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Abstract. Recently Liang et al. propose an interesting privacy-preserving cipher-
text multi-sharing control for big data storage mechanism, which is based on the
cryptographic primitive of anonymous multi-hop identity based conditional proxy
re-encryption scheme AMH-IBCPRE. They propose a concrete AMH-IBCPRE
scheme and conclude their scheme can achieve IND-sCon-sID-CCA secure (in-
distinguishable secure under selectively conditional selectively identity chosen ci-
phertext attack). However, our research show their scheme can not be IND-sCon-
sID-CCA secure for single-hop and multi-hop data sharing. Also in 2014, Liang et
al. propose an interesting deterministic finite automata-based functional proxy re-
encryption scheme DFA-based FPRE for secure public cloud data sharing, they
also conclude their scheme can achieve IND-CCA secure (indistinguishable secure
under chosen ciphertext attack), we also show their scheme can not be IND-CCA se-
cure either. For these two proposals, the main reason of insecurity is that part of the
re-encryption key has the same structure as the valid ciphertext, thus the adversary
can query on the decryption oracle with this part of the re-encryption key to get se-
cret keys, which will break the CCA-security of their scheme. We give an improved
AMH-IBCPRE scheme and an improved DFA-based FPRE scheme for cloud data
sharing and show the new schemes can resist our attack and be CCA-secure. We also
demonstrate our improved AMH-IBCPRE scheme’s efficiency compared with other
related identity based proxy re-encryption schemes, the results show our scheme is
almost the most efficient one.

Keywords: Attack, multi-control for big data storage, secure cloud data sharing,
proxy re-encryption, chosen ciphertext security.

1. Introduction

Nowadays cloud computation and big data are very hot research topics. Cloud compu-
tation can be seen as a paradigm of aggregating many various kinds of computation re-
sources and storage resources into very powerful computation grids. There are many ad-
vanced techniques to support the smooth running of cloud computation like mapreduce,
hadoop, vmvare etc [8, 35–39]. Big data mainly refers to the burst generation of massive
data sets everytime/everywhere/everyspace, which is a very common scenario these days,
it mainly concerns on how to organize and process data efficiently. If we use traditional
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data management or knowledge discover techniques, many useful results can not be ob-
tained, thus it is a challenge on how to organize/store/process big data.

Let us focus on one of the most basic challenge for big data, that is, how to secure
and scalably store these large amount of data. Cloud computation is such a promising
technique. Data owners first outsource datum to the cloud servers to reduce the local
management overhead. They often worry about the security and privacy if directly out-
sourcing their data sets to the cloud, thus it is often a practice that the data owners first
encrypt datum and then upload them to the cloud [18–21]. But this time scalability is a
new problem, can these encrypted data be shared efficiently and scalably? Aiming at solv-
ing this issue, Blaze et al. [5] and Atenesis et al. [3,4] proposed a new notion called proxy
re-encryption (PRE), which allows the proxy with re-encryption key can transform the
original ciphertext associated with a public key to the re-encrypted ciphertext associated
with another public key.

In proxy re-encryption(PRE), a proxy can transform ciphertexts for Alice to cipher-
texts for Bob without the proxy knowing either Alice or Bob’s private key and the un-
derlying plaintexts. PRE has very important applications for secure cloud storage and its
sharing [32–34]. CCA-security (chosen ciphertext secure) is an important security no-
tion for proxy re-encryption, which means that the schemes can resist the attacking even
with adaptive decryption oracle [6,7,14,15,24,26–31]. Multi-hop PRE refers the scheme
can support ciphertexts being able to be re-encrypted again, while single-hop PRE has
no this ability. For the users’ secret keys or the underlying plaintexts can not be induced
by the proxy, this primitive can be used for efficiently and scalably sharing encrypted
contents for multi-users in cloud. The cloud servers can be acted as proxy and trans-
form the ciphertexts for the users, otherwise the data owner has to first download his data
sets and then re-encrypt them, which is very inefficient. Conditional proxy re-encryption
(CPRE) aims at more flexible re-encryption for PRE, which can only re-encrypt the ci-
phertexts which satisfying some condition. Multi-hop identity based conditional proxy re-
encryption (MH-IBPRE) [9, 16]combines the feature of identity based encryption (IBE)
with CPRE, which simultaneously has the advantage of no relying on public key infras-
tructure, supporting fine-grained re-encryption and multi-hop ciphertext transformation.
However, directly using MH-IBPRE in multi-sharing control for big data storage may
leak the identities of the users, and thus break the user’s privacy. Therefore, Liang et
al. exploited to use anonymous MH-IBPRE (AMH-IBCPRE) scheme to achieve the pri-
vacy persevering property when sharing data among multi-users. Fairly to say, their work
give an interesting solution on the issue of how to secure share data storage efficiently
and scalably in big data era. Unfortunately, the authors claimed their scheme can achieve
IND-sCon-sID-CCA security, but we show their scheme can not be CCA-secure.

The traditional proxy re-encryption schemes or conditional proxy re-encryption can
not easily achieve fine-grained delegation, although attribute based proxy re-encryption
schemes can achieve more flexible delegation than PRE etc, but most of them can only
be proved to secure under chosen plaintext secure in the selective model. Furthermore,
almost all existing ABPRE schemes only support access policy assembling with AND
gates and fixed size inputs, which is less expressive than the access policy assemble with
AND, OR gates and NOT, and access policy expressed by regular languages with arbitrary
size which supporting unlimited input size. Therefore, Liang et al. [17] first proposed
the notion of deterministic finite automata-based functional proxy re-encryption, which
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combines the feature of DFA-based functional encryption with proxy re-encryption. The
re-encrypted ciphertext can only be decrypted if and only if the delegatee’s deterministic
finite automata accepts the string associated with the re-encrypted ciphertext. Really this
is a novel notion and generalize the concept of proxy re-encryption to a very widely
extension. They also proposed a concrete DFA-based PRE scheme and claimed it is fully
CCA-secure in the standard model. Fairly to say, this is an interesting and foundational
work, but unfortunately, we show their scheme can also not achieve CCA-security by
exploiting some shortcoming of the form of their re-encryption keys.

1.1. Cloud Storage and Chosen Ciphertext Security

Chosen ciphertext security is a very important security notion for encryption in crypto-
graphic society, and now it is considered as the gold standard for evaluation of the encryp-
tion schemes’ security. Also it is very important for cloud storage, Figure 1 demonstrates
several chosen ciphertext attacks on the cloud storage, which shows that secure cloud
storage also should achieve this gold security notion.

1. Assume the attacker is the malicious cloud, it can launch the chosen ciphertext attack
on the data owners. First the data owner outsources his datum to the cloud by first
encrypting and then uploading the ciphertexts, after that some day when the data
owner want to retrieve his data, the cloud maliciously return the modified ciphertexts
to him, and he will decrypt the modified ciphertexts and find the decrypted results are
not correct. The data owner will notify the cloud on this error, and thus the cloud can
utilize this information to launch the chosen ciphertext attack.

2. The malicious cloud can also launch the chosen ciphertext attack on the data users.
First the data owner shares his datum with other data users via proxy re-encryption.
The cloud, which is the proxy for implementing the proxy re-encryption, can easily
launch the chosen ciphertext attack. When the proxy re-encrypts the original cipher-
text to be an encrypted ciphertext, it sends the incorrect re-encrypted ciphertexts to
the data user, the data user decrypts the incorrect re-encrypted ciphertexts and will
find they are incorrect. He will return the error information to the cloud, and thus the
cloud can utilize this information to launch the chosen ciphertext attack.

