
Computer Science and Information Systems 17(2):581–597 https://doi.org/10.2298/CSIS190920005V 

 

Human Activities Recognition with a Single Writs IMU 

via a Variational Autoencoder and Android Deep 

Recurrent Neural Nets 

Edwin Valarezo Añazco1, Patricio Rivera Lopez1, Hyemin Park1, Nahyeon Park1, 

and Tae-Seong Kim1* 

1 Department of Biomedical Engineering, College of Electronics and Information, 

Kyung Hee University, Republic of Korea 

{edgivala, patoalejor, hmp9669, nhpark, tskim}@khu.ac.kr 

Abstract. Human Activity Recognition (HAR) is an active research field because 

of its versatility towards various application areas such as healthcare and lifecare. 

In this study, a novel HAR system is proposed based on an autoencoder for 

denoising and Recurrent Neural Network (RNN) for classification with a single 

Inertial Measurement Unit (IMU) located on a dominant wrist. A Variational 

Autoencoder (VAE) is built to denoise IMU signals which improves HAR by 

Android Deep RNN. Evaluating our VAE and Android Deep RNN HAR system 

is done in two ways. First, the system is tested on a PC using discrete epochs of 

activities of daily living. Our results show that VAE improves Signal-to-Noise 

Ratio (SNR) of the IMU signal from 8.78 to 17.26 dB. In turn, HAR improves 

from 89.29% to 95.11% in F1-score and from 90.38% to 95.47% in accuracy. 

Secondly, the system is tested on an Android device (i.e., smartphone) using 

continuous activity signals. This is done by transferring the PC HAR system to an 

Android HAR App (i.e., Android Deep RNN). We have achieved 86.13% and 

95.09% in accuracy without and with VAE respectively. Our results demonstrate 

that HAR can be achieved in real-time on a standalone smart device with a single 

IMU for lifelogging services. 

Keywords: Human Activity Recognition; Denoising Autoencoder; Android Deep 

Recurrent Neural Networks; Mobile Application. 

1. Introduction 

Human Activity Recognition (HAR) is defined as a context-aware technology that maps 

activity data collected by IoT sensors into activity labels [1]. In recent years, HAR has 

gained strong attention because of its various applications [2], such as fall detection [3] 

[4], rehabilitation [5] [6], activity recognition in sports [7] [8], sports training analysis 
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[9] [10], energy expenditure estimation [11], and health care [12] [13]. Two issues have 

recently been raised regarding advanced HAR. First, in HAR studies, activity noises 

affect the recognition rate [14]. Then, it is necessary to use filters to denoise the motion 

signals. Second, most HAR studies are implemented on a PC platform. There is a strong 

need for a practical HAR system on a portable platform, such as smartphones.  

Recently Deep Learning (DL) has been adopted to create a better representation of 

the signal with less noise via Denoising Autoencoder (DAE) [15] [16]. Some studies 

tested DAE for instance: in Heyman, et al. [17], Bayesian Feature Enhancement (BFE) 

and DAE were used to clean-up voice signals for speech recognition using the output of 

BFE as target data. In Xiong, et al. [18], wavelet transform with the scale-adaptive 

thresholding method was used to filter out noise and DAE to remove the residual noise 

from electrocardiogram signals. In both cases, additional denoising stages were used as 

target data for DAE. Then, the performance of DAE depends on the target. In contrast, a 

totally unsupervised DAE is possible (i.e., using only autoencoder for denoising). For 

instance, in Mohammed, et al. [14], Variational Autoencoder (VAE) produced desirable 

denoising performance for motion artifact from a sensor attached to clothes. Our VAE 

implementation focuses on denoising activity signals from a wrist Inertial Measurement 

Unit (IMU). 

The current popularity of wearable technology creates an invaluable opportunity to 

build a portable HAR system. However, building an HAR system using DL on a 

portable device such as smartphones require some considerations. Most of all, large and 

complex classification algorithms could not be implemented on a portable device 

because of the computational burden on limited computing power and memory. There 

are some recent works trying to implement HAR systems on portable devices. For 

instance, Lane and Georgiev [19] used a low-power Deep Neural Network (DNN) on a 

CPU paired with a mobile device. In their system, DNN worked with a cloud system 

(i.e., activity label was inferred on PC and then sent to the smartphone via the Internet). 

However, the cloud system with a web connection is limited to not be a standalone 

HAR system. To overcome the limitations of the cloud service computation, some 

studies implemented their classification algorithms in a standalone mode (i.e., running 

on a smartphone) [20] [21] [22] [23] [24]. However, conventional classification 

approaches are used, instead of DL. For instance, Jongprasithporn, et al. [22] applied 

thresholds values to classify standing, walking, and running activities. Due to the 

threshold values were fixed for the three activities, complex activities could not be 

recognized. The other studies used Naïve Bayes (NB), Support Vector Machine (SVM), 

Random Forest (RF), and K-Nearest Neighbors (KNN) with hand-extracted features to 

differentiate sitting, standing, lying, walking, running, and cycling. DL should improve 

the performance over the mentioned conventional classification approaches and avoid 

the needed of hand-extracted features [25]. 

