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Dragan Ivetić1
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Abstract. A common problem when working with medical records is that some
measurements are missing. The simplest and the most common solution, especially
in machine learning domain, is to exclude records with incomplete data. This ap-
proach produces datasets with reduced statistical power and can even lead to biased
or erroneous final results. There are, however, many proposed imputing methods
for missing data. Although some of them, such as multiple imputation, are mature
and well researched, they can be prone to misuse and are not always suitable for
building complex frameworks. This paper explores neural networks as a potential
tool for imputing univariate missing laboratory data during cardiometabolic risk as-
sessment, comparing it to other simple methods that could be easily set up and used
further in building predictive models. We have found that neural networks outper-
form other algorithms for diverse fraction of missing data and different mechanisms
causing their missingness.
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1. Introduction

Missing data is a well known and commonly present problem in both research and indus-
try. Many datasets contain information that is incomplete, due to a variety of reasons: data
could have been unavailable, recorded incorrectly or not collected at all, damaged or lost.
Health data is not an exception. Actually, those datasets are very prone to having different
types of missing data according to its structure, volume and relation with observed data .
Not dealing with missing data properly could represent a significant problem for further
analysis or building predictive models [23] [33] [28] [12] [1] [41].

The subject of this study is to explore whether a machine learning method, such as
an artificial neural network (ANN), could serve as an imputation tool for missing data in
cardiometabolic risk assessment (CMR), comparing it to several other single imputation
statistics methods. More specifically, we are interested in imputation of missing values
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that constitute outcome CMR values and which would not be further used in building
final predictive models, rather than missing values for predictors or outcomes on their
own.

1.1. Cardio-Metabolic Risk Assessment

There is a number of factors that participate in development of cardiovascular diseases
and which are related to CMR [37] [32] [16]. In a clinical routine for obese patients, an
evaluation of CMR starts with an anamnesis, an estimation of nutritional status and an
adipose tissue distribution. These steps are usually performed by simple anthropometric
measurements. The following steps include laboratory analyses of lipids and lipoproteins
levels, glycemia, insulinemia and other indicators of obesity comorbidities. Since those
procedures have a higher level of invasiveness and they induce additional costs, there is
an interest in building predictive models for risk scores that rely only upon inexpensive,
commonly available and non-laboratory data.

But, in order to build that cost-effective, prognostic machine learning model, such
as the one based on simple parameters and neural network algorithm [19], we need this
laboratory data, since it is used for computing the outcome (CMR) values in the data pre-
processing phase. If all such subjects, for which only some laboratory data is missing,
are omitted, then the number of outcomes, and accordingly, the dataset used for training,
could be significantly reduced, making learning more challenging and the results poten-
tially erroneous.

1.2. Missing Data and Machine Learning

In statistics, analysis of the missing data itself is an important task. Data can be missing as
an univariate or a multivariate, missingness can follow some pattern and an origin of the
missingness could be explained by the observed or the missing data itself. We are using
standard notion when differentiating origin of missingness, in literature usually called the
missingness mechanism [34] [24]:

– When missing data does not depend neither on observed nor on unobserved values
(missing completely at random; MCAR).

– When missing data does not depend on the unobserved, but may depend on the ob-
served values (missing at random; MAR).

– When missing data depends on the unobserved values themselves (missing not at
random; MNAR).

Based on the analysis of missing data itself, an appropriate statistic method could be
performed for dealing with missing data. Removing the data that contains the missing
information is the easiest and, very often, a method of choice in machine learning appli-
cation domain. But, this approach, where only the complete cases are used, could lead
to flawed or unreliable results. Even in the case of MCAR data, where deletion produces
unbiased results, we could end up reducing analysis power and weakening some of our
tests [10]. In the case of MAR or MNAR data, when there is an underlying reason for
missingness, and especially when proportion of missing data is larger, we must exercise
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caution. In contrast to ignoring data with missing values, one could choose some im-
putation method if assumptions for the selected method are met [26]. There are many
proposed imputation methods. Properly chosen and used method can significantly reduce
the impact which missing data has on the research result. That means that an approach to
a missing data problem should be careful, in order to make an educated decision whether
the data could safely be deleted, or how and why some imputation method is chosen.

On the other hand, in an engineering and machine learning domain, such analysis is
usually not performed, mostly because engineers are not very interested in explaining
the data, but more in building and validating their models using that data [4] [40]. If an
imputation method that is not sensitive to the nature or volume of missing data and that
does not require previous analysis could be developed, that would enable automation of
the data preprocessing and feature engineering task, which many recognize as one of the
holy grails of machine learning [5].

Machine learning methods themselves are good candidates for such a task, since in
their essence is to learn complex relations and learn them from the data without addi-
tional instructions. Therefore, we choose to explore how one machine learning algorithm
handles imputation in different scenarios with missing data in CMR assessment. We have
chosen ANN, amongst other possible algorithms, since it is already shown that it can suc-
cessfully predict CRM from non-laboratory values, and we presume that there will also
exist a dependency function between CMR and laboratory data which some ANNs can
approximate. Accordingly, in this paper, we have considered different amount with dif-
ferent missingness mechanism of univariate missing laboratory data, hypothesizing that
there are ANNs which could successfully deal with it, regardless of the nature and volume
of the data that is missing.

