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Abstract. Earthquake-damaged buildings recognition of the high-

resolution remote sensing images has been an indispensable technical 

means in the post-earthquake emergency response. In view of the 

difficulties and constraints caused by the lack of pre-earthquake 

information, this article proposed a novel damaged buildings 

recognition of high-resolution remote sensing images based on feature 

space and decision tree optimization. By only using post-earthquake 

information, the potential building object set is extracted by 

combining WJSEG segmentation and a group of non-building 

screening rules. On this basis, an adaptive decision tree number 

extraction strategy based on the discrimination of classification 

accuracy by the curve fluctuation is applied. In addition, the spectrum, 

texture and geometric morphology features are selected according to 

the feature importance index to form symbolized sets of damaged 

buildings. Finally, based on the optimized random forest (RF) model, 

buildings are separated into three categories as undamaged building, 

partly damaged building and ruin. Experiments on four different 

datasets show that the overall accuracy all exceed 85% with the 

proposed method, which is significantly better than the other 

compared methods in both visual inspection and quantitative analysis.  

Keywords: damaged buildings; post-earthquake; high-resolution; 

feature importance index; decision tree optimization; 

1. Introduction 

As a fatal disaster, earthquake often occurs with casualty and economic 

losses. In time and accurate recognition of earthquake-damaged buildings 
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after the earthquake is of great significance to the rapid assessment of the 

condition of the disaster, carrying out emergency rescue and post-earthquake 

reconstruction. Compared with traditional field investigation methods, the 

recognition of earthquake-damaged buildings based on remote sensing 

images has the advantages of rapid data acquisition and wide coverage etc., 

which has become one of the indispensable technical means in the emergency 

response after the earthquake [1]. 

With the continuous development of remote sensor technology, the wide 

application of high-resolution remote sensing images has brought more 

detailed spatial information that is conducive to a more detailed portrayal of 

the earthquake-damaged buildings [2]. In this view, earthquake-damaged 

buildings recognition of high-resolution remote sensing images has a great 

potential for development and application. The existing recognition methods 

of earthquake-damaged buildings that only depend on the post-earthquake 

images has break through its dependence on the pre-earthquake images, thus 

have higher feasibility in the practical application. However, there is no 

reference change information which can be extracted from pre-earthquake 

image, and meanwhile such methods need to face the more prominent 

phenomenon of “same-object with different spectra” and “same-spectrum 

with different objects” caused by the increase of the spatial resolution of 

remote sensing images. That is, the severe challenge of the respective intra-

class variance of undamaged building damaged building and other object 

increases and the inter-class variance decreases. Therefore, constructing more 

efficient feature space to describe the details of earthquake-damaged 

buildings accurately, which is the premise and foundation for the recognition 

of earthquake-damaged buildings. At present, the features which are widely 

used in the recognition of earthquake-damaged buildings mainly include 

spectra, texture and geometric morphology [3], [4], [5]. For example, Liu et 

al. used Morphological Attribute Profiles (MAPs) and Local Binary Pattern 

(LBP) to extract the geometric and texture features of the image, and then 

extracted the earthquake-damaged buildings by random forest (RF) classifier 

[6]; Asli et al. combined with spectral, compactness and smoothness features, 

proposed a post-earthquake collapsed buildings recognition method [7]. 

Although combining different kinds of features is beneficial to the multi-

dimensional description of earthquake-damaged buildings, the redundant 

information between different features not only increases computational 

complexity, but also reduces the recognition accuracy due to the conflict 

between different features as the evidence of damaged buildings. Therefore, 

multi-features screening and optimization strategy for building a refined set 

of features is needed. On this basis, the feature set should be combined with 

the appropriate classification method to obtain reliable earthquake-damaged 

buildings recognition results. Currently, RF is a popular integrated classifier, 

which is applied to the field of earthquake-damaged buildings recognition 

based on high-resolution remote sensing images. It has the advantages of 

fewer model parameters and avoiding over-fitting by using the double 

randomness of samples and features selection [8]. For example, Solomon et 

al. compared RF with other classifiers, proving the good performance of RF 

in post-earthquake image classification [9]. Moreover, the rational selection 

of the number of decision trees is a key factor to improve the performance of 

RF. It is difficult to obtain reliable classification results when the number of 
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decision trees is too small, while too large will reduce the efficiency of 

method implementation, especially when the decision trees exceed a certain 

quantity, the accuracy of classification fluctuates up and down within a 

certain range or even has a downward trend. Nevertheless, clear quantitative 

criteria for decision trees is not given in RF theory [9], and the usual manual 

assignment way is not only susceptible to subjective factors or fall into local 

optimized, but also reduces the degree of automation of the classification 

process.  