In this study, we have developed a HAR system with a single IMU at a dominant 

wrist based on VAE and Android Deep RNN. Our contributions focus on solving the 

problems of noise in HAR signals and implementation of a reliable HAR system on 

portable devices. To solve the problem of noise in the HAR signals, a denoising stage 

uses VAE based on Convolution Neural Network (CNN) and Recurrent Neural Network 

(RNN). VAE enhances the IMU signal by approximating the spatial-temporal features 

to Gaussian distributions. The importance of the denoising stage lays in the fact that 

IMUs are prone to motion artifacts and sensor noise. To implement a reliable HAR 

system we used RNN because it outperforms other algorithms in HAR [25] [26]; to 
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make the HAR system portable avoiding the limitations of cloud systems (e.g., 

connection delays), the HAR system was implemented under Android (i.e., Android 

Deep RNN) whereas most DL RNNs are implemented only for a PC [27] [28] [29]. 

RNN running on Android increases the scope of our system to any smart device using 

Android, even if the smart device has not internet connection. Our results show that 

HAR accuracy increases with the denoised IMU signal compared to the row signal 

without VAE. Furthermore, the inference time of our Android Deep RNN on Android 

smartphone is fast enough to implement real-time lifelogging App. 

2. Methodology 

The proposed system is represented in Fig. 1. Human activities are sensed with a single 

IMU worn on one dominant wrist. In our HAR system, VAE denoises a tri-axial 

accelerometer and tri-axial gyroscope signals. Then the denoised IMU signals are 

classified into activity labels via Android Deep RNN on the PC and Android 

smartphone platforms. In this study, we recognize Activities of Daily Living (ADL) 

including standing, walking upstairs, walking downstairs, walking, running, cycling, 

and Nordic walking.  

Fig. 1. HAR System workflow. 

2.1. ADL Database 

In this study, we used a public database (DB), Physical Activity Monitoring for Aging 

People (PAMAP2) [30] [31]. PAMAP2 includes raw information using three IMUs 

located on the chest, the wrist, and the ankle, with a sampling frequency of 100 Hz. 

Each IMU provides the information of tri-axial acceleration (ms-2), tri-axial gyroscope 

(rad/s), and tri-axial magnetometer (µT). The DB includes data of nine subjects 

performing 12 ADLs, including ironing, vacuum cleaning, walking, walking up and 

downstairs, sitting, lying, and standing. High-level dynamic activities have also 

included, such as Nordic walking, running, cycling, and rope jumping.  

For this study, we have selected the following seven ADLs: Standing consists of just 

standing without interaction with another person or standing while the subject is talking. 

Walking Upstairs and Walking Downstairs (Ascending and Descending stairs) were 

carried out in a five-floors building. Walking consists of walking outdoors with 

moderate speed steps. Nordic Walking is performed on asphaltic terrain using asphalt 

pads on the walking poles. Cycling is conducted outdoors with a real bike. Running 
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corresponds to jogging outdoors with suitable speed. These ADLs are selected because 

they should be well reflected on the wrist sensor and most of the subjects perform these 

activities for all the trials. 

2.2. Denoising Autoencoder 

Autoencoder (AE) is a feed-forward neural network that reproduces its input as output. 

It includes an encoder network that generates a featured representation of the input in 

the latent space. Then the decoder network decodes the feature representation back to 

the input dimension [32].  

VAE is a variant of autoencoder that is able to denoise motion signals. As 

autoencoder, VAE encodes the input data into a feature-representation vector in the 

latent space. However, in VAE, the feature representation vector is constrained to 

Gaussian distributions [33]. Also, VAE uses two loss functions, a combination of 

Kullback-Leibler divergence (KL) and Mean Square Error (MSE). The first loss 

function forces the feature-representation vector in the latent space to follow a Gaussian 

distribution, measuring the relative entropy between the approximate posterior and the 

prior probability density function [33]. The second loss measures the similarity between 

the output and the input. 

Our VAE model is presented in Fig. 2. It uses a combination of CNN and RNN with 

Long Short-Term Memory (i.e., LSTM) layers as in [14]. Nevertheless, our VAE 

implementation has two main differences from the previous approaches [34] [14] [33]. 

The first difference lies in our VAE architecture. Our VAE has three convolutional 

layers and three LSTM layers in the encoder. The latent space has two dense layers. The 

decoder has three LSTM layers and three deconvolutional (ConvTranspose) layers. The 

second difference is the loss function. It is a weighted combination of KL and MSE 

similar to Mohammed and Tashev [14]. The weighted loss function is designed by 

analyzing the effect of KL and MSE in the Signal-to-Noise Ratio (i.e., SNR). Eq. 1 

describes the weighted loss function used to train VAE. 𝐸𝐾𝐿 measures the KL 

divergence between the prior and posterior probability density functions, described by 

the feature representation vector z in the latent space. 𝐸𝑀𝑆𝐸 measures the MSE error 

between the output and input signals; 𝛾 is the weight value, in this work 𝛾 value is 5.  

 

ℒ = 𝛾 ∗ (𝐸𝑀𝑆𝐸 [(�̂� − 𝑦)2]) + 
1

1000 ∗ 𝛾
∗ (𝐸𝐾𝐿[𝑞(𝑧|𝑥)||𝑝(𝑧)]) (1) 
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Fig. 2. Variational Autoencoder. 

2.3. Android Deep RNN 

RNN is characterized by recurrent connections between hidden units. These recurrent 

connections generate a temporal memory in which the previous state of the network is 

stored. This lets RNN take decisions based on the previous stage of the network and the 

current input [26]. 