There are some previous results that explore comparison between methods for impu-
tation [25] [11] [14] and even study ANNs within missing data problem [3] [22] [21] [29]
[36]. However, all of the research which has been pointed out is somewhat different than
our goal. These papers either: explore imputation for predictor values; handle missing data
to explore and describe the data, observe the estimates such as regression coefficients and
standard errors; use multiple imputation; use a large number of predictors and big data to
train machine learning models. On the other side, our subject is imputation through ANN
that explores imputing values that are used to calculate outcome values, further leading to
building predictive, machine learning, models and one that uses small, simple structured
data and explore all three missingness mechanisms. Moreover, although ANNs are used
to predict CMR, they are not researched as imputation tool in this domain and in this
manner.

2. Methodology

Through simulation and analysis, we have compared neural networks with other single
imputation methods in univariate missing data for laboratory values through different
settings that reflect different missingness scenarios.

Firstly, we have established structures of ANNs that will be used in comparison. Then
we have simulated different scenarios of missing data occurrence and compared perfor-
mance of ANNs with other methods using several measurements.
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2.1. Data

Dataset was produced as a result of the study at the Department of Endocrinology, Dia-
betes and Metabolic Disorders of the Clinical Center of Vojvodina in Novi Sad, Serbia.
The inquired group consisted of 2985 individual respondents, 1980 women and 1005
men, aged 18 to 69 years. The study was conducted in accordance with the Declaration
of Helsinki and approved by Ethical Committee of the Clinical Center of Vojvodina (No.
0020/649).

Dataset contains the following CMR risk factors:

– non-laboratory: gender (GEN), age (AGE), body mass index (BMI), waist-to-height
ratio (WHtR)

– laboratory: triglycerides (TG), total cholesterol (TCH), low-density lipoprotein (LDL),
high-density lipoprotein (HDL) and glycemia (GLY).

Descriptive statistics for the data is shown in the Table 1.

Table 1. Descriptive statistics for risk factors in the CMR dataset

Mean St.Dev. Min Max

AGE 43.413 10.615 18 69
BMI 29.732 6.472 16.600 50.440
WHtR 0.565 0.091 0.338 0.899
LDL 3.762 0.950 2.030 10.140
HDL 1.124 0.262 0.460 2.090
TCH 5.952 1.376 2.770 13.240
TG 2.057 1.819 0.350 27.320
GLY 5.145 1.321 2.800 13.800

Since adipose tissue for men shows a tendency towards central or abdominal accumu-
lation, male gender bears higher potential risk of cardiovascular diseases. With women,
the risk increases with aging, due to the adipose tissue centralization. It is known that
acceleration of atherosclerosis increases with age and that the cardiometabolic risk in-
creases with age. Beside the gender and genetic predisposition, this is an additional risk
factor that cannot be controlled.

BMI is an indication of nutritional state and is used to quantify the level of obesity.
Despite of a lot of controversy about its reliability in fat mass prediction, it shows high
efficiency in cardiovascular risk prediction. Values of BMI over 25 kg/m2 correspond
to being overweight, and values over 30 kg/m2 correspond to obesity [27]. BMI is cal-
culated as a ratio of body mass and body height squared. Body weight is measured with
a balance beam scale. Body height is measured with Harpenden anthropometer (Holtain
Ltd, Croswell, UK) with precision of 0.1 cm.

Waist circumference is correlated with the amount of visceral abdominal adipose tis-
sue, but also with the level of lipids, lipoproteins and insulin and it is a significant predictor
of the obesity comorbidity. An index calculated as a ratio of waist circumference and body
height (WHtR) has been shown to be a better risk indicator and the values WHtR≥ 0.5
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are considered to indicate increased risk [2] [18]. Waist circumference is measured with
a measurement tape with precision of 0.1 cm. It is measured at half the distance between
the lowest point of the costal arch and the highest point of the lilac crest.

Disturbances of lipid and lipoprotein metabolism are present in 30% of obese per-
sons. They are manifested as one or more of the following disruptions: hypercholes-
terolemia, hypertriglyceridemia, protective HDL-cholesterol level drop off, raised level
of LDL-cholesterol and increased fraction of small, dense, aterogenous LDL-particles.
In our study, cholesterol and triglycerides levels are determined by the standard enzyme
procedure. The values of HDL-cholesterol were determined by precipitation procedure
with sodium-phosphor-wolframate. The values of LDL-cholesterol were calculated using
Friedewald’s formula [8].

Hyperglycemia is also a risk factor for cardiovascular diseases. Increased level of
glucose accelerates the process of atherosclerosis by increasing the oxidative stress and
protein glycolization [20]. In this research, the glycemia values were determined using
Dialab glucose GOD-PAP method. All inquiries were taken during the morning hours
(after fasting overnight).

In this research, we have observed missing data imputation for: high-density choles-
terol (HDL), low-density cholesterol (LDL), total cholesterol (TCH), triglycerides (TG)
and glycemia (GLY) using following cut off values as indication of cardiometabolic risk
[7] [13]:

– HDL < 1.29 (woman) and < 1.03 (man)
– LDL ≥ 3.3
– TCH ≥ 5.2
– TG ≥ 1.71
– GLY ≥ 6.1

Distribution of HDL, LDL, TCH, TG and GLY is shown in Figure 1 with highlighted
CMR threshold values. For HDL, since different values are used for man and woman, plot
has two lines annotated with M (male) and F (female) respectively.

2.2. Structure of the Neural Networks

For each variable of interest, we have tested several networks in order to find their optimal
structure. Input vectors for ANNs are all variables from dataset except variable of interest
which represent output value. Since the data is simple, and not massive, we have opted
for single layered feedforward artificial network. For each variable, ANNs with 2 to 10
neurons in the hidden layer are tested. Data split for training and testing is performed
through bootstrap resampling [6]. For each number of hidden neurons, 100 simulations of
ANN testing are performed.

