
Computer Science and Information Systems 17(2):647–664 https://doi.org/10.2298/CSIS191220009G

Multi-Agent Cooperation Q-Learning

Algorithm Based on Constrained Markov Game

Yangyang Ge1, Fei Zhu1,2, Wei Huang1, Peiyao Zhao1, and Quan Liu1

1 School of Computer Science and Technology, Soochow University,

Suzhou Jiangsu 215006, China

20184227043@stu.suda.edu.cn, {zhufei, huangwei}@suda.edu.cn,

20195427013@stu.suda.edu.cn, quanliu@suda.edu.cn
2 Provincial Key Laboratory for Computer Information Processing Technology,

Soochow University, Suzhou 215006, China

Abstract. Multi-Agent system has broad application in real world, whose security

performance, however, is barely considered. Reinforcement learning is one of the

most important methods to resolve Multi-Agent problems. At present, certain

progress has been made in applying Multi-Agent reinforcement learning to robot

system, man-machine match, and automatic, etc. However, in the above area, an

agent may fall into unsafe states where the agent may find it difficult to bypass

obstacles, to receive information from other agents and so on. Ensuring the safety

of Multi-Agent system is of great importance in the above areas where an agent

may fall into dangerous states that are irreversible, causing great damage. To solve

the safety problem, in this paper we introduce a Multi-Agent Cooperation Q-

Learning Algorithm based on Constrained Markov Game. In this method, safety

constraints are added to the set of actions, and each agent, when interacting with

the environment to search for optimal values, should be restricted by the safety

rules, so as to obtain an optimal policy that satisfies the security requirements.

Since traditional Multi-Agent reinforcement learning algorithm is no more

suitable for the proposed model in this paper, a new solution is introduced for

calculating the global optimum state-action function that satisfies the safety

constraints. We take advantage of the Lagrange multiplier method to determine

the optimal action that can be performed in the current state based on the premise

of linearizing constraint functions, under conditions that the state-action function

and the constraint function are both differentiable, which not only improves the

efficiency and accuracy of the algorithm, but also guarantees to obtain the global

optimal solution. The experiments verify the effectiveness of the algorithm.

Keywords: Markov game, Distributed perception, Multi-Agent cooperation,

constrained Markov decision process.

1. Introduction

Multi-Agent System (MAS) is a combination of several sub-agents, which decomposes a

large complex system into smaller and intercommunicating subsystems that are relatively

manageable [1]. MAS is evolved from distributed artificial intelligence, it is applied in

various areas such as intelligent robot, traffic control, distributed decision making,

648 Yangyang Ge et al.

business management, virtual reality and so on [2]. At present, a new mechanism that

combines MAS and reinforcement learning is gradually considered to be a research

hotspot [3].

Multi-Agent reinforcement learning (MARL) is to apply reinforcement learning

algorithm to MAS [4]. Littman in 1900s put forward MARL with Markov Decision

Process (MDP) being the contextual framework, which offered a simple mathematical

framework for solving most of reinforcement learning problems [5]. MARL possesses

certain properties, such as autonomy, distributivity, consistency and so on, and abilities

such as learning, reasoning and self-organizing [6]. According to different learning

objectives, MARL can be divided into full cooperation task, full competition task and

hybrid task [7].

In full-cooperation stochastic game, agents are not making decisions independently,

but are cooperating with each other trying to achieve a mutual goal in a parallel way.

They share the same reward function and maximize it adopting greedy strategy [8].

Littman M proposed the Team-Q algorithm, which solved the cooperation problem

among agents by hypothesizing an optimal union action [9]. Lauer M and Riedmiller M

proposed the Distributed-Q algorithm, which solved the cooperation problem among

agents without hypothesizing the coordination condition, with an infinite computational

cost. It shares the same computation complexity with the single agent Q-learning

algorithm [10]. This method, however, is suitable only for deterministic problems with

non-negative reward functions. All the algorithms introduced above are limited, they all

rely on the precise measurement of the state. Some of them need also the precise

measurement of influence to an agent from other agents and may suffer from curse of

dimensionality. On the other hand, they ignore the safety problem of agents and other

constraint conditions.

In full-competition stochastic game, the agent maximizes its own reward while

minimizes reward of its opponents [11]. Minimax-Q algorithm is a full-competition

stochastic game that calculates policies and values through minimax principle [12].

In hybrid task, the reward function of the agent is not restricted [13], which is suitable

for a selfish agent. In the game many algorithms are only for static tasks based on the

concept of equilibrium in game theory [14]. In the process of a hybrid task, an agent

needs to know the actions and rewards of other agents. The equilibrium selection

problem arises when different agents obtain different policies. Nash Q-learning is a

common method for solving this problem [15]. Correlation Equilibrium Q-learning (CE-

Q) method solves the equilibrium problem with the concept of correlation equilibrium

[16]. Asymmetric Q-learning solves the equilibrium problem using the leader-follower

equilibrium. The follower needs not model the Q-table of the leader, but the leader

should know how its followers choose their actions [17].

Traditional MARL ignores the safety problem of the agent which is inescapable in

practical use. To solve the problem, in this paper we propose a Constrained Multi-Agent

Cooperation Q-learning (CMACQ) algorithm based on constrained Markov game.