In view of the above challenges, a damaged buildings recognition of post-

earthquake high-resolution remote sensing images based on feature space and 

decision tree optimization is proposed, and the contributions of this study can 

be summarized as follows: 

(1) In the pre-processing step, a candidate object set extraction 

strategy based on WJSEG image segmentation and a group of non-building 

objects screening rules is proposed. It can significantly eliminate the 

shadows, vegetations, and non-building artificial objects.  

(2) An adaptive decision tree number extraction strategy based on the 

discrimination of classification accuracy by curve fluctuation is proposed. By 

comparing with the trial and error strategy, it can not only improve the degree 

of automation, but also achieve ideal classification accuracy. 

(3) Based on the optimized classifier, a representative feature set for 

damaged building description is extracted under the guidance of feature 

importance index. Through the experiments, this feature set shows 

outstanding performance in terms of the earthquake-damaged buildings 

recognition in complex post-earthquake scenes. 

This study includes five sections. Section 2 briefly analyzes and 

summarizes the research progress of earthquake-damaged buildings 

recognition based on high-resolution remote sensing image. Section 3 

elaborates the implementation steps of the proposed method. Section 4 

analyses and discusses the experimental results. The conclusion is presented 

in Section 5. 

2. Related Work  

In recent years, the recognition of earthquake-damaged buildings based on 

high-resolution remote sensing images has become a very active research 

direction, such as Stanford University, the University of Trento, the 

University of Tokyo, Wuhan University and other research institutes, which 

are doing related research and achieved many results. According to the 

different data sources used, the existing methods of earthquake-damaged 

buildings recognition can be divided into two categories, including multi-

temporal (pre-earthquake and post-earthquake) images method and single-

temporal (post-earthquake) image method [10]. 
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2.1. Damaged Buildings Recognition Based on Pre-Earthquake and 

Post-Earthquake Images    

This kind of methods recognize the earthquake-damaged buildings by using 

change detection technology with the pre-earthquake and post-earthquake 

images. For example, Matsuoka et al. used the difference between the 

backscatter coefficient and the correlation coefficient of pre-earthquake, and 

post-earthquake SAR images to obtain the optimized window size [11]. 

Based on Object Based Image Analysis (OBIA), Faming Huang et al. 

proposed a method of recognition and loss assessment of earthquake-

damaged buildings combined with single temporal image classification and 

multi-temporal images change detection, which achieved overall accuracy 

(OA) of 93% in the experiment of IKONOS images [12]. Liu Ying et al. 

obtained the spectral distance of the object in different temporal images by 

counting the Histogram Oriented Gradient (HOG), then weighting and fusing 

the spectral distance and HOG features, finally, the Fuzzy C-Means (FCM) 

method is applied to recognize the earthquake-damaged buildings [4]. 

Roberta et al. used very high-resolution optical images and existing city maps 

to identify objects corresponding to buildings, using spectra, textures, and 

statistical features to classify, and the feasibility of mapping earthquake 

disaster on a single building scale was evaluated [13]. 

Because of the introduction of pre-earthquake image, the extracted change 

information can be used as a key damaged buildings feature, so it is usually 

possible to obtain high accuracy recognition results. Nevertheless, there are 

many limitations in the practical application of such methods. First, for many 

cities, especially developing countries, the lack of reference pre-earthquake 

image or pre-earthquake image is inchoate to determine whether the changes 

in buildings are caused by earthquake directly leads to the impracticability of 

such methods. In addition, the quality of change detection is also 

significantly affected by the quality of image data, such as radiation and 

imaging angle differences, etc. Finally, the high accuracy registration 

between the pre-earthquake and post-earthquake images is also a 

challenging problem [10]. The above factors seriously restrict the wide 

application of such methods, while the single-temporal image method has 

been paid more and more attention by scholars [14]. 

2.2. Damaged Buildings Recognition Based on Post-Earthquake 

Images    

This kind of methods can only extract features from the post-earthquake 

image for classification. For example, based on statistical and analytical 

image gradient, Ye Xin et al. proposed a method based on the local spatial 

distribution of gradients, and further identified the different types of 

earthquake-damaged buildings [15]. In recent years, more and more machine-

learning based methods have been proposed [16], [17]. However, such 

methods deeply rely on abundant samples. Christian et al. proposed a series 

of methods based on Support Vector Machine (SVM) and RF, which include 

five steps: features extraction, features screening, outlier detection, synthetic 
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samples generation and supervised classification, and can estimate Seismic 

Building Structure Types (SBSTs) information [18]. Duarte D et al. proposed 

a method for recognition post-earthquake damaged buildings with images of 

different sensors and resolutions based on Convolutional Neural Networks 

(CNN) and Deep Learning (DP) [19].  

With the wide application of various unmanned aerial vehicles and 

satellite platforms, the timeliness of acquiring high-resolution remote sensing 

image after the earthquake has significantly enhanced. At the same time, due 

to this kind of methods do not rely on the pre-earthquake images, it is more in 

line with the application requirements. It should be noted that the proposed 

method in this study also belongs to this category. 