Experiments were performed using R software v3.5.0 [30] with packages neuralnet
v1.33 [9] and caret v6.0 [17] with following settings for ANN:

– training algorithm: resilient backpropagation
– starting weights: random initialization
– activation function: tanh (tangent hyperbolicus transfer function)
– output neuron: linear function
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Fig. 1. Boxplots representing distribution of laboratory CMR risk values in the dataset. Cutoff val-
ues, used as indication of CMR, are highlighted with dashed lines. For HDL, two distinctive cutoff
lines are shown corresponding to different genders

– stopping criteria: threshold for the partial derivatives of the error function or maxi-
mum number of steps, whichever is reached before.

Instead of the regular back propagation algorithm, resilient backpropagation (rprop+)
is used [15] [31], as a faster method that does not require learning rate as a parameter
for its training. Since the study covers a number of simulations, improving speed and
reducing grid search for hyperparameter tuning in this phase of work was beneficial.

An optimal number of neurons for each variable was selected according to the number
of neurons which, on average, produced the smallest root mean squared error (RMSE).
According to this criteria, networks trained in the second part of the research for HDL,
LDL, TCH, TG and GLY were networks with single hidden layer and number of neurons:
6, 9, 5, 2 and 2, respectively. Results are shown in Table 2.

2.3. Comparison of Imputation Methods

In the second part of the study, missing data is artificially introduced in the dataset. Accu-
racy of imputation for neural networks and several other methods is addressed. For each
variable, the missing data is introduced by varying percentage (10%, 20%, 30% and 50%)
and according to different missingness mechanism (MCAR, MAR and MNAR). For each
combination of settings (60 in total), comparison of 5 imputation methods was performed
through 100 simulations.

Depending on the selected mechanism, percentage of the original data is removed
from the dataset. Data that is missing under MCAR assumption is randomly selected
based solely on the percentage of missing data. For both MAR and MNAR mechanism,
logistic function for probability that data is missing was used. To simulate MAR mech-
anism, values for AGE and BMI were used to introduce missingness. Observations with
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Table 2. Average RMSE errors produced through 100 simulations during testing of neural net-
works with different number of hidden neurons. Smallest values are highlighted. For each variable
minimum and maximum values are displayed

Variable LDL HDL TCH TG GLY
(min - max) (2.03-10.14) (0.46 - 2.09) (2.77 - 13.24) (0.35 - 27.32) (2.80 - 13.80)

Hidden neurons
2 0.74019 0.24994 0.93934 1.78078 1.25208
3 0.72843 0.24584 0.92250 1.84684 1.26054
4 0.71176 0.24282 0.91913 1.86890 1.27322
5 0.70994 0.24334 0.91842 1.93557 1.28708
6 0.70764 0.24189 0.92108 1.94169 1.28131
7 0.70391 0.24341 0.92424 1.82648 1.28666
8 0.70358 0.24198 0.92970 1.84911 1.27962
9 0.70343 0.24529 0.92365 1.83521 1.27707
10 0.70500 0.24631 0.92339 1.84555 1.28290

lower AGE and BMI are considered to have bigger probability of missing laboratory data.
For MNAR mechanism, the same variable which was investigated was used as a cause
for missingness. Observations with lower values, except for HDL, are considered to have
greater probability of missing data. For HDL, lower values had lower probability of miss-
ing data. Function ampute from R library mice v3.3.0 was used to carry out those deletions
(amputations) [38] [39] [35].

For all data sets produced in the described manner, 5 different imputation methods are
performed: neural network (NN), predictive mean matching (PMM), stochastic linear re-
gression (SLR), random forest (RF) and mean imputation (MEAN). Neural network train-
ing and imputation is performed using the settings and architectures obtained in first set
of experiments. Other methods are implemented using R package mice. SLR and MEAN
methods did not require special parameters. For RF, training number of trees was set to
10. For PMM, all variables except the one of interest, are used for finding five possible
donors and distance between predicted and drawn values was used as a matching distance.

Comparison between methods was based on imputation performance which is evalu-
ated by: root mean squared error (RMSE), mean absolute percentage error (MAPE) and
classification accuracy (CA) between imputed and original values. RMSE measures de-
viation of this difference and is used as common metric for model comparison. MAPE
explain accuracy as percentage error and is given due to its intuitive interpretation. CA
measures what portion of imputed values will be correctly classified as risk factor for
CRM according to their threshold values. Lower values for RMSE and MAPE denote
better performance, and higher CA values indicate better results.

