
Computer Science and Information Systems 18(1):129–154 https://doi.org/10.2298/CSIS200221032J 

 

A method of assessing rework for implementing 

software requirements changes 

Shalinka Jayatilleke
1
 and Richard Lai

2 

1 Department of Management, Sports and Tourism  
La Trobe University, Victoria. 3086, Australia 

s.jayatilleke@latrobe.edu.au 
2 Department of Computer Science and Computer Engineering 

La Trobe University, Victoria. 3086, Australia 

R.Lai@latrobe.edu.au 

Abstract - Software development is often affected by user/system requirements 

changes. To implement requirements changes, a system which is being developed 

needs to be reworked. However, the term “Rework” has not been clearly defined 

in the literature. Depending on the complexity of the changes, the amount of 

rework required varies from some software module modifications to a non-trivial 

alteration to the software design of a system. The effort associated with such a 

rework obviously will vary too. To date, there has been scant research on rework 

assessment, and the relationship between it and change effort estimation is hardly 

understood. In this paper, we present a definition for rework, and describe a 

method of assessing rework for implementing software requirements changes. Our 

method consists of three stages: namely (i) change identification; (ii) change 

analysis; and (iii) rework assessment. To demonstrate the practicality that it 

enables developers to compare the rework between the different options available 

for implementing a requirements change and to identify the one which is less 

invasive and requires lesser amount of modifications to the software system 

design, we explain our concept with the use of a running example. 

Keywords - Rework, Rework assessment, Requirements changes, Requirements 

change management, Software System Design Document 

1. Introduction 

Software development is often affected by changes in user/system requirements. Rapid 

changes in requirements are found to be one of the main cost drivers [1]; and they have 

a significant impact on development efforts and project duration  [2, 3]. To implement 

requirements changes, a system in design phase or later (but not yet deployed) needs to 

be reworked on. However in the literature, the term “Rework” has not been uniformly 

and clearly defined as past practitioners and researchers considered terms like 

“reconsideration”, “re-instantiation”, “redoing” and “revision” as synonymous with 

rework, while the Oxford Dictionary defines “Rework” as “making changes to the 

original version of something”. Depending on the complexity of the changes, the 

amount of rework required varies from some software module modifications to a non-

trivial alteration to software design of a system. The cost associated with such a rework 

obviously will vary too.  

mailto:s.jayatilleke@latrobe.edu.au
mailto:R.Lai@latrobe.edu.au


130           Shalinka Jayatilleke and Richard Lai 

According to our systematic review on Requirements Change Management (RCM) 

[4], there are three main components in managing requirements changes: change 

identification, change impact analysis and change cost/effort estimation. Effort 

estimation is about calculating and predicting the effort of a set of activities before they 

are actually performed [5, 6]; and effort is a value usually expressed in terms of time 

and/or dollars. Subsequently, change effort estimations are to predict the cost and time 

required for implementing a change. Such estimations are important as underestimation 

can result in budget overrun, poor quality and delay in project completion; whereas 

overestimation may result in the allocation of too many resources which will cause 

inefficiency  [6]. Accurate estimation can also help assess the feasibility of 

implementing a change, prioritize the implementation of the requested changes and 

determine the cost of the implementation of a change.  

Prior to conducting a change effort estimation, we need to have a better 

understanding of the extent to which and how a system would be reworked as it is 

possible to have more than one option for  implementing a change and different options 

require different amounts of rework to be made to a system. In such a situation, 

estimation might need to be done for each option in order to determine its suitability. It 

should be noted that with the complexity of the changes requested and the number of 

implementation options available, change effort estimation can be a tedious and time-

consuming task. It would therefore be beneficial to have a method which can identify 

the implementation option which involves the lesser amount of rework, before any 

estimation is carried out; and a lot of time will be saved by not having to conduct the 

unnecessary estimations. Given the importance of rework for estimation, the 

relationship between them is hardly understood. 

In our systematic review [4], we explained how existing estimation methods and 

models can be applied to effort estimation related to implementing requirements 

changes and pointed out the fact that general effort estimation models may not be 

suitable for estimating the effort of implementing a requirements change. There are a 

few models that deal specifically with requirements change effort/cost estimation as 

discussed in the related work section of our systematic review paper [4]. Most existing 

methods use expert judgment which is based on the experience of the estimator which is 

not a consistent component and expert judgement also relies on past project data which 

may not be applicable to a particular case where there is no historical data. It is 

therefore important that the interrelations and dependencies between systems functions 

are identified for estimating the effort/cost of changes as the dependencies will have an 

impact on an implementation. An inherent drawback in most existing estimation 

methods is that these dependencies are not well understood [6].  

To date, there is limited research on the concept of rework for software development 

and assessing rework for implementing requirements changes. In this paper, we first 

present our definition of rework and then describe a method of assessing rework for 

implementing software requirements changes in the context of its definition. Our 

method consists of three stages: (i) identification of the change; (ii) identification of the 

activities within the software system design which are affected by the change; and (iii) 

assessing the rework required. Stages 1 and 2 are based on the concepts and ideas 

described in our two previously published papers and the results of applying Stages 1 

and 2 enable Stage 3 to be carried out. Stage 3 involves the computations of: (i) 

Interaction Comparison (IC); (ii) Interaction Weight (IW); and (iii) Rework which is 

based on IC and IW. To demonstrate the practicality that it enables developers to 



 A method of assessing rework for implementing software requirements changes          131 

compare the rework between the different options available for implementing a 

requirements change and to identify the one which is less invasive and requires lesser 

amount of modifications to the software system design, we have applied our method to 

a running example for a reader’s better comprehension of it. 

2. The concept of rework and our proposed definition 

The concept of rework exists in fields outside software development. In the field of 

medicine, doctors may need to rework treatment plans for patients who have developed 

unexpected reactions; in the building industry, civil engineers may need to rework plans 

for the load bearing of a bridge depending on future traffic conditions; academics will 

need to rework course and/or subject material depending on assessment outcomes or 

feedback by students. Several studies in civil engineering defined rework as “the 

unnecessary effort of redoing a process or activity that was incorrectly implemented the 

first time” [7, 8].  

Rework is common in software development due to changes emanating from clients, 

development environment, and laws of the government and society. We discussed the 

causes of these changes  extensively in our systematic review [4]. A key activity in 

RCM is to identify the amount of rework required for the proposed changes, as this will 

have a significant impact on the time and cost of a project. Studies show that normally 

rework leads to additional effort and cost [9-14] of a project. However, a clear 

relationship between rework and effort estimation has not been understood/established. 

Some studies proposed methods for reducing the amount of rework [10, 15], yet the fact 

remains that there will still be a considerable amount of rework to deal with. In the agile 

software development environment, it encourages rework instead of attempting to 

eliminate it [4, 16]. Rework is often unavoidable as the understanding of a problem and 

its possible solutions evolve over time.  