3. Method 

The proposed method mainly includes four steps: potential building set 

extraction, adaptive selection of the number of decision trees, feature set 

optimization guided by the importance index, and image classification based 

on optimized RF model. The specific implementation process is shown in 

Fig.1: 

 

Fig. 1. Flow chart of the proposed method 
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3.1. Potential Building Set Extraction 

⚫ Initial Object Set Extraction 

The discrete pixels are firstly divided into geographic objects set with 

semantic information through image segmentation, thus providing basic 

analysis units for subsequent earthquake-damaged buildings recognition. For 

this reason, this study adopts high-resolution remote sensing image 

segmentation algorithm WJSEG [20], which has the following advantages: 

WJSEG maintains more complete outlines of geographical objects than the 

well-known commercial software eCognition, while helping to increase the 

transparency of the proposed method. 

The steps of WJSEG mainly include initial seed region set conduction, 

secondary extraction of seed region, inter-scale constraint segmentation and 

regions merging. The specific implementation process of WJSEG can be 

found in Reference [20]. The initial object set extracted by image 

segmentation is represented by originR  in this study. 

⚫ Non-building Object Screening 

Based on originR , a group of non-building object screening rules is designed 

in this study, thus avoiding false positives caused by such objects in 

subsequent processing while reducing the amount of computation. For object 

bR  in originR , the specific screening rules are as follows: 

(1)Area rule. Count the number of pixels pixelsN  contained in 
bR . Due to 

the areas of buildings in remote sensing image with different resolution may 

have large difference, the area rule is set with experience as follows: if 

80pixelsN  , then 
bR  is considered as the small target such as vehicles and 

noise, and is eliminated. 

(2)Rectangular degree rule. The rectangular degree is a parameter that 

measures the fullness of an object and its smallest external rectangle, which 

can be represented as /pixels rectangleRd N N=  by calculating the number of 

pixels pixelsN  contained in the smallest external rectangle of 
bR . The aspect 

ratio of the smallest external rectangle of 
bR  is Ar . If 

bR  meets 0.8Rd   

and 5Ar  , the object is considered to be a narrow target such as a road, 

river, etc., and is removed [21]. 

(3)Morphological Building Index (MBI) rule. MBI takes advantage of the 

features of pixels belonging to buildings are mostly highlighted in the gray 

image after top-hat transform and obtains the index value corresponding to a 

pixel by calculating the multi-scale differential sequence [22]. The higher the 

MBI, the more likely it is that the pixel belongs to a building, and the 

calculation formula is as follows: 

( , )

MBI = d s

DMP d

S

s

D


                          (1) 

where D  and S  represent the direction and scale of linear structural 

elements, respectively; ( , )DMP d s  is a multi-scale difference morphological 

sequence. According to the suggestion of document [23], this study sets 

8D =  and 50S = . Based on the MBI values of all pixels in the image, the 
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separation threshold 
MBIT  is adaptively determined by using the maximum 

between-class variance method (Otsu) to obtain the proportion falseRatio  of 

non-building pixels in 
bR , if 0.8falseRatio  , and it is removed. 

  According to rules (1) to (3), traverse all objects in originR , and the 

removed non-building objects will no longer participate in subsequent 

analysis and discrimination. The remaining objects will form a set of 

potential buildings 
BLDR  for further of earthquake-damaged buildings 

recognition. 

3.2. Adaptive Selection of Number of Decision Trees 

The earthquake-damaged buildings recognition based on machine learning is 

essentially to transform the problem of target recognition into the problem of 

image classification through feature extraction of post-earthquake images. 

The RF classifier used in this study is an integrated classifier based on non-

pruning decision tree. Compared with other machine learning classifiers, it 

has the advantages of higher precision, stronger generalization ability and 

fewer parameters, which has been widely used in classification research of 

high-resolution remote sensing images [24]. The number I of decision trees in 

RF is a key parameter that significantly affects the classification accuracy. 

Therefore, this study proposes an adaptive selection strategy of number of 

decision trees, which mainly includes the following five steps: 

Step1: In potential building object set 
BLDR , 20 undamaged buildings, 20 

partly damaged buildings, 20 ruins, and 20 other objects are taken by 

artificial marking to form the training sample set H; 

Step2: Conduct the initial building earthquake-damaged feature set . In 

this study, 30 common features in the field of earthquake-damaged buildings 

recognition including spectrum, texture and geometric morphology are 

selected to construct the initial building earthquake-damaged feature set 

[25], [26], [27]. Among which, the spectral features include R-band mean, 

G-band mean, B-band mean, R-band standard deviation, G-band standard 

deviation, B-band standard deviation, R-band contribution rate, G-band 

contribution rate, B-band contribution rate, Brightness; the geometric 

morphological features include Area, MajorAxis Perimeter, Eccentric 

Orientation, MinorAxis, Range, ConvexArea, Diameter, Solidity; and the 

texture features include grayscale symbiotic matrix Contrast, Homogeneity, 

Correlation, Entropy, J-value, Roberts operator, Sobel operator, Prewitt 

operator, Laplacian operator, Canny operator; 