Compared with traditional methods, this algorithm can ensure the safety of the agent,

avoiding dangerous states and their consequences. In this method, before the agent

executes an action, it determines all the safe executable actions based on the current

state, and chooses the optimal one according to the greedy strategy as well as

interactions with other agents. The algorithm ensures the safety of each agent when

agents are cooperating to complete the task.

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 649

This paper is organized as follows. In section 2, we introduce the related concepts

and studies. In section 3, we formalize our model and transform the model into a convex

model by linearizing constraint functions, where we exploit the Lagrange multiplier

method to obtain the safe action and choose the optimal safe action according to the

greedy strategy as well as interactions among agents. In section 4, we compare CMACQ

with MACQ in the firefighting-through-multi-agent-cooperation experiment and Deep

Sea Fishing experiment. In section 5, a summary of CMACQ and a discussion of future

work are presented.

2. Related Work

2.1. Reinforcement Learning

In reinforcement learning tasks, the agent detects the environment and takes actions to

obtain the largest long-term cumulative reward which is a valuable encouraging signal

[18]. Markov Decision Process framework is used to solve most of the reinforcement

learning problems, which is denoted by a tetrad (S, A, P, R) [19] where S is the set of

states which contains finite numbers of elements, A is the set of actions, P is the state

transition probability and R is the reward function. In MDP, the state transition

probability contains actions, which is expressed as follows [20]:

'

'

1 | ,a

t t tss
P P s s s s a a

      (1)

environment

agent

（policy π ：s→a）

reward

state action

Fig. 1. The illustration of reinforcement learning.

At time t, the agent is in current state st, chooses action a according to policy π, receives

a feedback from the environment and proceeds to the next state st+1, and obtains the

reward rt. The policy π, which is divided into deterministic policy and non-deterministic

650 Yangyang Ge et al.

policy, denotes the mapping from st to at. In reinforcement learning, the cumulative

discounted reward is defined as [19]:
'

''

T t t

t tt t
R r 


 (2)

where the discounted factor γ∈ (0,1]，Rt is the reward value from time t to T. The

reinforcement learning model is showed as figure 1 [19].

The state-action value function, Qπ(s,a), is used to evaluate policies, which denotes

the sum of cumulative rewards when the agent chooses action at according to the policy

π under the current state st. The function [19] is shown as:

   , | , ,t t tQ s a E R s s a a    (3)

As the iteration continues, the state-action value will converge to be optimal.

Although the optimal policy may not be unique, the optimal state-action value is unique,

as shown in equation (4) [19]:

   * , max | , ,t t tQ s a E R s s a a    (4)

The state-value function V(s) denotes the expectation of all state-action value

functions when the agent follows policy π under the state st, which is calculated as

equation (5) [19]. As the policy iteration continues, the state-value function converges to

a unique optimal one. The optimal state-value function is obtained by equation (6) [19]:

   | ,t tV s E R s s   (5)

   * max | ,t tV s E R s s   (6)

Q-Learning algorithm [21] is a typical off-policy algorithm and is one of the most

widely used reinforcement learning method. The algorithm defines a Q function, and

updates this function using equation (7) [22] and equation (8) [22], that is, TD error, and

finally obtains the converged optimal state-action value:

   
'

'

1 1max , ,t t t t t t t
a

r Q s a Q s a     (7)

   1 , ,t t t t t t t tQ s a Q s a     (8)

where t denotes time step, αt is learning rate, δt is temporal difference error [22], a’ is the

action taken at next state st+1. When t tends to infinity, the optimal control policy is

obtained [23], [24].

2.2. Multi-Agent Cooperation

With rapid development in areas such as sensor technology, wireless communication

technology and computer vision, intelligent robot system was transformed from stand-

alone system into multicomputer system. Multi-Agent system is widely applied in which

the cooperation between agents played an important role [25]. Therefore, to study the

cooperation between two agents is a key procedure when developing Multi-Agent

systems [26]. At present, the research is divided into two categories: one is to apply the

research of Multi-body behaviors to the cooperation of agents; the other is to

concentrating on programming and solving of the problem [27], [28]. Allen et al studied

the effect of minor changes on social evolution by assessing the cooperation tendencies

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 651

in many different population structures [29]; Mcavoy studied the effect of Evolutionary

Game Dynamics on changing the scale of agents by public good game [30]; Engesser et

al applied the cognitive programming to Multi-Agent system and solved program tasks

in a decentralized way, by expanding the cognitive programming framework and the

perspective conversion [31].

Reinforcement Learning is one of algorithms to solve cooperation problems among

agents which treats Cooperative Game as the core issue in the cooperation research.

Agents cooperate by delivering message with each other to achieve the mutual objective

[32]. In game mechanism, mechanisms that promote cooperation are divided into

categories of strong-weak reciprocity, network reciprocity and group selection [33],

[34]. Elise discussed the internal mechanism of strong reciprocal behaviors: when

treachery appeared in an agent group, the strong reciprocal individual would conduct a

altruism punishment to the individual who betrayed others, which made betraying

individual to be more cooperative [35]; Perolat et al modeled subjects who occupied

public resources using Markov Observation Model. The model revealed relations among

exclusiveness, sustainability and inequality and demonstrated the solution, which

improved efficiency of resource management [36]; Tuyls et al put forward the LDQN

algorithm, which imported toleration policy to Deep Q-network that updated passive

policy with leniency methods, thus to improve convergence and stability of Multi-Agent

cooperation algorithm [37]; Hwang et al combined the multi-agent cooperative Q-

learning algorithm with Stochastic recording real-valued unit to solve the problem that

the agent is prone to fall into local solution [38].

