1887–1896. ACM (2014)
67. Strichman, O., Godlin, B.: Regression verification - a practical way to verify programs. In:

VSTTE. LNCS, vol. 4171, pp. 496–501. Springer (2005)
68. Strichman, O.: Special issue: program equivalence. Formal Methods in System Design 52(3),

227–228 (Jun 2018), https://doi.org/10.1007/s10703-018-0318-y
69. Stuikys, V., Burbaite, R., Damasevicius, R.: Teaching of computer science topics using meta-

programming-based glos and LEGO robots. Informatics in Education 12(1), 125–142 (2013)
70. Taherkhani, A., Korhonen, A., Malmi, L.: Automatic recognition of students’ sorting algorithm

implementations in a data structures and algorithms course. In: Koli Calling. ACM (2012)
71. Tillmann, N., Halleux, J.: Pex – White Box Test Generation for .NET . In: TAP. LNCS, vol.

4966, pp. 134–153. Springer (2008)
72. Topcoder: Topcoder (2001–2019), https://www.topcoder.com/
73. Valiente, J.A.R., Merino, P.J.M., Dı́az, H.J.P., Ruiz, J.S., Kloos, C.D.: Evaluation of a learning

analytics application for open edX platform. Comput. Sci. Inf. Syst. 14(1), 51–73 (2017)
74. Verdoolaege, S., Palkovic, M., Bruynooghe, M., Janssens, G., Catthoor, F.: Experience with

widening based equiv. checking in realistic multimedia systems. J. Elec. Testing 26(2) (2010)
75. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated

Software Eng. 10(2), 203–232 (2003)
76. Vujošević Janičić, M.: LAV (2009 -), http://argo.matf.bg.ac.rs/?content=lav
77. Vujošević Janičić, M., Kuncak, V.: Development and Evaluation of LAV: An SMT-Based Error

Finding Platform. In: VSTTE. pp. 98–113. LNCS, Springer (2012)
78. Vujošević Janičić, M., Nikolić, M., Tošić, D., Kuncak, V.: Software verification and graph

similarity for automated evaluation of students assignments. Inf. and Soft. Tech. 55(6) (2013)
79. Vujošević Janičić, M., Tošić, D.: The Role of Programming Paradigms in the First Program-

ming Courses. The Teaching of Mathematics XI(2), 63–83 (2008)
80. Welsch, Y., Poetzsch-Heffter, A.: A fully abstract trace-based semantics for reasoning about

backward compatibility of class libraries. Sci. Comput. Program. 92, 129–161 (2014)

http://www.spoj.com/
https://doi.org/10.1007/s10703-018-0318-y
https://www.topcoder.com/
http://argo.matf.bg.ac.rs/?content=lav

Regression Verification for Automated Evaluation 227

Milena Vujošević Janičić is currently an assistant professor at the Department of Com-
puter Science, Faculty of Mathematics, University of Belgrade. Her main research inter-
ests are in automated bug finding, model checking and application of software verifica-
tion techniques in different fields. She is a member of the Automated Reasoning GrOup
(ARGO) at the University of Belgrade.

Filip Marić is currently an associate professor at the Department of Computer Science,
Faculty of Mathematics, University of Belgrade. His main research interests are in inter-
active theorem proving and its applications in formalization of mathematics and software
verification. He is also interested in SAT and SMT solving and their applications and in
teaching programming at introductory level. He is a member of the Automated Reasoning
GrOup (ARGO) at the University of Belgrade.

Received: December 20, 2018; Accepted: July 10, 2019.

	Introduction
	Related work
	Proposed approach and its implementation
	Regression verification in LAV
	Interpreting results of regression verification

	Evaluation and results
	Verifying student solutions
	A) Description of the corpora
	B) Results
	C) Discussion

	Verifying classic algorithms
	A) Description of the corpus
	B) Results
	C) Discussion

	Threats to validity

	Relationship to other approaches
	Conclusions and further work