Step3: Build the initial RF model with five decision trees and enter a 

training sample set with all features. The classification accuracy rate is 

defined as the ratio of the number of correctly classified samples per tree to 

the number of input samples. The larger the ratio, the closer the classification 

result is to the real situation. Calculate the classification accuracy of each 
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tree, and find the mean value of the correct rate of all decision trees 
5

0

1

1

5
i

i

Acc Tree
=

=  ,which i is the serial number of the decision tree; 

Step4: Build a new RF model after iteratively adding decision tree with 

five trees as a step size. Using the same steps as Step3, the mean value of the 

correct rate 
5( 1)

1

( ) / [5( 1)]
n

n i

i

Acc Tree n
+

=

= +  is obtained when the iteration 

number is [1,99]n ; 

Step5: If 
nAcc  meets

1 1n n nAcc Acc Acc− +  , it is considered to be a peak 

in a sub-interval containing 10 decision trees, and notes 0opt nAcc Acc= ; 

Step6: Continue to calculate the 3 consecutive peak points after
nAcc , 

which are respectively 1optAcc , 2optAcc , 3optAcc , and if 
0optAcc  satisfies: 

         0 1 2 3argmax{ , , }opt opt opt optAcc Acc Acc Acc                     (2) 

the iteration is stopped and the number of decision trees corresponding to 

0optAcc  is defined as 0optI . Otherwise, proceed to the next step; 

Step7: Repeat Step5 and Step6 until the 0optAcc  meets formula (2), stop 

the iteration, and 0optI  can be extracted. If 0optAcc  cannot be determined 

within [1,99]n , the number of decision trees corresponding to the obtained 

maximum value of 
nAcc  is recorded as 0optI ; 

Step8: Continue to compare the classification accuracy of 0optI  and the 

four neighboring trees (9 models in total) before and after, and determine the 

number of optimized decision trees optI  finally extracted according to the 

maximum classification accuracy. 

3.3. Optimized Feature Set Extraction Guided by Feature 

Importance Index 

Based on the optimized selection of the decision tree number of RF, in order 

to further reduce the redundancy and evidence conflict between the features 

in the candidate feature set F, this study defines an important degree index of 

features, and then puts forward the strategy of optimizing the feature set. In a 

RF model with 0optI  decision trees, the importance of all features is firstly 

calculated. Secondly, the inter-class importance of spectral, texture and 

geometric morphology features are calculated respectively. On this basis, the 

intra-class importance of sub-features included in the three types of features 

is calculated respectively. Finally, the optimized classification feature set of 

earthquake-damaged buildings is obtained under the guidance of the 

importance. The specific steps are as follows: 

Step1: Calculate the importance of all features. In the training sample set 

H, the unselected samples after random sampling with return constitute an 

out-of-bag data set (OOB). The importance of any feature 

( , [1,30])t tf f F t   to the ith decision tree is calculated by formula (3): 
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                     (3) 

where 
B  represents OOB sample set, 

jx  and 
jl  respectively represent any 

sample in the data out-of-bag and its assigned category label, 
( )i

jc  represents 

the category label obtained by sample jx , 
( )

, t

i

j fc  denotes a category label of 

sample jx  obtained by replacing the value of the feature 
tf  with other 

random values, N is a counting function. After traversing all decision trees, 

the importance 

( )

1
( )

( )

optI i

ti

t

opt

W f
W f

I

==


 of feature 
tf  to RF classifier can be 

obtained; 

Step2: Calculate the inter-class importance of features. Since the features 

in  are respectively classified into three categories of spectrum, texture and 

geometric morphology (hereinafter denoted by subscripts L, T and G 

respectively), the inter-class importance of the three categories of features, 

namely spectrum, texture and geometric morphology, can be obtained by 

summing up the importance of each and the categories to which it belongs 

respectively, and are respectively recorded as 
LW ,  and 

GW . On this 

basis, the spectral features normalized penalty factor for inter-class 

redundancy is defined as
+ +

L
L

L T G

W

W W W
 = . By analogy, the normalized 

penalty factors of inter-class redundancy for texture and geometric 

morphological features are 
T  and 

G  respectively; 

Step3: Calculate the intra-class importance of features. According to the 

spectral, texture morphological feature subsets to which the 30 features 

belong, the intra-class importance is calculated by Step1. On this basis, the 

features in each feature subset are arranged from high to low according to the 

intra-class importance; 

Step4: For each feature subset, after rounding according to the proportion 

of redundant normalized penalty factors, only 
Lv , 

Tv  and 
Gv  features with 

relatively high importance within the class are respectively retained, thus 

obtained an optimized feature set optF  with 
L T GV v v v= + +  features. 