1.2. Our Contribution

In this paper, we concentrate on how to achieve secure functional proxy re-encryption
scheme for cloud data sharing. We first analysis the multi-hop identity based conditional
proxy re-encryption scheme and the deterministic finite automata-based functional proxy
re-encryption scheme proposed by Liang et al. The main advantage of these schemes
is its very flexible delegation and thus more fine-grained delegation on the decryption
of ciphertexts for other users. Actually we think these concepts are very promising and
deserved further exploiting. Unfortunately, we find flaws in their protocols, which result
their proposals can not be CCA-secure. We also give an improved AMH-IBCPRE scheme
and an improved DFA-based PRE scheme which can resist the attack and be CCA-
secure.
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Fig. 1. Cloud storage and chosen ciphertext security

1.3. Organization

We organize our paper as the following. In section 2, we review Liang et al.’s AMH-
IBCPRE scheme, then we demonstrate the attacks to show it can not achieve IND-CCA
security in section 3. In section 4, we give an improved AMH-IBCPRE scheme and
roughly evaluate its security and performance. In section 5, we review Liang et al.’s
DFA-based PRE scheme, then we show the attacks to demonstrate their scheme can not
achieve IND-CCA security in section 6. In section 7, we give an improved DFA-based
PREscheme and roughly evaluate its security. We conclude our paper in the last section.

2. Review the AMH-IBCPRE Scheme

2.1. The Concrete Scheme

The definition and security model of AMH-IBCPRE can be found in [16], here we just
review their concrete construction. The scheme consists of the Setup, Extract, Enc,
ReKeyGen, ReEnc, Dec algorithms as the following:

1. Setup(1k): A Target Collision Resistant (TCR) hash function H0 : {0, 1}∗ → Z∗q
first be used to hash the conditions and identities which could be arbitrary length. Run
BSetup(1k) to get (q, g, ĝ,G1,G2,GT , e) with input parameter k. Denote ω ∈ Z∗q
as a condition. α, β, γ, δ1, δ2, δ3, η ∈R Z∗q are randomly chosen, computes g1 =

gα, g2 = gβ , h = gγ , f1 = gδ1 , f2 = gδ2 , f3 = gδ3 , t = gη, ĝ1 = ĝα, ĝ2 = ĝβ , ĥ =
ĝγ , f̂1 = ĝδ1 , f̂2 = ĝδ2 , f̂3 = ĝδ3 , t̂ = ĝη . Denote H1 : {0, 1}k → Z∗q , H2 : GT →
{0, 1}poly(1k) as two TCR hash functions, and SYM = (SYM.Enc, SYM.Dec)



Improved Secure FPRE Schemes for Cloud Data Sharing 589

as a CCA-secure one-time symmetric key encryption. Choose a sUF one-time signa-
ture scheme (Sig.KG, Sign, V er) and let its verification key Kv in Z∗q . The master
public key is

mpk = (q, k, g, ĝ,G1,G2,GT , e, g1, h, f1, f2, f3, t, ĝ2, f̂2, f̂3, ĥ, H1, H2, SYM,

(Sig.KG, Sign, V er))

and the master secret key is

msk = (ĝ0 = ĝαβ , f̂1, t̂)

.
2. Extract(msk, ID): Taken input an identity ID ∈ Z∗q , msk, r,R ∈R Z∗q , output

skID = (skID0
, skID1

, skID2
) = (ĝ0(ĥIDf̂1)r t̂R, ĝr, ĝR)

The validity of the secret key can be checked as:

e(g, skID0)
?
= e(g1, ĝ2)e(hIDf1, skID1)e(t, skID2)

3. Enc(IDi, ω,m): Chooses a one-time signature key pair

(Ks,Kv)← Sig.KG(1k)

and s0 ∈R Z∗q compute

C0 = Kv, C1 = e(g1, ĝ2)s0 ·m,C2 = gs0 , C3 = (hIDif1)s0 , C4 = ts0 ,

C5 = (hwf2)s0 , C6 = (hKvf3)s0 ,

C7 = Sign(Ks, (C1, C2, C3, C4, C5, C6))

outputC1,IDi,w = (C0, C1, C2, C3, C4, C5, C6, C7) as the 1-st level ciphertext, where
the ciphertext implicitly includes w and IDi ∈ Z∗q ,m ∈ GT .

4. ReKeyGen(IDi, skIDi , IDi′ , ω): Chooses (K
(l)
s ,K

(l)
v ) ← Sig.KG(1k) as a one-

time signature key pair and θ(l)
1 ∈R GT , ρ(l), s

(l)
1 , r̄1

(l) ∈ Z∗q , rkω,IDi→IDi′ can be
computed as:

rk
(l)
0 = (skIDi0 (ĥwf̂2)ρ

(l)

)H1(θ
(l)
1 ), rk

(l)
1 = (ĝρ

(l)

)H1(θ
(l)
1 ),

rk
(l)
2 = (skIDi1 )H1(θ

(l)
1 ), rk

(l)
3 = (skIDi2 )H1(θ

(l)
1 ), rk

(l)
4 = e(g1, ĝ2)s

(l)
1 · θ(l)

1 ,

rk
(l)
5 = gs

(l)
1 ,

rk
(l)
6 = (hIDi′ f1)s

(l)
1 , rk

(l)
7 = ts

(l)
1 , rk

(l)
8 = (hwf2)s

(l)
1 , rk

(l)
9 = (hK

(l)
v f3)s

(l)
1 ,

rk
(l)
10 = K(l)

v

rk
(l)
11 = Sign(K(l)

s , (rk
(l)
4 , rk

(l)
5 , rk

(l)
6 , rk

(l)
7 , rk

(l)
8 , rk

(l)
9 )),

rk
(l)
12 = (hIDi′ f1)r̄1

(l)

, rk
(l)
13 = gr̄1

(l)

, rk
(l)
14 = tr̄1

(l)

, rk
(l)
15 = hr̄1

(l)

,

rk
(l)
16 = e(g1, ĝ2)r̄1

(l)

,

rk
(l)
17 = f r̄1

(l)

2 , rk
(l)
18 = f r̄1

(l)

3 ,

where IDi, IDi′ ∈ Z∗q and l ∈ {1, · · · , poly(1k)}.
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5. ReEnc(rkω,IDi→IDi′ , Cl,IDi,w). If l = 1,
(a) Verify

e(ĥKv f̂3, C2)
?
= e(ĝ, C6), e(ĥω f̂2, C2)

?
= e(ĝ, C5),

V er(Kv, C7, (C1, C2, C3, C4, C5, C6))
?
= 1 (1)

(b) Choose a one time signature key pair

(K̄(1)
s , K̄(1)

v )← Sig.KG(1k)

and
θ

(1)
2 ∈R GT , s(1)

2 ∈R Z∗q
compute

C
(1)
7 =

e(C2, rk
(l)
0 )/e(C5, rk

(1)
1 )

e(C3, rk
(l)
2 )e(C4, rk

(l)
3 )