Our Android Deep RNN uses the classic LSTM cell proposed in [35]. LSTM 

produces internal paths regulated by gates, where the gradient can flow for long 

durations. These regulated paths allow propagation of the error in deep networks. For 

weight optimization, Stochastic Gradient Descent (SGD) was used. SGD uses a 

momentum factor to determine how fast the algorithm converges. SGD is described by 

Eqs. 2 and 3. 

𝑊𝑡+1 =  𝑊𝑡 + 𝑣𝑡+1 (2) 

𝑣𝑡+1 = 𝛽 × 𝑣𝑡 −  𝛼 × ∇ℒ(𝑊𝑡) (3) 

where 𝛼 is learning rate, 𝑊𝑡 weight matrix, ℒ the loss function, and 𝛽 the momentum 

factor. The loss function is Negative Logarithmic Likelihood. It is described by Eq. 4, 

where 𝑛 corresponds to the number of classes and 𝑃𝑦
𝑖  is the probability of the class 𝑖. 

ℒ = −
1

𝑛
∑ log(𝑃𝑦

𝑖)

𝑛

𝑖=1

 (4) 

Fig. 3 shows our Android Deep RNN, the main difference with previous works are: 

first, our Android Deep RNN can run on Android smartphone on standalone mode (i.e., 

inference on Android device), while most of the previous HAR systems are 

implemented only for PC [29] [28] [27]. Second, the architecture of our Android Deep 

RNN, for instance Milenkoski, et al. [36] built an HAR system using three LSTM layers 

with 64 cells each layer. In contrast, our network is lighter than them in terms of number 

of layers. It has only a single RNN-LSTM layer and a single hidden layer to reduce the 

memory usage on Android smartphone. The single RNN-LSTM layer has 100 cells 
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corresponding to 2 seconds data; the hidden layer has 120 nodes; at the end of our 

network a softmax layer with seven nodes, corresponding to each class.  

 

 

Fig. 3. Android Deep RNN Architecture. The six-channels input matches with the RNN-LSTM 

layer. The remaining layers are fully connected. 

2.4. VAE and Android Deep RNN Implementation 

In this study, VAE was implemented on a PC platform using Keras and TensorFlow. 

The convolutions and the RNN-LSTM layers were implemented to transform the 

spatial-temporal information of the IMU signals into a family of Gaussian distributions 

in the latent space with mean µ and variance 𝜎2. The mean µ and variance 𝜎2 are 

represented as dense layers (see Fig. 2). Mini-batch approach was used to train VAE 

with a mini-batch size of 100. Adam Optimizer was used with a learning rate of 0.0008. 

The kernels size and the hidden nodes are same for each encoder-decoder equivalent 

layer. 

The Android Deep RNN was implemented using Deeplearning4J library [37]. The 

RNN-LSTM layer of our HAR system classifies the data as many-to-one, after an epoch 

(i.e., 2 seconds data) the model infers a single class label. Truncated Backpropagation 

Through Time (Truncated-BPTT) was used to train the Android Deep RNN. Truncated-

BPTT is a variant of BPTT that restricts the downside to a specific number of hidden 

nodes (i.e., the gradient is not back-propagated to all hidden nodes). To train our HAR 

system the mini-batch approach was used with a mini-batch size of 113. Weight 

initialization was done using a random number generator. Hyperparameters such as 

learning rate and number of hidden nodes were fixed by analyzing the behavior of these 

in the loss function. The learning rate was set as 0.09 and the number of training steps 

was fixed after setting the learning rate and to avoid overfitting. The training of the 

Android Deep RNN was done using IntelliJ IDE on PC. 

An Android app was created using Android Studio IDE with the Application 

Program Interface (API) 23. API 23 lets the app run on Android 6.0 or higher. The app 

loads the network architecture shown in Fig. 3 with the trained weights. Then, the 

inference is made on an Android smartphone without fine-tuning or retraining of the 

network on smartphone. 

The smartphone used in this study is a Samsung Galaxy S7 with the following 

technical specifications: Android version 7.0, 4GB of RAM, Octa-core processor of 
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4x2.3 GHz and 4x1.6 GHz. The PC speciation includes Processor Intel(R) Core (TM) 

i5-7500 CPU@ 3.40GHz, 8GB of RAM, and NVIDIA GeForce GTX 1050 Ti.  

2.5. Data Preparation 

In this study, we utilized activity information from a tri-axial accelerometer and a tri-

axial gyroscope on a dominant wrist. We created a discrete epoch dataset, where each 

epoch is segmented data with a time window of two seconds. 

The IMU signals were preprocessed as follows: The activity data was downsampled 

to 50 Hz, as was suggested in [38] for HAR. The gravity effect was removed by a high-

pass Butterworth filter, with a cutoff frequency of 0.25 Hz [39]. The activity data were 

normalized between -1 to 1. Finally, the sliding window approach was used with an 

overlap of 50% and a window length of two seconds. The total number of epochs per 

activity are 610 epochs for standing, 1470 epochs for walking, 700 epochs for running, 

1020 epochs for cycling, 1340 epochs for Nordic walk, 640 epochs for ascending stairs, 

and 500 epochs for descending stairs.  

In addition, the performance of our HAR system on a smartphone was evaluated by a 

real-time simulation with continuous epochs of activities. The activity datasets of 

discrete and continuous epochs were created from seven subjects in PAMAP2. 

2.6. Validations 

Validation of our VAE was done by analyzing the SNR improvement. Eq. 5 describes 

mathematically the SNR. The SNR was calculated by taking the Root-Mean-Square 

level (i.e., RMS) of the signal of interest involving certain activities and the RMS level 

of noisy background signals (i.e., no activities performed). 

