
Computer Science and Information Systems 15(3):533–548 https://doi.org/10.2298/CSIS171015021J

An Optimized Method of HDFS for Massive Small Files
Storage

Weipeng Jing1,2, Danyu Tong1, GuangSheng Chen1,Chuanyu Zhao2, and
LiangKuan Zhu1

1 College of Information and Computer Engineering, Northeast Forestry University,
Harbin, China

weipeng.jing@outlook.com, {nefuchensy, kjc_chen}@163.com
2 Heilongjiang Computing Center

Abstract. The development of the Internet-of-Things (IoT) and the Cyber-
Physical System (CPS) has greatly facilitated many aspects of technological
applications and development. This may lead to significant data growth,
especially for small files. The analysis and processing of a large number of small
files has become a crucial part of the development of IoT and CPS. Hadoop
Distributed File Systems have become powerful platforms to store a larger amount
of big data. However, this method has a number of issues when dealing with small
files, such as substantial memory consumption and poor access. In this paper, a
Dynamic Queue of Small Files (DQSF) algorithm is proposed to solve these
problems. DQSF differentiates small files into different categories using an
analytical hierarchal process that examines the performance of small files with
different ranges across four indexes and determines the size of the dynamic queue
according to the best system performance. Additionally, period classification is
applied to preprocess the small files before storage, and the prefetching
mechanism of the secondary index is used to process index tables. Experimental
results show that this method could effectively reduce memory use and improve
the storage efficiency of massive small files, which optimizes system performance.

Keywords: WSN, HDFS, massive small files, Dynamic Queue, Analytic
Hierarchy Process.

1. Introduction

Wireless Sensor Networks (WSN) are distributed sensor networks in which end nodes
monitor specific things and the accompanying data is transmitted back for the unified
analysis process using wireless communications. Since WSN deployment costs have
steadily decreased, it is widely used in many areas, such as environmental monitoring,
medical manipulation, underwater sensing, interplanetary exploration, and others [2].
The large scale of a WSN can be divided into two aspects [3]. First, the sensor nodes are
distributed over a wide area, such as in forest monitoring and forecasting [4]. Second,
the sensors’ density is large, which means a large number of sensors are densely
arranged over a specific area [5]. This leads to a large data set and singular data being
very small.

534 Weipeng Jing et al.

The Internet-of-Things (IoT) and the Cyber-Physical System (CPS) are based on
WSNs. As the core technology of next generation networks, they are widely analysed by
the government, academia and business circles. According to the definitions of ITU and
PCAST, the IoT is an interconnected network [6]. It connects everything with the
Internet in accordance with certain agreements through information sensing devices,
exchanges information and communicates to achieve intelligent identification,
positioning, tracking, monitoring and management [7-8]. A CPS is a multidimensional
complex system that integrates computing, communications and the physical
environment. It realizes real-time perception, dynamic control and information services
in an engineered system through organic integration and depth cooperation of
communication, computing and consumer electronics (3C) technology. IoT and CPS
connect geographically distributed heterogeneous embedded devices through high-speed
and stable networks that achieve information exchange, resource sharing and
collaborative control [9]. They have broad market prospects and significant economic
benefits. They are the inevitable trend of future network evolution. CPS is the theoretical
core and technical connotation of IoT. IoT is the external manifestation of CPS’s
primary stage.

With the rapid development of information technology, IoT and CPS are widely used.
They are closely related to people’s life and social development and have wide
applications for military affairs, including aerospace, military reconnaissance,
intelligence grid system, intelligent transportation, intelligent medical, environmental
monitoring, and industrial control. The data generated during the process will be
immense.

Hadoop is an open source implementation of Google cloud computing [10]. As an
open source-distributed computing framework, scholars and commercial applications can
apply it to their research [11]. Hadoop has high scalability and can be built on any cheap
hardware and normal operations will not be affected. In theory, it can arbitrarily increase
the number of clusters according to the needs of the application. Additionally, it can
provide users with a stable interface for operating the cluster.