,

δ(1) = SYM.Enc(C0||C1|| · · · ||C7||C(1)
7 , H2(θ

(1)
2 )),

C
(1)
8 = rk

s
(1)
2

16 · θ
(1)
2 , C

(1)
9 = rk

(1)s
(1)
2

13 , C
(1)
10 = rk

(1)s
(1)
2

12 ,

C
(1)
11 = rk

(1)s
(1)
2

14 , C
(1)
12 = (rk

(1)ω
15 rk

(1)
17 )s

1
2 ,

C
(1)
13 = (rk

(1)K̄(1)
v

15 rk
(1)
17 )s

1
2 , C

(1)
14 = K̄(1)

v ,

C
(1)
15 = Sign(K̄(1)

s , (C
(1)
8 , C

(1)
9 , C

(1)
10 , C

(1)
11 , C

(1)
12 , C

(1)
13 ))

and

C2,IDi′ ,w = (δ(1), C
(1)
8 , C

(1)
9 , C

(1)
10 , C

(1)
11 , C

(1)
12 , C

(1)
13 , C

(1)
14 , C

(1)
15 , rk

(1)
4 ,

rk
(1)
5 , rk

(1)
6 , rk

(1)
7 , rk

(1)
8 , rk

(1)
9 , rk

(1)
10 , rk

(1)
11 )

is outputted.
If l ≥ 2,
(a) Verify

e(rk
(l−1)
5 , ĥω f̂2)

?
= e(rk

(l−1)
8 , ĝ),

e(rk
(l−1)
5 , ĥK

(l−1)
v f̂3)

?
= e(rk

(l−1)
9 , ĝ),

V er(rk
(l−1)
10 , rk

(l−1)
11 , (rk

(l−1)
4 , rk

(l−1)
5 , rk

(l−1)
6 ,

rk
(l−1)
7 , rk

(l−1)
8 , rk

(l−1)
9 ))

?
= 1 (2)

e(C
(l−1)
9 , ĥω f̂2)

?
= e(C

(l−1)
12 , ĝ),

e(C
(l−1)
9 , ĥK̄

(l−1)
v f̂3)

?
= e(C

(l−1)
13 , ĝ),

V er(C
(l−1)
14 , C

(l−1)
15 , (C

(l−1)
8 , C

(l−1)
9 , C

(l−1)
10 ,

C
(l−1)
11 , C

(l−1)
12 , C

(l−1)
13 ))

?
= 1 (3)

output ⊥, if Eq. (2) and (3) do not hold. proceed otherwise.
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(b) Choose a one time signature key pair

(K̄(l)
s , K̄(l)

v )← Sig.KG(1k)

and
θ

(l)
2 ∈R GT , s(l)

2 ∈R Z∗q
and then compute

C
(l)
7,0 =

e(rk
(l−1)
5 , rk

(l)
0 )/e(rk

(l−1)
8 , rk

(l)
1 )

e(rk
(l−1)
6 , rk

(l)
2 )e(rk

(l−1)
7 , rk

(l)
3 )

,

C
(l)
7,1 =

e(C
(l−1)
9 , rk

(l)
0 )/e(C

(l−1)
12 , rk

(l)
1 )

e(C
(l−1)
10 , rk

(l)
2 )e(C

(l−1)
11 , rk

(l)
3 )

δ(l) = SYM.Enc(δ(l−1)||C(l−1)
8 || · · · ||C(l−1)

15 ||rk(l−1)
4 || · · ·

||rk(l−1)
11 ||C(l−1)

7,0 ||C(l−1)
7,1 , H2(θ

(l)
2 ))

C
(l)
8 = rk

s
(l)
2

16 · θ
(l)
2 , C

(l)
9 = rk

(l)s
(l)
2

13 , C
(l)
10 = rk

(l)s
(l)
2

12 , C
(l)
11 = rk

(l)s
(l)
2

14 ,

C
(l)
12 = (rk

(l)ω
15 rk

(l)
17 )s

l
2 ,

C
(l)
13 = (rk

(l)K̄(l)
v

15 rk
(l)
17 )s

l
2 , C

(l)
14 = K̄(l)

v ,

C
(l)
15 = Sign(K̄(l)

s , (C
(l)
8 , C

(l)
9 , C

(l)
10 , C

(l)
11 , C

(l)
12 , C

(l)
13 ))

and

Cl,IDi′ ,ω = (δ(l), C
(l)
8 , C

(l)
9 , C

(l)
10 , C

(l)
11 , C

(l)
12 , C

(l)
13 , C

(l)
14 , C

(l)
15 , rk

(l)
4 , rk

(l)
5 ,

rk
(l)
6 , rk

(l)
7 , rk

(l)
8 , rk

(l)
9 , rk

(l)
10 , rk

(l)
11 )

is outputted.
6. Dec(skIDi , Cl,IDi,w).

– If l = 1,
(a) Check Eq. (1) whether holds or not. Output ⊥ if Eq. (1) does not hold. Pro-

ceed otherwise.
(b) Compute

C1/
e(C2, skID0

)

e(C3, skID1)e(C4, skID2)

= e(g1, ĝ2)s0 ·m/ e(gs0 , ĝ0(ĥIDi f̂)r t̂R)

e((hIDif)s0 , ĝr)e(ts0 , ĝR)

= e(g1, ĝ2)s0 ·m/e(g1, ĝ2)s0 = m

– If l ≥ 2,
(a) Verify

e(rk
(l)
5 , ĥω f̂2)

?
= e(rk

(l)
8 , ĝ), e(rk

(l)
5 , ĥK

(l)
v f̂3)

?
= e(rk

(l)
9 , ĝ),

V er(rk
(l)
10 , rk

(l)
11 , (rk

(l)
4 , rk

(l)
5 , rk

(l)
6 , rk

(l)
7 , rk

(l)
8 , rk

(l)
9 ))

?
= 1 (4)

e(C
(l)
9 , ĥω f̂2)

?
= e(C

(l)
12 , ĝ), e(C

(l)
9 , ĥK̄

(l)
v f̂3)

?
= e(C

(l)
13 , ĝ),

V er(C
(l)
14 , C

(l)
15 , (C

(l)
8 , C

(l)
9 , C

(l)
10 , C

(l)
11 , C

(l)
12 , C

(l)
13 ))

?
= 1 (5)



592 Xu An Wang et al.

Output ⊥ if Eq. (4) and (5) do not hold. Proceed otherwise.
(b) Compute

e(rk
(l)
5 , skIDi′0

)

e(rk
(l)
6 , skIDi′1

)e(rk
(l)
7 , skIDi′2

)

=
e(gs

(l)
1 , ĝ0(ĥIDi′ f̂1)r t̂R

e((hIDi′ f1)s
(l)
1 , ĝ(r))e(ts

(l)
1 , ĝR)

= e(g1, ĝ2)s
(l)
1

and

e(C
(l)
9 , skIDi′0

)

e(C
(l)
10 , skIDi′1

)e(C
(l)
11 , skIDi′2

)

=
e(gs̄

(l)
2 , ĝ0(ĥIDi′ f̂1)r t̂R

e((hIDi′ f1)s̄
(l)
2 , ĝ(r))e(ts̄

(l)
2 , ĝR)

= e(g1, ĝ2)s̄
(l)
2

where s̄(l)
2 = s

(l)
2 · r̄

(l)
1

(c) Compute θ(l)
1 = rk

(l)
4 /e(g1, ĝ2)s

(l)
1 , and θ(l)

2 = C
(l)
8 /e(g1, ĝ2)s̄

(l)
2 . Recover

(δ(l−1)||C(l−1)
8 || · · · ||C(l−1)

15 ||rk(l−1)
4 || · · · ||rk(l−1)

11 ||C(l−1)
7,0 ||C(l−1)

7,1 )

= SYM.Dec(δ(l), H2(θ
(l)
2 )

(d) Compute

C
(l−1)(H1(θ

(l)
1 ))−1

7,0

= (e(g1, ĝ2)s
(l−1)
1 )(H1(θ

(l)
1 ))(H1(θ

(l)
1 ))−1

= e(g1, ĝ2)s
(l−1)
1

if Eq. (2) holds, compute θ(l−1)
1 = rk

(l−1)
4 /e(g1, ĝ2)s

(l−1)
1 .

