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Abstract. Nowadays, large volumes of training data are available from various data
sources and streaming environments. Instance-based classifiers perform adequately
when they use only a small subset of such datasets. Larger data volumes introduce
high computational cost that prohibits the timely execution of the classification pro-
cess. Conventional prototype selection and generation algorithms are also inappro-
priate for data streams and large datasets. In the past, we proposed prototype gener-
ation algorithms that maintain a dynamic set of prototypes and are appropriate for
such types of data. Dynamic because existing prototypes may be updated, or new
prototypes may be appended to the set of prototypes in the course of processing.
Still, repetitive generation of new prototypes may result to forming unpredictably
large sets of prototypes. In this paper, we propose a new variation of our algorithm
that maintains the prototypes in a convenient and manageable way. This is achieved
by removing the weakest prototype when a new prototype is generated. The new
algorithm has been tested on several datasets. The experimental results reveal that
it is as accurate as its predecessor, yet it is more efficient and noise tolerant.

Keywords: k-NN classification, Data reduction, Prototype generation, Data streams,
Large datasets, Noisy data.

1. Introduction

Classification is a fundamental concept in data mining [10]. Many classification algo-
rithms have been proposed in the last half century [12]. They aim at accurate class pre-
diction of the unclassified instances on the basis of a set of already classified instances
(training set). The quality of the training set as well as its size determine the efficiency
and the effectiveness of the algorithm and consequently they are vital for all classifiers.

Handling training data-streams [1] and large training sets in classification systems has
attracted the interest of the data mining research community. The goal is the reduction of
the high computational cost involved. The problem is more intense in cases of instance-
based classifiers because the whole training set should be examined for each unclassified
instance in order to classify it. In addition, executing classification algorithms on devices
with limited memory (e.g., sensors) is also an important issue, since otherwise, trans-
ferring data to powerful servers for processing is inevitable. In both cases, a simple and
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obvious approach is the use of a subset of the available data. However, this subset proba-
bly cannot represent the whole training set and may harm the classification accuracy.

Instance-based classification is characterized to comprise a lazy learner algorithm be-
cause instead of involving a discriminative function it directly processes unclassified in-
stances against the training dataset. The k-Nearest Neighbors (k-NN) [6] classifier is a
typical example of a lazy learner. When an unclassified instance is to be classified, the
k-NN classifier identifies and retrieves the k nearest instances from the available training
set on the basis of a pre-specified distance metric; most often, the Euclidean distance. The
nearest instances are called neighbors. The unclassified instance is assigned to the class
that dominates in its k-nearest neighbor set. This task is very simple. However, since all
the training set members need to always be available in memory and all distances between
the unclassified instance and the training data have to be computed, the approach com-
prises a memory and CPU intensive task. Yet another drawback is that the k-NN classifier
is not noise-tolerant. Noise affects the classification process and reduces accuracy.

Data Reduction Techniques (DRTs) [9,24] can remedy the stated drawbacks by intro-
ducing a preprocessing stage to the training dataset. A set of representative prototypes is
created (usually called a condensing set) from the initial training data. Although there are
few exceptions [21], by definition, DRTs cannot handle data of an incremental nature (data
streams), as well as large dataset that do not fit in the main memory. To overcome these
drawbacks, we recently proposed the dynamic RHC (dRHC) [19], and the abstraction IB2
(AIB2) [17,18] algorithms. Both construct/maintain a dynamic condensing set from the
data stream or large data set. Dynamic because the algorithms update continuously the
condensing set by incrementally considering new instances as the latter emerge.

Both dRHC and AIB2 operate on a small set of prototypes without seriously degrading
the accuracy achieved by the k-NN classifier that operates on the whole of the original
training set. Yet, they both introduce an unpleasant phenomenon that constitutes the major
motivation behind this work: as new prototypes are generated and they get appended to
the condensing set, the size of the latter may exceed the size of the available memory. A
second motive is that both algorithms are not noise tolerant. False new prototypes may be
generated as a result of the noise present in the initial training set. Consequently, there is
a clear need to filter out the noise present in the training set, and to maintain the size of
the condensing set under control, up to a user specified threshold value.

In [16], we made a first attempt to address the aforementioned issues. In particular,
we proposed dRHC-V2, which is a variation of dRHC. Contrary to dRHC, dRHC-V2
keeps the size of the condensing set in a convenient, manageable by the classifier, level by
ranking the prototypes and removing the least important ones. As soon as the condensing
set size exceeds a user-specified threshold value, the condensing set prototypes are ranked
on a calculated weight value, and the necessary number of low ranked prototypes are
removed from the condensing set in order to maintain the set threshold. The experimental
measurements presented in [16] show that dRHC-V2 filters the noisy data and keeps the
classification accuracy at high levels. However, dRHC-V2 is not a one pass algorithm. It
utilizes a ranking procedure that may not cope well with fast data streams. Even a quick
sort algorithm may be inappropriate for very fast data streams, where new instances arrive
at fast rates. This is another motive of the present work.

We propose a new variation of AIB2 called AIB2-V2. Like dRHC-V2, AIB2-V2 in-
corporates a mechanism for prototype weighting and removal. However, AIB2-V2 is of
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a more proactive nature. Weight values are calculated again as in the case of dRHC-V2
and as a new prototype enters the condensing set, the weakest (i.e., the one with the low-
est weight) of the existing prototypes is removed from the set. In other words, the newly
generated prototype replaces the weakest one. Contrary to dRHC-V2, AIB2-V2 does not
rank the prototypes. The prototype with the minimum weight is removed. Noisy proto-
types tend to involve low weight values. Hence, they are the first to be removed as new
prototypes get appended to the (dynamically updated) condensing set. The experimental
results show the new algorithm to be faster and more noise-tolerant than AIB2, with no
sacrifice in accuracy and computational complexity.