HDFS is a distributed file system of Hadoop that possesses the advantages of Hadoop
such as highly reliability, scalability and high fault tolerance [12]. HDFS is a master-
slave distributed system [13] comprised of one Namenode and several DataNodes. The
NameNode is responsible for the overall structure of the regulation, which stores all of
the cluster index information, similar to the book directory structure information.
DataNode is only responsible for storing real data and sending periodic heartbeat reports
to the NameNode. This master-slave structure management style effectively simplifies
the operation of the system from a certain sense, but the disadvantages are also obvious
that the size of the NameNode limits to the expansion of the system. The number of
DataNodes cannot be gradually increased to meet the needs of application. Especially
when it encounters small files, the limitation becomes more obvious.

The block size in Hadoop 1.0 is 64 M, and it increased to 128 M in Hadoop 2.0. Data
are stored on blocks, and metadata are saved on the NameNode. There are approximately
150 bytes of metadata information that must be kept in the NameNode and achieves 368
bytes by using three copies set in a file [14]. When storing small files, every file less than
a block will occupy one block. This resulted in the phenomenon that when we store small
files using HDFS, each one occupies a block of data, and the NameNode takes
approximately 2 GB of memory space. If the small files are stored, it will take up

An Optimized Method of HDFS for Massive Small Files Storage 535

approximately 20 GB of memory space. That is a great challenge for the NameNode.
The upload or read rate for small files is very poor. Therefore, an effective method is
urgently needed that can solve the problems when HDFS stores massive small files.

In this paper, we propose a dynamic queueing small file method to solve data storage
problems in IoT and CPS. The remainder of this paper is organized as follows. Section 2
introduces the related situation regarding IoT and CPS and the method for solving
massive small files storage. Section 3 shows the method for text categorization and the
analytical hierarchal process. Section 4 describes the method of dynamic queueing and
the prefetching mechanism. Section 5 shows the experimental results and analysis.
Finally, conclusions are presented in Section 6.

2. Related Work

The earliest WSN system was developed and put into use by the US military in 1998,
and it has achieved great success. In China, the research and application of WSNs are
almost synchronous with developed countries. It first appeared in 1999 at the Chinese
Academy of Sciences Research conference. In recent years, WSNs have been widely
used in commercial and civil areas [15-16]. Applications include environmental
monitoring, medical manipulation, undersea searching, interplanetary exploration,
military, and others [17-18].

The Internet and WSN laid the foundation for the development of IoT and CPS.
Microsoft President Bill Gate first proposed the concept of IoT. After 2000, with the
deep development of the Internet, the equipment and technology related with IoT have
matured. In 2009, the United States proposed the Smart Planet, and IoT is taken as an
important component for world development [19].The concept of CPS was first
proposed by the American Natural Science foundation. In 2006, the United States
clearly identified CPS as an important research project. So far, IoT and CPS have been
integrated into the information and physical worlds. They will become a new strategic
industry and the next turning point to promote economic and social development.
Experts and scholars at home and abroad continue to study it. With continuous
technological development, the amount of data generated by an application is also very
large. However, the research on data storage processing is flawed [20].

Merging files to solve the problem of the storage of massive small files is both one of
the most widely applied tools and an effective solution.

The methods of merging files in Hadoop include HAR [21], SequenceFile [22] and
MapFile. The HAR solution uses the MR procedure of Hadoop to pack the files, which
reduces memory usage but requires extensive time. The original small files require users
to manually delete items and have other issues.

SequenceFile uses the <key, value> storage format, which reduces memory usage and
improves efficiency. However, SequenceFile cannot ensure the orderly storage of
documents, which means there are no maps between big files and small files. Therefore,
it is very difficult to read files. MapFile is equivalent to two SequenceFiles where one
stores data and the other one is for the index map, which solves the SequenceFile search
problem. However, massive small files require a long index which will restrict query
efficiency.