Compute

C
(l−1)(H1(θ

(l)
1 ))−1

7,1

= (e(g1, ĝ2)s̄
(l−1)
2 )(H1(θ

(l)
1 ))(H1(θ

(l)
1 ))−1

= e(g1, ĝ2)s̄
(l−1)
2

if Eq. (3) holds, compute θ(l−1)
2 = C

(l−1)
8 /e(g1, ĝ2)s̄

(l−1)
2 .

(e) As in the previous steps, compute θ(j)
1 and θ(j)

2 for 1 ≤ j ≤ l− 2, from l− 2
to 1.
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(f) Recover C0||C1|| · · · ||C7||C(1)
7 = SYM.Dec(δ(1), H2(θ

(1)
(2)))

If Eq. (1) holds, compute

C1/C
(1)(H1(θ

(1)
1 ))−1

7

= e(g1, ĝ2)s0 ·m/(e(g1, ĝ2)s0H1(θ
(1)
1 )(H1(θ

(1)
1 ))−1

= m

3. Cryptanalysis of the AMH-IBCPRE Scheme

3.1. On the IND-sCon-sID-CCA Property

' ( )
i

ID Uncorrupted

', ( )
i i

w ID IDrk Uncorrupted

oxyPr
*

1,ID ,i wC C

* ( )iID ID Uncorrupted

'2,ID ,i wC
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Fig. 2. Attack by querying the decryption oracle

Attack I Here we give the first attack on the IND-sCon-sID-CCA property, which can be
seen in Figure 2. Note in this attack the delegator, delegatee and proxy are all uncorrupted.
The main strategy is the following: the adversary just modifies the re-encryption key to be
a valid ciphertextC1

attack (which can be assumed at l level), then he queries this ciphertext
to the decryption oracle (which can be assumed at 1 level) to get secret value θ(l)

1 . Note
here C1

attack is not a derivative of C∗. By using this value, he can derive the delegator’s
secret key and thus can easily find the plaintext corresponding to C∗, which breaks the
IND-sCon-sID-CCA property. Concretely, the attack can be described as following:

1. Assume the challenge identity and condition are (ID∗i , w
∗) and the challenge first

level ciphertext is C1,ID∗i ,w
∗ = (C0, C1, C2, C3, C4, C5, C6, C7), where ID∗i ∈

Z∗q ,mb ∈ GT and w∗ is implicitly included in the ciphertext, concretely

C0 = Kv, C1 = e(g1, ĝ2)s0 ·mb, C2 = gs0 , C3 = (hID
∗
i f1)s0 , C4 = ts0 ,

C5 = (hw
∗
f2)s0 , C6 = (hKvf3)s0 ,

C7 = Sign(Ks, (C1, C2, C3, C4, C5, C6))
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2. The adversary first queries the re-encryption key generation oracle with input

(ID∗i , IDi′ , w
∗)

for the l hop, and he will get the re-encryption key as following:

rk
(l)
0 = (skID∗i0

(ĥw
∗
f̂2)ρ

(l)

)H1(θ
(l)
1 ), rk

(l)
1 = (ĝρ

(l)

)H1(θ
(l)
1 ),

rk
(l)
2 = (skID∗i1

)H1(θ
(l)
1 ), rk

(l)
3 = (sk∗IDi2 )H1(θ

(l)
1 ),

rk
(l)
4 = e(g1, ĝ2)s

(l)
1 · θ(l)

1 , rk
(l)
5 = gs

(l)
1 ,

rk
(l)
6 = (hIDi′ f1)s

(l)
1 , rk

(l)
7 = ts

(l)
1 , rk

(l)
8 = (hw

∗
f2)s

(l)
1 ,

rk
(l)
9 = (hK

(l)
v f3)s

(l)
1 , rk

(l)
10 = K(l)

v

rk
(l)
11 = Sign(K(l)

s , (rk
(l)
4 , rk

(l)
5 , rk

(l)
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(l)
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(l)
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(l)
9 )),
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(l)
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, rk
(l)
13 = gr̄1
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, rk
(l)
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, rk
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(l)

,

rk
(l)
17 = f r̄1

(l)

2 , rk
(l)
18 = f r̄1

(l)

3 ,

3. Now the adversary can extract a valid ciphertext from this re-encryption key, which
is

rk
(l)
4 = e(g1, ĝ2)s

(l)
1 · θ(l)

1 , rk
(l)
5 = gs

(l)
1 ,

rk
(l)
6 = (hIDi′ f1)s

(l)
1 , rk

(l)
7 = ts

(l)
1 , rk

(l)
8 = (hw∗f2)s

(l)
1 ,

rk
(l)
9 = (hK
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v f3)s
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(l)
11 = Sign(K(l)

s , (rk
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4 , rk

(l)
5 , rk
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(l)
7 , rk

(l)
8 , rk

(l)
9 ))

This ciphertext has exactly the same structure as the first level ciphertext!
4. The adversary query this ciphertext to the first level ciphertext decryption oracle of
IDi′ , which will return θ(l)

1 . Note here the adversary does not need to corrupt the
delegatee IDi′ , he just use his decryption oracle!

5. After obtaining θ(l)
1 , the adversary can easily compute the partial private key of ID∗i ,

which is enough to decrypt the challenge first level ciphertext:

♣ = (skID∗i0
(ĥw

∗
f̂2)ρ

(l)

),♦ = (ĝρ
(l)

),

♥ = (skID∗i1
),♠ = (sk∗IDi2 )

6. He decrypt the challenge ciphertext as following:

C1/
e(C2,♣)

e(C3,♥)e(C4,♠)e(C5,♦)

= e(g1, ĝ2)s0 ·m/ e(gs0 , ĝ0(ĥIDi f̂)r t̂R(ĥw
∗
f̂2)ρ

(l)

)

e((hIDif)s0 , ĝr)e(ts0 , ĝR)e((ĝρ(l)), (hw∗f2)s0)

= e(g1, ĝ2)s0 ·m/e(g1, ĝ2)s0

= m
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Fig. 3. Another attack by querying the decryption oracle

Attack II Here we give the second attack on the IND-sCon-sID-CCA property, which
can be seen in Figure 2. Note in this attack the delegator, delegatee and proxy are all un-
corrupted. The main strategy is similar as the first attack except the adversary modifies
the challenge ciphertext to two valid ciphertexts. Concretely, the adversary first just mod-
ifies the re-encrypted challenge ciphertext C∗ (which can be assumed at l+ 1 level) to be
another ciphertext C1

attack and C2
attack which are valid original ciphertexts (which can be

assumed at l level), then he queries this ciphertext to the decryption oracle (which can be
assumed at l level) to get secret value θ(l)

1 and θ(l)
2 . By using these value, he can derive

the delegator’s secret key and thus can easy find the plaintext corresponding to C∗, which
breaks the IND-sCon-sID-CCA property. For this attack is similar with Attack I, here we
omit the details.

On the IND-sCon-sID-CCA Security Model Here we give some comments on Liang
et al.’s IND-sCon-sID-CCA security model. Here we first review the definition of uncor-
rupted delegation chain and corrupted delegation chain.

“Uncorrupted Delegation Chain. Suppose there is a delegation chain under w
from IDi to IDj (i.e. w|IDi → · · · → IDj). If there is no corrupted identity in
the chain, it is an uncorrupted delegation chain, else it is corrupted.”