3. Results

Comparison results for imputation of HDL, LDL, TCH, GLY and TG are respectively
shown in tables 3, 4, 5, 6 and 7. For each variable, missingness mechanism and percent
of missing data average results for RMSE, MAPE and CA are shown where best per-
formance values are highlighted. Also, due to space constraints, graphical illustration of
obtained results is given in Appendix (figures: 2, 3, 4, 5, 6).
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Table 3. Algorithm comparison for variable HDL considering three types of missing data mecha-
nisms (MAR, MCAR, MNAR) and different levels of missingness (10, 20, 30 and 50%) based on
imputation accuracy (root mean squared error, mean absolute percentage error and classification
accuracy)

HDL RMSE MAPE CA RMSE MAPE CA

MCAR
10% 20%

NN 0.2802 20.6955 0.7316 0.2785 20.5654 0.7202
PMM 0.3608 26.1986 0.6050 0.3617 26.3017 0.5969
SLR 0.3667 27.1279 0.5854 0.3660 27.1464 0.5831
RF 0.2946 18.8455 0.7010 0.2953 19.2711 0.6936
MEAN 0.2610 19.2869 0.6953 0.2612 19.3118 0.6903

30% 50%
NN 0.2794 20.7115 0.6382 0.2797 20.6359 0.6398
PMM 0.3617 26.4378 0.5953 0.3628 26.4785 0.5941
SLR 0.3649 27.0686 0.5857 0.3659 27.1615 0.5856
RF 0.3035 20.0461 0.6826 0.3143 21.3192 0.6623
MEAN 0.2617 19.4449 0.6902 0.2615 19.3626 0.6924

MAR
10% 20%

NN 0.2389 16.9590 0.7391 0.2406 17.2297 0.7290
PMM 0.3598 26.2777 0.6071 0.3587 26.2944 0.6063
SLR 0.3694 27.7332 0.5881 0.3646 27.4427 0.5913
RF 0.2933 19.3031 0.7019 0.2982 20.0395 0.6914
MEAN 0.2601 19.7928 0.6932 0.2592 19.8083 0.6914

30% 50%
NN 0.2437 17.4571 0.7261 0.2453 17.5117 0.7200
PMM 0.3597 26.2950 0.6077 0.3616 26.3412 0.5996
SLR 0.3651 27.3646 0.5928 0.3663 27.2623 0.5881
RF 0.3083 21.0124 0.6747 0.3168 21.7676 0.6611
MEAN 0.2597 19.8737 0.6903 0.2609 19.6912 0.6901

MNAR
10% 20%

NN 0.2394 23.3216 0.6742 0.2581 25.5564 0.6472
PMM 0.3582 32.0925 0.5974 0.3724 33.7851 0.5734
SLR 0.3635 33.6794 0.5693 0.3772 35.2030 0.5442
RF 0.2856 23.5159 0.6986 0.3080 26.2282 0.6604
MEAN 0.2575 26.5496 0.6231 0.2773 28.7606 0.6227

30% 50%
NN 0.2818 28.3264 0.6240 0.2675 23.1169 0.6560
PMM 0.3889 35.7334 0.5439 0.3762 30.7928 0.5674
SLR 0.3928 37.0190 0.5188 0.3783 31.4889 0.5472
RF 0.3305 29.1086 0.6188 0.3238 25.3834 0.6331
MEAN 0.3025 31.5800 0.6235 0.2835 25.5359 0.6444
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Table 4. Algorithm comparison for variable LDL considering three types of missing data mecha-
nisms (MAR, MCAR, MNAR) and different levels of missingness (10, 20, 30 and 50%) based on
imputation accuracy (root mean squared error, mean absolute percentage error and classification
accuracy)

LDL RMSE MAPE CA RMSE MAPE CA

MCAR
10% 20%

NN 0.6517 13.5230 0.7495 0.6649 13.6613 0.7549
PMM 0.9998 19.5170 0.6591 1.0105 19.5738 0.6638
SLR 1.0302 22.1732 0.6555 1.0307 22.1106 0.6581
RF 0.8660 14.4301 0.7272 0.8870 15.0236 0.7171
MEAN 0.9451 19.1504 0.6505 0.9451 19.1504 0.6552

30% 50%
NN 0.6788 13.8307 0.7500 0.7112 14.3998 0.7425
PMM 1.0119 19.6088 0.6607 1.0171 19.6594 0.6610
SLR 1.0301 22.0974 0.6589 1.0318 22.1538 0.6560
RF 0.9087 15.5668 0.7101 0.9508 16.8752 0.6884
MEAN 0.9495 19.2054 0.6522 0.9521 19.2136 0.6507

MAR
10% 20%

NN 0.6387 13.5412 0.7508 0.6704 14.0882 0.7409
PMM 0.9611 19.2735 0.6520 0.9655 19.2723 0.6549
SLR 1.0151 22.4694 0.6440 1.0253 22.7197 0.6429
RF 0.8646 15.0221 0.7086 0.8904 15.7338 0.6998
MEAN 0.9612 20.7286 0.6022 0.9659 20.9315 0.6040

30% 50%
NN 0.6903 14.3724 0.7374 0.7274 14.7458 0.7349
PMM 0.9738 19.4508 0.6519 1.0069 19.6371 0.6562
SLR 1.0262 22.6180 0.6442 1.0343 22.3459 0.6507
RF 0.9206 16.6055 0.6841 0.9551 17.1912 0.6780
MEAN 0.9696 21.1739 0.6037 0.9659 20.1857 0.6341

MNAR
10% 20%

NN 0.6149 15.7534 0.6277 0.6518 16.7199 0.6057
PMM 0.8784 20.9437 0.5788 0.9152 22.0134 0.5657
SLR 0.9903 25.8651 0.5446 1.0144 26.4461 0.5435
RF 0.7268 15.8575 0.6670 0.7731 17.3816 0.6369
MEAN 0.8324 25.4867 0.3621 0.9006 27.7790 0.3618