𝑆𝑁𝑅 = 20 ∗ log10

𝑅𝑀𝑆(𝑆𝑖𝑔𝑛𝑎𝑙 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡)

𝑅𝑀𝑆(𝑁𝑜𝑖𝑠𝑒)
 (5) 

The following performance metrics are considered to assess our HAR system [40]. 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑟 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃𝑃𝑉) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (8) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒𝑠 (𝑁𝑃𝑉) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (9) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (10) 

mailto:CPU@3.30GHz


588           Edwin Valarezo Añazco et al. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

To validate the performance of our HAR system two evaluation methods were used. 

The first evaluation is done using the discrete epochs dataset on a PC. The performance 

of the HAR system was evaluated through a five-fold. The second validation 

methodology is a continuous epoch evaluation that runs on an Android smartphone. 

This test evaluates the feasibility and performance of a real-time HAR system under a 

standalone mode. 

3. Results  

3.1. Denoising Performance of VAE 

Fig. 4 shows the comparison of some representative epochs from different activities 

before and after VAE. The effect of VAE is shown as a reduction of the high-frequency 

components in the denoised activity signals. The overall SNR is improved from 8.78 to 

17.26 dB. 

 

 

Fig. 4. Raw epochs (dotted in blue) vs. denoised epochs (solid in red) via VAE. 

Fig. 5 shows the precision and recall values of our HAR system without and with 

VAE. With VAE there is an increment in precision for standing from 91.7% to 96.62%, 

for cycling from 80.07 to 98.85%, for ascending stairs from 86.42% to 88.76%, and for 

descending stairs from 78.98% to 87.57%. Also, there is an increase in recall for 

standing from 80.55% to 95.15%, for cycling from 90.94% to 96.62%, for ascending 

stairs from 80.46% to 89.27%, and for descending stairs from 90.85% to 96.73%. The 

remain ADLs have a minor improvement in precision and recall.  
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Fig. 5. Comparison of precision and recall with and without VAE. (a) the precision value of our 

HAR system. (b) the recall value of our HAR system.  

3.2. HAR for Discrete Epochs on a PC Platform 

The performance of the proposed HAR system without VAE is shown in Table 1 as a 

confusion matrix and in Table 2 as a summary of the performance metrics for each 

activity.     

Table 1. HAR Confusion Matrix without VAE. 

(%) Stand Walk Run Cycling 
Nordic 

Walk 

ASCDa 

Stairs 

DESCb 

Stairs 

Stand 80.55 0.00 0.00 13.68 1.52 1.22 3.04 

Walk 1.26 93.97 0.00 0.50 0.50 1.51 2.26 

Run 0.00 1.11 97.78 0.00 0.00 0.56 0.56 

Cycling 4.15 0.00 0.00 90.94 0.38 0.75 3.77 

Nordic 

Walk 
0.32 0.97 0.00 0.97 96.76 0.65 0.32 

ASCD 

Stairs 
2.87 7.47 0.00 3.45 2.30 80.46 3.45 

DESC 

Stairs 
1.31 0.65 0.00 2.61 0.00 4.58 90.85 

a Ascending Stairs (ASCD Stairs) 
b Descending Stairs (DESC Stairs)  
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Table 2. Performance Metrics without VAE. 

(%) Stand Walk Run Cycling 
Nordic 

Walk 

ASCD 

Stairs 

DESC 

Stairs 

Precision 91.70 95.17 100 80.07 96.14 86.42 78.98 

NPV 95.79 98.30 99.75 98.41 99.33 97.93 99.14 

Recall 80.55 93.97 97.78 90.94 96.76 80.46 90.85 

Specc 98.38 98.65 100 96.11 99.20 98.65 97.76 

c Specificity 

The confusion matrix of Table 3 shows the performance of our HAR system with 

VAE. There is an improvement in classification, especially for standing. The 

improvement is shown through a reduction in the confusion of standing against the rest 

of activities and through an increase in the performance metrics. 

The values in the main diagonal of the confusion matrix correspond to the recall of 

each activity. Table 3 shows six of the seven activities (standing, walking, running, 

cycling, Nordic walking, and descending stairs) having the recall value up to 94.5%. 

Ascending and descending stairs caused some confusion due to their similarities. For 

these activities, the recall values are 89.27% and 96.73% respectively. On average, the 

F1-score increases from 89.29% to 95.11% and accuracy from 90.38% to 95.47%, if 

VAE is used. 

Table 3. HAR Confusion Matrix with VAE. 

(%) Stand Walk Run Cycling 
Nordic 

Walk 

ASCD 

Stairs 

DESC 

Stairs 

Stand 95.15 1.21 0.00 0.61 2.12 0.61 0.30 

Walk 0.25 94.99 0.00 0.00 0.50 2.01 2.26 

Run 0.00 0.55 98.34 0.00 0.00 1.10 0.00 

Cycling 1.88 0.00 0.00 96.62 0.38 0.75 0.38 

Nordic 

Walk 
0.66 0.99 0.00 0.00 96.70 0.66 0.99 

ASCD 

Stairs 
1.13 4.52 0.00 0.56 0.56 89.27 3.95 

DESC 

Stairs 
0.65 0.00 0.00 0.00 0.00 2.61 96.73 

 

Table 4 illustrates the performance metrics of our Android Deep RNN with VAE. 