Then we review the part about uncorrupted delegation chain in the IND-sCon-sID-CCA
security model

“In this phase, the followings are forbidden to issue:
1. Osk(ID) for any ID, if there is an uncorrupted delegation chain under w∗

from ID∗ to ID, or ID∗ = ID.
2. Ork(IDi, IDi′ , w

∗) for any IDi, IDi′ , if there is uncorrupted delegation
chain under w∗ from ID∗ to IDi, or ID∗ = IDi, but IDi′ is in a corrupted
delegation chain.”

We think this security model is too strong. In this model, the challenge delegator can only
lie in the uncorrupted chain. In the multi-hop setting, this means there can be no corrupted
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delegatees after the challenge delegator even these delegatees are far away from the del-
egator, which is obviously contradict our intuition in the multi-hop proxy re-encryption
settings.

3.2. On the ANO-OC Property and the ANO-RK Property

0'( )ID Uncorrupted

0 0 '*, ( )w ID IDrk Uncorrupted

oxyPr*

*

1,ID ,
b

w
C C





0 ( )ID Uncorrupted

1 1'*, ( )w ID IDrk Uncorrupted

1'( )ID Uncorrupted1( )ID Uncorrupted

* 0?b 

* 1?b 

Fig. 4. On the ANO-OC property

*( )ID Uncorrupted

oxyPrC

'( )ID Uncorrupted

*, ' *w ID IDrk 

*, ' *w ID IDrk 

Real or Random?

Fig. 5. On the ANO-RK property

The above two figures describe the ANO-OC property and ANO-RK property. It is
easy to see, if the IND-sCon-sID-CCA security does not hold for the scheme, the ANO-
OC property and ANO-RK property can not hold for this scheme either.

4. Our improved AMH-IBCPRE scheme

4.1. Concrete Construction

In this section, we try to give a new improved scheme which can resist our attack. The
idea is the following: let the original ciphertext, part of the re-encrypted ciphertext and
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part of the re-encryption key have different forms, then our attack can no longer work
again. In particular, we just modify the signature structure in the original ciphertext, the
re-encrypted ciphertext and part of the re-encryption key based on Liang et al.’s scheme
[16]. Concretely, we let C7 = Sign(Ks, (C0, C1, C2, C3, C4, C5, C6)) instead of C7 =

Sign(Ks, (C1, C2, C3, C4, C5, C6)), C(1)
15 = Sign(K̄

(1)
s , (C

(1)
8 , C

(1)
9 , C

(1)
10 , C

(1)
11 , C

(1)
12 ,

C
(1)
13 , C

(1)
14 = K̄

(l)
v )) instead of C(1)

15 = Sign(K̄
(1)
s , (C

(1)
8 , C

(1)
9 , C

(1)
10 , C

(1)
11 , C

(1)
12 , C

(1)
13 )).

In this way, the original ciphertext, part of the re-encrypted ciphertext and part of the re-
encryption key shall have different forms and can not be used by the adversary improperly.
Concretely, our improved scheme is the following:

1. Setup(1k): The same as the original scheme [16].
2. Extract(msk, ID): The same as the original scheme [16].
3. Enc(IDi, ω,m): Chooses s0 ∈R Z∗q and a one-time signature key pair

(Ks,Kv)← Sig.KG(1k)

compute

C0 = Kv, C1 = e(g1, ĝ2)s0 ·m,C2 = gs0 , C3 = (hIDif1)s0 , C4 = ts0 ,

C5 = (hwf2)s0 , C6 = (hKvf3)s0 ,

C7 = Sign(Ks, (C0, C1, C2, C3, C4, C5, C6))

and output the 1-st level ciphertext

C1,IDi,w = (C0, C1, C2, C3, C4, C5, C6, C7)

where IDi ∈ Z∗q ,m ∈ GT and w is implicitly included in the ciphertext.
4. ReKeyGen(IDi, skIDi , IDi′ , ω): The same as the original scheme.
5. ReEnc(rkω,IDi→IDi′ , Cl,IDi,w).

– If l = 1,
(a) Verify

e(ĥKv f̂3, C2)
?
= e(ĝ, C6),

e(ĥω f̂2, C2)
?
= e(ĝ, C5), (6)

V er(Kv, C7, (C0, C1, C2, C3, C4, C5, C6))
?
= 1

(b) Choose θ(1)
2 ∈R GT , s(1)

2 ∈R Z∗q and a one time signature key pair

(K̄(1)
s , K̄(1)

v )← Sig.KG(1k)
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compute
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– If l ≥ 2,
(a) Verify
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If Eq. (7) do not hold, output ⊥. Otherwise, proceed.
(b) Choose θ(l)

2 ∈R GT , s(l)
2 ∈R Z∗q and a one time signature key pair

(K̄(l)
s , K̄(l)

v )← Sig.KG(1k)
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and then compute
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6. Dec(skIDi , Cl,IDi,w).
– If l = 1,

(a) Verify Eq. (6). If Eq. (6) does not hold, output ⊥, otherwise, proceed.
(b) Compute
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5 , ĥω f̂2)

?
= e(rk

(l)
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If Eq. (8) and (9) do not hold, output ⊥. Otherwise, proceed.
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(b) The other steps are the same as the original scheme [16] except the verifica-
tion equations changes to be the above corresponding equations .

For our scheme is almost the same as Liang et al.’s scheme, except this scheme can resist
the attack we have proposed, we omit the security analysis of it which can be followed
Liang et al’s security proof, thus we get the following theorem:

Theorem 1. Our improved AMH-IBCPRE scheme is IND-sCon-sID-CCA secure assum-
ing the decisional P−BDH assumption3 holds, (Sig.KG, Sign, V er) is a sUF one-time
signature scheme, SYM is a CCA-secure one-time symmetric key encryption, and H1, H2

are TCR hash functions.

Proof. Here we just give the roughly security proof. For we just modify Liang et al.’s
scheme on the Encrypt algorithm used in the re-encryption key generation process, and
the corresponding Decrypt algorithm used in the decryption process for the first level
ciphertexts. And other algorithms are the same as the original scheme, thus the security
proof is almost the same as Liang et al’s proof.

But there is a crucial difference, in our scheme

C7 = Sign(Ks, (C0, C1, C2, C3, C4, C5, C6))

which is not the same structure as part of the re-encryption key

rk
(l)
11 = Sign(K(l)

s , (rk
(l)
4 , rk

(l)
5 , rk

(l)
6 , rk

(l)
7 , rk

(l)
8 , rk

(l)
9 ))

Note here C0 = Kv , and the part of the re-encryption key can be successfully decrypted
by querying to the decryption oracle only if the adversary successfully forge a signature

ForgedSignature = Sign(K(l)
s , (rk10(l), rk

(l)
4 , rk

(l)
5 , rk

(l)
6 , rk

(l)
7 , rk

(l)
8 , rk

(l)
9 ))

which is not possible, due to the security of one-time signature and the tight connection
between rk(l)

9 and K(l)
v as following:

rk
(l)
9 = (hK

(l)
v f3)s

(l)
1

Table 1. Feature Comparison

Scheme CCA-security W.R.O. M.U. C.R. Conditional Share Anonymity
[16] No Yes Yes Yes Yes Yes
Our Yes Yes Yes Yes Yes Yes

3 Please refer [16] for this assumption.
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Table 2. Efficiency Comparison

Scheme Enc Check Reenc Dec Ciph-Len
1stCiph 2ndCiph 1stCiph 2ndCiph

GA07B [9] 1tp + 1te 2tp 2te + 2tp 1te + 2tp 2te + 2tp 1|G|+ 1|GT | 2|G|+ 1|GT |
+2|m|+ |id| +|m|