536 Weipeng Jing et al.

For the needs of industries and applications, a number of specific solutions have
gradually emerged to solve the problem of massive small files storage. In [23], a new file
storage strategy was proposed that files in the same geographical proximity were stored
sequentially to reduce I/O access frequency for the continuity and relevance of WebGIS.
However, it did not consider the establishment of indexing. For the characteristics of
PPT and MP3 files, respectively, new ideas were proposed in [24-25] that merged the
storage of files that are in the same course or chapter file and the generated secondary
index (which is beneficial for reading). However, this scheme was targeted at small files
that have clear boundaries. Therefore, the method has limitations.

We proposed a method that established a widget to use additional I/O for controlling
the merging and access to small files in [26]. However, this approach is more complex.
A way to queue merging based on SequenceFile was proposed in [27]. It set an optimal
size for the queue at 400 and controlled merging storage by detecting the system load.
However, small files of less than 4.35 M will not have the same queue to be adapted.

Therefore, in this paper, we propose a dynamic queue that is designed to process
massive small files around the queue size of 400. We use file dependencies to make
determinations while establishing a secondary index and prefetching policy for the same
large merged files.

3. Ready Work for Optimize Storage

In this paper, we provide a solution to solve the problem of large memory storage
occupancy, slow storage and reading speed when storing massive small files. Before
uploading small files, we use a period classification algorithm to classify files, merge
content-related files and store closed files. Additionally, we use an analytical hierarchal
process to compute each factor’s weight.

3.1. Period Classification Algorithm

The period classification algorithm was first proposed to solve the problem of repeated
Chinese website recommendations [28]. This algorithm determined the degree of
repetition or similarity between two text files. In this paper, the period classification
algorithm will be used to classify the text files and store the related small files. File
classification, as the premise of merging, is very important for the establishment of a file
prefetching policy and the promotion of file reading.

The advantage of the period classification is to use symbols to define sentences. Then
the data are classified. It is suitable for data distribution defined by symbols in IoT and
CPS.

The period classification algorithm takes periods S, which appear in articles as the
text characteristics. Its value is 10 characters before each period corresponding to. Take
all characters for sentences of less than 10 characters as the characteristic value set. Each
characteristic set corresponds to one document that contains all the periods. Then,
determine the degree of repetition or similarity between two text files to achieve file
classification. Suppose text A and text B correspond to the characteristic set of a andb ,

An Optimized Method of HDFS for Massive Small Files Storage 537

where a is  1 2
: , , . . . ,

a a an
a s s s . Suppose there is similarity between them using

Common Similarity (CS). Then,

   
,

min ,

a b
CS a b

a b



(1)

where a represents the number of period classifications in characteristic

set a . a b represents similar sentence numbers. Add 1 to a b when there are 5

similar characters between ,
ai bj
s s and then judge whether they are similar to each

other when (,)CS a b is more than the threshold.

3.2. Investigating System Performance

The analytical hierarchal process is a method with multi-index comprehensive
evaluation for solving the problem of changing performance with respect to quantity. In
this paper, we calculate each respective weight according to the four parameters of the
system's contributions during the processing of small files. Finally, quantify system
performance is obtained. The concrete steps are as follows.

Table 1. Evaluation scale and the meaning

Scale Meaning
1 Comparison of two factors that have the same

importance.
2 Comparison of two factors in which one is

slightly more important than the other.
3 Comparison of two factors in which one is

significantly more important than the other.

Step one: Set the value of the evaluation scale i
w

for x. The original evaluation scale
is numbered 1-9 where we decide to improve it. As each factor has a slightly different
impact on system performance, each factor plays a decisive role in the overall analysis.
Therefore, the differences between the importance of each one is not large. Therefore,
set the three evaluation scale to construct the judgement matrix, as shown in Table 1.

Step two: Calculate the judgement matrix P. The judgement matrix directly reflects
the recognized value of each factor and their importance in the practical application.

According to the i
w

of step one, compare every two factors and then get the judgement
matrix P.

1 11 12 13 14

2 21 22 23 24

31 32 33 343

41 42 43 444

P p p p p

P p p p p
P

p p p pP

p p p pP

   
   
    
   
    

  

(2)

538 Weipeng Jing et al.

1P ,
2P ,

3P , and
4P in (2) represent the accessing time, merging time, the storage

time, and the memory saved.