30% 50%
NN 0.6947 18.0946 0.5807 0.7176 16.3713 0.6638
PMM 0.9458 22.9883 0.5546 0.9969 21.4488 0.6240
SLR 1.0457 27.2633 0.5358 1.0464 24.5275 0.6051
RF 0.8347 19.4666 0.6006 0.9259 18.9541 0.6466
MEAN 0.9902 30.8539 0.3622 0.9869 25.4807 0.5285
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Table 5. Algorithm comparison for variable TCH considering three types of missing data mecha-
nisms (MAR, MCAR, MNAR) and different levels of missingness (10, 20, 30 and 50%) based on
imputation accuracy (root mean squared error, mean absolute percentage error and classification
accuracy)

TCH RMSE MAPE CA RMSE MAPE CA

MCAR
10% 20%

NN 0.9044 11.2777 0.8465 0.9096 11.3255 0.8447
PMM 1.3849 17.9032 0.7646 1.3858 17.8030 0.7667
SLR 1.4125 19.3143 0.7096 1.4071 19.3211 0.7167
RF 1.1452 13.2419 0.8244 1.1760 13.6968 0.8172
MEAN 1.3765 19.6452 0.7120 1.3768 19.5699 0.7130

30% 50%
NN 0.9159 11.3713 0.8477 0.9254 11.5042 0.8448
PMM 1.3831 17.7930 0.7669 1.3798 17.7741 0.7672
SLR 1.4101 19.3680 0.7142 1.4124 19.3726 0.7138
RF 1.2203 14.5303 0.8060 1.2504 15.1500 0.7976
MEAN 1.3772 19.6186 0.7127 1.3788 19.5867 0.7135

MAR
10% 20%

NN 0.8916 11.6872 0.8259 0.9012 11.8159 0.8257
PMM 1.3595 18.3046 0.7359 1.3640 18.2839 0.7381
SLR 1.4035 20.3694 0.6782 1.4078 20.4852 0.6761
RF 1.1616 14.3625 0.7973 1.2017 15.1341 0.7838
MEAN 1.4254 22.5705 0.6222 1.4333 22.8869 0.6230

30% 50%
NN 0.9152 11.9812 0.8235 0.9405 11.8581 0.8342
PMM 1.3671 18.3581 0.7371 1.3727 17.9005 0.7556
SLR 1.4080 20.4700 0.6749 1.4083 19.7614 0.6981
RF 1.2422 16.0273 0.7751 1.2683 15.9046 0.7849
MEAN 1.4480 23.3124 0.6225 1.4142 21.3220 0.6764

MNAR
10% 20%

NN 0.8253 13.4357 0.7565 0.8647 14.2280 0.7442
PMM 1.3150 20.6076 0.6800 1.3530 21.4554 0.6689
SLR 1.3586 23.1945 0.6075 1.3939 23.7496 0.6021
RF 1.1121 16.0774 0.7388 1.1956 17.8133 0.7139
MEAN 1.3765 26.6161 0.4466 1.4726 28.6865 0.4482

30% 50%
NN 0.9302 15.5389 0.7213 0.9445 13.6014 0.7896
PMM 1.4125 22.4742 0.6621 1.4210 20.3798 0.7268
SLR 1.4522 25.0296 0.5859 1.4406 21.9095 0.6678
RF 1.2946 19.8007 0.6870 1.3073 18.0855 0.7481
MEAN 1.6098 31.7311 0.4478 1.4896 25.4515 0.6143
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Table 6. Algorithm comparison for variable TG considering three types of missing data mecha-
nisms (MAR, MCAR, MNAR) and different levels of missingness (10, 20, 30 and 50%) based on
imputation accuracy (root mean squared error, mean absolute percentage error and classification
accuracy)

TG RMSE MAPE CA RMSE MAPE CA

MCAR
10% 20%

NN 1.6781 45.8713 0.6947 1.7419 47.0029 0.6794
PMM 2.4287 63.7588 0.6149 2.4450 63.1532 0.6062
SLR 2.4359 103.3195 0.5578 2.4596 102.7914 0.5577
RF 2.0806 44.0431 0.7074 2.0547 44.7400 0.7023
MEAN 1.7646 57.4358 0.5290 1.8152 57.5840 0.5279

30% 50%
NN 1.7228 47.7940 0.6762 1.7834 48.2514 0.6755
PMM 2.3925 63.0147 0.6056 2.4565 64.0044 0.6048
SLR 2.4405 104.0732 0.5564 2.4431 103.1582 0.5599
RF 2.1222 47.7587 0.6877 2.1983 51.0667 0.6650
MEAN 1.7804 57.7058 0.5268 1.8126 57.6760 0.5264

MAR
10% 20%

NN 1.7303 49.2283 0.6911 1.8401 49.4026 0.6982
PMM 2.3680 65.6342 0.6064 2.4370 65.0048 0.6053
SLR 2.4674 109.4875 0.5521 2.5070 109.1327 0.5512
RF 2.0619 46.5159 0.7054 2.2181 49.7677 0.6896
MEAN 1.8133 65.2662 0.4868 1.8857 65.7658 0.4868

30% 50%
NN 1.8198 51.1575 0.6783 1.8659 50.0006 0.6637
PMM 2.4042 65.0420 0.6074 2.4305 63.5184 0.6034
SLR 2.4843 108.4079 0.5566 2.4544 102.3056 0.5595
RF 2.2407 53.1501 0.6720 2.2509 52.7012 0.6629
MEAN 1.8649 66.6036 0.4857 1.8821 61.2814 0.5108

MNAR
10% 20%

NN 0.8652 68.9414 0.5467 1.0042 80.4539 0.4532
PMM 1.7352 82.8811 0.5752 1.7816 88.5791 0.5513
SLR 1.9790 145.7663 0.4997 2.0904 153.9056 0.4926
RF 1.3241 59.3654 0.6693 1.5014 67.5492 0.6345
MEAN 0.9872 95.4777 0.1981 1.0842 104.9737 0.1980