LZD+10 [13] 5te 6tp 6te 24tp 8tp 13|G|+ 1|GT | 4|G|+ 1|GT |

WCW10 [25] 5te 4tp 2tp 1te + 2tp 1te + 4tp 2|G|+ 1|GT | 4|G|+ 1|GT |
+|m|+ |id| |id|+ |m|

Ours 4.1 t
′′
e + 2te 4t′p + 1tv 4t′p + 3te 3t′p 6t′p + 4t

′′
e 6|G1|+ 1|s| 5|G1|+ 1|GT |

+3t′me + 1ts +2t′e +3t′me + 1ts +1tsd +1|SE|+ |vk| +1|SE|

4.2. Comparison

First we compare our scheme’s feature with Liang et al.’s in Table 1. In this table multi-
ple ciphertext receiver update denotes as M.U., con- ditional (data) share denotes as C.S.,
collusion resistance denotes as C.R., anonymity, and without random oracle denotes as
W.R.O.. From this table, we can see our scheme and Liang et al’s scheme simultane-
ously have many good properties, but Liang et al.’s scheme is not CCA-secure, which is
important for cloud storage.

Then we compare our scheme’s efficiency with other related scheme’s, the analysis
results can be seen in Table 2. Note here we do not compare our improved scheme with
Liang et al.’s scheme for the two schemes almost share the same efficiency, but their
scheme can not be CCA-secure while our scheme can. To be fair, we just compare one-
single hop of our scheme with the GA07B scheme (the second scheme in GA07) [9], the
LZD+10 scheme [13] and the WCW10 [25] scheme, which are all CCA-secure identity
based proxy re-encryption schemes. Note in the performance evaluation analysis below,
we just compare the length of the ciphertext overhead, not including the plaintext length
in the total ciphertext length.

Fig. 6. Encryption cost Fig. 7. Checking cost Fig. 8. Re-encryption cost

Notations: In Table 2, encryption is denoted as Enc, re-encryption is denoted as Reenc,
decryption is denoted as Dec, ciphertext is denoted as Ciph and ciphertext length is de-
noted as Ciph-Len, tp, te and tme represent the computational cost of a pairing, a modular
exponentiation and a modular multi-exponentiation in G1, respectively in type-I bilinear
group(G1 = G2). t′p, t′e, t

′′

e and t′me represent the computational cost of a pairing, a mod-
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ular exponentiation in G1, a modular exponentiation in G2 and a multi-exponentiation
in G1 respectively in type-III bilinear group(G1 6= G2). tse, tsd and tsv represent the
computational cost of once symmetric encryption, once symmetric decryption and once
symmetric checking decryption results’ validity. ts and tv represent the computational
cost of a one-time signature signing and verification respectively. |G| and GT | denote
the bit-length of an element in groups G and GT respectively for type-I pairing, |G1|,
|G2| and GT | denotes the bit-length of an element in groups G1, G2 and GT respectively
for type-III pairing. |SE| denotes the bit length of once symmetric encryption. Finally,
|vk| and |s| denote the bit length of the one-time signature’s public key and a one-time
signature respectively.

Fig. 9. First level decryption cost Fig. 10. Second level decryption cost

To further demonstrate our schemes efficiency, we roughly evaluated our scheme’s
practical performance according to implementation in [1]. We give the performance com-
parison results for GA07B, LZD+, WCW and Our schemes in Fig. 6,7,8,9,10, 11, 12, ac-
cording to the efficiency benchmark of SS156 and BN256 groups [1] implemented in the
highly efficient RELIC cryptographic toolkit version 0.4 [2](using the GMP library [12]
for big number operations and the default configuration options for prime field arithmetic
), measured on a standard workstation, which is 2.4GHz Intel Core i5 processor and 8GB
of RAM (1067MHz DDR3) running Mac OS X Lion version 10.7.5. We have neglected
some operations such as the computation cost of one-time symmetric encryption, one-time
symmetric decryption and one-time checking for the decryption results’ validity, one-time
signature and verification. From Fig. 6,7,8,9,10, we can see our scheme is the most effi-
cient scheme for encryption, checking, re-encryption, second-level ciphertext decryption
and first-level ciphertext decryption. From Fig. 11, 12, we can see our scheme is a little
inefficiency on the ciphertext length compared with some other schemes. Considering our
scheme have many interesting properties while others do not have, we think this is not an
essential shortcoming.

5. Review of the DFA-based FPRE Scheme

The definition and security model of DFA-based FPRE can be found in [17], here we just
review their scheme.
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Fig. 11. First level ciphertext length Fig. 12. Second level ciphertext length

1. Setup(1n, Σ): Choose g, g0, z, h0 ∈R Gp1 , and α, k, a, b, αend, αend ∈R Z∗N . Set
hstart = gαstart , hend = gαend and hk = gk. For each symbol δ ∈ Σ, choose
a αδ ∈R Z∗N , and set hδ = gαδ . Choose a one-time signature scheme OTS, a
one-time symmetric encryption scheme SYM = (SYM.Enc, SYM.Dec), and
two hash functions: H1 : GT → Z∗N and H2 : GT → {0, 1}poly(n). The PP is
(e(g, g)α, g, gab, g0, z, h0, hstart, hend, hk,∀δ∈Σhδ, OTS, SYM,H1, H2) along with
the descriptions of G and the alphabet Σ. The MSK is (g−α, X3), where X3 is a
generator of Gp3 .

2. KeyGen(MSK,M = (Q, T , q0, F ):The description of M includes a set Q of states
q0, · · · , q|Q|−1 and a set of transitions T where each transition t ∈ T is a triple
(x, y, δ) ∈ Q ×Q×Σ. q0 is designated as a unique start state and F ⊆ Q is the set
of accept states. The algorithm chooses D0, D1, · · · , D|Q|−1 ∈R Gp1 (associating
Di with qi), for each t ∈ T , it chooses rt ∈R Z∗N , ∀qx ∈ F it chooses rendx ∈R Z∗N ,
and chooses a u ∈R Z∗N . It also chooses Rstart1, Rstart2, Rstart3, Rt,1, Rt,2, Rt,3,
Rendx,1 , Rendx,2 ∈R Gp3 and a rstart ∈R Z∗N . The algorithm constructs the key as
the follows. First it sets:

Kstart1 = D0 · (hstart)rstart ·Rstart1,Kstart2 = grstart ·Rstart2,
Kstart3 = gu ·Rstart3

For each t = (x, y, δ) ∈ T the algorithm sets:

Kt,1 = D−1
x · zrt ·Rt,1,Kt,2 = grt ·Rt,2,Kt,3 = Dy · (hδ)rt ·Rt,3

For each qx ∈ F it computes:

Kendx,1 = g−α ·Dx · (hend · gab)rendx · gku ·Rendx,1 ,
Kendx,2 = grendx ·Rendx,2

Finally the key is

SK = (M,Kstart1,Kstart2,Kstart3,∀t ∈ T (Kt,1,Kt,2,Kt,3),

∀qx ∈ F (Kendx,1 ,Kendx,2))

3. ReKeyGen(SKM , ω):
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(a) Choose a y ∈R GT , and vx ∈R Z∗N (for ∀qx ∈ F ) and set rk1 = K
H1(y)
start1, rk2 =

K
H1(y)
start2, rk1 = K

H1(y)
start3, ∀t ∈ T (rkt,1 = K

H1(y)
t,1 , rkt,2 = K

H1(y)
t,2 , rkt,3 =

K
H1(y)
t,3 ), ∀qx ∈ F (rkendx,1 = K

H1(y)
endx,1

· hvxend, rkendx,2 = K
H1(y)
endx,2

· gvx)

(b) Run rk4 ← Encrypt(PP, ω, y), and finally output

rkM→w = (M, rk1, rk2, rk3, rk4,

∀t ∈ T (rkt,1, rkt,2, rkt,3),∀qx ∈ F (rkendx,1 , rkendx,2))

4. Encrypt(PP, ω,m): Choose s0, s1, · · · , sl ∈R Z∗N , run (ssk, svk)← KeyGen(1n)
and constructs CT as following. First set Cm = m · e(g, g)αsl , Cstart1 = C0,1 =
gs0 , Cstart2 = (hstart)

s0 , Cstart3 = (gsvk0 h0)s0 , for i = 1 to l set Ci,1 = gsi , Ci,2 =
(hwi)

sizsi−1 , finally set

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl ,

Cend4 = Sign(ssk, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3)).