.(1 , 4)i
ij

j

w
p i j

w
  

(3)

i j
p means the importance of factor i to factor j . The value of divisor is in table 2

and the illustration is in table 1.
Additionally,

1) 0.ijp 

2) ij jip p

3) 1iip 

Step three: Check the consistency of the judgement matrix and correct for
inconsistencies. The test for judgement matrix consistency evaluates its reasonableness.
The calculation of test indicators CI is as follows.

max

1
n

CI
n

 



 (4)


max

is the maximum eigenvalue of the judgement matrix. n is the number of factors,

where  4n .

CICR
RI

 (5)

RI is the average value of all random CR . RI is a fixed value. CR is the consistency
ratio. We say that the judgement matrix has satisfactory consistency when 0.1CR  . The
results that are obtained by reference [27] are calculated and corrected. Then, we get the
following weight table:

Table 2. Weight of each factor

Factor Access
Time (

1P)
Memory
Saved (

2P)
Merge
Time (

3P)
Storage
Time (

4P)

Weight 0.449 0.287 0.139 0.125

The features of HDFS are supported during storage and multiple accesses. Therefore,

the access time is more important than the upload time. Additionally, the second one is
memory saved due to restricted system expansion. Storage time has uncontrollable
factors such as network conditions. Therefore, the importance of merge time is slightly
greater than storage time [28-32].

An Optimized Method of HDFS for Massive Small Files Storage 539

4. Optimize Storage with DQFS

Creating a dynamic queue according to file size will guarantee that the merged files
retain better system performance. By establishing a caching mechanism based on the
characteristics of near-file access probability will greatly improve accessing speed.

4.1. DQFS Method

Small file storage optimization has been researched for many years. The merger
proposal is one very effective method that is often used. The corresponding small files
are combined to obtain a large file and then addresses the large files for storage.
However, the number of small files that should be merged is not well defined. Bracket
[27] provided a value of 400. However, a queue of size 400 cannot adapt to all ranges of
small files. Therefore, dynamic queueing was proposed. Dynamic queueing makes
different queue sizes for all ranges of small files. The process is as follows.

First, classify the small files before storage.
Second, choose an adopted size for queue according to the size of small files. The

system will give the sign of when the queue is full and time has expired. The system
will also give the sign of TF when the number of remaining small files is less than the
queue’s size.

Thirdly, the system will merge small files in the queue if each sign for the two
appears to concurrently form big files and generate a secondary index. The secondary
index will be introduction in section 4.2.

Finally, the big files are stored that are merged in HDFS.

4.2. Secondary Index and Prefetching Mechanism

Establish a secondary index for merged files. The first index saves the metadata
messages in HDFS for big files, and the secondary index establishes the mapping
between big and small files. The secondary index includes filename, fileindex, filelength
and bigfilename. The format is shown in the following table 3.

Table 3. Secondary index

filename fileindex filelength bigfilename

a 0 n x

… … … …

The sample in table 3 is a sm。all file named “a” with n bytes and a fileindex of “0”,

and it lies in big file “x”.
Access the file through small file name to find the corresponding big file.

Additionally, use fileindex and filelength to get the small file as the returned value.
Since the file prior to storage is classified, here we set the prefetching mechanism in

accordance with file correlation. This arrangement assumes that when one small file is

540 Weipeng Jing et al.

accessed, it is highly probable that the next one with similar content will then be
accessed. Put all the small files messages that are in the same big file with the small file
access, which is convenient to search and can reduce I/O access frequency. It enhances
storage and access efficiency.

5. Experiment

In this section, we will get the range of small files through experiments. To make the
experiment convenient, we choose 4.35 M as the upper bound. We will get the optimal
size of queueing for every range of small files, which is the dynamic queue.

5.1. Experimental Platform and Experimental Data

In this paper, we will use the Hadoop cluster that consists of five nodes in which one
node is the master, and the remaining four are slaves. The host computer is a Shuguang
I450-G10 tower server that utilizes an InterXeon E5-2407 quad-core 2.2 GHZ
processor, 8 GB memory, and a 300-GB hard drive. The node system is Centos 6.4, and
the JDK version is jdk-6u31- linux-i586. The Hadoop version is hadoop-2.5.2. We use
100 M/s Ethernet and the nodes use 1000 M/s Ethernet.