2.3. Constrained Markov Game

Reinforcement learning, based on MDP, consists of an agent and several states. While

MARL is a game of stochastic multi-player cooperation game, including more than one

player and state, based on which a Markov game (stochastic) is defined [39]. Markov

game is expressed as a tuple (n,S,A1,… ,An,T,γ,R1,… ,Rn) [40], where n is the number of

players, S is the set of states. The state here is referred as the union state of all players at

a certain time instant. T:S×A1×… ×An×S→[0,1] is the transition function, Ai(i=1,… ,n) is

the action set of player i, γ∈[0,1] is the discounted factor, Ri: S×A1×… ×An×S→ℝ is the

reward function of player i. In a stochastic game, the transition function probability of

next states is determined the current state and the action taken by the player. A reward

function Ri(s,a1,… ,an,s’) denotes the reward obtained by the player after the player takes

the union action (a1,… ,an) and transfers from state s to state s’. Similar with MDP, the

stochastic game also possesses markov property [41], that is, the next state and reward

of the player depends only on the current state and current action of all players. Multi-

Agent reinforcement learning model is shown as figure 2 [42].

652 Yangyang Ge et al.

Fig. 2. Model of multi-agent reinforcement learning

Constrained Markov game adds constraint function to the Markov game, which is

denoted by a tuple (n,S,A1,… ,An,T,γ,R1,… ,Rn,C), where C is the constraint function set.

In constrained MDP model, the goal of the agent is changed into maximizing the reward

function of the whole plot under condition that the agent satisfies the constraints. The

constraint function set is shown as follows:

 : | 1ij i nC c S A A j k     
 (9)

where k is constant and denotes the number of constraint functions.

2.4. Lagrange Multiplier Method

Adding constraints to the objective function can ensure the safety of the agent in the

learning process. Lagrange multiplier method is to find optimal solution in the case of

equality constraint. Optimization problem with inequality constraint can be solved using

Lagrange multiplier method and Karush Kuhn-Tucker conditions (KKT) [43]. KKT is a

sufficient and necessary condition only when the model is convex, otherwise it is only

the necessary condition when used to decide whether the solution obtained by Lagrange

multiplier method is optimal [45].

 

 

'

'

max ()

. . , 1,2,

, 1, ,

j j

j j

g y

s t c y C j k

c y C j k k

 

  

 (10)

The above model is the optimization problem with inequality constraints, where

 j jc y C and  j jc y C are abstract expressions of constraint function, γ is discount

factor, 0<γ<1, k is constant and denotes the number of constraint funtions. k’ is constant

and denotes the number of equality constraint functions. The number of inequality

constraint functions is denoted by k-k’. The optimal solution satisfies λ=0 or

  '0, 1, ,j jc y C j k k    , such that when y satisfies the strict inequality, the

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 653

constraint functions are not effective. Only when the constraint functions are equality

constraints can the constraint functions be effective. Therefore, the optimization problem

with inequality constraints will be turned into the problem with equality constraints and

then be solved using Lagrange multiplier method, which simplifies the problem [44].

The model is shown as follows:

   ' ' 'max (,) () () ()j j j j j jL y g y c y C c y C       (11)

where the independent variable y is a local optimal solution when satisfying

(,) 0yL y   and (,) 0L y   [45], which is obtained using gradient descent method.

When the model is convex, the local optimal solution is the same as the global optimal

solution. λj is lagrange undetermined multipliers, which denote changes of objective

functions in accordance with constraint functions. Since the optimal solution satisfies the

constraint   0j jc y C  , the value of λj will not affect the final solution.

3. Constrained Multi-Agent Cooperation Q-learning

Traditional Multi-Agent learning algorithms ignore the safety issues for simplicity while

the safety issues have been proved to be crucial for completing the task. To handle the

safety problem of Multi-Agent system, we propose Constrained Multi-Agent

Cooperation Q-learning algorithms that encode the safety requirement as constraints to

ensure a stable Multi-Agent system.

3.1. Model Design

CMACQ model is described by the tuple (n,S,A1,… ,An,T,γ,R1,… , Rn, C) which is shown

as figure 3. In the current state, the state-value function of agent i is:

   

1

0

|

| , 1, , ,

i t t

k

t k t

k

V s E R s s

E R s s i n s S






 



 

 
     

 


  '. . , , 1, , , 1, ,i

j t t js t c s a C j k i n   (12)

 , , 1, , , 1, ,i

j t t jc s a C j k i n  

Given the current state and the union action of all players, the state-value function of

agent i is:

 1 1 1

1 1

1

0

, , , | , , ,

| , , ,

1, , ,

i

n n n

t t t t

k n n

t k t t t

k

Q s a a E R s s a a a a

E R s s a a a a

i n s S






 



     

 
    

 

  



654 Yangyang Ge et al.

  '. . , , 1, , , 1, ,i

j t t js t c s a C j k i n   (13)

 , , 1, , , 1, ,i

j t t jc s a C j k i n  

In the constrained case, when the optimal policy
*, 1, ,i i n  is obtained, the

corresponding optimal state-value function and optimal state-action value function are

obtained at the same time, defined as equation (14) and (15).