The paper is organized as follows: In section 2, the fundamental issues about DRTs
and their limitations are briefly presented. The section also includes a recap of the AIB2,
dRHC and dRHC-V2 algorithms. Section 3 considers in detail the AIB2-V2 algorithm.
In Section 4, the latter is experimentally compared to dRHC-V2 and to their predecessors
on sixteen datasets. The experimental study is complemented with a statistical validation
using the Wilcoxon signed rank test [7,23]. Section 5 suggests new directions for future
work and concludes the paper.

2. Background knowledge

2.1. Data Reduction Techniques

DRTs [9,24] pre-process the training data and construct a set of prototypes that is then
used by the k-NN classifier. DRTs can be grouped into two categories:

– Prototype Selection (PS) algorithms [9] select prototypes from the initial training set.
PS algorithms can be also grouped into two subcategories:
• PS-editing algorithms aim to remove noise from the training set and to “clean”

the borders between classes. This way, the classification accuracy is improved.
• PS-condensing algorithms aim for data condensation, i.e., the construction of a

small set of prototypes (condensing set) that represents the initial training data.
– Prototype Generation (PG) algorithms [24] generate prototypes by summarizing on

instances. As in the case of PS-condensing algorithms, the goal is data condensation.

Most PS-condensing and PG algorithms construct condensing sets by removing “in-
ternal” instances. These instances do not determine the borders between the classes and
can be removed without accuracy loss. Thus, PS-condensing algorithms try to select only
the instances that are close to the borders. These instances are called close-border in-
stances and are essential to classification. PG algorithms generate many prototypes for
the close-border areas and few for the “internal” areas. Unfortunately, most of PS and
PG algorithms cannot handle noise and this leads to lower data reduction rates. In the
case of PS-condensing algorithms, an instance with wrong class label is considered as
close-border instance and it is erroneously included in the condensing set, along with its
neighboring instances. In the case of PG algorithms, more prototypes are generated for
noisy data areas because neighboring instances of different classes cannot be summarized.
Consequently, for training sets with noise, editing should be applied beforehand.

Although there are some exceptions (e.g., the IBL algorithms [3,5]), DRTs are memory-
based. All training data are assumed to reside in main memory. Hence, DRTs are unsuit-
able for large datasets that cannot fit into memory and they cannot be used on devices
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with limited memory. In addition, DRTs are appropriate only for static datasets. Except
for few exceptions [21], they cannot process new incoming data, after the construction
of the condensing set. Equivalently, they cannot dynamically update the condensing set.
Suppose that a DRT constructs a condensing set by considering a training set TS. Also,
suppose that new training data D arrive. For the construction of an updated version of
the condensing set, the DRT needs to operate from scratch on the complete training set
TS ∪ D. This means that the entire training instances set need be considered. Hence,
DRTs are inappropriate for data streams where new training instances become gradually
available. The dRHC [19] and AIB2 [17,18] algorithms are PG algorithms that can be
used in such environments.

2.2. Review of dRHC and dRHC-V2

Dynamic RHC (dRHC) constitutes a descendant of the Reduction through Homogeneous
Clusters (RHC) algorithm [19]. Inherent to the latter is the concept of cluster homogene-
ity. RHC utilizes k-means clustering. Suppose that a training set C contains D classes.
Initially, the whole training set is considered as an unprocessed non-homogeneous cluster.
RHC averages out over the instances of each class in C and calculates a mean (centroid)
for each class. Then, k-means runs over C by using these class-centroids as initial seeds.
The result is D clusters. Each instance in C is assigned to one of the D clusters. Subse-
quently, the D clusters are considered. For each one homogeneous cluster (i.e., involving
instances of only one class), the cluster-mean comprises a representative prototype placed
in the condensing set. On the other hand, for each non-homogeneous cluster, the algorithm
proceeds recursively. When no non-homogeneous clusters are left, RHC terminates. This
way, each homogeneous cluster contributes a (representative) prototype to the condensing
set. Like most PG algorithms, RHC generates few prototypes for the “internal” data areas
and more prototypes for close-border data areas. Like most DRTs, RHC is memory-based
and as such it cannot manage data that cannot fit in memory and data streams.

The dRHC algorithm can manage large and / or streaming datasets. This is accom-
plished by considering the training data in the form of data segments. The size of the data
segment is fixed and it can be adjusted according to the available memory. In the case
of data streams, dRHC utilizes a buffer the size of the data segment that is set to accept
incoming instances. When the buffer gets full, its content is moved forward for process-
ing. Analogously, large datasets that cannot fit into memory are divided into equally sized
data segments appropriate to the device’s memory, and the latter are processed sequen-
tially. The algorithm includes two main stages: stage 1 is the initial condensing set con-
struction. It is executed only once utilizing the first data segment. It is identical to RHC
with one difference: each one prototype is stored alongside with a weight attribute value
equal to the number of instances it represents. Stage 2 is the condensing set update. It is
executed following the arrival of data segment number two and onwards. It processes the
prototypes of the current condensing set against the instances of a new data segment and
constructs a new set of clusters. It then proceeds in a way similar to that of RHC.

Figure 1 illustrates an example of the execution of the condensing set update stage.
Sub-figure (a) presents an existing condensing set that has three prototypes with the cor-
responding weights. Suppose that a new segment with seven new instances arrives (Sub-
figure (b)). Each new instance carries a weight value equal to one. At first, each new
instance is assigned to the cluster of the nearest prototype (Sub-figure (c)). No instance
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has been assigned to cluster B. Hence, the corresponding prototype remains unchanged.
The instances assigned to cluster A are of the same class as the class of the prototype in
A. Thus, A remains homogeneous. Therefore, the weighted mean in A is computed and it
is placed in the condensing set alongside with its new weight value. In effect, the proto-
type “moves” towards the new instances to represent better this data area (Sub-figure (d)).
Cluster C becomes non-homogeneous after the assignment of the new instances. For each
discrete class in C, the algorithm computes a weighted class mean and executes k-means.
Two new homogeneous clusters emerge (Sub-figures (d) and (e)). Eventually, dRHC com-
putes a weighted cluster mean for each cluster as well as the corresponding weights. They
constitute new prototypes and they are placed in the condensing set (Sub-figure (f)).