3.4. Image Classification Based on Optimized RF Model 

Based on the extracted 
optF  and optI , an optimized RF model is constructed 

as follows: 

1

( ) arg max ( ( ) )
optI

i
c

i

P x E p x c
=

= =                             (4) 



628           Chao Wang et al. 

 

where ( )P x  represents the classification result; ( )ip x  represents the 

classification result of a single decision tree; c means classification label, 

c∈{Undamaged Building, Partly Damaged Building，Ruin, The Others}. On 

this basis, voting is carried out according to the classification labels given by 

each decision tree, and the number of votes is taken as the standard of the 

final classification label of the sample. If the voting results in a draw, the 

distance Dist  between the sample and the training samples of these 

categories is discriminated according to formula (5), and the category with 

smaller Dist  is taken as the final classification result of the sample. 

2

( ) ( )

1

2

( )
V

test v train v

v

v

x x

Dist
s

=

−

=


                            (5) 

In the formula, ( )test vx  and ( )train vx  are the values of the vth feature in the 

test sample and training sample, respectively; 
2

vs  is the variance of the vth 

feature. 

4. Experiment and Analysis 

In the experiments, four groups of post-earthquake high-resolution remote 

sensing images of different sensors are used. Through visual analysis and 

quantitative accuracy evaluation, the performance of the proposed method is 

verified by comparison with a variety of advanced methods.   

4.1. Experiment Datasets 

Dataset 1 and Dataset 2 are GE01 satellite remote sensing images of Yushu 

in Qinghai Province, China, and the acquisition time is May 6, 2010. The 

earthquake occurred on April 4, 2010, with the highest magnitude of 7.1. The 

image includes panchromatic and multispectral (blue, green, red and near 

infrared) bands with spatial resolutions of 0.41m and 1.65m respectively and 

a size of 1024×1024 pixels. Pan-sharpened RGB images with a spatial 

resolution of 0.41m fused by ENVI software are used in the experiment. As 

shown in Fig. 2 (a) and (b). Dataset 3 and Dataset 4 are QuickBird satellite 

remote sensing images of Wenchuan in Sichuan Province of China, and the 

acquisition time is June 3, 2008. The earthquake occurred on May 12, 2008, 

with the highest magnitude of 8.0. The image includes panchromatic and 

multispectral (blue, green, red and near infrared) bands with spatial 

resolutions of 0.6m and 2.4m respectively. Pan-sharpened RGB images with 

spatial resolution of 0.6m fused by ENVI software are used in the 

experiments, as shown in Fig. 2 (c) and (d). 
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(a) (b) 

 

 

  
(c) (d) 

Fig. 2. Experimental datasets: (a) Dataset 1; (b) Dataset 2; (c) Dataset 3; (d) Dataset 4. 

The reasons for selecting these four datasets for experiments are as 

follows: Satellite remote sensing images are one of the main forms of 

obtaining ground information resources at present. These datasets of different 

regions and sensors are selected to help analyze the general applicability of 

the proposed method. Besides, these areas are seriously suffered after the 

earthquake, including buildings, vegetations, roads, wastelands, rivers, 

slopes, etc. In addition, there are two types of damaged buildings, including 

partly damaged buildings and ruins, which is in line with the aim of the 

identification of damaged buildings with different degrees in this study.  
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4.2. Extraction Results of Potential Building Sets 

⚫ Extraction Results of Initial Object Sets  

The image is firstly segmented by WJSEG method, and the initial object 

set originR  is obtained. In order to facilitate observation, a semitransparent 

white layer is superimposed on the original image, and then the segmentation 

result is represented by black pixels and projected into the image, as shown in 

Fig. 3. 

 

  
(a) (b) 

  
(c)                                       (d) 

Fig. 3. WJSEG segmentation and initial object set extraction results: (a) Dataset 1; (b) 

Dataset 2; (c) Dataset 3; (d) Dataset 4. 

It can be seen that the segmentation results have completely extracted 

undamaged buildings and earthquake-damaged buildings, and there is almost 

no phenomenon of under segmentation. The phenomenon of over-
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segmentation mainly exists in river and grassland areas, which are not the 

region of interesting (ROI) in this study. Therefore, the extracted initial set of 

objects can provide effective analysis elements for subsequent earthquake-

damaged buildings recognition. 

 

⚫ Screening Results of Non-building Objects 

According to the discrimination rules in section 3.1, the non-building 

objects in initial object set are screened, and the results are shown in Fig. 4. 

Among them, the excluded non-building objects are represented by black 

pixels, and the remaining white objects constitute a potential building set 

BLDR . At the same time, in order to facilitate analysis, some representative 

positions and objects in the image have been labeled with different alphabetic 

symbols, and the same operations are used in the following chapters. 