Rework is a central activity in the development of software. The cost of rework is 

said to reach or even exceed 50% of the total project cost [9-11, 17]. These costs are one 

of the main concerns in software development since it is an important parameter 

defining the success of software projects [12, 13]. According to Charrette [14], software 

developers spend 40-50% of their time on rework activities. Based on the above facts, 

rework is generally considered as an important software development activity. In 

software development, Zhao and Osterweil [15] define rework as “the re-instantiation of 

tasks previously carried out in earlier development phases in a richer context that is 

provided by the activities and artifacts that had been performed and created during 

subsequent phases”. In a simpler manner, Ghezzi et al. [17] suggest that rework consists 

of “going back to a previous phase” of software development to redo decisions made or 

work carried out in that previous phase”. It is clear that the concept of rework has been 

subject to different interpretations. In short, rework has not been uniformly and well 

defined [10, 15, 18]. 

Based on the discussion above and our systematic review findings, we are of the 

opinion that the concept of rework needs to be more narrowly focussed on the following 

items: 



132           Shalinka Jayatilleke and Richard Lai 

 Requirements changes are the reasons for doing it; 

 Instead of being broadly considered as a software development activity, it is 

one which falls in the area of RCM; and 

 It is closely related to change cost/effort estimation which is also a RCM 

activity.  

Our proposed definition of rework is therefore as follows:  

“Rework in the field of software engineering is an activity within the area of 

Requirements Change Management (RCM), which makes modifications/alternations to 

a system which has a software design document and is being developed (pre-delivery)  

for implementing certain requirements changes, with the alternations/modifications 

normally introducing extra work and increasing the total amount of cost/effort for 

completing the software project; and assessing rework, a preliminary step to change 

cost/effort estimation which is another RCM activity, is about studying how a system 

needs to be modified/altered for implementing the changes.”  

According to this definition, we establish that rework is an activity conducted prior to 

the delivery of a system. Given that a software design document is necessary, rework 

assessment can be applied to any stage of software development as long as a software 

system design document is available; and it is independent of the type of software 

development methodology (be it waterfall or agile). With Agile Software Development, 

a design document becomes available as the development progresses and therefore 

rework assessment becomes plausible.  

Another noteworthy point is that there is a key difference between our definition of 

rework and maintenance. According to IEEE standard 1219, software maintenance is 

defined as “the process of modifying a software system or component after delivery to 

correct faults, improve performances or other attributes, or adapt to a changed 

environment”[19, 20]. The post-delivery nature of maintenance is also emphasised 

similarly in the ISO/IEC [ISO95] definition [20, 21]. The modifications to a system 

during the maintenance phase will always preserve the integrity of the software product 

[20, 22]. If the software design of a system needs to be altered substantially, the 

alternation will not be done as a piece of maintenance work but rework which will lead 

to new version of the software product. An example is that Microsoft usually release a 

newer version of its Windows operating system every period of say 3-4 years, or 

sometimes shorter. 

3. Overview of the method of assessing rework 

We anticipate that our method of assessing rework enable us to understand to what 

extent a system needs to be altered for implementing the required changes. Based on our 

previously developed methods of specification and classification [23, 24], we have 

identified that some requirements changes can be implemented in more than one way, 

which we refer to as change implementation possibilities/options. We aim to realize the 

following: 

1. A numerical representation of the assessment of rework required to implement 

a requirement change for all possible implementation options. 

2. Selection of the option which requires a lesser invasive to the software design 

of the system, ergo is of lesser rework. 



 A method of assessing rework for implementing software requirements changes          133 

3. Comparison of the assessment of rework between multiple requirements 

changes. 

This method is a continuation of the findings of the specification and classifications 

methods [23, 24] and change analysis methods [25] previously established by the 

authors. The use of these methods in the rework method is detailed in Figure 1.  

 

Fig. 1. Overview of the method 

According to Figure 1, the method will use as input the requirements changes and the 

system design diagram (SDD). The output of the method is executed in three stages: 

Stage 1: Identification of the change 

The change is identified and categorised using the methods which we have 

developed and reported in [23, 24].  

Stage 2: Identification of the system activities affected due to the change 

Once the change is identified, we apply the change analysis functions of the 

change analysis method which was developed and reported in [25]. As a result, 

the change is further exposed, enabling us to identify the activities that are 

directly affected by the change. Using the SDD, we then map the directly 

affected activities (DAA) to identify the indirectly affected activities (IdAA). 

The IdAA are the activities that are connected to DAA through input and/or 

output. IdAAs are considered in this assessment as modifications to a DAA 

which may have a direct impact on the activities associated with the DAA via 

the input-output links. The SDD can be any design diagram that shows the 

relationships between different objects and activities. Typically various forms 

of UML [26] diagrams such as activity diagrams, class diagrams, etc. can be 

used for this purpose. 

Stage 3: Assessing the rework required 

Once all the activities related to the change are identified, we can assess the 

rework. In order to do this, we adopt the methods that are introduced in  

[27-29]. From [27] and [28], the concept we adopt is referred to as interaction 

frequency. This frequency refers to the ratio of the number of interactions 

(input-output) performed by the affected operations (of a change) and the 

number of interactions performed by all operations of the interface. A similar 

concept is used in [29] where instead, the number of interfaces are used. Given 

that the interactions between the activities are identified and indicated in the 



134           Shalinka Jayatilleke and Richard Lai 

SDD, we can use this concept to assess the rework and thereafter make a 

selection of the implementation option with a lesser rework.  

4. The details of the method  

In this section, we describe in detail, the stages presented above. 

4.1. Identification of the changes – Stage 1 

To identify a requested requirements change, we use the change specification and 

classification methods which we have developed  and reported in [23, 24]; and a 

summary of them can be found in Appendix 1. Change specification denotes a way of 

specifying a change so that communication ambiguities between business and IT staff 

can be avoided. Once a requirements change has been initiated from the client side, this 

method will use the SDD as input to map the location of the change. In order to create 

the specification template, we use two established methods, i.e. Goal Question Metrics 

(GQM) [30] and the Resource Description Framework (RDF) [31]. We also use a set of 

additional questions to enable better identification when using the specification template 

output.  

The change classification method uses the outcomes of the specification template to 

expand on the type of change along with preliminary guidance on the action to be taken 

in managing the change. The classification itself is based on the concepts of the change 

taxonomy found in the existing change management literature [32-35] and is refined 

using the unstructured interviews of practitioners in the field of change management. 

The outcomes of the change classification will provide software developers with a better 

understanding of what the change is and offers preliminary guidance on how the change 

implementation can be carried out. The detailed change classification is shown in Table 

1. The term link mentioned in Table 1 refers to the input-output connection between the 

activities. The term activity refers to the process activities in a SDD.  