30% 50%
NN 1.1993 96.6311 0.3699 1.7054 74.3427 0.4908
PMM 1.9182 98.8680 0.5078 2.3500 81.8861 0.5489
SLR 2.2228 164.3346 0.4758 2.4714 131.9337 0.5173
RF 1.6640 79.4840 0.5810 2.1402 68.1128 0.6036
MEAN 1.2115 117.6751 0.1988 1.6757 87.7802 0.3676
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Table 7. Algorithm comparison for variable GLY considering three types of missing data mecha-
nisms (MAR, MCAR, MNAR) and different levels of missingness (10, 20, 30 and 50%) based on
imputation accuracy (root mean squared error, mean absolute percentage error and classification
accuracy)

GLY RMSE MAPE CA RMSE MAPE CA

MCAR
10% 20%

NN 1.2561 16.1328 0.8387 1.2590 16.2744 0.8405
PMM 1.7727 23.3703 0.7566 1.7698 23.4156 0.7550
SLR 1.7831 26.4223 0.6979 1.7701 26.3160 0.7001
RF 1.4650 16.5648 0.8279 1.4737 17.1581 0.8244
MEAN 1.3308 17.3669 0.8480 1.3223 17.3917 0.8499

30% 50%
NN 1.2636 16.2883 0.8384 1.2759 16.4178 0.8375
PMM 1.7739 23.4765 0.7552 1.7703 23.4657 0.7549
SLR 1.7712 26.3031 0.7000 1.7812 26.4517 0.6970
RF 1.4894 17.5696 0.8186 1.5417 18.7614 0.8089
MEAN 1.3230 17.3702 0.8474 1.3253 17.4029 0.8484

MAR
10% 20%

NN 1.1772 16.4996 0.8693 1.1963 16.7634 0.8712
PMM 1.6304 23.0727 0.8011 1.6436 23.0982 0.8001
SLR 1.7147 26.8912 0.7427 1.7331 27.2023 0.7401
RF 1.3543 17.0068 0.8581 1.3818 17.7424 0.8502
MEAN 1.2193 18.5149 0.8802 1.2283 18.8077 0.8822

30% 50%
NN 1.2200 17.2983 0.8735 1.2587 17.0065 0.8539
PMM 1.6478 23.1569 0.8019 1.7262 23.3995 0.7719
SLR 1.7483 27.4624 0.7383 1.7811 27.0636 0.7138
RF 1.4170 18.6302 0.8426 1.5060 19.1082 0.8203
MEAN 1.2356 19.1823 0.8826 1.2910 18.3311 0.8644

MNAR
10% 20%

NN 1.0146 20.9776 0.9733 1.0910 22.8274 0.9642
PMM 1.5630 26.4797 0.8574 1.6378 27.9884 0.8395
SLR 1.6236 31.2847 0.7685 1.6987 32.8102 0.7441
RF 1.1721 18.8606 0.9312 1.2621 20.9540 0.9162
MEAN 1.0738 23.5457 1.0000 1.1629 25.7221 1.0000

30% 50%
NN 1.2012 25.6262 0.9562 1.2858 21.3637 0.8708
PMM 1.7052 29.6050 0.8210 1.7721 26.6352 0.7625
SLR 1.7859 34.6600 0.7103 1.8149 30.4577 0.6779
RF 1.3510 23.2115 0.8989 1.4924 21.4904 0.8303
MEAN 1.2823 28.7493 1.0000 1.3336 23.2268 0.8966
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Performances from tables 3, 4, 5, 6 and 7 are summarized in Table 8. The table shows
the number of cases where the selected method has the best performance values. Only NN,
MEAN and RF methods are shown as competing algorithms with best results overall. One
case represents combination of: performance measure, variable, missingness mechanism
and volume of missing data. Since there are: 3 metrics, 5 variables, 3 mechanisms and 4
percentages, there are 180 cases in total. For MEAN and RF there are also, in parentheses,
values which indicate how many cases have NN as next best performance. In addition to
the total winning scores, also given in the table are scores grouped by different context:
by variables that are missing, by missingness mechanism and by percentage of missing
data.

Table 8. Overview of the number of different tested cases where selected algorithm shows best
performance, in total and grouped by: variable, mechanism and volume of missing data. Number of
cases where NN has next best performance is shown in parentheses

Method Total number of winning cases
NN 133
MEAN 21 (18)

RF 26 (20)

by variable HDL LDL TCH TG GLY
NN 24 33 36 19 21
MEAN 8 (5) 0 0 1 (1) 12 (12)

RF 4 (1) 3 (3) 0 16 (13) 3 (3)

by mechanism MCAR MAR MNAR
NN 40 54 39
MEAN 12 (9) 4 (4) 5 (5)

RF 8 (6) 2 (2) 16 (12)

by volume 10% 20% 30% 50%
NN 31 33 33 36
MEAN 4 (4) 4 (4) 6 (4) 7 (6)

RF 10 (9) 8 (5) 6 (5) 2 (1)

3.1. Discussion

Observing all obtained performance values, ANNs prevail as the best method for imputa-
tion, considering different missing mechanisms and proportion of missing data.