*

() max (),i i
i

V s V s s S
 

   (14)

*

1 1(, , ,) max (, , ,),i i
i

n nQ s a a Q s a a s S
 

   (15)

Index set {1,2,… ,k’} and {k’+1,k’+2,… ,k} denote the equality constraint index set and

inequality constraint index set respectively. State st denotes the state of the agent at time

t, at
i denotes the action chosen by the agent i under the state st.

Fig. 3. Model of constrained multi-agent reinforcement learning

In CMACQ, by adding constraint conditions, the state set can be divided into safe

state set and unsafe state set and the action set into safe and unsafe ones. By doing this,

the safety problem of the agent can be solved at the beginning of the schedule and can

also decide whether a state is safe or not using constrained conditions. Feasible region of

CMACQ is shown as:

  ' '| () , 1, , ; () , 1, ,j j j jS s c s C i k c s C j k k      (16)

'

'

| (,) , 1, , ; (,) ,

1, , , 1, ,

i i i
i j j j ja c s a C j k c s a C

A
j k k i n

    
  

    

 (17)

(st)≤Cj and cj(st,at
i)≤Cj are standard forms of inequality constraints concerning state

set and action set. If some states satisfies the forms (st)≥Cj and cj(st,at
i)≥Cj, these forms

can be turned into standard forms by multiplying both sides of inequations with

-1. For inequality constraints, if there exists j0∈{k’+1,… ,k}, such that (st)< and

cj0(st,at
i)<Cj0, the i0th constraint in state st is not effective, and can be removed. The

effective constraint set is denoted as  . Under the effective constraints, CMACQ model

can be described as follows:

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 655

   

    
1

1 1

1 1

1 1

1 1

1

1 1

, ,

, ,

arg max , , , ,

, , , ,

i
t

n i n

t t t t
a

n n

t t t t

i

t t

t t t

s a a Q s a aQ

R s a a aQ Q s a 



 

 



  





 . . , , , 1, ,i

j t t js t c s a C j i n   (18)

The above learning model includes only equality model so as to simplify the model

and improve the performance of the algorithm.

3.2. Model Solution

CMACQ algorithm based on constrained Markov game ensures the safety of all agents

by adding multi-dimensional constraints, which makes traditional solutions no more

suitable. To solve CMACQ model accurately and effectively, in this paper we adopt

Lagrange multiplier method to decide all the safe and optimal actions for the agent under

the current state. Lagrange multiplier method requires that the objective function and the

constraint function are first order continuous differentiable. The objective function

satisfies the condition when time t is continuous. The constraint function is not

necessarily first order continuous differentiable, which can be solved by linearization of

the constrained function. Since the next state of agent is decided by the current state and

union action of all agents, it can be concluded that:
' 1,),(, n

t tt t as f as (19)

 (20)

When solving the model, to ensure that the solution is globally optimal, the objective

function and constraint function need to be convex. It can be known from the model that

the objective function is convex while the constraint function is not. Therefore, the

constraint function is linearized. Since linear function is always convex, so is the

linearized constraint function. By doing this the globally optimal solution is guaranteed.

Linear approximation of constraint function is shown as:

 (,) () ; , 1, ,
T

i

j t j t t

i

j ttc s c s g s a ia n j    ， (21)

In the above equation, g(st;ωj) takes st as input, and output a vector sharing the same

dimension with at
i, which can be obtained by solving the following equation:

   
1 '

2
'

(, , , ,)

arg min () () ;
n

j
t t t t

T
i

j t j t t j t

s a a s D

c s c s g s a





 

  1 ', , , , , 1, ,n

t t t tD s a a s i n j   ， (22)

where set D is composed of tuples (st,at
1,… ,at

n,st’) denoting that agent i, under the

current state st, executes action at
i and switches to next state st’. Optimal solution of the

objective function is contained in set D.

After implementing linear approximation, the learning model is shown as:

656 Yangyang Ge et al.

   

    
1

1 1

1 1

1 1

1 1

1

1 1

, ,

, ,

arg max , , , ,

, , , ,

i
t

n i n

t t t t
a

n n

t t t t

i

t t

t t t

s a a Q s a aQ

R s a a aQ Q s a 



 

 



  





 (23)

 (,) () ; , , 1,. . ,
T

i i

j t t j t t j t jc s a c s d ss a C j it n     

Utilizing Lagrange multiplier method, the following equations should be solved:

   

    

  

*

1 1

1 1

1

1

1 1

1

1 1

, , , ,

, ,

arg max{ , ,

, ,

() ; }, 1, ,

, ,

i

t t
a

t t

n i n

t t t t

n n

t t

T
i

j t t j

t

t j

t t

jj

s a a Q s a a

s a a s

Q

R Q Q

c s d s a C

a

i j

a

n




  



 

 







 

    



 ，

 (24)

To avoid falling into locally optimal solution, the linearized constrained function is

adopted to guarantee the solution in globally optimal.

3.3. Algorithm Description

In CMACQ, agents cooperate with each other to achieve the goal. During the learning

process, under the condition that the constraints are satisfied, the agent chooses an action

based on its current state and on observing the action-value function. The model ensures

the safety of all agents through constraint function. That a state is safe means that all

agents are safe.