At implementation time, the key elements of the two methods (specification and 

classification) are incorporated into a single table (see Table 2). In the table, change 

number refers to the number given to each change as they are requested. The object, 

purpose and focus in Table 2 correspond to the specification method (please refer to 

Appendix 1).  



 A method of assessing rework for implementing software requirements changes          135 

Table 1. Detailed change description 

 
Object  the activity name according to the SDD (this is the activity affected by the 

change) 

Purpose  the reason for the change 

Focus  the activity selected from the list - Add, Delete, Modification or Activity 

relocation 

Change type and action can be sourced from Table 1 based on the information 

provided for the object, focus and additional question, respectively. The option columns 

represent how each change may be described using different foci. This may not apply to 

all changes. This feature was added to the implementation template to provide more 

diversity and flexibility for communicating a change. Having multiple options also 

provides flexibility as to how the change can be implemented.    

Change focus Answer to 

Additional 

Question 

Change type Action 

Add No Matched links Add new activity without changing the 

current activity or any connected links 

Yes Mismatched links Add new activity by changing the 

activity and/or connected links 

Modification  No Inner property 

modification 

Modify the implementation of an 

activity without changing the connected 

links 

Yes Input data 

modification 

Modify the input link and internal 

properties of an activity  

Yes Output data 

modification 

Modify the output link and internal 

properties of an activity  

Delete No Matched links Delete activity without changing 

connected activities 

Yes Mismatched links Delete activity by changing connected 

activities and links 

Activity 

Relocation 

No Relocation with 

matched links 

Relocate existing activity without 

changing the activity or connected links 

Yes Relocation with 

mismatched links 

Relocate new activity by changing the 

activity and/or connected links 



136           Shalinka Jayatilleke and Richard Lai 

Table 2. Template for implementation 

 

 

 

 

 
 

 

 

 

 

 

 

Running example 

In order to explain this stage and the following stages, we will consider the following 

running example.  

Diskwiz is a company which sells DVDs by mail order. Customer orders are received 

by the sales team, which checks that the customer details have been completed properly 

on the order form (for example, delivery address and method of payment). If they are 

not, a member of the sales team contacts the customer to obtain the correct details. Once 

the correct details are confirmed, the sales team passes a copy of the order to the 

warehouse team to pick and pack, and a copy to the Finance team to raise an invoice. 

Finance raises an invoice and sends it to the customer within 48 hours of the order being 

received. When a member of the warehouse team receives the order, they check the 

real-time inventory system to make sure the discs ordered are in stock. If they are, they 

are collected from the shelves, packed and sent to the customer within 48 hours of the 

order being received, so that the customer receives the goods at the same time as the 

invoice. If the goods are not in stock, the order is held in a pending file in the warehouse 

until the stock is replenished, whereupon the order is filled. This process is illustrated in 

the following system design diagram.  

The change scenario: 

The management is not satisfied with some parts of the process and points out that 

the following issue should be rectified: “It is identified, due to a design error, there is no 

communication between Finance and the Warehouse to confirm discs are in stock so 

that the order can be shipped. Therefore, Finance could be raising invoices when the 

order has not been sent.” 

One of the reasons for having no communication between Finance and Warehouse is 

because there is no communication between A4 and A5, where A4 represent one activity 

of the Warehouse and A5 represents Finance. Another way to view this would be that 

there is no communication between A5 and A6, where A6 is another activity of the 

Warehouse.  

Change No. Option 01 Option 02 Option n 

Object    

Purpose    

Focus    

Additional 

Question 
   

RESULT 

Change 

type 
   

Action    

Specification 

Method 

Classification 

Method 



 A method of assessing rework for implementing software requirements changes          137 

 

Fig. 2. Diskwiz customer order fulfilment process diagram 

Therefore, the objects to be considered are A4, A5 and A6. The purpose of this change 

is to resolve an existing design issue (according to the change scenario). A software 

engineer may use different focus based on the different combinations of objects which 

are A4, A5 and A6 (based on the views taken in the above paragraph).  

Table 3 is the complete application of Stage 1 of the rework method, i.e. this is a 

populated form of Table 2. If we consider option 01 in Table 3, the objects selected are 

A4 and A5, with a purpose of resolving a design error. Based on the rationale given 

between the non-existence of communication between the two objects, it would be 

feasible to add this communication between the objects. Therefore, the “Add” focus was 

chosen as the focus. Now this focus can be mapped to Table 1. From this point onwards, 

the rest of the fields in Table 2 will follow the directions related to the change focus 

“Add” in Table 1. The same rationale can be applied to options 02 and 03.  

Table 3. Change classification outcome 

Change 01 Option 01 Option 02 Option 03 

Object A4 and A5 A4 and A5 A5 and A6 

Purpose 
Resolution of design 

error 

Resolution of design 

error 

Resolution of design 

error 

Focus Add Modify Modify 

Additional 

Question 

Need addition 

input/output? Y  

Input/output 

modification?  Y 

Input/output 

modification?  Y 

Result 

Change 

Type 

Add new function 

between A4 and A5 

(Mismatched links) 

Inner property 

modification and output 

data modification A4 and 

input data modification 

of A5 

Inner property 

modification and output 

data modification A6 

and input data 

modification of A5 

Action 

Add new function by 

changing the function 

and/or connected links 

of A4 & A5 

Modify A4 to send 

message to A5  

Modify A6 to send 

message to A5 



138           Shalinka Jayatilleke and Richard Lai 

4.2. Identification of the system activities affected by the change(s) – Stage 2 

We use a part of the change analysis method which we have developed and reported in 

[25] for expanding further the change identified; and a summary of this analysis method 

can be found in Appendix 2. Using this expansion, both DAAs and IdAAs are identified 

using the system design diagram. The change analysis functions are based on the change 

foci identified in [23, 24]: add, delete, modify and relocation. We use the category of 

primary change analysis functions to expand the changes. The category of primary 

functions can be used for building a block of more complex functions. The need to do 

this is due to the fact that it is hard to project every possible way of implementing the 

changes so practitioners can use this type of block to help them facilitate the changes.  

 

The following terminologies are used for the functions: 

The term activity in this method is used to represent process activities in the SDD. 