In experiment 1, we construct nine groups of data. Each group contains 10,000 small
text files. The size of the small files of the nine groups is approximately 0.5 M, 1 M, 1.5
M, 2 M, 2.5 M, 3 M, 3.5 M, 4 M, and 4.5 M.

Fig. 1. Data distribution

We choose the files of 0.5 M, 1 M, and 1.5 M with the proportion of 3:4:3 in the data
collection for range one. Range two uses 2 M, 2.5 M, 3 M, 3.5 M, 4 M, and 4.5 M with
the proportion of 1:2:2:2:2:1. Every treatment has 10,000 small files. The reason for this
assignment is so that each range of data is even and universal. The experimental data are
shown in Figure 1.

An Optimized Method of HDFS for Massive Small Files Storage 541

5.2. Determine Range for Small Files

First, similar to the results obtained from the literature [27], our experiments set the size
of the test queue as 400. Observe the four factors under the nine groups of data and
receive system performance trends based on the analytical hierarchal and data
standardization processes. System performance is shown in picture 2.

Fig. 2. System performance

The picture shows that small files in the 0-2 M range have similar system
performance trends, while the performance of small files in the 2-4.5 M range
experience linear growth. Data under the same trend showed similar characteristics. The
four indexes of file reading, memory usage, combined efficiency and upload time for
small files in each trend are explored. Divide small files less than 4.5 M into two ranges.
One range is 0-2 M and the other is 2-4.5 M. The following results are based on the two
ranges.

5.3. The Four Factors Situation

To achieve effective experimental results, each group of experiments uses the nine
queues as independent variables. Queue size uses 400 as the centre and selects four at
each side of 400. These queues are 200, 250, 300, 350, 400, 450, 500, 550, and 600
wide. Test the four indexes of file reading, memory usage, combined efficiency and
upload time to get their values and the optimal alignment of each range.

5.3.1 Access Files

Access 50 files 10 times over different time periods. The average access time for each
file is used as the experimental data. Finally, get the access for the file over the two data
ranges. The results are shown in Figure 3.

542 Weipeng Jing et al.

Fig. 3. Access time of the two ranges

The two sets of experiments are of different queue sizes and read 10000 small files.
Experimental results show that the average access time in range one is 265.7ms, and the
time in range two is 273.2ms. Since the data in range two is bigger than range one, it
uses more time than range one. The average time for Hadoop with the HAR to read the
10000 small files is approximately 500ms. Therefore, the file reading efficiency is
significantly improved after applying queue merging.

5.3.2 Memory Saved

Next, compute the memory saved when merging 10000 small files. Use nine queue sizes
to merge files and store the merged big files into HDFS. The memory saved equals the
storage time for unmerged files minus the storage time for merged files. The results are
shown in Figure 4.

This saved memory is compared to the time it takes to directly store the data into
HDFS. Range one has smaller data, so it is better than range two. After a size of 450,
range one smooths out, while this occurs for range two after a size of 350. The
experiment shows that the saved file memory is better than the scope of the two. It
shows that the queue merging method will obtain better results with smaller files.
Memory usage is one of the biggest problems encountered when storing small files.
Therefore, memory savings under small file storage is essential.

An Optimized Method of HDFS for Massive Small Files Storage 543

Fig. 4. Memory saved

5.3.3 Merge Time

We merge the small files according to the nine queue sizes. To ensure the validity of
data, we compute the statistics 10 different times, and we take the average time as the
result. These results are shown in figure 5.

Due to the bigger data of range two, its merge time is longer than for range one.
When queue size increases, range one’s time gradually decreases. However, the situation
of range two obeys that of range one. This shows that big files are suitable for small
queues and the small files are adapted to large queues. The average merge time for range
one is 61ms and 80ms for range two.

5.3.4 Store Time

Store files that are merged from 10,000 small files into HDFS with different queues
sizes. Every data group is conducted 10 times. Take the average value as the result,
which is shown as follows.