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of execution of the condensing set update stage of dRHC

RHC and dRHC are compared to each other and against state-of-the-art PS [11,3,14,26]
and PG [22] algorithms in [19]. The results obtained reveal that dRHC involves the lowest
preprocessing cost (i.e., it is the fastest to execute) and constructs the most compact con-
densing set without sacrificing accuracy. A week point is that noise in the training data
results into having a larger number of non-homogeneous clusters which, consequently,
leads to a lower reduction rate and to a higher preprocessing cost during the prototypes
construction stage.

The dRHC-V2 algorithm constitutes a dRHC variation that retains the size of the
condensing set within acceptable levels. The desirable maximum size of the condensing
set comprises a user-specified input parameter (T ). dRHC-V2 executes in a way simi-
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lar to dRHC with one difference: as soon as the size of the condensing set exceeds the
set number of T prototypes, the least important of the latter are removed from the con-
densing set, to save space. In effect, the mechanism for prototypes removal comprises a
post-processing step of the condensing set update stage. The input parameter T is set by
considering the available memory, the noise, and the desirable trade-off between compu-
tational cost and accuracy.

The stated functionality is implemented by having dRHC-V2 rank the prototypes ac-
cording to their importance, following the execution of each condensing set update stage.
Next, only the top T prototypes are retained. The prototype weights are vital for the rank-
ing procedure. It is reminded that the prototype weight depicts the number of instances
represented by the prototype in question. A straightforward approach could be to remove
the necessary number of prototypes with the lowest weights. However, this would not
comprise a fair criterion. An old prototype probably has a higher weight value than that
of a prototype generated at a subsequent condensing set update stage. Consequently, pro-
totypes generated at later stages would be prone for removal as compared to older ones.
Also, if the weight is adopted to comprise the sole ranking criterion, an old prototype of
high weight that has survived many executions of the condensing set updates will prob-
ably tend to be favored to survive against all recently generated prototypes and will thus
remain permantly in the condensing set. Therefore, prototype weight should not by itself
comprise the sole contributor to the calculation of the prototype’s rank measure.

To achieve fairness in prototype ranking, dRHC-V2 takes into consideration the weight
as well as the age of the prototype. Thus, dRHC-V2 holds a counter of the data segments
that have been processed at any one given instance in time. Each prototype has an extra
attribute that denotes the number (r) of the data segment corresponding to its genera-
tion. In this respect, r depicts the instance in time when the prototype in question got
appended to the condensing set. Following the completion of each condensing set update
stage, dRHC-V2 re-calculates the rank measure for all the condensing set prototypes. The
measure is called Average number of Arrivals (AnA). This measure incorporates the pro-
totype’s weight (w) and age (r) contributors. More specifically, the prototype’s AnA rank
measure is calculated as follows:

AnA =
w

ds− r + 1

where ds is the (sequence) number of the current data segment, r is the number of the
data segment corresponding to the prototype’s generation, and w is the prototype’s weight
value, i.e. the number of instances it represents. In other words, the denominator reflects
the age of the prototype. A prototype is weak when it has low AnA value.

Considering the above, prototypes generated by the latest condensing set update stage
have AnA values equal to their weight (w). For existing prototypes, their Ana values
are (re-)calculated by dividing their weights w by their (updated) age values. Prototypes
updated to represent new instances during the condensing set update stage have their AnA
value (re-)calculated by diving their new weight w value by their (updated) age value.

The post-processing step of dRHC-V2 executes following the completion of the ini-
tial condensing set construction stage, as well as the execution of each one subsequent
condensing set update stage. It operates on an already constructed condensing set, with
given a maximum condensing set size T . When the size of the updated condensing set is
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found to exceed the set maximum T , the training set is trimmed to only contain the top T
prototypes with the highest AnA values.

Noisy prototype instances present in the dRHC generated condensing sets usually
relate to low AnA values in dRHC-V2. As such, they are weak and comprise the first
candidates to be removed when the T threshold value is reached in dRHC-V2. Thus, con-
trary to dRHC, dRHC-V2 can deal with datasets that involve noise and, for such datasets,
it achieves higher classification accuracy compared to dRHC.

Despite its fairness in treating the newly generated protoypes, dRHC-V2 is not tuned
for handling the concept drift phenomenon [25] that may be present in data streams.
Newly generated prototypes or prototypes updated during a condensing set update stage
are in no way favored to survive and remain in the condensing set by removing older ones.

2.3. Review of AIB2

The Abstraction IB2 (AIB2) algorithm is a prototype generation version of the well-
known IB2 condensing algorithm [2,3]. Contrary to most DRTs, the latter is a one-pass
algorithm and constructs its condensing set in an incremental manner3. This means that
IB2 can add new prototypes to an already constructed condensing set without needing
to retain the instances that had been used for the initial construction of the condensing
set. From this point of view, IB2 is suitable for data streams and for large datasets that
cannot fit into the device’s memory. IB2 starts by moving the first training instance to
the condensing set. For each following training instance inst, IB2 examines the current
condensing set and retrieves the nearest prototype p to inst. If inst has a different class
from p, it is moved to the condensing set. Otherwise, it is ignored.

AIB2 inherits all the properties of IB2. In addition, AIB2 not only appends new pro-
totypes to an already constructed condensing set; it may also update existing prototypes.
The motive behind the development of AIB2 is that prototypes should be the centroids of
the instances they represent. Thus, if the examined instance has the same class label with
its nearest prototype in the current condensing set, the examined instance is not ignored as
in the case of IB2. Instead, it contributes to the shaping of the condensing set by updating
the nearest prototype. To accomplish this, AIB2 assigns a weight value to each prototype.
The weight value denotes the number of instances that the prototype represents and it
is used to move the prototype in the data space. In effect, the nearest prototype moves
towards the examined instance.