Algorithm 1: Constrained Multi-Agent Cooperation Q-Learning

Input: state set S, union action set A, and reward function

Output: safety state sequence and safety union action corresponding to each safety

state sequence after training

1： Algorithm parameters: step size α∈(0,1], small ε>0, γ∈(0,1]

2： Initialize:

a)state-action value function  1, , , , , , 1, ,i n i iQ s a a s S a A i n   

b)Lagrange multiplier
j , 1, ,j k , k N 

c)parameter
j

d)   1 ' ', , , , , , , , 1, ,n i iD s a a s s s S a A i n    

3： Loop forever (for each episode)：

4： Initialize initial state s

5： Loop forever (for each step of episode):

6： Obtain  ; jg s  by solving the formula

   
1 '

2
* '

(, , , ,)

arg min () () ; , , 1, ,
n

j

T
i i i

j j j j

s a a s D

c s c s g s a a A i n


 


     

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 657

7： The constraint function is approximated linearly:
*() (,) , , 1, ,T i i i

j j jc c s g s a a A i n    

8： The Lagrange multiplier method is used to obtain the action

   
'

1

* arg max{ , , , }, , 1, ,
i

i i n i i

j jj
a j

a Q s a a c C a A i n
 




     

9： Agent i take action
*, 1, ,ia i n ，observe , 1, ,ir i n , next state

's ，

10：

1

1 1 ' 1 1

* * * * 1 * * * *, ,
(, , ,) (, , ,) max (, , ,) (, , ,)n

i n i n i n i n

t a a
Q s a a Q s a a R Q s a a Q s a a 

    
 

11： Agent , 1 ,i i n moves to the next state： 's s

12： Until s is terminal

Each s of state set S represents a union state s=(s1,s2,…,sn), which is different from

action set. In ai∈Ai, ai represents available actions of agent i, and Ai represents all the

available actions. According to steps 6-8 in the above algorithm, the constraint function

is solved using Lagrange multiplier method so as to decide all the safe and executable

actions that each agent can choose under the condition that the long-term cumulative

reward is obtained. λj is Lagrange multiplier. Step 6 and step 7 describe the linear

approximation constraint function to ensure that the constraint functions are

differentiable. If the initial constraint function is differentiable, then these two steps are

skipped. In step 8，each agent uses Lagrange multiplier to work out the optimal action

value under constraints. In step 9, each agent is in safe state after choosing the safe and

optimal action. CMACQ ensures the safety of each agent under the condition that the

globally optimal solution is obtained.

4. Experiment and Analysis

CMACQ algorithm based on constrained Markov game is suitable for determining a

policy for multiple agents under a constrained condition and obtaining the optimal long-

term cumulative reward. The constrained algorithm introduced in this paper is mainly to

solve safety problem of multiple agents. In the experiment, a dangerous state is defined

as a state that causes great damage when chosen by the agent.

To simplify the solution procedure, if problem is discrete and state set and action set

are relatively small, the next state can be judged to be safe or not through only the

constraint function and can decide all suitable actions for the agent. If the state set and

action set are large and are even continuous, the safe state is calculated through

Lagrange multiplier method.

To ensure the safety of each agent, CMACQ adopts constraint function to prevent

each agent form falling into a dangerous state. The distance between the agent’s current

state and dangerous state is measured by Manhattan distance [46]. To ensure the safety

of the agent, the Manhattan distance between the agent’s next state and the dangerous

state should be equal or greater than 1. The distance described above is defined as safe

distance d, as showed below:

658 Yangyang Ge et al.

~

1(,) 0td s S  (25)

where
~

S is the set of all dangerous states, st+1 is the next state for the agents.

4.1. Firefighting through Multi-Agent Cooperation Experiment

The environment of the firefighting through multi-agent cooperation experiment is a

10×10 grid world with 3 agents starting respectively at (0,9), (9,0), (9,9). In the

experiment, agents cooperate with each other to complete firefighting missions, 9 origins

of fire are (1,4), (3,3), (4,9), (9,3), (8,9), (7,3), (4,6), (5,2), (9,7). Each agent carries the

fire-fighting equipment, and enters into a fire point, quells the fire and receives a reward

of 20. Agents starting from (0, 9) and (9, 0) are able to quell four firing places while the

agent starting from (9,9) is able to quell 3 firing places. When firefighting materials are

used up, agents stop firefighting and go back to starting points. When all 9 firing points

are quelled, a whole plot is terminated. Agents cooperate with each other to find out

firing points that are not yet quelled. In the process, the agent may encounter 3

dangerous states, located at (4, 3), (8, 2), (5, 6). When the agent enters into a dangerous

state, it suffers from permanent damage and receives a reward of -100. To avoid that

agents take random walks in the grid world, agents receive a reward of -1 when entering

into a new state other than the firing state and dangerous state. By doing this, agents are

able to find the shortest path toward firing place in the shortest period of time.

In the experiment, step size α is set uniformly to 0.5, discounted factor γ is set to 1. ε-

greedy method is adopted to explore actions in the training process so as to avoid the

locally optimal solution. Policy parameter ε is set to 0.1. The experiment is

independently operated for 50 times with 500 plots for each operation.