For HDL, MEAN imputation shows the best results for all missing frequencies but
only for MCAR data. Also, all those MEAN results are closely followed with ANN and
RF algorithm. As missing mechanism changes to mechanisms that enclose dependency in
missing data, ANNs emerge as a method with the best performance.

For LDL, there are only three cases for CA metric where RF shows better results than
ANN and only in case where data is missing according to MNAR. Even in those cases,
ANNs are closely behind.
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For TCH, ANNs display the best performance results, considering all three measures
across all missing pattern cases.

For TG, mixed results can be observed. MAPE errors are very large for each algo-
rithm in all scenarios, which gives fairly inaccurate imputation overall. In MCAR and
MAR case, ANN and RF are competing with similar imputation accuracy (both MAPE
and CA) while the other methods perform notably worse. In an MNAR setting, the dis-
parity between performance of ANN and RF results is bigger. Still, ANNs demonstrate
the smallest RMSE errors through all settings.

For GLY, it can be observed that MEAN shows best results according to classifica-
tion, especially in the MNAR case where it shows 100% accuracy. From data distribution
(Figure 1), it can be observed that GLY has CMR cutoff value higher than the upper quar-
tile with lots of outliers. MNAR mechanism is simulated by removing lower GLY values
with higher probability. When the volume of missing data is smaller (10, 20, 30%) mean
of sample set with complete cases stays lower than the cutoff value, therefore imputation
gives values that are, as original data, lower than the cutoff, which explains very high clas-
sification accuracy. Similarly as for previous variables, ANNs have the smallest RMSE
error through all simulation settings.

Regarding the overview of performance given in the table 8, it is noticeable that ANNs
are winning in most scenarios. Even for cases where other method is the winner, for a large
number of them, ANN is the next best imputation method.

Here should be noted that the obtained performance results (RMSE, MAPE, CA), con-
sidering the distribution of values for each variable (Table 1, Figure 1), except maybe for
TCH, indicate that neither explored imputation method should be used as a final predic-
tion model for variables separately. Nevertheless, in this research, we are not interested in
prediction models for those values as separate models, but rather in imputation in prepro-
cessing phase of building CMR models. That is why we are solely interested in relative,
comparison values. If a goal of some future research would be to build prediction models
for HDL, LDL,TCH, TG and GLY by and of itself, one can use this research as a support-
ing ground and explore other sets of predictors, as well as other models for each variable
independently.

Limitations and Further Research What should be examined is how ANN and RF with
different architectures compare solely, especially for TG, since RFs exhibit good perfor-
mance for some scenarios. In that case, fine tuning of RFs hyperparameters should be
performed since RFs with fixed number of trees is used in this research. Also, although
this work provides promising results, it should be explored how distribution around CMR
cutoff values is correlated with imputation accuracy, especially for GLY, and should be
determined if performance is a result of this specific clinical dataset. Additionally, the
used MAR and MNAR settings demonstrate just some examples of these mechanisms.
Simulations with different, more sophisticated MAR and MNAR mechanisms could be
performed and ascertain if the results are agreeable. Lastly, it could be tested whether
introducing additional hidden layers or tuning process and parameters of ANNs could
further improve accuracy and performance of neural networks as an imputation method.
At the end, final networks could be ensembled in order to broaden the proposed method-
ology for multivariate imputation, along with exploring how those imputations affect final
results in development of new and enhanced CMR prediction models.
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4. Conclusions

Prognostic CMR models require simple anthropometric measures as well as some labora-
tory values. In order to build machine learning models that solely use small, low-cost set of
predictors - laboratory values are necessary, but only in the preprocessing phase when out-
come CMR values are produced. If some of those laboratory values are missing, a dataset
used for learning could be fairly reduced and even produce flawed end results, which can
then make process of building final CMR model more difficult. In statistics, missingness
is often analyzed separately. In engineering, during machine learning research, this step is
sometimes skipped or overlooked. Therefore, we have explored how one machine learn-
ing model (ANN) behaves as an imputation method in CMR risk assessment to enable
fully independent algorithmic building process for CMR model, diminishing the need for
separate analysis of missingness mechanisms.

To explore how neural networks perform as an imputation method for laboratory data
used for calculating outcome CMR values which could further be used in building predic-
tive model for CMR, we have explored a number of ANN structures and compared their
imputation performance with other simple single imputation methods. First, we have built
and tested single layered neural networks with different numbers of hidden neurons to pro-
pose optimal settings for univariate imputation of missing values for each variable. Those
settings have afterwards been used for comparison of ANNs with other imputation meth-
ods. We have simulated three missingness mechanisms (MCAR, MAR and MNAR) and
performed simulations for different volume of missing data (10, 20, 30 and 50%). Through
all scenarios, ANNs showed strong performance according to different measures of im-
putation accuracy. They outperformed or were closely behind other methods in almost all
the cases, considering both proportion of missing data and missingness mechanism.

Considering the results, we propose that an ANN should be considered and used in
imputation of laboratory values, in preprocessing phase, as a step in pipeline framework
which could lead to development of more robust and precise CMR prediction models.

Although this work calls for next steps in the future research such as: ensembling ob-
tained networks or development of new types of ANNs which will deal with multivariate
missing data and analysis of impact of those imputations in the final model development,
this step was necessary in order to explore versatile settings of missing data, systemize
results and conclusions and prepare the basis for final CMR assessment.