Considering the above, AIB2 improves on the representation effectiveness of the con-
densing set prototypes in comparison with IB2. Consequently, higher classification accu-
racy is achieved. Moreover, by having prototypes act as centroids for the instances they
represent, AIB2 reduces the number of prototypes in the condensing set. In this respect,
higher reduction rates and lower computational cost are achieved when compared to IB2.
Contrary to dRHC and dRHC-V2, AIB2 does not consider the dataset in the form of data
segments. Each instance is processed individually. Like dRHC, AIB2 is also subject to the
noise effect: a noisy instance nearest to a prototype is likely to be of a different class. As
such, its inclusion in the condensing set increases the number of prototypes in the latter.

3 According to the reviews [9,24], DRTs can be either incremental or decremental. This depends on how they
construct the condensing set. Here, the term incremental refers to the algorithm’s ability to update an already
constructed condensing set
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(a) Condensing
Set

(b) Instance ar-
rival

(c) Nearest proto-
type update

Fig. 2. AIB2 example: repositioning an existing prototype. CS prototypes are colored
black. The new instance is colored white. Shapes indicate classes.

(a) Condensing
Set

(b) Instance ar-
rival

(c) The new In-
stance enters the
condensing set

Fig. 3. AIB2 example: new prototype enters the condensing set. CS prototypes are colored
black. The new instance is colored white. Shapes indicate classes.

AIB2 execution examples are depicted in Figures 2 and 3. Initially, the condensing
set includes three prototypes. Suppose that a new circle instance a arrives (Figure 2(b)).
Since a is closer to a prototype P of the same class, P moves towards a and its weight
is increased by one (Figure 2(c)). On the other hand, suppose that a new square instance,
a, arrives (Figure 3(b)). Since a is closer to a prototype of a different class, a enters the
condensing set forming a new prototype the weight of which is set to one (Figure 3(c)).

3. The AIB2-V2 Algorithm

One may claim that dRHC and AIB2 are also appropriate for data streams and large
datasets. This is not true since the repetitive generation of new prototypes is likely to lead
to a very large condensing set, one that is inappropriate for instance-based classification.
This fact renders dRHC and AIB2 inapplicable, especially on infinite data streams [13].
Therefore, there is a need of a mechanism for the size of the condensing set to remain
compact. The dRHC-V2 algorithm is seen to handle large datasets and data streams, yet
its prototype ranking stage may render its use problematic especially in cases of very
fast (i.e., high velocity) data streams. Even a quick sort procedure may not cope with
very fast rates of instance arrivals. Therefore, dRHC-V2 may involve a large queue of
data segments that await their turn for processing. In case of high speed data streaming,
prototypes ranking should be avoided.

Yet another weakness of dRHC-V2 is that it first appends a set of new prototypes to
an already existing condensing set and it then removes the prototypes with the lowest
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AnA values (a.k.a. the weakest prototypes). Since the number of new prototypes into
the condensing set during each condensing set update stage is not known beforehand,
the reverse cannot be implemented. Thus, the size of the condensing set may temporarily
exceed the size of available memory, an issue to be taken into consideration when setting
the T parameter for dRHC-V2.

AIB2-V2 is a simple variation of AIB2 that successfully addresses the stated dRHC-
V2 drawbacks. Like AIB2, AIB2-V2 does not consider the new data as data segments.
Each new instance is considered individually. During each iteration of the algorithm, an
existing prototype either gets updated or a new prototype is generated. Like in dRHC-V2,
AIB2-V2 is given a T threshold value. When the generation of a new prototype results
into a condensing set whose size exceeds T , the weakest prototype gets discarded. Since,
only one prototype is discarded, there is no need for the algorithm to rank the prototypes.
When a prototype need be removed to retain the size of the condensing set within the set
T value, AIB2-V2 calculates the AnA value of each prototype and removes the weakest
one. One pass over the prototypes set suffices. In case of a tie involving two or more
prototypes having the same (lowest) AnA value, the oldest one gets removed.

At each one point in time (clock tick), one instance arrives and it is examined against
the existing condensing set. There exist no data segments in the logic of the AIB2-V2
algorithm. A clock tick corresponds to incrementing the time value by 1. The newly gen-
erated prototype is assigned the current time value. A prototype created at “time” r is of
age t− r when the current time is t. Hence, the value of AnA is calculated as follows:

AnA =
w

t− r + 1

with w being the given prototype’s weight.
The pseudocode in Algorithm 1 presents the AIB2-V2 algorithm. Like AIB2, when

an instance inst from the training set TS has the same class as its nearest prototype nn
in the current condensing set CS, nn’s attributes are updated by taking into consideration
its current weight and the attributes of inst. Of course, since inst is from now on to
be represented by nn, the weight of nn is increased by 1 (lines 32–35). The difference
between AIB2-V2 and AIB2 is depicted in lines 16–22 and 27–29. The algorithm starts to
remove prototypes when |CS| > T . The for-loop in lines 12–23 performs the single pass
over the prototypes and finds the nearest prototype nn. Simultaneously, it computes the
corresponding AnA values and marks the prototype p min with the lowest AnA value.
Next, if inst enters CS, p min is removed from CS (line 28). p min is retrieved only
when the size of the condensing set exceeds the set T threshold value. Contrary to the
ranking procedure executed by dRHC-V2 for each data segment, here, there is no extra
cost for finding the prototype with the lowest AnA. It is retrieved by the single pass over
the prototypes. It is worth noting that the new prototype enters at the end of CS. Thus,
the prototypes in CS are stored sorted by their age values, from the oldest to the newest.
Therefore, in case of ties, p min is the oldest prototype with the lowest AnA value.