 

  

(a) (b) 

  
c) (d) 

Fig. 4. Results of screening non-building objects: (a) Dataset 1; (b) Dataset 2; (c) 

Dataset 3; (d) Dataset 4. 

javascript:;


632           Chao Wang et al. 

 

As shown in the above figure, roads (e.g., locations A and C) in Dataset 1 

and Dataset 2, tents with smaller areas (e.g., location B) in Dataset 1, river 

courses (e.g., locations G and E) in Dataset3 and Dataset4, and large areas of 

vegetation region (e.g., location F) in Dataset 4 have been effectively 

screened. However, there are still some non-building objects, such as 

wasteland (e.g., location D) in Dataset 2, Grassland and wasteland (e.g., 

location H) in Dataset 3. Therefore, the proposed non-building objects 

screening strategy is feasible and effective, but it is also necessary to retain 

the category of other object in the subsequent classification results. 

4.3. Adaptive Selection of the Number of Decision Trees 

Fig. 5. The adaptively selected number of decision trees in Dataset 1. 

The adaptively selected numbers of decision trees corresponding to Dataset 1 

to Dataset 4 are 131, 64, 91 and 63 respectively. In the following, Dataset 1 is 

taken as an example for detailed description of adaptive selection process. As 

shown in Fig. 5, according to the discrimination rules in section 3.2, the 

satisfied condition of the selected peak point is 0 130optI = . On this basis, an 

interval is constructed with 0optI  as the center, and the classification accuracy 

of four trees before and after 0optI  are calculated respectively. Among them, 

when the number of decision trees is 131, the classification accuracy rate 

reaches the maximum, so 131optI =  is taken. 
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4.4. Optimized Feature Set Extraction Results 

On the basis of the adaptive number of decision trees, the optimized feature 

set extraction results corresponding to four Datasets are shown in Table 1 

respectively: 

Table 1. Optimized feature set extraction results 

Experimental 

dataset 
Optimized feature set 

Dataset 1 

G-band standard deviation, B-band standard deviation, 

R-band contribution rate, MinorAxisLength, Extent, 

Solidity, GLCM homogeneity, GCLM correlation, 

GLCM energy, Laplacian operator 

Dataset 2 

B-band standard deviation, R-band contribution rate, G-

band contribution rate, MinorAxisLength, Extent, 

Perimeter, Solidity, Prewitt, Laplacian operator, Canny 

operator 

Dataset 3 

B-band mean, G-band standard deviation, R-band 

contribution rate, G-band contribution rate, B-band 

contribution rate, MinorAxisLength, Solidity, Laplacian 

operator, GLCM correlation, GLCM energy 

Dataset 4 

B band mean, R band standard deviation, R band 

contribution rate, G band contribution rate, B band 

contribution rate, Extent, Solidity, GLCM contrast, 

GLCM correlation, Laplacian operator 

4.5. Comparison Methods and Recognition Results 

In order to objectively analyze and verify the performance of this method, 

traditional RF and another two advanced methods are chosen for comparative 

experiments. Method 1 [28] is based on the traditional RF. Set the initial 

building earthquake-damaged feature set F and 500 decision trees as the 

input of classifier. By comparing with Method 1, it is helpful to analyze the 

effectiveness of proposed optimization strategy for feature and the number of 

decision trees selection. Method 2 is an optimized RF based method with the 

10-fold cross-validation [29]. More representative training damage samples 

are chosen for improving the recognition accuracy in this method. The 

optimized feature set optF
 extracted in this study and 500 decision trees in 

original literature are used as the input. Method 3 is applied by improved 

Separability and Thresholds (SEaTH) for feature optimization, and extracting 

earthquake-damaged buildings based on  membership degree. Comparing 

with the two advanced methods is helpful to objectively evaluate the OA of 

the proposed method [30], [31], [32]. In addition, since Method 2 is a pixel-

level method and it is difficult to directly compare with the results of the 

object-level classification method in this study, the objects in the initial 

object set originR
 are used instead of pixels as the basic unit of subsequent 
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classification. Meanwhile, despite Method 3 is an object-level method, the 

objects in originR
 are also used as the basic unit for insuring the consistency of 

objects in classification. Besides, in order to avoid the difference in results of 

earthquake-damaged buildings recognition caused by whether the 

preliminary screening of non-buildings is taken, all the comparison methods 

carry out feature extraction and classification on the basis of the potential 

building set BLDR
.    

 

  
(a) (b) 

  
(c) (d) 

     

Undamaged Building 
Partly Damaged 

Building 
Ruin The Others 

Fig. 6. Recognition Results in Dataset 1: (a) Method of this study; (b) Method 1; (c) 

Method 2; (d) Method 3.                        
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The results of classification of all comparison methods are including four 

categories: undamaged building, partly damaged building, ruin and other 

object, which are respectively represented in different colors. The results of 

proposed method and three comparison methods are shown in Fig. 6 to Fig. 