AN – New activity, AO – Old activity, AT - Target activity, Pt – Pointer, AR – 

Relocating activity, AC – Connected activity 

V – Value: the value passed onto the function for data manipulation 

L – Link: the connection between two activities 

The primary category consists of the following set of functions: 

1. Function to create a new activity 

CreateFunc(String, V) →AN 

2. Function to link a new activity with existing activities  

CreateLink(AN, AO, V) 

3. Function to link existing activities 

CreateLink(AX-O, AY-O, V) 

4. Function to delete an activity 

DeleteFunc(AO) 

5. Function to delete links between activities 

DeleteLink(AX-O, AY-O) 

6. Function to modify inner property of an activity 

ModifyInner(AT,V) 

7. Function to modify input data of an activity 

ModifyIn(AS, AT, V) 

8. Function to modify output data of an activity 

ModifyOut(AS, AT, V) 

9. Function to create a pointer to an existing activity 

CreatePointer(Pt, AT) 

10. Function to delete a pointer 

DeletePointer(Pt) 

Once the change has been expanded, the activities identified in the functions are 

mapped to the SDD. These are the DAAs. In the SDD, any activity connected as the 

input and/or output of a DAA is considered an IdAA.  

Running example stage 2 

In accordance with this example and Table 3, the change can be implemented using one 

of the three options. In stage 2, we apply the preliminary functions from the change 



 A method of assessing rework for implementing software requirements changes          139 

analysis method for the 3 options and we generate the following expansions of the 

change: 

Table 4. Expansion of change options 

Option 1 Option 2 Option 3 
CreateFunc(String, V) →AN   

CreateLink(AN, A4, V) 

{ 

 ModifyInner(A4,V)   

 ModifyIn(AN, A4, V)  

 ModifyOut(AN, A4, V) 

} 

CreateLink(AN, A5, V) 

{ 

 ModifyInner(A5,V)   

 ModifyIn(AN, A5, V)  

 ModifyOut(AN, A5, V) 

} 

ModifyInner(A4,V) 

CreateLink(A4, A5, V) 

ModifyOut(A4, A5, V) 

ModifyIn(A4, A5, V) 

 

 

ModifyInner(A6,V) 

CreateLink(A5, A6, V) 

ModifyOut(A6, A5, V) 

ModifyIn(A6, A5, V) 

 

Based on Table 4, we are able to identify the DAAs for each option. Then by 

mapping the DAAs to the SDD, we are able to identify the IdAAs for each DAA. In this 

paper when selecting the IdAAs, we consider only the first impact level. Investigation 

of further levels can be considered as a future enhancement, which is outside the scope 

of this paper. 

Table 5. Identification of DAAs and IdAAs 

Options DAAs IdAAs 

1 A4 A3, A6 

 A5 A3 

2 A4 A3, A6 

 A5 A3 

3 A5 A3 

 A6 A4 

4.3. Assessing the rework required – Stage 3 

Through the numerical values generated, we are able to assess the rework to be carried 

out as a result of the change. In order to ensure the assessment of the rework is based on 

both the total interactions of the activities to be reworked as well as the difficulty level 

of implementing the change action, we use the number of affected interactions as well 

as the change weights introduced in the change analysis method [25]. The values for the 

weights are adopted from [36]. It has been established that in the change analysis 

method, each change action / type has a different difficulty level. Therefore, this 

difficulty level needs to be represented in the rework.  

The assessment of the work required to implement a change involves the following 

calculations: 

1. The interaction comparison (IC) of the affected activities (direct and indirect) 



140           Shalinka Jayatilleke and Richard Lai 

2. The interaction weight (IW) using the change weights of the affected activities 

(direct) 

3. The rework based on IC and IW 

As a result of the values generated from IC and IW, developers will have a numerical 

view of the assessment of the rework for implementing a change. If there are more than 

one option of implementation, then based on the combination of IC and IW, the 

developer can choose the lesser invasive option, which would result in the option with 

lesser rework. 

When choosing the lesser invasive option, first preference is given to the lesser value 

of IC as this denotes lesser number of connections in the software design of the system 

will need to be altered. In the event that the IC value is the same for two or more 

options, IW will be considered. Use of IW is explained in the following sections. 

Interaction comparison (IC) Calculation 

Interaction comparison is the identification of the percentage of interactions that need to 

be altered in order to accomplish the required change. An interaction is a connection 

between two or more process activities (input-output links) in a SDD. This is in 

comparison to the total number of interactions identified in the SDD. Using the SDD, 

the following steps are used to calculate IC: 

 For each activity (DAAs and IDAAs) involved in the change, identify the 

number of interactions. These interactions will be the number of connections 

each activity has with the other activities of the system. 

 Identify the total number of interactions in the entire system. 

 Calculate IC. 

Running example stage 3 (IC calculation) 

Using the above example, we show how the value of IC is calculated for all the options.  

 

IC calculation for option 1: 

The number of interactions for each identified activity based on Table 5 is as follows: 

A4 – has 2 interactions (Connected to A3 and A6) 

A5 – has 1 interaction (Connected to A3) 

A3 – has 4 interactions (Connected to A1, A2, A4 and A5) 

A6 – has 1 interaction (Connected to A4) 

Considering all the interactions, the system design contains six activities. The 

interaction count for each activity is as follows: 

A1 – has 2 interactions (Connected to A2 and A3) 

A2 – has 2 interactions (Connected to A1 and A3) 

A3 – has 4 interactions (Connected to A1, A2, A4 and A5)  

A4 – has 2 interactions (Connected to A3 and A6)  

A5 – has 1 interaction (Connected to A3)   

A6 – has 1 interaction (Connected to A4) 

The way of calculating the value of  IC is adopted from [27]. 



 A method of assessing rework for implementing software requirements changes          141 

      
  

   
  

Formula 1: IC caclulation 

Where CO is the Change Option number, NI is the number of interactions per change 

action and NTI is the total number of interactions for the system according to the SDD. 

 

        

 

   

 

Formula 2:No. of interactions affected by change 

 

          

 

   

 

Formula 3: Total no. of interactions in the system 

Applying to the example option 1: 

When calculating NI we consider the interaction of all the activities (DAAs and 

IdAAs) of option 1 which include: A4, A5, A3 and A6 (extracted from Table5). Based on 

the interactions identified for these activities, NI is; 

NI = 2 + 1 + 4 + 1 = 8                   (1) 

When calculating NTI interactions of all the activities are considered. Based on the 

interactions identified for all activities, NTI is; 

NTI = 2+2+4+2+1+1 = 12              (2) 

     
 

  
                                  (3) 

According to this value, when considering option 1 for change implementation, 67% 

of all the interactions have to be altered in order to implement the required change.  
 

IC calculation for option 2: 
 

The number of interactions for each identified activity based on Table 5 is as follows: 

A4 – has 2 interactions (Connected to A3 and A6) 

A5 – has 1 interaction (Connected to A3) 

A3 – has 4 interactions (Connected to A1, A2, A4 and A5) 

A6 – has 1 interaction (Connected to A4) 
 

The total number of interactions is the same as that of option 1 

Therefore; 

     
  

   
                                    (4) 

Applying the same principles as option 1; 

NI = 2 + 1 + 4 + 1 = 8               (5) 

NTI = 2+2+4+2+1+1 = 12         (6) 

where x is the number of activities 

affected by the change action and NIx is 

the interactions for each affected 

activity. 

where x is the total number of 

activities of the system and NTIx is 

the interactions for each activity. 