The average storage time for merged files in range one is 8.6 minutes and for
unmerged files is 18.5 minutes. Due to the bigger data of range two, the average storage
time for merged files is 32.8 minutes and for unmerged files is 41.4 minutes because the
total number of small files is 10,000. Different queue sizes have different merged files.
The experiment proves that storage time is related to queue size and the total number of
queues. Different sizes of small files achieve optimal results at different points of each
queue.

544 Weipeng Jing et al.

Fig. 5. Merge time

Fig. 6. Storage time

5.4. Result Analysis

Analyse the data for the four factors above with data standardization and use an inverse
index to make analysis. This indicates that system performance is optimal when results
are smaller. The situation is shown in the following figures.

We use an inverse index to analyse the data. System performance is optimal when it
is smallest. Figures 7 and 8 show that performance first rises and then falls, and each
arrives at the minimum value at different points. We obtain two different sizes around a
queue size of 400. According to the experimental results above, range one has smaller
files that correspond to an optimal queue of 450 and range two’s optimal queue is 300.

An Optimized Method of HDFS for Massive Small Files Storage 545

Fig. 7. System performance of range one

Fig. 8. System performance of range two

6. Conclusion

We aim to correct the problems of IoT and CPS in that HDFS is poor in dealing with
massive small files generated by corresponding social network applications. We propose
a method of dynamic queueing that uses an analytical hierarchal process to analyse
system performance and addresses differing ranges for small files. We also classify the
text files with a period classification algorithm. We choose suitable queues for different
sizes of small files and then merge the files in the queue. We store merged files to save
memory. Then, it generates a secondary index and uses a file prefetching strategy to
improve the efficiency of file access.

Our next works will aim to optimize the algorithm of classified text to improve access
time and improve the index storage method.

Acknowledgments. The work described in this paper is supported by National Natural Science
Foundation of China (31770768), the Natural Science Foundation of Heilongjiang Province of

546 Weipeng Jing et al.

China (F2017001), the Fundamental Research Funds for the Central Universities (2572017CB32)
and China Forestry Nonprofit Industry Research Project (201504307).

References

1. S Liu, Z Pan; H Song*. Digital image watermarking method based on DCT and fractal
encoding, IET Image Processing, 2017, 11(10) :815-821

2. V. Kumar. DESIGN OF A LOW COST WIRELESS SENSOR NETWORK: Low-cost, Low-
power, Compact WSN[M]. Saarbrücken : Vdm Verlag Dr. Müller: 2010

3. Liu S, Fu W, He L, et al. Distribution of primary additional errors in fractal encoding
method[J]. Multimedia Tools and Applications, 2017, 76(4): 5787-5802

4. Wolter P T, Townsend P A. Multi-sensor data fusion for estimatingforest species
composition and abundance in northern Minnesota[J]. Remote Sensing of Environment,
2011, 115(2):671-691

5. Faheem M, Abbas M Z, Tuna G, et al. EDHRP: Energy efficient event driven hybrid routing
protocol for densely deployed wireless sensor networks[J]. Journal of Network & Computer
Applications, 2015, 58:309–326

6. Kafle V P, Fukushima Y, Harai H. Internet of things standardization in ITU and prospective
networking technologies[J]. 2016, 54(9):43-49

7. S Liu, Z Pan, X Cheng*. A Novel Fast Fractal Image Compression Method based on
Distance Clustering in High Dimensional Sphere Surface, Fractals, 2017, 25(4): 1740004

8. Peng L, Wang Q, Yu A. Internet of Things technology-based management methods for
environmental specimen banks.[J]. Environmental Science and Pollution Research, 2015,
22(3):1612-9

9. Laibinis L, Klionskiy D, Troubitsyna E, et al. Modelling Resilience of Data Processing
Capabilities of CPS[M]. Software Engineering for Resilient Systems. Springer International
Publishing, 2014