As already stated, both dRHC and AIB2 are not noise-tolerant. In the case of their
-V2 variations, it is noted that noisy prototypes usually involve low AnA values and they
are amongst the first candidates for removal from the condensing set. In this respect, it
may safely be assumed that both dRHC-V2 and AIB2-V2 are noise tolerant algorithms,
provided that in the course of condensing set construction the pre-specified T value is
exceeded for the algorithms to start removing prototypes from the condensing set. This
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Algorithm 1 AIB2-V2
Input: TS, T Output: CS

1: time← 1
2: CS ← ∅
3: move first instance inst of TS to CS
4: instweight ← 1
5: instr ← time
6: while there exist instances in TS do
7: time← time+ 1
8: inst← next instance in TS
9: minimum AnA←∞

10: p min← NULL
11: nn← NULL
12: for each prototype p ∈ CS do
13: if p is the nearest prototype of inst then
14: nn← p
15: end if
16: if |CS| > T then
17: pAnA ← pweight

time−pr+1
18: if pAnA < minimum AnA then
19: minimum AnA← pAnA

20: p min← p
21: end if
22: end if
23: end for
24: if nnclass 6= instclass then
25: instweight ← 1
26: instr ← time
27: if |CS| > T then
28: CS ← CS − {p min}
29: end if
30: CS ← CS ∪ {inst}
31: else
32: for each attribute attr(i) of nn do
33: nnattr(i) ←

nnattr(i)×nnweight+instattr(i)

nnweight+1

34: end for
35: nnweight ← nnweight + 1
36: end if
37: TS ← TS − {inst}
38: end while
39: return CS
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is yet one more issue to be taken into consideration when setting the value of the T
parameter. Setting T to a high value effectively disables the noise tolerant character of the
algorithm, and setting it too low ends up in having the algorithm remove useful prototypes
from the condensing set, especially in cases when the size of the latter is relatively small.

4. Performance Evaluation

4.1. Experimental Setup

The performance of AIB2-V2 was tested against dRHC-V2, dRHC and AIB2 using four-
teen well-known and widely-used datasets distributed by the KEEL repository4 [4]. Their
profile is summarized in Table 1. It is worth mentioning that in [19] and [18], dRHC and
AIB2 were evaluated against five state-of-the-art DRTs by utilizing the same fourteen
datasets. More specifically, dRHC and AIB2 were experimentally evaluated against the
CNN-rule [11], IB2 [3,2], PSC [14,15], ENN-rule [26] and RSP3 [22]. In this respect,
when dRHC-V2 and AIB2-V2 are compared to dRHC and AIB2, they are “indirectly”
compared to these five data reduction techniques. We did not include the PS and PG algo-
rithms reviewed in [21] because they either focus on concept drift detection or introduce
high computational cost. Consequently, they are inappropriate to be compared against
AIB2-V2 and dRHC-V2. It is worth mentioning that the reader may execute all dRHC-V2,
AIB2-V2, their predecessors and the aforementioned algorithms using the stated datasets
at the publicly accessible WebDR5. environment [20].

Table 1. Dataset description

Dataset Size Attributes Classes

Letter Image Recognition (LIR) 20,000 16 26
Magic G. Telescope (MGT) 19,020 10 2

Pen-Digits (PD) 10,992 16 10
Landsat Satellite (LS) 6,435 36 6

Shuttle (SH) 58,000 9 7
Texture (TXR) 5,500 40 11
Phoneme (PH) 5,404 5 2
Balance (BL) 625 4 3
Pima (PM) 768 8 2
Ecoli (ECL) 336 7 8
Yeast (YS) 1,484 8 10

Twonorm (TN) 7,400 20 2
MONK 2 (MN2) 432 6 2
KddCup (KDD) 141,481 36 23

4 http://sci2s.ugr.es/keel/datasets.php
5 https://atropos.uom.gr/webdr

http://sci2s.ugr.es/keel/datasets.php
https://atropos.uom.gr/webdr
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The LIR, PD, SH, PH, TXR datasets are all noise-free. It is expected that both dRHC-
V2 and AIB2-V2 will perform better on noisy datasets by achieving higher classification
accuracy than dRHC and AIB2, respectively. Thus, we built two additional datasets with
noise by introducing a 10% of random noise to the PD and LS datasets. The noise was
introduced by setting 10% of the training instances to a randomly chosen (different) class
label. We refer to these datasets as PDN and LSN, respectively.

The algorithms were coded in C, adopting the Euclidean distance as the distance met-
ric. We randomized the datasets that were distributed sorted on the class label. The KDD
dataset involves a large number of duplicates, their ranges varying widely. We removed
duplicates and normalized the attributes to the [0, 1] range. Furthermore, we removed the
nominal and the fixed-value attributes that exist in KDD. No other transformation was
applied to all other datasets. For each one dataset and algorithm, Accuracy (ACC), Re-
duction Rate (RR), and Preprocessing Cost (PC) in terms of distance computations were
calculated. The average values of the three reported measurements were obtained via five-
fold-cross-validation. As expected, the higher the reduction rates, the fewer distances are
computed during the classification step and, as a consequence, the lower is the computa-
tional cost introduced by k-NN classifier. Therefore, we did not measure the cost of the
classification process.

Since the concept drift phenomenon is not present in the datasets used, we did not
implement any special evaluation method for data streams, like test-then-train [8]. Clas-
sification accuracy was estimated by running k-NN classification with k = 1. The PC
cost measurements conducted do not include the cost overhead introduced by the proto-
types ranking in the case of dRHC2-V2. The cost of ranking is O(n log n) on average
when a quicksort approach is used. When the threshold is reached, dRHC-V2 ranks the
prototypes after the arrival of each data segment. AIB2-V2 avoids the cost of ranking.

Both dRHC and dRHC-V2 consider data in data segments. Datasets are split into data
segments of a specific size. Table 2 lists the segment size and the number of segments used
for each dataset. It is worth noting that the experiments conducted empirically in [19]
reveal that the size of the data segment does not influence the performance of dRHC.
Hence, the experimental measurements reported do not involve different segment sizes.