The original ciphertext is

CT = (svk, ω, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2),

Cend2, Cend3, Cend4)

5. ReEnc(rkM→ω′ , CT ):
(a) If

V erify(ssk, (Cend4, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3))) = 1

and e(Cstart1, gsvk0 h0) = e(g, CStart3)
proceeds; otherwise, output ⊥.

(b) CT is associated with a string ω = (ω1, · · · , ωl) and the re-encryption key
rkM→ω′ is associated with a DFAM = (Q, T , q0, F ) whereACCEPT (M,ω).
There must exist a sequence of l+1 states u0, u1, · · · , ul and l transitions t1, · · · , tl
where u0 = q0 and ul ∈ F and for i = 1, · · · , l, we have ti = (ui−1, ui, wi) ∈
T , the proxy re-encrypts CT as follows.

i. If first computesA0 = e(Cstart1, rk1) e(Cstart2, rk2)−1 = e(g,D0)s0H1(y)

ii. For i = 1 to l, it computes:

Ai = Ai−1·e(Ci−1,1, rkti,1)·e(Ci,2, rkti,2)·e(Ci,1, rkti,3) = e(g,Dui)
siH1(y)

Since M accepts w, we have that ul = qx for some qx ∈ F and Al =
e(g,Dx)slH1(y).

iii. It sets

Aend = Al · e(Cendx,1 , rkendx,1)−1 · e(Cendx,2 , rkendx,2) · e(Cendx,3 , rk3)

= e(g, g)αslH1(y)
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iv. The proxy sets C1 = SYM.Enc(H2(δ), ξ), C2 = Encrypt(PP, ω′, δ),
where δ ∈R GT and ξ = (CT ||Aend||rk4). It finally outputs the re-encrypted
ciphertext CR = (C1, C2).

6. Dec(SKM , CT ): If

V erify(svk, (Cend4, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2),

· · · , (Cend1, Cl,2), Cend2, Cend3))) = 1

and e(Cstart1, gsvk0 h0) = e(g, Cstart3) proceed; otherwise, output ⊥. First compute

B0 = e(Cstart1,Kstart1)e(Cstart2,Kstart2)−1 = e(g,D0)s0

For i = 1 to l compute

Bi = Bi−1e(Ci−1,1,Kti,1) · e(Ci,2,Kti,2)−1 · e(Ci,1,Kti,3) = e(g,Dui)
si

Since M accepts w, we have that ul = qx for some qx ∈ F and Bl = e(g,Dx)sl .
Finally compute

Bend = Bl · e(Cendx,1 ,Kendx,1)−1e(Cendx,2 ,Kendx,2) · e(Cendx,3 ,Kstart3)

= e(g, g)αsl

and output the message m = Cm
Bend

.
7. Dec(SKM , C

R):
(a) Run δ ← Decrypt(SKM , C2), compute ξ ← SYM.Dec(H2(δ), C1), where

ξ = (CT ||Aend||rk4).
(b) Run y ← Decrypt(SKM , rk4), then compute Key = A

H1(y)−1

end .
(c) Verify e(Cstart1, gsvk0 h0) = e(g, Cstart3), Verify (svk, (Cend4, (ω,Cm, Cstart1,

Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2), Cend2, Cend3)))
?
= 1 If the equa-

tions hold, proceed; otherwise, output ⊥.
(d) Output the message m = Cm/Key.

6. Cryptanalysis of the CCA-secure DFA based FPRE Scheme

6.1. On the IND-CCA Property

Attack I Here we give the first attack on the IND-CCA property, which can be seen
in Figure 13. Note in this attack the delegator, delegatee and proxy are all uncorrupted.
The main strategy is the following: the adversary just modifies the re-encryption key to
be a valid ciphertext Cattack, then he queries this ciphertext to the decryption oracle to
get secret value y. Note here Cattack is not a derivative of C∗. By using this value, he
can derive the delegator’s secret key and thus can easily find the plaintext corresponding
to C∗, which breaks the IND-CCA property. Concretely, the attack can be described as
following:
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' ( )
i

ID Uncorrupted

M '( )rk Uncorrupted

oxyPr
*CT

* ( )iID ID Uncorrupted

1

4[Dec,C ]
attack

rk

y

Fig. 13. Attack by querying the decryption oracle

1. Assume the challenge string is ω∗ and the challenge original ciphertext is

CT = (svk, ω∗, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cl,1, Cl,2), Cend2, Cend3, Cend4)

where Cm = mb · e(g, g)αsl , Cstart1 = C0,1 = gs0 , Cstart2 = (hstart)
s0 , Cstart3 =

(gsvk0 h0)s0 , for i = 1 to l set Ci,1 = gsi , Ci,2 = (hω∗i )sizsi−1 , set

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl ,

Cend4 = Sign(ssk, (ω∗, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2),

· · · , (Cend1, Cl,2), Cend2, Cend3)).

2. The adversary first queries the re-encryption key generation oracle with input ω∗, and
the re-encryption key oracle runs as following:
(a) Choose a y ∈R GT , and vx ∈R Z∗N (for ∀qx ∈ F ) and set rk1 = K

H1(y)
start1, rk2 =

K
H1(y)
start2, rk1 = K

H1(y)
start3, ∀t ∈ T (rkt,1 = K

H1(y)
t,1 , rkt,2 = K

H1(y)
t,2 , rkt,3 =

K
H1(y)
t,3 ), ∀qx ∈ F (rkendx,1 = K

H1(y)
endx,1

· hvxend, rkendx,2 = K
H1(y)
endx,2

· gvx)

(b) Run rk4 ← Encrypt(PP, ω∗, y), and finally output

rkM→w = (M, rk1, rk2, rk3, rk4,

∀t ∈ T (rkt,1, rkt,2, rkt,3),∀qx ∈ F (rkendx,1 , rkendx,2)).

3. Now the adversary can extract a valid ciphertext from this re-encryption key, which
is rk4 ← Encrypt(PP, ω∗, y) This ciphertext has exactly the same structure as the
original level ciphertext!