10. Tom White. Hadoop: the definitive guide, 2nd edition[M]. Beijing: Tsinghua University
Press, 2011

11. X. Fan, H. Song, X. Fan, and J. Yang, "Imperfect information dynamic stackelberg game
based resource allocation using hidden Markov for cloud computing", IEEE Trans. Services
Comput., vol. PP, no. 99, p. 1, Feb. 2016, doi: 10.1109/TSC.2016.2528246

12. DONG B,ZHANG Q, TIAN F, et al. An optimized approach for storing and accessing small
files on cloud storage[J]. Journal of Network and Computer Application, 2012, 35(6): 1847-
1862

13. Konstantin Shvachko, Hairing Kuang, Sanyjy Radia, et al.The Hadoop Distributed File
System[C]. IEEE International Conference on Mass Storage Systems and Technologies
(MSST).2010.1-10

14. Song H, Li W, Shen P, Vasilakos A. Gradient-driven parking navigation using a continuous
information potential field based on wireless sensor network. Information Sciences, 408(C),
100-114, DOI information: 10.1016/j.ins.2017.04.042, OCT 2017

15. Dong Xicheng. Hadoop HDFS [EB/OL]. [2015-04-13]. http://dongxicheng.org/
16. Tom White. The Small Files Problem [EB/OL]. http: //blogcloudera. Com/blog/2009/02/the-

small-files-problem
17. Bauer J, Siegmann B, Jarmer T, et al. On the potential of Wireless Sensor Networks for the

in-situ assessment of crop leaf area index[J]. Computers & Electronics in Agriculture, 2016,
128:149-159

18. Lounis A, Hadjidj A, Bouabdallah A, et al. Healing on the cloud: Secure cloud architecture
for medical wireless sensor networks[J]. Future Generation Computer Systems, 2015, 55
:266-277

An Optimized Method of HDFS for Massive Small Files Storage 547

19. Zaidi, Slim; El Assaf, Ahmad; Affes, Sofiene. Accurate Range-Free Localization in Multi-
Hop Wireless Sensor Networks[J]. IEEE Transactions on Communications,2016,64(9),
3886-3900

20. Mirsadeghi M, Mahani A. Energy efficient fast predictor for WSN-based target tracking[J].
Annals of Telecommunications, 2015, 70(1):63-71

21. Yang XL, Shen PY, Zhou B. Holes detection in anisotropic sensornets: Topological
methods. International Journal of Distributed Sensor Networks. 2012 Oct 23;8(10):135054

22. Fleisch E. What is the Internet of Things?: An Economic Perspective[J]. Economics
Management & Financial Markets, 2010, 241(2):33

23. Laibinis L, Klionskiy D, Troubitsyna E, et al. Modelling Resilience of Data Processing
Capabilities of CPS[M]. Software Engineering for Resilient Systems. Springer International
Publishing, 2014

24. Hadoop[EB/OL]. apache.org/jira/browse/HADOOP-1687
25. SequenceFile[EB/OL]./wiki.apache.org/hado-op/SequenceFile
26. Xuhui Liu, Jizhong Han, Yunqing Zhong,et,al. Implementing WebGIS on Hadoop:A case

study of improving small file I/O performan- ce on HDFS[C]. IEEE International Confe-
rence on Cluster Computing and Workshops. 2009.1-8

27. BoDong,JieQiu,QinghuaZheng,XiaoZhong, Jingwei Li, Ying Li .A Novel Approach to
Improving the Efficiency of Storing and Accessing Small Files on Hadoop: a Case Study by
PowerPoint Files[C]. IEEE International Conference on Services Computing. 2010.65-72

28. Zhao Xiaoyong, Yang Yang, Sun Lili, Chen Yu. Hadoop based storage architecture for mass
MP3 file[J]. Journal of Computer Applications.2012,32(06): 1724-1726

29. Zhang Y, Liu D. Improving the Efficiency of Storing for Small Files in HDFS[C]. IEEE
International Conference on Computer Science & Service System (CSSS).2012. 2239 – 2242

30. YU Si, GUI Xiaolin, HUANG Ruwei, ZHUANG Wei. Improving the Storage Efficiency of
Small Files in Cloud Storage[J]. JOURNAL OF XI′AN JIAOTONG UNIV-
ERSITY.2011.59-63