9. 

 

  
(a)                                         (b) 

  
(c) (d) 

 

    

Undamaged Building 
Partly Damaged 

Building 
Ruin The Others 

Fig. 7. Recognition Results in Dataset 2: (a) Method of this study; (b) Method 1; (c)  
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(a) (b) 

  
(c) (d) 

 

    

Undamaged Building 
Partly Damaged 

Building 
Ruin The Others 

Fig. 8. Recognition Results in Dataset 3: (a) Method of this study; (b) Method 1; (c) 

Method 2; (d) Method 3  
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(a) (b) 

  
(c) (d) 

 

    

Undamaged Building 
Partly Damaged 

Building 
Ruin The Others 

Fig. 9. Recognition Results in Dataset 4: (a) Method of this study; (b) Method 1; (c) 

Method 2; (d) Method 3.     

4.6. Accuracy Evaluation 

As the basis of accuracy evaluation, the ground truth maps of four datasets 

are drawn based on visual inspection and field investigation, as shown in Fig. 

10. 
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(a) (b) 

  
(c) (d) 

    

    

Undamaged Building 
Partly Damaged 

Building 
Ruin The Others 

Fig. 10. The ground truth maps of four datasets: (a) Dataset 1; (b) Dataset 2; (c) 

Dataset 3; (d) Dataset 4.   

⚫ Visual Inspection 

By comparing the experimental results with ground truth maps, the 

recognition effect of the proposed method is significantly better than other 

three methods, which mainly reflects in: (1) In the four groups of 

experimental results, the undamaged buildings located at locations I and Q, 
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the non-buildings located at location O, and the ruin located at location R are 

all correctly identified only by the proposed method; (2) For the undamaged 

buildings with regular shape and texture, such as location S, W, Z and C*, the 

four methods obtain correct discrimination results; However, for partly 

damaged buildings, for example, only the proposed method and Method 3 

obtain the correct results in location K and P, and only the proposed method, 

Method 2 and Method 3 have made correct judgment for location L and J; (3) 

For ruins, such as location U and A, only the proposed method and Method 2 

have correctly identified them; (4) For non-buildings with similar spectral 

and shape features to buildings that have not been screened out in potential 

building sets, such as location V and X, only the proposed method and 

Method 2 obtain correct results; For some small objects, such as B*, Z, only 

the proposed method and Method 2 can make correct judgment.  

⚫ Quantitative Analysis 

On the basis of visual inspection, four accuracy indexes including OA, false 

positive (FP), false negative (FN) and Kappa are used to quantitatively 

evaluate the accuracy, as shown in Tables 2 to 5. 

Table 2. Quantitative accuracy evaluation in Dataset 1 

Methods \ 

Indexes 
OA FP FN Kappa 

Evaluation 

criterion 

The bigger 

the better. 

The smaller 

the better. 

The 

smaller the 

better. 

The 

bigger 

the 

better. 

Proposed 

method 
91.81% 2.89% 8.19% 0.817 

Method 1 90.14% 3.52% 9.86% 0.779 

Method 2 90.68% 3.31% 9.32% 0.793 

Method 3 88.69% 4.08% 11.31% 0.746 

Table 3. Quantitative accuracy evaluation in Dataset 2 

Methods \ 

Indexes 
OA FP FN Kappa 

Evaluation criterion 
The bigger the 

better. 

The smaller the 

better. 

The smaller 

the better. 

The bigger 

the better. 

Proposed method 86.16% 5.08% 13.84% 0.781 

Method 1 78.30% 8.45% 21.70% 0.666 

Method 2 80.17% 7.61% 19.83% 0.689 
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Method 3 77.31% 8.91% 22.69% 0.643 

Table 4. Quantitative accuracy evaluation in Dataset 3 

Methods \ 

Indexes 
OA FP FN Kappa 

Evaluation criterion 
The bigger the 

better. 

The smaller the 

better. 

The smaller 

the better. 

The bigger 

the better. 

Proposed method 85.99% 5.15% 14.01% 0.747 

Method 1 80.74% 7.37% 19.26% 0.669 

Method 2 81.44% 7.06% 18.56% 0.668 

Method 3 74.78% 10.11% 25.22% 0.571 

Table 5. Quantitative accuracy evaluation in Dataset 4 

Methods \ Indexes OA FP FN Kappa 

Evaluation criterion 
The bigger the 

better. 

The smaller the 

better. 

The smaller 

the better. 

The bigger 

the better. 

Proposed method 91.89% 2.86% 8.11% 0.707 

Method 1 89.88% 3.62% 10.12% 0.612 

Method 2 89.94% 3.60% 10.06% 0.640 

Method 3 87.72% 4.46% 12.28% 0.595 

 

From above tables, the OAs of the proposed method can always reach 

more than 85%, and the four accuracy indexes are superior to the other three 

comparison methods, which are consistent with the visual inspection results. 