142           Shalinka Jayatilleke and Richard Lai 

     
 

  
     

According to this value, when considering option 2 for change implementation, 67% 

of all the interactions have to be altered for implementing the required change.  

 

IC calculation for option 3: 

 

The number of interactions for each identified activity based on Table 5 is as follows: 

A5 – has 1 interaction (Connected to A3)   

A6 – has 1 interaction (Connected to A4) 

A4 – has 2 interactions (Connected to A3 and A6) 
 

The total number of interactions is the same as that of option 1 

Therefore; 

     
  

   
                                   (7) 

Applying the same principles as option 1; 

NI = 1 + 1 + 2 = 4                    (8) 

NTI = 2+2+4+2+1+1 = 12        (9) 

     
 

  
                           (10) 

According to this value, when considering option 3 for change implementation, 33% 

of all the interactions have to be altered for implementing the required change.  

Interaction weight (IW) Calculation 

The interaction weight is the change weight corresponding to the directly affected 

interactions due to the requirements change. The change weight concept was established 

in the change analysis method [25]. The weights for the change categories are assigned, 

using the principles described in [36] and [37] and  based on the knowledge they have 

gained in working in the industry as well as extensive research on requirements change 

management. In both studies the change weights are incorporated in mathematical 

formulas which compute a change complexity. IW adds depth to the IC value by 

providing a numerical representation of the difficulty level of implementing the change 

and how this relates to the interactions. The value of IW becomes further important in 

assessment and selection, when the value for IC can be the same for different options of 

a given change, as we demonstrated in the running example. We establish that the lower 

the IW, the less difficult it would be to implement a change. In order to calculate IW, 

the following steps are used: 

 Identify the change types using the expanded change action steps (Stage 2).  

 Calculate the total change weight based on the change analysis method. 

 Use the interactions and the total change weight to calculate IW. 

In order to calculate IW, we consider only the activities directly affected by the 

change. This is because the identification of change types are acquired from stage 2 

where it only contains DAAs.  



 A method of assessing rework for implementing software requirements changes          143 

From the change expansion in stage 2, we consider the change functions Create, 

Modify and Delete when calculating IW.  

Running example stage 3 (IW calculation) 

Using the same running example, we use the outcome of Table 4 to identify the change 

types as follows: 

Table 6. Change weight identification 

Option 1 Option 2 Option 3 

CreateFunc(String, V) →AN   

CreateLink(AN, A4, V) 

{ 

 ModifyInner(A4,V)   

 ModifyIn(AN, A4, V)  

 ModifyOut(AN, A4, V) 

} 

CreateLink(AN, A5, V) 

{ 

 ModifyInner(A5,V)   

 ModifyIn(AN, A5, V)  

 ModifyOut(AN, A5, V) 

} 

ModifyInner(A4,V) 

CreateLink(A4, A5, V) 

ModifyOut(A4, A5, V) 

ModifyIn(A4, A5, V) 

 

 

ModifyInner(A6,V) 

CreateLink(A5, A6, V) 

ModifyOut(A6, A5, V) 

ModifyIn(A6, A5, V) 

 

Create Functions – 3 

Modify Functions – 6 

Delete Functions – 0  

Create Functions – 1 

Modify Functions – 3 

Delete Functions – 0 

Create Functions – 1 

Modify Functions – 3 

Delete Functions – 0 

 

Using the weighting system introduced in the change analysis method, we develop 

Table 7 to calculate the change weight (CW): 

 All create functions will have the Add weight of 3 

 All modify functions will have the Modify weight of 2 

 All delete functions will have the Delete weight of 1 

 All other functions are a combination of the main three functions i.e. create, 

modify and delete 

Table 7. Change weight calculation 

Change Type Option 1 Option 2 Option n 

Add No. of functions × CW 

Add 

No. of functions × CW 

Add 

…. × …. 

Modify No. of functions × CW 

Mod 

No. of functions × CW 

Mod 

…. × …. 

Delete No. of functions × CW 

Del 

No. of functions × CW 

Del 

…. × …. 

Total CW    

 

Applying the findings of the running example of Table 6: 



144           Shalinka Jayatilleke and Richard Lai 

Table 8. Calculated change weights 

Change Type Option 1 Option 2 Option 3 

Add 3 × 3 = 9 1 × 3 = 3 1 × 3 = 3 

Modify 6 × 2 = 12 3 × 2 = 6 3 × 2 = 6 

Delete N/A N/A N/A 

Total CW 21 9 9 

           

 

   

        

Formula 4: IW calculation 

where CO is the Change Option number and NCO is the number of interactions per 

change action where only interactions of the DAAs are considered. We reiterate the 

reason for only considering DAAs is they are directly attached to the change actions (as 

seen in Table 4) and IdAAs are not. The number of interactions for the DAAs was 

identified when calculating the IC value. CWCO is the total change weight for that option 

as shown in Table 8.  

 

Applying the equation to the running example: 

 

For option 1: 

The directly affected activities are A4 and A5. Therefore,  

N1 = 2+1                               (11) 

CW1 = 21                             (12) 

IW1 = (2 + 1) × 21 = 63       (13) 

For option 2: 

The directly affected activities are A4 and A5. Therefore,  

N2 = 2+1                              (14) 

CW2 = 9                              (15) 

IW2 = (2 + 1) × 9 = 27        (16) 

For option 3: 

The directly affected activities are A5 and A6. Therefore,  

N3 = 1+1                              (17) 

CW3 = 9                               (18) 

IW3 = (1 + 1) × 9 = 18         (19) 

Rework calculation based on IC and IW 

In section IC Calculation, IC was established to be the percentage of interactions that 

need to be altered in order to facilitate the required change and in section Running 

example stage 3, IW was established to be the change weight corresponding to the 

directly affected interactions due to the requirements change. Based on these two 



 A method of assessing rework for implementing software requirements changes          145 

values, the assessment of rework is a combined look at both the interactions that need to 

be altered in comparison to the full system depicted in the SDD and the difficulty of 

implementing the change action on those interactions. In order to display the 

comparison between the rework required for the changes requested and their multiple 

options, we use Table 9 as a template.  

Table 9. Template of comparison between rework 

 Change 1 Change 2 Change n 

 Opt 1 Opt 2 Opt n   

IC      

IW      

Running example stage 3 (rework calculation) 

To better understand this template, we populate it with the outcome of the running 

example: 

Table 10. Outcome of comparison 

 Change 1 

 Opt 1 Opt 2 Opt 3 

IC 67% 67% 33% 

IW 63 27 18 

 

According to this example, one change was requested with three possible actions that 

can be taken to implement it. According to the above table, the value of IC is the same 

for options 1 and 2. Option 3 has a lower IC value than that of options 1 and 2. This is a 

good indication that option 3 is the lesser invasive option for implementing the change 

as a lesser number of interactions has to be altered. This fact is further validated by the 

IW value where option 3 has the lowest IW value corresponding to a lower difficulty 

level of implementing the change.  