Comparing to the results without VAE in Table 2, there is an increment in the 

performance metrics for all activities if VAE is used. On average, the precision 

increases from 89.78% to 94.88%, NPV from 98.38% to 99.23%, recall from 90.19% to 

95.40%, and specificity from 98.39% to 99.24% with the use of VAE. 
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Table 4. Performance Metrics with VAE. 

(%) Stand Walk Run Cycling 
Nordic 

Walk 

ASCD 

Stairs 

DESC 

Stairs 

Precision 96.62 95.95 100 98.85 96.38 88.76 87.57 

NPV 98.92 98.59 99.82 99.42 99.34 98.84 99.70 

Recall 95.15 94.99 98.34 96.62 96.70 89.27 96.73 

Spec 99.26 98.87 100 99.81 99.27 98.77 98.73 

3.3. HAR for Continuous Epochs on a Smartphone 

Fig. 6 presents the recognized labels for two subjects without VAE, with VAE, and the 

ground-truth. Without VAE, there is confusion between standing and cycling for almost 

all epochs in the class of standing.   

Fig. 6. HAR results via the continuous epochs evaluation on an Android smartphone: Label 0 

corresponds to Null, Label 1 Standing, Label 2 Walking, Label 3 Running, Label 4 Cycling, 

Label 5 Nordic Walking, Label 6 Ascending Stairs, Label 7 Descending Stairs. 

Table 5 shows a summary of the accuracy and inference time for all subjects on the 

Android smartphone. The accuracy per subject is the correctly recognized activities  

according to Eq. 11. The effect of VAE is reflected with an improvement in accuracy 
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for each subject. On average, our HAR system increases its accuracy by 8.97% with 

VAE. 

Table 5. HAR results via the continuous epochs evaluation on an Android smartphone. 

Subjects 

Signal 

Duration 

[s] 

Accuracy 

Without 

VAE [%] 

Accuracy 

With 

VAE 

[%] 

Inference Time 

On 

Smartphone 

[s] 

1 3672 82.64 96.53 709 

2 4386 79.65 98.02 847 

3 2467 90.33 96.19 477 

5 3654 81.54 87.52 707 

6 3550 80.54 96.78 686 

7 3073 95.30 97.07 594 

8 4003 92.89 93.56 774 

4. Discussion 

This study introduces a HAR system that uses only one IMU on the dominant wrist to 

recognize ADLs. The proposed system uses VAE to denoise IMU time-series signals. 

The Android Deep RNN classifies the denoised epochs into activity labels. To make our 

HAR system practical, our Android Deep RNN was implemented in a standalone mode 

on a smartphone to perform HAR in real-time using continuous epochs.  

Our experiments showed that VAE has a positive effect on our HAR system. VAE 

reconstructs the IMU signals as less-noisy signals by using the features in the IMU 

signals because the SNR improves around 9 dB. Overall, the F1-score improves by 6%, 

and accuracy improves by 5% using VAE.  

For statistical significance of performances, a paired T-test, i.e., performance metrics 

without and with VAE, was performed over Tables 2 and 4. The T-test revealed the 

statistical significance (p-value ≤ 0.05) for precision (p=0.046), recall (p=0.020), and 

NPV(p=0.40). Only the specificity shows a p-value > 0.05 with p=0.068.  

Similar to the discrete epoch evaluation results, in the continuous epoch evaluation 

results, there is an improvement in performance when VAE is used. This improvement 

is shown as a decrease in confusion between classes. The average accuracy of our HAR 

system increases from 86.13% without VAE to 95.09% with VAE. The inference time 

for a single epoch on Android smartphone is 0.2 seconds. Thus, our Android Deep RNN 

could be implemented in a real-time mode. 

Table 6 summarizes the previous HAR works and their performances including ours. 

Some of the previous works did not use AE in their HAR systems, such as [41] and 

[42]. The highest F1-score among the previous works is 93.9%, using Random Forest 

and hand-extracted features [42]. The highest F1-score using the DL algorithms is 

93.7%, using a CNN based classifier [41]. Our approach achieved F1-score of 95.11% 

using VAE for denoising and Android Deep RNN for HAR. There are only few works 

that used AE in their HAR systems. For instance, in the work of Mohamed and Tashev 

[14], AE was used to denoise the IMU signals, then Deep Convolution LSTM 

(DCLSTM) was used for HAR, achieving an increment of 1% in F1-score. In our case, 
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F1-score is increased by 6% with VAE. In the work of Almaslukh et al. [43], the HAR 

classifier was based on a variant of AE called Stacked Autoencoder (SAE). Our VAE 

differs from SAE in terms of network structures, SAE is a feedforward neural network 

without convolutional or LSTM layers. Also, SAE was used only for feature extraction 

and classification similar to the neural networks in [41] and [42], but not for denoising 

the IMU signals. With SAE, an accuracy of 97.5% was reported instead of F1-score, 

which is comparable to our accuracy. Note that these summarized works do not 

represent the fair comparison with the same datasets and models, but the usefulness of 

AE is clearly demonstrated.   

Table 6. Comparison with others HAR studies. 