It is worth noting that this research does not exclude other ML algorithms as poten-
tial imputation tools. On the contrary, we also propose that ML algorithms, in general,
should be considered, researched and used as imputation methods for both predictors and
outcomes values, since they could enable automatic integration of imputation in model
development process without a need for separate analysis of data distribution and missing-
ness mechanisms, leaving datasets used for learning complete and final results less prone
to error due to missingness mechanisms and volume. It is self-evident that any method for
dealing with missing data cannot substitute real data, but machine learning could provide
us tools for imputation that can be automatic, self-sufficient and domain independent. In
that context, the proposed comparison methodology for this specific problem justifies the
effort and could be used as a guideline for further research.
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tion of the cardiometabolic risk by using artificial neural networks. Computers in Biology and
Medicine 43(6), 751–757 (2013)

20. Laakso, M.: Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 48(5), 937–
942 (1999)

21. Leke, C., Marwala, T.: Missing data estimation in high-dimensional datasets: A swarm
intelligence-deep neural network approach. In: Advances in Swarm Intelligence. pp. 259–270.
Springer International Publishing (2016)



Missing CMR Data Imputation with ANNs 395

22. Leke, C., Marwala, T., Paul, S.: Proposition of a Theoretical Model for Missing Data Imputa-
tion using Deep Learning and Evolutionary Algorithms. arXiv (2015)

23. Little, R.J., D’Agostino, R., Cohen, M.L., Dickersin, K., Emerson, S.S., Farrar, J.T., Frangakis,
C., Hogan, J.W., Molenberghs, G., Murphy, S.A., Neaton, J.D., Rotnitzky, A., Scharfstein, D.,
Shih, W.J., Siegel, J.P., Stern, H.: The Prevention and Treatment of Missing Data in Clinical
Trials. New England Journal of Medicine 367(14), 1355–1360 (oct 2012)

24. Little, R.J.A., Rubin, D.B.: Statistical analysis with missing data. Wiley (2019)
25. Marshall, A., Altman, D.G., Royston, P., Holder, R.L.: Comparison of techniques for handling

missing covariate data within prognostic modelling studies: a simulation study. BMC medical
research methodology 10(1), 7 (2010)

26. Masconi, K.L., Matsha, T.E., Echouffo-Tcheugui, J.B., Erasmus, R.T., Kengne, A.P.: Reporting
and handling of missing data in predictive research for prevalent undiagnosed type 2 diabetes
mellitus: a systematic review. The EPMA Journal (2015)

27. Organization, W.H.: Obesity: preventing and managing the global epidemic. report of a world
health organization consultation. Tech. Rep. 894, WHO Obesity Technical Report Series (2000)

28. Papageorgiou, G., Grant, S.W., Takkenberg, J.J.M., Mokhles, M.M.: Statistical primer: how to
deal with missing data in scientific research? Interactive CardioVascular and Thoracic Surgery
27(2), 153–158 (05 2018)

29. Pesonen, E., Eskelinen, M., Juhola, M.: Treatment of missing data values in a neural network
based decision support system for acute abdominal pain. Artificial Intelligence in Medicine
13(3), 139 – 146 (1998)

30. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria (2018), https://www.R-project.org/

31. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons — from backprop-
agation to adaptive learning algorithms. Computer Standards and Interfaces 16(3), 265 – 278
(1994)

32. Rosolova, H., Nussbaumerova, B.: Cardio-metabolic risk prediction should be superior to car-
diovascular risk assessment in primary prevention of cardiovascular diseases. The EPMA jour-
nal 2, 15–26 (2011)

33. Salgado, C.M., Azevedo, C., Proença, H., Vieira, S.M.: Missing Data, pp. 143–162. Springer
International Publishing, Cham (2016)

34. Schafer, J.L., Graham, J.W.: Missing data: our view of the state of the art. Psychological meth-
ods 7(2), 147–77 (2002)

35. Schouten, R.M., Lugtig, P., Vink, G.: Generating missing values for simulation purposes: a
multivariate amputation procedure. Journal of Statistical Computation and Simulation (2018)
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5. Appendix

Graphical representations of algorithm comparisons for different percent and mechanism
of missingness are given on the following figures.
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Fig. 2. Results of algorithms comparison for variable HDL. Results are grouped by accuracy per-
formance (RMSE, MAPE, CA) shown on the right and missing data mechanisms (MAR, MCAR,
MNAR) shown on the left. Every volume of missingness (10, 20, 30 and 50%) is displayed by
separate color
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Fig. 3. Results of algorithms comparison for variable LDL. Results are grouped by accuracy per-
formance (RMSE, MAPE, CA) shown on the right and missing data mechanisms (MAR, MCAR,
MNAR) shown on the left. Every volume of missingness (10, 20, 30 and 50%) is displayed by
separate color
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Fig. 4. Results of algorithms comparison for variable TCH. Results are grouped by accuracy per-
formance (RMSE, MAPE, CA) shown on the right and missing data mechanisms (MAR, MCAR,
MNAR) shown on the left. Every volume of missingness (10, 20, 30 and 50%) is displayed by
separate color
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Fig. 5. Results of algorithms comparison for variable TG. Results are grouped by accuracy per-
formance (RMSE, MAPE, CA) shown on the right and missing data mechanisms (MAR, MCAR,
MNAR) shown on the left. Every volume of missingness (10, 20, 30 and 50%) is displayed by
separate color
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Fig. 6. Results of algorithms comparison for variable GLY. Results are grouped by accuracy per-
formance (RMSE, MAPE, CA) shown on the right and missing data mechanisms (MAR, MCAR,
MNAR) shown on the left. Every volume of missingness (10, 20, 30 and 50%) is displayed by
separate color