Both AIB2-V2 and dRHC-V2 utilize the T threshold value, that is a ceiling value for
the condensing set size. If the condensing set size exceeds T , both algorithms remove
prototypes from the condensing set in order to maintain its size equal to T . A number of
runs were conducted, with T assuming a value from a set of percentages of the size of the
condensing set constructed by dRHC, namely 85%, 70%, 55%, and 40%. This is done in
order to be fair when comparing the two algorithms, since dRHC and and AIB2 achieve
similar data reduction rates. Table 2 lists the T values used.

4.2. Experimental Results

Two types of experiments were conducted. The first type focuses on measuring the perfor-
mance, following the arrival of all data. The second type measures the data reduction rate
(i.e., the size of the condensing set) and the classification accuracy achieved following the
arrival and the processing of each one data segment.

Table 3 lists the performance measurements conducted following the arrival of all
data segments. Table 3 lists the accuracy achieved by the 1-NN classifier operating on
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Table 2. Segment size and T parameter values

Dataset Segment Segments CS Size CS Size CS Size CS Size
size T = 85% T = 70% T = 55% T = 40%

LIR 2,000 8 1,608 1,324 1.040 757
MGT 1.902 8 3,283 2,703 2,124 1,545
PD 1,000 9 207 171 134 97
LS 572 9 510 420 330 240
SH 1,856 25 197 162 128 93

TXR 440 10 189 156 122 89
PH 500 9 649 534 420 305
BL 100 5 93 77 60 44
PM 100 7 182 150 118 86
ECL 100 3 71 58 46 33
YS 396 3 492 405 318 232
TN 592 10 233 192 151 110

MN2 115 3 9 8 6 4
KDD 4,000 29 752 620 487 354
PDN 1,000 9 2,072 1,706 1,341 975
LSN 572 9 1,249 1,029 808 588

the condensing set of each algorithm. The best results are highlighted in boldface. More-
over, Table 3 lists the reduction rates achieved by the algorithms and the corresponding
preprocessing costs in terms of millions of distance computations. Although, DRTs are
adopted when the conventional k-NN classifier cannot be applied due to its limitations,
for reference, Table 3 presents the accuracy measurements achieved by applying k-NN on
the original complete training set.

The accuracy measurements for AIB2-V2 are quite promising (see in Table 3). In
cases of noise-free datasets, the k-NN classifier that operates on condensing sets built
by AIB2-V2 achieves accuracy values comparable to those of the dRHC and AIB2 algo-
rithms at a lower (classification stage) computational cost, and at a lower preprocessing
cost. In cases of datasets that contain noise, the gain is higher. AIB2-V2 and dRHC-V2 are
measured to achieve higher classification accuracy than dRHC and AIB2. This happens
because noisy data originating prototypes relate to low importance (i.e. AnA) values and
as such they are removed from the condensing set. Hence, in cases of datasets with a high
level of noise (e.g., MGT, PDN, LSN, BL), AIB2-V2 and dRHC-V2 with the lowest T
value were found to achieve even higher accuracy than the conventional k-NN classifier.
It is noted that the lower is the T value used, the higher the reduction rate and the lower
the preprocessing cost achieved. Since AIB2-V2 and dRHC-V2 adopt a ceiling value for
the maximum condensing set size and maintain it throughout the whole execution, the
reduction rate (RR) and processing cost (PC) results obtained were as expected; the size
of the condensing set and the processing cost increase until the set maximum value T is
reached and then they remain constant, for all the T values used.

It is not clear which of AIB2-V2 and dRHC-V2 are more accurate. In Table 3, dRHC-
V2 is seen to construct its condensing set by computing fewer distances than AIB2-V2.
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However, it ranks the prototypes and it may be problematic in cases of very fast data
streams. Also, the average measurements (AVG) depicted in the last row of Table 3 sug-
gest that dRHC-V2 and AIB2-V2 can achieve even better accuracy than their predecessors
by avoiding the arbitrary growth in size of the condensing set, and by reducing the pre-
processing cost.

Tables 3 lists performance rates measured after the arrival of the last data segment,
i.e., when all data are processed. An additional set of experiments conducted involved the
measuring of accuracy and condensing set sizes following the processing of each one data
segment by executing the algorithms on ten datasets. With the exception of the Shuttle
(SH) dataset, the largest datasets were used for this set of experimental runs. In the case
of the Shuttle (SH) dataset accuracy does not present an essential variance from one data
segment to another and for this reason the dataset was excluded. For AIB2-V2, whereby
processing does not involve the use of data segments, accuracy values were measured
utilizing condensing set snapshots as they were following the processing of s prototypes,
where s is the “Segment size” value listed in Table 2.

Figures 4– 13 present the results obtained from this new set of experiments. Each
figure involves two diagrams. Diagram (a) plots the size of the condensing set following
the arrival of each one data segment (numbered 1,2,. . . ) on the x axis. The size of the
condensing set is seen to rise and start to level off when T is reached. Diagram (b) plots the
accuracy achieved following the processing of each (subsequent) data segment. It is worth
noting that for the MGT, PDN and LSN datasets which involve a relatively high level of
noise, the classification accuracy increases considerably when the prototype removing
mechanism is enabled. Thus algorithms that adopt low T values perform better in cases
of noisy datasets. In general, we observe accuracy tends to rise relatively fast for the first
few data segments that are being processed and it then tends to level off either gradually
(e.g. for LS, PH) or a bit more abruptly (LIR, PD, TXR and KDD).

4.3. Wilcoxon Signed Rank Test results

The experimental results obtained are herewith complemented by the Wilcoxon signed
rank test results [7,23] in order to statistically confirm the validity of the ACC measure-
ments presented in Table 3. The Wilcoxon signed rank test compares all the algorithms
in pairs, considering the accuracy achieved against each one dataset. All four versions
of dRHC(-V2) and AIB2(-V2) were considered, using a number of T values. Since both
dRHC-V2 and AIB2-V2 dominate in terms of the RR and PC results obtained, there was
no need to include the corresponding measures in the test.