Model HAR Works 
Sensor

s 
AE Database 

F1-

Score 

(%) 
KNN Arif and Kattan [42] DWSd x PAMAP 70.80 

NN Arif and Kattan [42] DWS x PAMAP 89.60 

DNN Hammerla et al. [41] MSe x PAMAP 90.40 

LSTM-F Hammerla et al. [41] MS x PAMAP 92.90 

CNN Hammerla et al. [41] MS x PAMAP 93.70 

Rotation 

Forest 
Arif and Kattan [42] DWS x PAMAP 93.90 

DCLSTM 
Mohammed and Tashev 

[14] 
MS ✓ Opportunity 90.81 

SAE Almaslukh et al. [43] SWSf ✓ 
Smartphone-based 

HAR 
97.50* 

ADRNNg Proposed HAR System DWS ✓ PAMAP 95.11 
d Dominant Wrist Sensor (DWS) 

e Multiple Sensor(MS) 

f Single Waist Sensor(SWS) 

g Android Deep RNN(ADRNN)  

* Accuracy 

5. Conclusion 

The reduction of noise in HAR signals improves the SNR as well as the HAR 

performance. Our VAE successfully denoises motion signals from an IMU at wrist by 

reducing the noise about 9 dB in SNR. In turn, the HAR performance improves around 

6% in all metrics. Furthermore, lifelogging seems feasible on Android smart device, 

since our Android Deep RNN runs on Android smartphone in standalone mode and the 

inference time on a smartphone is less than the sensing time. Then, real-time HAR is 

possible. Finally, our HAR system could be used to develop mobile Apps to monitor in 

real-time daily or sports activities of daily living. 

 
Acknowledgments. This work was supported by the National Research Foundation of 

Korea(NRF) grant funded by the Korea government(MEST) (NRF-2019R1A2C1003713). Edwin 

Valarezo Añazco gratefully acknowledges to “Escuela Superior Politécnica del Litoral (ESPOL)” 

and its excellence program “Walter Valdano Raffo”. 



594           Edwin Valarezo Añazco et al. 

References 

1. P. Kasnesis, C. Patrikakis and I. Venieris, "Changing the Game of Mobile Data Analysis 

with Deep Learning," IT Professional, no. 99. (June, 2017). 

2. A. Avci, S. Bosch, M. Marin-Perianu, R. Marin-Perianu and P. Havinga, "Activity 

Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A 

Survey," Architecture of computing systems (ARCS), 2010 23rd international conference on, 

pp. 1-10. (2010) 

3. M. Kepski and B. Kwolek, "Embedded system for fall detection using body-worn 

accelerometer and depth sensor," Proceedings of the 2015 IEEE 8th International 

Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology 

and Applications, IDAACS 2015, vol. 2, pp. 755-759. (2015) 

4. L. Montanini, A. Del Campo, D. Perla, S. Spinsante and E. Gambi, "A Footwear-Based 

Methodology for Fall Detection," IEEE Sensors Journal, vol. 18, no. 3, pp. 1233-1242. 

(2018) 

5. B.-S. Lin, P.-C. Hsiao, S.-Y. Yang, C.-S. Su and I.-J. Lee, "Data Glove System Embedded 

With Inertial Measurement Units for Hand Function Evaluation in Stroke Patients," IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp. 2204-

2213. (2017) 

6. D. J. Walker, P. S. Heslop, C. J. Plummer, T. Essex and S. Chandler, "A continuous patient 

activity monitor: Validation and relation to disability," Physiological Measurement, vol. 18, 

pp. 49-59. (1997)  

7. J. Margarito, R. Helaoui, A. M. Bianchi, F. Sartor and A. G. Bonomi, "User-independent 

recognition of sports activities from a single wrist-worn accelerometer: A template-

matching-based approach," IEEE Transactions on Biomedical Engineering, vol. 63, pp. 788-

796. (2016) 

8. A. Anand, M. Sharma, R. Srivastava, L. Kaligounder and D. Prakash, "Wearable Motion 

Sensor Based Analysis of Swing Sports," 2017 16th IEEE International Conference on 

Machine Learning and Applications (ICMLA), pp. 261-267. (2017) 

9. H. Ghasemzadeh and R. Jafari, "Coordination Analysis of Human Movements With Body 

Sensor Networks: A Signal Processing Model to Evaluate Baseball Swings," IEEE Sensors 

Journal, vol. 11, no. 3, pp. 603-610. (2011) 

10. Z. Zhang, D. Xu, Z. Zhou, J. Mai, Z. He and Q. Wang, "IMU-Based Underwater Sensing 

System for Swimming Stroke Classification and Motion Analysis," IEEE International 

Conference on Cyborg and Bionic Systems (CBS), pp. 268-272. (2017) 

11. D. Ravi, B. Lo and G. Z. Yang, "Real-time food intake classification and energy expenditure 

estimation on a mobile device," 2015 IEEE 12th International Conference on Wearable and 

Implantable Body Sensor Networks, BSN 2015. (2015)  

12. N. R. Singh, "Implementation of Safety Alert System for Elderly People Using Multi-

Sensors," International conference of Electronics, Communication and Aerospace 

Technology (ICECA), vol. 1, pp. 282-286. (2017) 

13. T. Elakkiya, "Wearable Safety Wristband Device For Elderly Health Monitoring With Fall 

Detect And Heart Attack Alarm," Third International Conference On Science Technology 

Engineering and Management (ICONSTEM), pp. 1018-1022. (2017) 

14. S. Mohammed and I. Tashev, "Unsupervised Deep Representation Learning to Remove 

Motion Artifacts in Free-mode Body Sensor Networks," 2017 IEEE 14th International 

Conference on Wearable and Implantable Body Sensor Networks, BSN 2017, pp. 183-188. 