Based on the above results, it can be said that: 

 option 1 and 2 require 67% of the interactions to be altered while option 3 

requires only 33% alterations; 

 based on IW, option 3 has a lesser difficulty level of implementation as 

compared to the other options; and 

 therefore, the lesser invasive change implementation is option 3, based on both 

the IC and IW values.  

5. Comparison with the related work 

To the best of our knowledge, in the literature there has been no paper published on 

assessment of rework in the area of RCM. However, we are able to find two papers in 

the literature which focus on effort estimation related to implementation of requirements 

changes. Although these methods do not assess rework, they use requirements changes 



146           Shalinka Jayatilleke and Richard Lai 

and their impact in the calculation process in a similar manner to our method. We shall 

discuss below a comparison with these two pieces of work.  

Requirements changes can occur at any phase of the development process and even 

after deployment. There are few estimation methods dedicated to change effort/cost 

estimation and the importance of such methods were established in the introduction. 

The following discussion elaborates on two methods that deal specifically with change 

effort/cost estimation that use a similar rationale to the method introduced in this paper. 

The estimation method introduced by Jeziorek [29] attempts to estimate the cost of 

the impact of a design change to development. The author emphasises the importance of 

identifying the functional requirements and design parameters that are impacted by the 

change, before attempting to estimate the cost of change. He uses this identification in 

the form of a matrix to detect the physical interactions between components. These 

physical interactions are used to determine how the change propagates through the 

system. The model developed in [29] outputs the affected components, how they are 

affected and what the cost of impact will be. In this particular method, the use of 

interactions between components and the mapping of the propagation of the change 

through the system are similar activities as used in our method.  

In the method established by Lavazza and Valetto [38], several different artifacts are 

used to calculate the change costs. The key feature of this method is the use of 

requirements instead of lines of code to calculate the cost. Therefore, the method 

utilizes the design document and traceability techniques for estimation. The estimation 

is carried out in two stages: 1) characteristics such as the size and the complexity of the 

code are estimated on the basis of the size of the complexity of the requirements and the 

skill and experience of the implementation team; 2) effort is estimated based on the 

knowledge of the relations that link the inputs, outputs and the resources required. Most 

parts of the estimation are based on historic data. The use of requirements to establish 

the complexity and the linking of inputs and outputs resonate with the rework method 

introduced in this paper. 

We use the aforementioned work to describe the limitations of the existing work and 

compare our methods to define what has been achieved. The limitations focus only on 

the techniques comparable with our method. 

  



 A method of assessing rework for implementing software requirements changes          147 

Table 11. Comparison with related work 

Technique  Limitations What our method addresses 

Jeziorek [29] Initially, a lot of time needs to be 

spent in developing the matrices 

needed to identify the impact. 

These matrices are non- 

transferable and therefore for 

every project, new matrices need 

to be established.  

New diagrams are not needed. The 

method uses the system diagram which 

a software project would usually have.  

Lavazza and 

Valetto [38] 

The use of historical data which 

may not be available for some 

projects and is therefore limited to 

systems development that has such 

data. The use of traceability 

methods that have inherent 

limitations such as informal 

development methods, insufficient 

resources, time and cost for 

traceability, lack of coordination 

between people responsible for 

different traceable artifacts, 

imbalance between benefits 

obtained and effort spent 

implementing traceability 

practices, and construction and 

maintenance of a traceability 

scheme proves to be costly [39-46]  

The method uses data only from the 

current project. The change 

identification and analysis techniques 

used in this method do not use 

traceability techniques and therefore 

do not have the drawbacks associated 

with traceability techniques. 

6. Conclusions and future work 

 

In this paper, we have presented a definition of rework – “Rework in the field of 

software engineering is an activity within the area of Requirements Change 

Management (RCM), which makes modifications/alternations to a system which has a 

software design document and is being developed (pre-delivery)  for implementing 

certain requirements changes, with the alternations/modifications normally introducing 

extra work and increasing the total amount of cost/effort for completing the software 

project; and assessing rework, a preliminary step to change cost/effort estimation which 

is another RCM activity, is about studying how a system needs to be modified/altered 

for implementing the changes.” We have also described a method of assessing rework 

for implementing software requirements changes. Once a change has been proposed, 

our method identifies the paths of implementation, which lead to the identification of 

the impacted activities of the system through the SDD.  Using these activities, two 

values (IC and IW) are computed to help assess the rework required for all the possible 

options. Based on the IC and IW values, a developer can choose the lesser invasive 

option which requires lesser rework. 

 



148           Shalinka Jayatilleke and Richard Lai 

To demonstrate the viability of our method, we have applied it to the Diskwiz 

customer order fulfilment process as a running example. For the requested requirements 

change, we generated multiple implementation options and for each option, IC and IW 

were calculated. We have shown that when multiple options of implementation exist for 

one change, IC alone is not sufficient to make an assessment and selection. In the 

example, the change resulted in two options, which have the same IC value for 

implementations. In such scenarios, IW plays an important role in the assessment 

process. Based on the values of IC and IW, the rework was assessed, and comparisons 

were then made between the implementation options of a change and we were able to 

identify which option requires a lesser amount of rework.  

The results of applying our method to this running example indicates that it is useful 

in the area of RCM. It enables developers to have a better understanding of the rework 

required by different options for implementing change. Given the fact that the 

implementation path is extracted from the SDD, our method can be applied during any 

phase of the software development, provided that the design document is available.  

We can thus conclude that it can serve as a precursor to change effort estimation, 

whereby it is not necessary to carry out estimation for all the possible implementation 

options but the one which has been assessed to involve a lesser amount of rework. 

Hence, a related future work would be to develop a change effort method for estimating 

the time and the cost required for implementing a change.  

References 

1. B. W. Boehm, "Software engineering economics," in Pioneers and Their Contributions to 

Software Engineering: Springer, 2001, pp. 99-150. 

2. S. Ferreira, J. Collofello, D. Shunk, G. Mackulak, and P. Wolfe, "Utilization of process 

modeling and simulation in understanding the effects of requirements volatility in software 

development," in International Workshop on Software Process Simulation and Modeling, 

Portland, Oregon, 2003.  

3. D. Pfahl and K. Lebsanft, "Using simulation to analyse the impact of software requirement 

volatility on project performance," Information and Software Technology, vol. 42, no. 14, pp. 

1001-1008, 2000. 