Figure 4 demonstrates performance of CMACQ. The result shows that agent 3

possesses the highest firefighting speed and cumulative reward for each plot. Agent 2

and agent 1 possess similar cumulative rewards with agent 2 being slightly better which

is due to the distribution of firing points and the number of firefighting materials carried

by the agent. The overall distribution is closer to the starting point of agent 3 and agent 3

carries only 3 units of firefighting materials, which are 1 unit lesser than those of agent 1

and agent 2, Therefore agent 3 completes the goal in the shortest period of time. Agent 3

need not wander in the grid to search for firing points such that it receives the highest

long-term cumulative reward for each plot.

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 659

Figure. 4. Performance of CMACQ.

Figure 5 shows long-term cumulative rewards for each plot without safety constraints.

The order of rewards for each agent is similar with that of Figure 4, but each reward in

Figure 5 is lower than that of Figure 4. The lower rewards are because that agents fall

into dangerous states and receive a reward of -100.

Figure. 5. Performance of MACQ

Figure 6 compares the average long-term cumulative rewards per plot between

CMACQ and MACQ [38]. The result shows that CMACQ behaves better than MACQ

and that CMACQ enables the agent to avoid dangerous states.

660 Yangyang Ge et al.

Figure. 6. Average long-term cumulative rewards per plot of two algorithms.

4.2. Deep Sea Fishing Experiment

The environment of Deep Sea Fishing experiment is a 12×12 grid word with 2 agents

and agents work together to catch fish while steering clear of obstacles in the sea. Agent

1 starts at (0,0) and agent 2 starts at (0,11). In the process, there are 6 dangerous states,

located at (3,0), (8,1), (10,4), (11,7), (4,8), (7,11). Dangerous states simulate rocks on

the bottom of the sea, sea grass and so on. In the experiment, agents need to avoid

hitting rocks and getting entangled in sea grass in order to avoid irreversible damage,

continue to fish and return from the sea. States of shoal of fish locate at (7,0), (5,2),

(10,5), (4,6), (7,8), (11,9), (5,11). There are one unit of fish in each state of shoal of fish.

Resources carried by one agent that can catch 4 units of fish. If one agent catches 4 units

of fish, it can no longer fish and leave the sea.

In the experiment, the agent receives a reward of 20 when it catches 1 unit of fish.

When the agent enters into a dangerous state, it suffers from irreversible damage and

receives a reward of -100. To avoid that the agent takes random walks in the grid world,

agents receive a reward of -1 when entering into a new state other than the state of shoal

of fish and dangerous state. By doing this, agents are able to find the shortest path

toward shoal of fish location in the shortest period of time.

In the experiment, step size α is set uniformly to 0.5, discounted factor γ is set to 1.

The ε-greedy method is adopted to explore actions in the training process so as to avoid

the locally optimal solution. Policy parameter ε is set to 0.1. The experiment is

independently operated for 50 times with 500 plots for each operation.

Figure 7 shows the experimental results and compares long-term cumulative rewards

for each plot solved by CMACQ and MACQ respectively. The experimental results

show that CMACQ behaves better than MACQ, because CMACQ enables the agent to

avoid dangerous states and ensures the safety of the agent. In the same algorithm, the

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 661

difference between the long-term cumulative rewards per plot of agent 1 and those of

agent 2 is small, because the danger state and the state of shoal of fish are uniform

distribution, while agent 1 and agent 2 enter the experimental environment from the

upper left corner and upper right corner respectively.

Figure. 7. Comparison of results of Deep Sea Fishing experiment of two algorithms.

The reason why the experimental result of CMACQ algorithm are better than that of

MACQ algorithm is that the CMACQ algorithm can avoid the agents from entering the

dangerous state and causing irreversible damage, and the safety of agents is guaranteed

by the constraint conditions.

5. Conclusion

Multi-Agent system is widely applied in real world in areas such as robot system,

distributed decision, traffic control, business management and so on. Reinforcement

learning algorithm is a key method for solving Multi-Agent problem. However,

traditional algorithms ignore the safety problem of Multi-Agent system. The agent may

fall into dangerous states and suffer from great damage. To solve this problem, in this

paper we introduce CMACQ algorithm based on constrained Markov game and test this

method through the firefighting cooperation experiment. The result shows that CMACQ

is able to handle the safety problem.

The CMACQ algorithm presented in this paper guarantees the safety of Multi-Agent

system; it can also be applied to the problems where resource or cost is constrained and

the area of Multi-Agent cooperation, such as robot system and traffic control, where

agents work with each other and are under certain constraints. In future work we will

adopt constrained algorithm to solve problems concerning limited resource,

minimization of the cost and multiple objectives etc.

662 Yangyang Ge et al.

Acknowledgment. This work was supported by the National Natural Science Foundation of

China (61303108), The Natural Science Foundation of Jiangsu Higher Education Institutions of

China (17KJA520004), Suzhou Key Industries Technological Innovation-Prospective Applied

Research Project (SYG201804), the Program of the Provincial Key Laboratory for Computer

Information Processing Technology (Soochow University) (KJS1524), and a Project Funded by

the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

1. Buşoniu, L., Babuška, R., Schutter, B. D.: Multi-agent Reinforcement Learning: An

Overview. Innovations in Multi-Agent Systems and Applications, Vol. 38, No. 2, 156-172.