(2017) 

15. Y. H. Lai, F. Chen, S. S. Wang, X. Lu, Y. Tsao and C. H. Lee, "A Deep Denoising 

Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear 

Implant Simulation," IEEE Transactions on Bio-medical Engineering, vol. 64, pp. 1568-

1578. (2017) 



Human Activities Recognition with a Single Writs IMU via a Variational Autoencoder and Android 

Deep Recurrent Neural Nets           595 

16. D. T. Grozdic and S. T. Jovicic, "Whispered Speech Recognition Using Deep Denoising 

Autoencoder and Inverse Filtering," IEEE/ACM Transactions on Audio Speech and 

Language Processing, vol. 25, pp. 2313-2322. (2017)  

17. J. Heymann, R. Haeb-Umbach, P. Golik and R. Schluter, "Unsupervised Adaptation of a 

Denoising Autoencoder by Bayesian Feature Enhancement for Reverberant ASR Under 

Mismatch Conditions," ICASSP, IEEE International Conference on Acoustics, Speech and 

Signal Processing - Proceedings, pp. 5053-5057. (2015) 

18. P. Xiong, H. Wang, M. Liu, S. Zhou, Z. Hou and X. Liu, "ECG Signal Enhancement Based 

on Improved Denoising Auto-encoder," Engineering Applications of Artificial Intelligence, 

vol. 52, pp. 194-202. (2016) 

19. N. D. Lane and P. Georgiev, "Can Deep Learning Revolutionize Mobile Sensing?," 

Proceedings of the 16th International Workshop on Mobile Computing Systems and 

Applications - HotMobile '15, pp. 117-122. (2015) 

20. I. Roychowdhury, J. Saha and C. Chowdhury, "Detailed Activity Recognition with 

Smartphones," 2018 Fifth International Conference on Emerging Applications of 

Information Technology (EAIT), pp. 1-4. (2018) 

21. A. Vaughn, P. Biocco, Y. Liu and M. Anwar, "Activity Detection and Analysis Using 

Smartphone Sensors," 2018 IEEE International Conference on Information Reuse and 

Integration for Data Science, pp. 102-107. (2018)  

22. M. Jongprasithporn, N. Yodpijit and R. Srivilai, "A smartphone-based real-time simple 

activity recognition - IEEE Xplore Document," 3rd International Conference on Control, 

Automation and Robotics, pp. 539-542. (2017) 

23. J. J. Guiry, P. Ven, J. Nelson, L. Warmerdam and H. Riper, "Activity recognition with 

smartphone support," Medical Engineering and Physics, vol. 36, pp. 670-675. (2014) 

24. E. Bulbul, A. Centin and I. A. Dogru, "Human Activity Recognition Using Smartpones," 

2018 2nd International Symposium on Multidisciplinary Studies and Innovative 

Technologies (ISMSIT), pp. 1-6. (2018) 

25. J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li and K. Shonali, "Deep Convolutional Neural 

Networks On Multichannel Time Series For Human Activity Recognition," IJCAI'15 

Proceedings of the 24th International Conference on Artificial Intelligence, pp. 3995-4001. 

(2015) 

26. E. Valarezo, P. Rivera, J. M. Park, G. Gi, T. Y. Kim and T. Kim, "Human Activity 

Recognition Using a Single Wrist IMU Sensor via Deep Learning Convolutional and 

Recurrent Neural Nets," UNIKOM Journal of ICT, Design, Engineering and Technological 

Scine, vol. 1, pp. 1-5. (2017)  

27. D. Tao, Y. Wen and R. Hong, "Multicolumn Bidirectional Long Short-Term Memory for 

Mobile Devices-Based Human Activity Recognition," IEEE Internet of Things Journal, vol. 

3, no. 6, pp. 1124 - 1134. (2016) 

28. F. J. Ordonez and D. Roggen, "Deep convolutional and LSTM recurrent neural networks for 

multimodal wearable activity recognition," Sensors (Switzerland), vol. 16, no. 115. (July, 

2016) 

29. S. Basterrech and V. K. Ojha, "Temporal Learning Using Echo State Network for Human 

Activity Recognition," 2016 Third European Network Intelligence Conference (ENIC), pp. 

217 - 223. (2016) 

30. A. Reiss and D. Stricker, "Creating and benchmarking a new dataset for physical activity 

monitoring," Proceedings of the 5th International Conference on PErvasive Technologies 

Related to Assistive Environments - PETRA '12, vol. 40, pp. 1-8. (June, 2012)  

31. A. Reiss and D. Stricker, "Introducing a new benchmarked dataset for activity monitoring," 

Proceedings - International Symposium on Wearable Computers, ISWC, pp. 108-109. (2012)  

32. X. Zhang, H. Dou, T. Ju, J. Xu and S. Zhang, "Fusing Heterogeneous Features From Stacked 

Sparse Autoencoder for Histopathological Image Analysis," IEEE JOURNAL OF 

BIOMEDICAL AND HEALTH INFORMATICS, vol. 20, no. 5, pp. 1377-1383. (2016) 



596           Edwin Valarezo Añazco et al. 

33. H. Li and S. Misra, "Prediction of Subsurface NMR T2 Distributions in a Shale Petroleum 

System Using Variational Autoencoder-Based Neural Networks," IEEE Geoscience and 

Remote Sensing Letters, vol. 14, pp. 2395-2397. (2017) 