4. S. Jayatilleke and R. Lai, "A systematic review on Requirement Change Management," 

Information and Software Technology, vol. 93, pp. 163-185, 2018. DOI: 

10.1016/j.infsof.2017.09.004., doi: 10.1016/j.infsof.2017.09.004. 

5. D. Kiritsis, K.-P. Neuendorf, and P. Xirouchakis, "Petri net techniques for process planning 

cost estimation," Advances in Engineering Software, vol. 30, no. 6, pp. 375-387, 1999. 

6. H. Leung and Z. Fan, "Software cost estimation," Handbook of Software Engineering, Hong 

Kong Polytechnic University, pp. 1-14, 2002. 

7. P. E. D. Love, D. J. Edwards, H. Watson, and P. Davis, "Rework in Civil Infrastructure 

Projects: Determination of Cost Predictors," Journal of Construction Engineering and 

Management, vol. 136, no. 3, pp. 275-282, 2010, doi: doi:10.1061/(ASCE)CO.1943-

7862.0000136. 

8. P. E. D. Love, "Influence of Project Type and Procurement Method on Rework Costs in 

Building Construction Projects," Journal of Construction Engineering and Management, vol. 

128, no. 1, pp. 18-29, 2002, doi: doi:10.1061/(ASCE)0733-9364(2002)128:1(18). 

9. K. Butler and W. Lipke, "Software process achievement at tinker air force base," Technical 

Report CMU/SEI-2000-TR-014, Carnegie-Mellon Software Engineering Institute 

(September 2000), 2000.  



 A method of assessing rework for implementing software requirements changes          149 

10. A. G. Cass, S. M. Sutton, and L. J. Osterweil, "Formalizing rework in software processes," in 

EWSPT, 2003, vol. 2786: Springer, pp. 16-31.  

11. F. CeBASE eWorkshop, "Focusing on the cost and effort due to software defects," NSF 

Center for Empirically Based Software Engineering, 2001. 

12. V. R. Basili, S. E. Condon, K. E. Emam, R. B. Hendrick, and W. Melo, "Characterizing and 

modeling the cost of rework in a library of reusable software components," presented at the 

Proceedings of the 19th international conference on Software engineering, Boston, 

Massachusetts, USA, 1997. 

13. U. T. Raja, M.J., "Defining and Evaluating a Measure of Open Source Project Survivability," 

IEEE Transactions on Software Engineering, vol. 38, no. 1, pp. 169-174, 2012. 

14. R. N. Charette, "Why software fails [software failure]," IEEE Spectrum, vol. 42, no. 9, pp. 

42-49, 2005. 

15. X. O. Zhao, L.J., "An approach to modeling and supporting the rework process in 

refactoring," in International Conference on Software and System Process (ICSSP), 2012, pp. 

110-119.  

16. J. Highsmith and A. Cockburn, "Agile software development: The business of innovation," 

Computer, vol. 34, no. 9, pp. 120-127, 2001. 

17. C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of software engineering. Prentice 

Hall PTR, 2002. 

18. P. E. Love and J. Smith, "Benchmarking, benchaction, and benchlearning: rework mitigation 

in projects," Journal of Management in Engineering, vol. 19, no. 4, pp. 147-159, 2003. 

19. J. Radatz, A. Geraci, and F. Katki, "IEEE standard glossary of software engineering 

terminology," IEEE Std, vol. 610121990, no. 121990, p. 3, 1990. 

20.  K. H. Bennett and V. T. Rajlich, "Software maintenance and evolution: a roadmap," in 

Proceedings of the Conference on the Future of Software Engineering, 2000: ACM, pp. 73-

87.  

21. ISO12207 Information technology - Software life cycle processes, I. I. S. Organisation, 

Geneva, Switzerland, 1995.  

22. G. Canfora and A. Cimitile, "Software maintenance," in Handbook of Software Engineering 

and Knowledge Engineering: Volume I: Fundamentals: World Scientific, 2001, pp. 91-120. 

23. S. Jayatilleke and R. Lai, "A method of specifying and classifying requirements change," in 

Software Engineering Conference (ASWEC), 2013 22nd Australian, 2013: IEEE, pp. 175-

180.  

24. S. Jayatilleke, R. Lai, and K. Reed, "Managing Software Requirements Changes through 

Change Specification and Classification," Computer Science and Information Systems, vol. 

15, no. 2, pp. 321-346, 2018, doi: 10.2298/CSIS161130041J. 

25. S. Jayatilleke, R. Lai, and K. Reed, "A method of requirements change analysis," 

Requirements Engineering, pp. 1-16, 2017. DOI: 10.1007/s00766-017-0277-7., doi: 

10.1007/s00766-017-0277-7. 

26. P. Selonen, K. Koskimies, and M. Sakkinen, "Transformations between UML diagrams," 

Journal of Database Management, vol. 14, no. 3, p. 37, 2003. 

27. T. Wijayasiriwardhane and R. Lai, "Component Point: A system-level size measure for 

component-based software systems," Journal of Systems and Software, vol. 83, no. 12, pp. 

2456-2470, 2010. 

28. S. Mahmood and R. Lai, "A complexity measure for UML component‐based system 

specification," Software: Practice and Experience, vol. 38, no. 2, pp. 117-134, 2008. 

29. P. N. Jeziorek, "Cost estimation of functional and physical changes made to complex 

systems," Massachusetts Institute of Technology, 2005.  

30. R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, "Goal question metric (gqm) 

approach," Encyclopedia of Software Engineering, 2002. 

31. M. Weiss, "Resource description framework," in Encyclopedia of Database Systems: 

Springer, 2009, pp. 2423-2425. 



150           Shalinka Jayatilleke and Richard Lai 

32. N. Nurmuliani, D. Zowghi, and S. P. Williams, "Requirements volatility and its impact on 

change effort: Evidence-based research in software development projects," in Proceedings of 

the Eleventh Australian Workshop on Requirements Engineering, 2006.  

33. S. McGee and D. Greer, "A software requirements change source taxonomy," in Software 

Engineering Advances, 2009. ICSEA'09. Fourth International Conference on, 2009: IEEE, 

pp. 51-58.  

34. N. Nurmuliani, D. Zowghi, and S. P. Williams, "Using card sorting technique to classify 

requirements change," in Requirements Engineering Conference, 2004. Proceedings. 12th 

IEEE International, 2004: IEEE, pp. 240-248.  

35. H. Xiao, J. Quo, and Y. Zou, "Supporting change impact analysis for service oriented 

business applications," in Systems Development in SOA Environments, 2007. SDSOA'07: 

ICSE Workshops 2007. International Workshop on, 2007: IEEE, pp. 6-6.  

36. Y. Li, J. Li, Y. Yang, and M. Li, "Requirement-centric traceability for change impact 

analysis: a case study," in Making Globally Distributed Software Development a Success 

Story: Springer, 2008, pp. 100-111. 