(2010)

2. Babuš ka, R., buşoniu, L., and De Schutter, B.: Reinforcement learning for multi-agent

systems. IEEE International Conference on Emerging Technologies and Factory Automation.

IEEE, 1-7. (2006)

3. Dimeas, Hatziargyriou.: Multi-agent reinforcement learning for microgrids. Power & Energy

Society General Meeting. IEEE, 25-29. (2010)

4. Zhang, K., Yang, Z., Liu, H., et al.: Fully Decentralized Multi-Agent Reinforcement

Learning with Networked Agents. Proceedings of the 35th international Conference on

Machine Learning. ICML 2018, Stockholmsmässan, Stockholm, Sweden, 1-10. (2018)

5. Littman, M. L.: Markov games as a framework for multi-agent reinforcement learning. New

Brunswick: Machine Learning Proceedings, 157-163. (1994)

6. Foerster, J., Assael, I., De Freitas, N., et al.: Learning to communicate with deep multi-agent

reinforcement learning. Advances in Neural Information Processing Systems. Spain: NIPS

Press, 2137-2145. (2016)

7. Leibo, J., Zambaldi, V., Lanctot, M., et al.: Multi-agent reinforcement learning in sequential

social dilemmas. Proceedings of the 16th Conference on Autonomous Agents and Multi-

Agent Systems. Singapore: AAMAS Press, 464-473. (2017)

8. Lowe, R., Wu, Y., et al.: Multi-agent actor-critic for mixed cooperative-competitive

environment. Advances in Neural Information Processing Systems. Los Angeles: NIPS

Press, 6379-6390. (2017)

9. Littman, M.: Value-function reinforcement learning in Markov games. Cognitive Systems

Research, Vol. 2, No. 1, 55-66. (2001)

10. Lauer, M., Riedmiller, M.: An Algorithm for Distributed Reinforcement Learning in

Cooperative Multi-Agent Systems. Seventeenth International Conference on Machine

Learning. Stanford: Morgan Kaufmann Press, 535-542. (2000)

11. Lanctot, M., Zambaldi, V., Gruslys, A., et al.: A unified game-theoretic approach to multi-

agent reinforcement learning. Advances in Neural Information Processing Systems. Los

Angeles: NIPS Press, 4190-4203. (2017)

12. Bing, S., Zhu, H., Wang, J., et al.: Optimize Pricing Policy in Evolutionary Market with

Multiple Proactive Competing Cloud Providers. IEEE International Conference on Tools

with Artificial Intelligence. (2017)

13. Kofinas, P., Dounis, A. I., Vouros, G. A.: Fuzzy Q-Learning for multi-agent decentralized

energy management in microgrids. Applied Energy, Vol. 219, No. 3, 53-67. (2018)

14. Vidhate, D. A., Kulkarni, P.: Cooperative multi-agent reinforcement learning models

(CMRLM) for intelligent traffic control. 2017 1st International, Conference on Intelligent

Systems and Information Management (ICISIM). India: IEEE Press, 325-331. (2017)

15. Hu, Junling, Wellman, et al.: Nash q-learning for general-sum stochastic games. Journal of

Machine Learning Research, Vol. 4, No. 4, 1039-1069. (2003)

 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game 663

16. Greenwald, A., Hall, K., Serrano, R.: Correlated Q-learning. ICML. Washington: ICML

Press, 242-249. (2003)

17. Kononen, V.: Asymmetric multi agent reinforcement learning. International Conference on

Intelligent Agent Technology. Canada: IEEE Press, 336-342. (2003)

18. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control through deep

reinforcement learning. Nature, Vol. 518, No. 7540, 529-533. (2015)

19. Sutton, Richard, S. and Barto, Andrew, G.: Reinforcement learning: An introduction. MIT

press Cambridge. (2018)

20. Garc, Javier, A., Ndez, F. A.: Comprehensive survey on safe reinforcement learning.

JMLR.org, 1437-1480. (2015)

21. C. J. C. H. Watkins, and Dayan, P.: Q-learning. Machine Learning, Vol. 8, 279-292. (1992)

22. Schaul, T., Quan., Antonoglou, I., et al.: Prioritized Experience Replay. Computer Science,

1-21. (2016)

23. Golden, R. M.: Adaptive Learning Algorithm Convergence in Passive and Reactive

Environments. Neural Computation, 1-28. (2018)

24. Luo, B., Liu, D., Huang, T., et al.: Model-Free Optimal Tracking Control via Critic-Only Q-

Learning. IEEE Transactions on Neural Networks and Learning Systems, 1-11. (2016)

25. Langergraber, K. E., Watts, D. P., Vigilant, L., et al.: Group augmentation, collective action,

and territorial boundary patrols by male c himpanzees. Proc Natl Acad Sci U S A, Vol. 114,

No. 28, 7337-7342. (2017)

26. Ma, Y., Lu, J., Shi, L.: Diversity of neighborhoods promotes cooperation in evolutionary

social dilemmas. Physica AStatistical Mechanics & Its Applications, Vol. 468, 212-218.