In the experiments of dataset 1 and dataset 4, the accuracy of the four 

comparison methods is significantly higher than that of the other two sets of 

datasets, which is mainly due to the different initial screening results of non-

building objects. The specific manifestation is that the proportions of 

screened non-building objects in the initial set of objects originR  in Dataset 1 

and Dataset 4 are 67.84% and 66.6%, respectively, which is significantly 

higher than that in Dataset 2 (34.66%) and Dataset 3 (38.35%).  

Compared with the proposed method, the theoretical reasons underling the 

lower accuracy of the compared methods are as follows. Method 1 adopts the 

unoptimized feature space and classifier, which includes more redundant 

information and redundancy and evidence conflict. Method 2 adopts the same 

training sample set and feature space, and the difference exists primarily in 

the number of decision trees. It has once again proved the necessity of 

selecting a reasonable number of decision trees. The optimize strategy of 

feature space in Method 3 is only based on the inter- and intra-class distance 

between features, while the difference between different datasets should be 

javascript:;
javascript:;
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considered as introducing the feature importance index proposed in this 

study. 

4.7. Analysis of Relationship between the Number of Decision Trees 

and OA 

In order to further analyze the influence of the number of decision trees on 

the OA and evaluate the rationality of the number of decision trees adaptively 

extracted in this study, the variation curves of the OA and the number of 

decision trees in the four groups of experiments are counted at intervals of 10 

in the interval of [50,200], and the maximum, minimum and average of OAs 

obtained by statistics and the OA obtained in this study are respectively 

expressed by straight lines of different patterns, as shown in Fig. 11. 

 

  
(a) (b) 

  
(c)                                           (d) 

Fig. 11. Relationship between number of decision trees and OA: (a) Dataset 1; (b) 

Dataset 2; (c) Dataset 3; (d) Dataset 4.   

As shown in above figures, the change in the number of decision trees has 

a significant impact on the OA, so it is necessary to select a reasonable 
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number of decision trees. On the other hand, although the OA corresponding 

to the number of decision trees extracted in this study is not the maximum 

value corresponding to the [50,200] interval, the difference is less than 1% 

and much higher than the average OA. Therefore, the proposed decision tree 

number adaptive selection strategy is feasible and effective, which not only 

improves the degree of automation, but also achieves ideal classification 

accuracy. 

4.8. Analysis of Influence of Feature Combination on OA 

In addition to the number of decision trees, this study further analyzes the 

influence of different types of features and feature combinations on the 

detection accuracy of earthquake-damaged buildings. With the initial 

building earthquake-damaged feature set F, the OA obtained by statistics is 

shown in Table 6 according to different categories and combinations of 

features. 

Table 6. Obtained OA by different features and feature combinations 

Features  OA FP FN Kappa  

Spectral features  0.8249 0.0661 0.1751 0.6981 

Geometrical features  0.6515 0.5856 0.8091 0.1420 

Texture features  0.7180 0.5509 0.7863 0.1863 

Spectral + Geometrical + 

Texture features 

 
0.7723 0.4722 0.7285 0.2243 

The optimized features in 

this study 

 
0.8599 0.0515 0.1401 0.7474 

 

As shown in the above table, the feature set extracted in this study is the 

corresponding to the highest OA. Besides, the OA of spectral features is 

significantly higher than that of the other two features when spectral, 

geometrical features and texture features are used alone for classification. 

The reason is that the inherent geometrical features and texture features of 

buildings are destroyed after the earthquake, which increases the uncertainty 

of classification. However, spectral features are not easy to change greatly, so 

it is more reliable in the specific application field of earthquake-damaged 

buildings recognition. Moreover, the OA achieved by using three types of 

features is even lower than that by using spectral features alone. The reason 

lies in feature redundancy and evidence conflict, and the feature set 

optimization strategy presented in this study provides an effective solution. 

5. Conclusion 

Under the premise of the lack of pre-earthquake reference information, this 

study proposes a method of earthquake-damaged buildings detection based 

on decision tree and feature optimization. In the experiments of multiple sets 

of high-resolution remote sensing images from different regions and different 

sensors, the OA can reach more than 85%, and the FN is less than 6%, which 
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can provide key and reliable decision support information for post-

earthquake emergency response and reconstruction. Its main theoretical 

contributions are: (1) The proposed feature set optimization strategy guided 

by the important indicator of feature can provide a feasible solution for the 

automatic construction of feature space of earthquake-damaged buildings; (2) 

The proposed feature set screening strategy, combined with the adaptive 

extraction strategy of the number of decision trees, constructs a novel and 

efficient optimized RF model for earthquake-damaged buildings recognition. 
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