37. S. Maadawy and A. Salah, "Measuring Change Complexity from Requirements: A Proposed 

Methodology," ed: IMACST, 2012. 

38. L. Lavazza and G. Valetto, "Requirements-based estimation of change costs," Empirical 

Software Engineering, vol. 5, no. 3, pp. 229-243, 2000. 

39. J. Cleland-Huang, C. K. Chang, and M. Christensen, "Event-based traceability for managing 

evolutionary change," Software Engineering, IEEE Transactions on, vol. 29, no. 9, pp. 796-

810, 2003, doi: 10.1109/TSE.2003.1232285. 

40. D. Zowghi and R. Offen, "A logical framework for modeling and reasoning about the 

evolution of requirements," in Requirements Engineering, 1997., Proceedings of the Third 

IEEE International Symposium on, 1997: IEEE, pp. 247-257.  

41. R. Sugden and M. Strens, "Strategies, tactics and methods for handling change," in 

Engineering of Computer-Based Systems, 1996. Proceedings., IEEE Symposium and 

Workshop on, 1996: IEEE, pp. 457-463.  

42. M. Strens and R. Sugden, "Change analysis: a step towards meeting the challenge of 

changing requirements," in Engineering of Computer-Based Systems, 1996. Proceedings., 

IEEE Symposium and Workshop on, 1996: IEEE, pp. 278-283.  

43. O. C. Gotel and A. C. Finkelstein, "An analysis of the requirements traceability problem," in 

Requirements Engineering, 1994., Proceedings of the First International Conference on, 

1994: IEEE, pp. 94-101.  

44. R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. A. Raja, and K. Kamran, "Requirements 

traceability: a systematic review and industry case study," International Journal of Software 

Engineering and Knowledge Engineering, vol. 22, no. 03, pp. 385-433, 2012. 

45. J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, "Utilizing supporting evidence to 

improve dynamic requirements traceability," in Requirements Engineering, 2005. 

Proceedings. 13th IEEE International Conference on, 2005: IEEE, pp. 135-144.  

46. M. Heindl and S. Biffl, "A case study on value-based requirements tracing," in Proceedings 

of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT 

international symposium on Foundations of software engineering, 2005: ACM, pp. 60-69.  

 

Shalinka Jayatilleke holds a BSc (Hons) from Institute of Technological Studies 

(Affiliated to Troy University, USA), a MSc from Sri Lanka Institute of Information 

Technology and a PhD (in computer science) from La Trobe University, Australia. She 

is currently a lecturer at La Trobe University with an academic career, which started in 

2004. Her current research interests are requirements engineering, change management, 

digital disruption and learning analytics. 

Richard Lai holds a BE (Hons) and a MEngSc from the University of New South 

Wales and a PhD from La Trobe University, Australia. He has spent about 10 years in 



 A method of assessing rework for implementing software requirements changes          151 

the computer industry prior to joining La Trobe University in1989. His current research 

interests include component-based software system, software measurement, 

requirements engineering, and global software development. 

 

Received: February 21, 2020; Accepted: August 28, 2020 
 



152           Shalinka Jayatilleke and Richard Lai 

Appendix 1 
 

The change specification method (Refer reference no. 24): 

The specification method is made up of GQM and RDF. The GQM-RDF combination is 

a result of amalgamating ontology and terminology which in this paper, we refer to as 

onto-terminology. The method has both linguistic and logical principles. To ensure the 

correct combination of logic and terminology, we have selected two well-known 

methods where GQM represents terminology and the other RDF ontology. Three terms 

are extracted from GQM that can best describe a requirement change; Object, Purpose 

and Focus (of change). The terms extracted from RDF are Object, Attribute and Value, 

which is referred to as the RDF triplet. The logical relationship of the RDF triplet can be 

stated as Object O has an Attribute A with a Value V (Professor; Reads; a Book). The 

rationale behind the correspondence between RDF triplet and to the GQM terms is due 

to the similarity and the meanings of the terms, which is described in table below.  

RDF term GQM term Correspondence Rationale  

Object Object One-to-one Same concept 

Attribute Purpose One-to-one Both terms are activities. Purpose is 
an activity that is generated due to 
various business requirements. 

Value Focus One-to-one Value of RDF creates the significance 
for Attribute (of RDF). Focus of 
GQM creates the significance for 
Object (of GQM) by activating the 
term Purpose of GQM.  

System 
Activity

OBJECT PURPOSE

FOCUS

Business goals
Customer requirements

Change type

is an creates

denotes

by using

needs

 
Onto-terminology Framework 

The template designed for the change specification based on the framework above is 

given in the table below. By selecting the object of change using the system design 

diagram, designers and decision makers can accurately locate the main target of change, 

resulting in a clarification of the location of change. Knowing the reason for the change 

through the purpose ensures that change implementers are able to clarify the need for 

the change. The focus of change acts as advice on the basic implementation needed to 



 A method of assessing rework for implementing software requirements changes          153 

execute the change, resulting in the clarification of the action of change. It indicates to 

the designers what to do instead of how to do the change. We believe that clearly 

describing the location, need and action of a change request using this template will 

resolve much of the existing miscommunication issues. 

 

 

The change classification method (Refer reference no. 24): 
The main purpose of change classification method is to ensure that change 

implementers are able to identify and understand unambiguously the requirement 

change. The classification is based on previous literature on the same and unstructured 

interviews of 15 practitioners in the field of change management. The result of this 

investigation is given in section 4.1 Table 1. 

 

  

 Description 

OBJECT The activity name according to the system design diagram 

PURPOSE The reason for the change (can be descriptive) 

FOCUS Select from Add, Delete, Modify or Activity Relocation  



154           Shalinka Jayatilleke and Richard Lai 

Appendix 2 

The Method of Requirements Change Analysis (Refer reference no. 25) 
The method consists of three steps: namely, (1) analyzing the change using functions, 

(2) identifying the change difficulty; and (3) identifying the dependencies using a 

matrix. We have used step 1 in the rework method introduced in this paper. 

 

 Change analysis method 

Once a change has been identified through the Change Event Manager (CEM), the 

method follows three steps: 

 

 Step 1 (S1) is for expanding the identified changes and for discovering the 

more detailed information for the implementation as a result of the changes. As 

shown in Figure 2, the two categories of change analysis functions (herein after 

referred to as functions) described in section 3.2 are employed for carrying out 

this step. 

 Step 2 (S2) identifies the difficulty of implementing the change. The result of 

this will be used later for assigning a priority to each of the requested changes.  

 Step 3 (S3) identifies the conflicts and/or dependencies between the required 

changes. As shown in in Figure 2, the key elements involved are the Change 

Dependency Matrix (CDM) and the System Design Diagram (SDD). The 

conflicts and/or dependencies between the changes are identified once the 

changes have been mapped to the matrix.  
 