34. D. Park, Y. Hoshi and C. C. Kemp, "A Multimodal Anomaly Detector for Robot-Assisted 

Feeding Using an LSTM-based Variational Autoencoder," IEEE Robotics and Automation 

Letters, vol. 3, pp. 1544-1551. (2017) 

35. S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, 

pp. 1735-1780. (1997) 

36. M. Milenkoski, k. Trivodaliev, S. Kalajdziski, M. Jovanov and B. R. StojkoskA, "Real Time 

Human Activity Recognition on Smartphones using LSTM Networks," 2018 41st 

International Convention on Information and Communication Technology, Electronics and 

Microelectronics (MIPRO), pp. 1126-1131. (2018)  

37. Deeplearning4j Development Team, "Deeplearning4j: Open-source distributed deep learning 

for the JVM, Apache Software Foundation 2.0," http://deeplearning4j.org. (2017) 

38. A. Khan, N. Hammerla, S. Mellor and T. Plotz, "Optimising sampling rates for 

accelerometer-based human activity recognition," Pattern Recognition Letters, vol. 73, pp. 

33-40. (2016) 

39. V. T. Hees, L. Gorzelniak, E. C. Dean Leon, M. Eder, M. Pias, S. Taherian, U. Ekelund, F. 

Renstrom, P. W. Franks, A. Horsch and S. Brage, "Separating Movement and Gravity 

Components in an Acceleration Signal and Implications for the Assessment of Human Daily 

Physical Activity," PLoS ONE, vol. 8, no. 4. (April, 2013)  

40. C. Beleites, R. Salzer, and V. Sergo, "Validation of soft classification models using partial 

class memberships: An extended concept of sensitivity & co. applied to grading of 

astrocytoma tissues," Chemometrics and Intelligent Laboratory Systems, vol. 122, pp. 12 – 

22. (2013)  

41. N. Hammerla, S. Halloran and T. Plotz, "Deep, Convolutional, and Recurrent Models for 

Human Activity Recognition using Wearables," Proceedings of the Twenty-Fifth 

International Joint Conference on Artificial Intelligence (IJCAI-16), pp. 1533-1540. (2016) 

42. M. Arif and A. Kattan, "Physical Activities Monitoring Using Wearable Acceleration 

Sensors Attached to the Body," PLoS ONE, vol. 10, no. 7. (2015) 

43. B. Almaslukh, J. AlMuhtadi and A. Artoli, "An Effective Deep Autoencoder Approach for 

Online Smartphone-based Human Activity Recognition," International Journal of Computer 

Science and Network Security, vol. 17, no. 4, pp. 160-165. (2017) 

 

 

 

Edwin Valarezo Añazco received his B.E. degree in Electronics and 

Telecommunication Engineering from the Escuela Superior Politécnica del Litoral 

(ESPOL), Ecuador. He is currently working toward his Ph.D. degree in the Department 

of Biomedical Engineering at the Bio-Imaging & Brain Engineering Laboratory at the 

Kyung Hee University, South Korea. His research interest includes Deep Learning, 

Human Activity Recognition (HAR), real-time applications for HAR, hand gesture 

recognition, computer vision, reinforcement learning, and autonomous control of 

anthropomorphic robotic hands. 

 

Patricio Rivera Lopez received his B.E. degree in Electronics, Automation and Control 

Engineering from the University of the Armed-Forces-ESPE, Ecuador. He is currently 

working toward his Ph.D. degree in the Department of Biomedical Engineering at 

Kyung Hee University, Republic of Korea. His research interest includes artificial 

intelligence, signal processing, and machine learning. 

 



Human Activities Recognition with a Single Writs IMU via a Variational Autoencoder and Android 

Deep Recurrent Neural Nets           597 

Hyemin Park received her B.S. and M.S. degrees in Biomedical Engineering from 

Kyung Hee University, South Korea. Her research interests include machine learning 

such, deep learning, image processing, computer vision, Human Activity Recognition 

(HAR), and hand gesture recognition. 

 

Nahyeon Park received her B.S. degree in Biomedical Engineering from Kyung Hee 

University, South Korea. She is currently working toward her M.S. degree in the 

Department of Biomedical Engineering at Kyung Hee University, Republic of Korea. 

Her research interests include machine learning such as deep learning, image 

processing, computer vision, and reinforcement learning with robotic arms. 

 

Tae-Seong Kim received the B.S. degree in Biomedical Engineering from the 

University of Southern California (USC) in 1991, M.S. degrees in Biomedical and 

Electrical Engineering from USC in 1993 and 1998 respectively, and Ph.D. in 

Biomedical Engineering from USC in 1999. After his postdoctoral work in Cognitive 

Sciences at the University of California at Irvine in 2000, he joined the Alfred E. Mann 

Institute for Biomedical Engineering and Dept. of Biomedical Engineering at USC as 

Research Scientist and Research Assistant Professor. In 2004, he moved to Kyung Hee 

University in Korea where he is currently Professor in the Department of Biomedical 

Engineering. His research interests have spanned various areas of biomedical imaging, 

bioelectromagnetism, neural engineering, assistive biomedical lifecare technologies. Dr. 

Kim has been developing advanced signal and image processing methods, pattern 

classification, machine learning methods, novel medical imaging modalities, and 

rehabilitation technologies. Dr. Kim has published more than 300 papers and seven 

international book chapters. He holds ten international and domestic patents and has 

received nine best paper awards. 

 

 

Received: September 20, 2019; Accepted: May 10, 2020 

 



 

 