Table 4 presents the Wilcoxon signed rank test results obtained. The column labeled
“w/l/t” lists the number of wins, losses and ties for each one comparison test. The column
labeled “Wilcoxon” value (last column) lists a figure that quantifies the significance of the
measured difference between the two algorithms compared. When it is lower than 0.05,
the difference is statistically significant.

Despite the fact that AIB2-V2 is seen to involve more wins over dRHC-V2, the results
in Table 3 indicate that there exists no statistically significant difference between the two
algorithms. Furthermore, there is no statistical difference between AIB2-V2 and AIB2. In
the case of dRHC-V2 and dRHC, the former is seen to outperform the latter when T=85%,
and when T=70%. There is no statistical difference between the two when T=55%, and
when T=40%. The results obtained reveal that both dRHC-V2 and AIB2-V2 can be used
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Table 3. Comparisons in terms of Accuracy (ACC(%)), Reduction Rates (RR(%)) and
Preprocessing Cost(M)

Data T% 1NN dRHC dRHC- AIB2 AIB2-
V2 V2

LIR

85:

95.83 93.920

93.530

94.145
93.775

70: 92.835 92.750
55: 91.660 91.440
40: 88.845 89.075

MGT

85:

78.14 72.965

74.606

73.286

75.268
70: 75.447 75.662
55: 75.920 75.994
40: 76.393 76.236

PD

85:

99.35 98.490

98.508
98.326

98.226
70: 98.235 98.062
55: 97.953 97.316
40: 97.471 96.543

PDN

85:

89.52 75.864

81.832

77.265

84.125
70: 85.862 86.672
55: 89.065 88.719
40: 91.394 90.175

LS

85:

90.60 88.500

88.671

89.417

89.573
70: 88.920 89.402
55: 88.687 88.873
40: 88.314 88.733

LSN

85:

81.99 76.566

79.487

77.653

81.663
70: 81.974 82.828
55: 83.357 83.807
40: 84.646 84.880

SH

85:

99.82 99.695

99.667

99.726
99.671

70: 99.624 99.621
55: 99.590 99.593
40: 99.400 99.243

TXR

85:

99.02 97.600

97.291

97.691
97.400

70: 98.836 96.909
55: 96.218 96.255
40: 95.182 94.982

PH

85:

90.10 85.381

85.667
85.067

85.474
70: 85.104 85.363
55: 84.955 84.327
40: 83.845 83.623

BL

85:

78.40 70.560

74.080

68.480

77.600
70: 77.600 78.080
55: 79.840 79.520
40: 81.790 77.760

PM

85:

68.36 63.925

66.792

67.321

66.796
70: 67.572 64.972
55: 69.913 67.445
40: 67.184 68.481

ECL

85:

79.78 71.462

74.732

72.963

72.963
70: 76.216 74.460
55: 75.316 71.185
40: 77.094 70.597

YS

85:

52.02 48.379

49.256

48.247

49.258
70: 49.864 49.932
55: 50.743 49.594
40: 51.415 49.662

TN

85:

94.88 93.081

93.838

93.054

94.865
70: 94.514 95.203
55: 94.986 95.351
40: 95.459 95.568

MN2

85:

90.51 97.680
96.517

93.293

91.890
70: 95.589 86.792
55: 91.190 81.489
40: 80.281 81.251

KDD

85:

99.71 99.424

99.449

99.414

99.469
70: 99.464 99.444
55: 99.443 99.443
40: 99.353 99.309

AVG

85:

86.75 83.343

84.620

83.459

84.876
70: 85.479 84.760
55: 85.552 84.397
40: 84.879 84.132

dRHC dRHC-V2 AIB2 AIB2-V2
RR PC RR PC RR PC RR PC

88.18 19.574

89.95 19.179

88.14 20.098

89.95 19.387
91.73 17.721 91.73 17.488
93.50 15.362 93.50 14.820
95.27 12.293 95.27 11.337

74.62 26.025

78.42 25.851

71.87 33.079

78.42 31.259
82.24 24.414 82.24 28.551
86.04 21.709 86.04 24.648
89.85 17.730 89.85 19.513

97.23 1.438

97.65 1.410

97.19 1.381

97.65 1.336
98.06 1.317 98.06 1.234
98.48 1.155 98.48 1.057
98.90 0.925 98.90 0.811

72.28 9.502

76.44 9.407

70.04 11.572

76.44 11.045
80.60 8.908 80.60 10.128
84.75 7.964 84.75 8.786
88.91 6.504 88.91 6.998

88.35 1.531

90.09 1.511

86.77 1.916

90.09 1.785
91.84 1.422 91.84 1.615
93.59 1.261 93.5 1.378
95.34 1.029 95.34 1.075

71.44 3.511

75.74 3.477

68.28 4.349

75.74 4.101
80.01 3.288 80.01 3.737
84.31 2.932 84.31 3.213
88.58 2.390 88.58 2.532

99.50 7.977

99.58 7.614

99.45 8.041

99.58 7.420
99.65 6.911 99.65 6.540
99.72 5.946 99.72 5.453
99.80 4.729 99.80 4.127

94.95 0.685

95.71 0.669

94.91 0.660

95.71 0.637
96.46 0.617 96.46 0.575
97.23 0.533 97.23 0.481
97.98 0.429 97.98 0.369

82.34 1.638

84.99 1.615

81.50 1.883

84.99 1.808
87.65 1.515 87.65 1.651
90.29 1.333 90.29 1.420
92.95 1.077 92.95 1.119

78.12 0.029

81.40 0.029

70.56 0.037

81.40 0.032
84.60 0.027 84.60 0.028
88.00 0.025 88.00 0.024
91.20 0.021 91.20 0.018

65.11 0.064

70.41 0.063

64.75 0.062

70.41 0.060
75.61 0.060 75.61 0.056
80.81 0.055 80.81 0.049
86.02 0.046 86.02 0.040