(2017)

27. Rand, D. G., Dreber, A., Ellingsen, T., et al.: Positive interactions promote public

cooperation [J]. Science, Vol. 325, No. 5945, 1272-5. (2009)

28. Milinski, M., Semmann, D., Krambeck, H. J.: Reputation helps solve the 'tragedy of the

commons'. Nature, Vol. 415, No. 6870, 424-6. (2002)

29. Allen, B., Lippner, G., Chen, Y. T., et al.: Evolutionary dynamics on any population

structure. Nature, Vol. 544, No. 7649, 227-230. (2017)

30. Mcavoy, A., Fraiman, N., Hauert, C., et al.: Public goods games in populations with

fluctuating size. Theoretical Population Biology, Vol. 121, 72-84. (2018)

31. Engesser, T., Bolander, T., Mattm, R., et al.: Cooperative Epistemic Multi-Agent Planning

with Implicit Coordination. Distributed and Multi-Agent Planning. (2015).

32. Matignon, L.，Laurent, G. J.，Fort-Piat, N. L.: Hysteretic q-learning: an algorithm for

decentralized reinforcement learning in cooperative multi-agent teams. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and System (IROS). IEEE，San

Diego, California, 64-69. (2007)

33. Coultas, J. C., Leeuwen, E. J. C. V.: Conformity: Definitions, Types, and Evolutionary

Grounding. Evolutionary Perspectives on Social Psychology, 189-202. (2016)

34. Gintis, H.: Strong reciprocity and human sociality. Journal of Theoretical Biology, Vol. 206,

No. 2, 169-179. (2000)

35. Seip, E. C., Dijk, W. W. V., Rotteveel, M.: Anger motivates costly punishment of unfair

behavior. Motivation & Emotion, Vol. 38, No. 4, 578-588. (2014)

36. Perolat, J., Leibo, J. Z., Zambaldi, V., et al.: A multi-agent reinforcement learning model of

common-pool resource appropriation. Advances in Neural Information Processing Systems.

Los Angeles: NIPS Press, 3643-3652. (2017)

37. Palmer, G., tuyls, K., Bloembergen, D., et al.: Lenient multi-agent deep reinforcement

learning. Proceedings of the 17th International Conference on Autonomous Agent and Multi-

Agent Systems. Swede: AAMAS press, 443-451. (2018)

38. Hwang K., Lin Y. and Lo C.: Multi-Agent Cooperation by Q-Learning in Continuous Action

Domain. 2008 First International Conference on Intelligent Networks and Intelligent

Systems. China, 111-114. (2008）

664 Yangyang Ge et al.

39. Chalmers, R., Scheidt, D., Neighoff, T., Witwicki, S., and Bamberger, R.: Cooperating

unmanned vehicles. AIAA 1st Intelligent System Technical Conference. (2004)

40. Ying-ying, D., Yan, H., and Jing-ping, J.: Self-organizing multi-robot system based on

personality evolution. IEEE International Conference on Systems, Man, and Cybernetics.

(2002)

41. Sidney, G.: Analysis and Design of Swarm Based Robots Using Game Theory. Ph. D.

Thesis, Ottawa, ON: Carleton University. (2009)

42. Nowé A., Vrancx P., De Hauwere YM.: Game Theory and Multi-agent Reinforcement

Learning. In: Wiering M., van Otterlo M. (eds) Reinforcement Learning. Adaptation,

Learning, and Optimization, Springer, Berlin, Heidelberg, vol. 12, 441-470. (2012)

43. Martyna, J.: Power Allocation in Cognitive Radio with Distributed Antenna System. Lecture

Notes in Computer Science, 745-754. (2017)

44. Kuan, T. W., Wang, J. F., and Wang, J. C., et al.: VLSI Design of an SVM Learning Core on

Sequential Minimal Optimization Algorithm. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 20, No. 4, 673-683. (2012)

45. Farina, F., Garulli, A., and Giannitrapani, A., et al.: Asynchronous Distributed Method of

Multipliers for Constrained Nonconvex Optimization. 2018 European Control Conference.

Limassol, Cyprus, Vol. 103, 243-253. (2018)

46. Blackburn, S. R., Homberger, C., Winkler, P.: The minimum Manhattan distance and

minimum jump of permutations. Journal of Combinatorial Theory, Series A, Vol. 161, 364-

386. (2019)

Yangyang Ge is a postgraduate of School of Computer Science and Technology,

Soochow University. Her main research interests include safe reinforcement learning. E-

mail: 20184227043@stu.suda.edu.cn.

Fei Zhu (corresponding author) got Ph.D. and associate professor in School of

Computer Science and Technology, Soochow University. He is a member of China

Computer Federation. His main research interests include reinforcement learning, text

mining, and pattern recognition. E-mail: zhufei@suda.edu.cn. He is the corresponding

author of this paper.

Wei Huang is associate professor in School of Computer Science and Technology,

Soochow University. Her main research interests include reinforcement learning and

pattern recognition. E-mail: huangwei@suda.edu.cn.

Peiyao Zhao is a postgraduate student in the Soochow University. His main research

interest is reinforcement learning. He programmed the algorithms and implemented the

experiments. E-mail: 20195427013@stu.suda.edu.cn.

Quan Liu got Ph.D. and professor in School of Computer Science and Technology,

Soochow University. His main research interests include intelligence information

processing, automated reasoning and machine learning. E-mail: quanliu@suda.edu.cn.

Received: December 20, 2019; Accepted: May 02, 2020