31. Wei Y, Yuan C, Huang Y. CCDet:An Efficient Detection Method for Large-Scale Duplicate
Chinese Web Pages[J]. Journal of Computer Research & Development, 2013. 140-15

32. Weipeng Jing, Danyu Tong, Yangang Wang , Jingyuan Wang, Yaqiu Liu, Peng Zhao,
MaMR:High performace MapReduce programming model for material cloud application,
Computer Physics Communications, 2017, 211:79-8

Weipeng Jing, Received Ph.D. degree from Harbin Institute of Technology of China.
He is currently an associated professor in the Northeast Forestry University, China. His
research interests include modelling and scheduling for distributed computing systems,
High performance computing and system reliability, cloud computing, spatial data
mining. He has published more than 60 research articles in refereed journals and
conference proceedings, including IEEE TIP, IEEE TSP, IEEE TOC, CPC, PUC,
FGCS,etc. Besides, he served as an Publication chair of ICYCSEE (2016,2017,2018)
and Wicon(2017),served as a Program Committee (PC) member for several popular
international conferences, including IIKI 2018, CollaborateCom 2017, SC 2016, etc. He
is now a member of the IEEE, ACM, and a member of the China Computer Federation
(CCF).

Danyu Tong received the B.S. degree in Computer Science and Technology from
Northeast Forestry University, Harbin, China, in 2015. She is currently pursuing the

548 Weipeng Jing et al.

master’s degree with Northeast Forestry University. Her current research interests
include image classification, and distributed computing.

Guangsheng Chen is currently Doctoral Supervisor and Professor with Northeast
Forestry University, China. He is the member of national innovation methods research
institute, executive director of education information technology council of Education
Ministry. His research interests include biomass material prediction, intelligent detection
of new composite materials and big data on forestry. He has published over 100
academic papers and one monograph. He is the corresponding author.

Chuanyu Zhao is a senior engineer. He is currently the technical director of
Heilongjiang Computing Center, director of Provincial Key Laboratory of industrial
process computer control simulation, leader of echelon of talents in the discipline of
"chemical machinery and equipment", recipient of special allowance from provincial
government, and postdoctoral research workstation of Heilongjiang Computing Center.
Post doctoral cooperative mentor. Long-term engaged in traditional Chinese medicine,
natural plant modern extraction and separation process equipment and its intelligent
technology and process control technology in the process industry and other fields of
interdisciplinary independent innovation research. A number of key technologies and
major new products with leading domestic level and gaps in China have been completed.
In the past five years, he has presided over the research and development of more than
20 national, provincial and municipal scientific research projects. As an actual inventor,
he holds 2 inventions and 10 utility model patents. Many technologies and products
have been transformed into industries. He has obtained many domestic leading scientific
research achievements and won three second prizes for scientific and technological
progress in Heilongjiang Province.

Liangkuan Zhu received his BS and MEng in Mathematics from the Bohai University,
Jinzhou, PR China, in 2001 and 2004, respectively. He received his PhD in Control
Science and Engineering from the Harbin Institute of Technology in 2008. Since 2008,
he has been with the School of Electromechanical Engineering at Northeast Forestry
University and is currently an associate professor. From 2013-2014, he is a visiting
scholar in the Department of Mechanical and Industrial Engineering at Concordia
University, Montreal, QC, Canada. His research interests include network based control,
robust control, intelligent control and application.

Received: October 15, 2017; Accepted: July 22, 2018.

	1. Introduction
	2. Related Work
	3. Ready Work for Optimize Storage
	3.1. Period Classification Algorithm
	3.2. Investigating System Performance

	4. Optimize Storage with DQFS
	4.1. DQFS Method
	4.2. Secondary Index and Prefetching Mechanism

	5. Experiment
	5.1. Experimental Platform and Experimental Data
	5.2. Determine Range for Small Files
	5.3. The Four Factors Situation
	5.3.1 Access Files
	5.3.2 Memory Saved
	5.3.3 Merge Time
	5.3.4 Store Time

	5.4. Result Analysis

	6. Conclusion
	References