68.92 0.015

73.61 0.015

68.70 0.011

73.61 0.011
78.44 0.015 78.44 0.011
82.90 0.014 82.90 0.009
87.73 0.013 87.73 0.007

51.23 0.306

58.59 0.306

47.10 0.366

58.59 0.349
65.91 0.306 65.91 0.321
73.23 0.278 73.23 0.278
80.47 0.244 80.47 0.222

95.37 0.695

96.06 0.688

93.47 1.080

96.06 0.917
96.76 0.654 96.76 0.822
97.45 0.590 97.45 0.701
98.14 0.495 98.14 0.551

96.88 0.004

97.63 0.004

93.18 0.005

97.63 0.003
97.80 0.004 97.80 0.003
98.27 0.004 98.27 0.002
98.84 0.004 98.84 0.001

99.22 54.70

99.34 53.555

99.21 58.705

99.34 56.947
99.45 49.811 99.45 52.493
99.57 43.476 99.57 45.319
99.69 34.603 99.69 35.609

82.73 7.981

85.35 7.837

68.28 8.952

85.35 8.569
87.92 7.312 87.92 7.828
90.51 6.415 90.51 6.727
93.10 5.158 93.10 5.271
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(a) Condensing Set size (b) Classification Accuracy

Fig. 4. LIR: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 5. MGT: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 6. PD: Condensing Set Size and Classification Accuracy per data segment
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(a) Condensing Set size (b) Classification Accuracy

Fig. 7. PDN: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 8. LS: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 9. LSN: Condensing Set Size and Classification Accuracy per data segment
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(a) Condensing Set size (b) Classification Accuracy

Fig. 10. TXR: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 11. PH: Condensing Set Size and Classification Accuracy per data segment

(a) Condensing Set size (b) Classification Accuracy

Fig. 12. TN: Condensing Set Size and Classification Accuracy per data segment
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(a) Condensing Set size (b) Classification Accuracy

Fig. 13. KDD: Condensing Set Size and Classification Accuracy per data segment

instead of dRHC and AIB2 without loss of accuracy when there is need for a condensing
set with a fixed size.

Table 4. Results of Wilcoxon signed rank test

Methods Accuracy
w/l/t Wilcoxon

dRHC vs dRHC-V2 (T=85%) 4/12/0 0.030
dRHC vs dRHC-V2 (T=70%) 5/11/0 0.026
dRHC vs dRHC-V2 (T=55%) 6/10/0 0.121
dRHC vs dRHC-V2 (T=40%) 8/8/0 0.326
AIB2 vs AIB2-V2 (T=85%) 6/9/1 0.132
AIB2 vs AIB2-V2 (T=70%) 7/9/0 0.255
AIB2 vs AIB2-V2 (T=55%) 8/8/0 0.756
AIB2 vs AIB2-V2 (T=40%) 7/9/0 0.836

dRHC-V2 (T=85%) vs AIB2-V2 (T=85%) 4/12/0 0.179
dRHC-V2 (T=70%) vs AIB2-V2 (T=70%) 8/8/0 0.918
dRHC-V2 (T=55%) vs AIB2-V2 (T=55%) 6/9/0 0.061
dRHC-V2 (T=40%) vs AIB2-V2 (T=40%) 6/10/0 0.352

dRHC vs AIB2 7/9 0.408

5. Conclusion and Directions for Further Work

A new noise-tolerant prototype generation algorithm is considered in detail. It maintains a
fixed size condensing set by monitoring a stream of training data, or by managing a large
dataset that cannot fit in memory. The new algorithm is code-named AIB2-V2 and has
some common characteristics with dRHC-V2. Both comprise improved variations of the
AIB2 and dRHC algorithms, respectively. Contrary to dRHC-V2, AIB2-V2 avoids rank-
ing when replacing its prototypes. When a new prototype enters the condensing set and
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the threshold limit has been reached, the pre-marked prototype with the lowest AnA is
removed. The experimental study yields promising results. Even when the condensing set
generated by the new algorithm is less than half the size of that generated by the AIB2 al-
gorithm, there is no loss in accuracy and in many cases the accuracy achieved by AIB2-V2
is even higher. By having the size of the condensing set to vary up to a pre-specified max-
imum value T and practically remain constant, the preprocessing costs involved remain
low and constant throughout the execution of each one of the two algorithms. Moreover,
the latter can be implemented to execute on devices with limited memory.

Suggested directions for future work include the development of new variations of
noise-tolerant prototype generation algorithms that will fully exploit the potential of han-
dling data streams involving the concept drift. This could be achieved by further increas-
ing the value of the importance measure for newly generated prototypes, next to that of
old prototypes involving static attribute values in the course of time. Moreover, we also
plan to introduce parallelism to the DRTs, in order to speed up the construction of the
condensing set.
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4. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garcı́a, S.: KEEL data-mining soft-
ware tool: Data set repository, integration of algorithms and experimental analysis framework.
Multiple-Valued Logic and Soft Computing 17(2-3), 255–287 (2011)
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Advances in Databases and Information Systems. pp. 88–102. Springer International Publish-
ing, Cham (2017)

17. Ougiaroglou, S., Evangelidis, G.: AIB2: An abstraction data reduction technique based on ib2.
In: Proceedings of the 6th Balkan Conference in Informatics. pp. 13–16. BCI ’13, ACM, New
York, NY, USA (2013), http://doi.acm.org/10.1145/2490257.2490260

18. Ougiaroglou, S., Evangelidis, G.: Efficient data abstraction using weighted IB2 proto-
types. Comput. Sci. Inf. Syst. 11(2), 665–678 (2014), http://dx.doi.org/10.2298/
CSIS140212036O

19. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduction for ef-
ficient k-NN classification. Pattern Analysis and Applications 19(1), 93–109 (2014), http:
//dx.doi.org/10.1007/s10044-014-0393-7

20. Ougiaroglou, S., Evangelidis, G.: WebDR: A web workbench for data reduction. In: Calders,
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