4. The adversary query this ciphertext to the original level ciphertext decryption oracle
with SKM ′ , where M ′ accept ω, and he will get y. Note here the adversary does not
need to corrupt the delegatee, he just uses his decryption oracle!
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5. After obtaining y, the adversary can easily compute the partial private key, which is
enough to decrypt the challenge original level ciphertext:

Kstart1 = rk
1

H1(y)

1 ,Kstart2 = rk
1

H1(y)

2 ,Kstart3 = rk
1

H1(y)

1 ,

∀t ∈ T (Kt,1 = rk
1

H1(y)

t,1 ,Kt,2 = rk
1

H1(y)

t,2 ,Kt,3 = rk
1

H1(y)

t,3 ),

∀qx ∈ F (FKendx,1 = (rkendx,1/h
vx
end)

1
H1(y) , FKendx,2 = (rkendx,2/g

vx)
1

H1(y) )

6. He decrypts the challenge ciphertext as following: First compute

B0 = e(Cstart1,Kstart1)e(Cstart2,Kstart2)−1 = e(g,D0)s0

For i = 1 to l compute

Bi = Bi−1e(Ci−1,1,Kti,1) · e(Ci,2,Kti,2)−1 · e(Ci,1,Kti,3) = e(g,Dui)
si

Since M accepts ω∗, we have that ul = qx for some qx ∈ F and Bl = e(g,Dx)sl .
Finally compute

Bend = Bl · e(Cendx,1 , (FKendx,1))−1e(Cendx,2 ,

FKendx,2) · e(Cendx,3 ,Kstart3)

= e(g, g)αsl

and output the message mb = Cm
Bend

.

In this way, the adversary can easily break the IND-CCA security.

( )Uncorrupted

Mrk 

oxyPr
*C

( )Uncorrupted

'C

1

2[Dec,C ]
attack

C



And

2

4[Dec,C ]
attack

rk

y

Fig. 14. Another attack by querying the decryption oracle

Attack II Here we give the second attack on the IND-CCA property, which can be seen
in Figure 14. Note in this attack the delegator, delegatee and proxy are all uncorrupted.
The main strategy is similar as the first attack except the adversary modifies the challenge
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ciphertext to two valid ciphertexts. Concretely, the adversary first just modifies the re-
encrypted challenge ciphertext C∗ to be another ciphertext C1

attack and C2
attack which are

valid original ciphertexts , then he queries this ciphertext to the decryption oracle to get
secret value y. By using this secret value, he can derive the delegator’s secret key and thus
can easy find the plaintext corresponding toC∗, which breaks the IND-CCA property. For
this attack is similar with Attack I, here we omit the details.

7. Our improved DFA-FPRE scheme

Our main idea is to modify the encryption algorithm used in the re-encryption process to
be another one, which is not the same as the encryption algorithm used for second level
ciphertext generation.

1. Setup(1n, Σ): Choose g, g0, z, h0 ∈R Gp1 , and α, k, a, b, αend, αend ∈R Z∗N . Set

hstart = gαstart , hend = gαend and hk = gk, h′k = gk
′

. For each symbol δ ∈
Σ, choose a αδ ∈R Z∗N , and set hδ = gαδ . Choose a one-time signature scheme
OTS, a one-time symmetric encryption scheme SYM = (SYM.Enc, SYM.Dec),
and two hash functions: H1 : GT → Z∗N and H2 : GT → {0, 1}poly(n). The PP
is {e(g, g)α, g, gab, g0, z, h0, hstart, hend, hk,∀δ∈Σhδ, OTS, SYM,H1, H2} along
with the descriptions of G and the alphabet Σ. The MSK is (g−α, X3), where X3 is
a generator of Gp3 .

2. KeyGen(MSK,M = (Q, T , q0, F )):The description ofM includes a setQ of states
q0, · · · , q|Q|−1 and a set of transitions T where each transition t ∈ T is a triple
(x, y, δ) ∈ Q ×Q×Σ. q0 is designated as a unique start state and F ⊆ Q is the set
of accept states. The algorithm choosesD0, D1, · · · , D|Q|−1 ∈R Gp1 (associatingDi

with qi), for each t ∈ T , it chooses rt ∈R Z∗N , ∀qx ∈ F it chooses rendx ∈R Z∗N , and
chooses a u ∈R Z∗N . It also choosesRstart1, Rstart2, Rstart3, Rt,1, Rt,2, Rt,3, Rendx,1 ,
Rendx,2 ∈R Gp3 and a rstart ∈R Z∗N . The algorithm constructs the key as the fol-
lows. First it sets:

Kstart1 = D0·(hstart)rstart ·Rstart1,Kstart2 = grstart ·Rstart2,Kstart3 = gu·Rstart3.

For each t = (x, y, δ) ∈ T the algorithm sets:

Kt,1 = D−1
x · zrt ·Rt,1,Kt,2 = grt ·Rt,2,Kt,3 = Dy · (hδ)rt ·Rt,3,

For each qx ∈ F it computes:

kendx,1 = g−α ·Dx · (hend · gab)rendx · gku ·Rendx,1 ,Kendx,2 = grendx ·Rendx,2

Finally the key is

SK = (M,Kstart1,Kstart2,Kstart3,∀t ∈ T (Kt,1,Kt,2,Kt,3),

∀qx ∈ F (Kendx,1 ,Kendx,2)

3. ReKeyGen(SKM , ω):
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(a) Choose a y ∈R GT , and vx ∈R Z∗N (for ∀qx ∈ F ) and set rk1 = K
H1(y)
start1, rk2 =

K
H1(y)
start2, rk1 = K

H1(y)
start3, ∀t ∈ T (rkt,1 = K

H1(y)
t,1 , rkt,2 = K

H1(y)
t,2 , rkt,3 =

K
H1(y)
t,3 ), ∀qx ∈ F (rkendx,1 = K

H1(y)
endx,1

· hvxend, rkendx,2 = K
H1(y)
endx,2

· gvx)

(b) Run rk4 ← Encrypt′(PP, ω, y) , and finally output rkM→w = (M, rk1, rk2, rk3,

rk4,∀t ∈ T (rkt,1, rkt,2, rkt,3), ∀qx ∈ F (rkendx,1 , rkendx,2)). Here theEncrypt′

(PP, ω, y) algorithm runs as following: Choose s0, s1, · · · , sl ∈R Z∗N , run

(ssk, svk)← KeyGen(1n)

and constructs CT as following. First set Cm = m ·e(g, g)αsl , Cstart1 = C0,1 =
gs0 , Cstart2 = (hstart)

s0 , Cstart3 = (gsvk0 h0)s0 , for i = 1 to l set Ci,1 =
gsi , Ci,2 = (hwi)

sizsi−1 , finally set

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl , Cend4 = (h′k)sl

Cend5 = Sign (ssk, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cend1, Cl,2), Cend2, Cend3, Cend4))

The ciphertext is

CT = (svk, ω, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2),

Cend2, Cend3, Cend4, Cend5)

4. Encrypt(PP, ω,m): Choose s0, s1, · · · , sl ∈R Z∗N , run (ssk, svk)← KeyGen(1n)
and constructs CT as following. First set Cm = m · e(g, g)αsl , Cstart1 = C0,1 =
gs0 , Cstart2 = (hstart)

s0 , Cstart3 = (gsvk0 h0)s0 , for i = 1 to l set Ci,1 = gsi , Ci,2 =
(hwi)

sizsi−1 , finally set

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl

Cend4 = Sign(ssk, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3))

The original ciphertext is

CT = (svk, ω, Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2),

Cend2, Cend3, Cend4)

5. ReEnc(rkM→ω′ , CT ):
(a) If

V erify(ssk, (Cend4, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3))) = 1

and e(Cstart1, gsvk0 h0) = e(g, CStart3) proceeds; otherwise, output ⊥.
(b) CT is associated with a string ω = (ω1, · · · , ωl) and the re-encryption key

rkM→ω′ is associated with a DFAM = (Q, T , q0, F ) whereACCEPT (M,ω).
There must exist a sequence of l+1 states u0, u1, · · · , ul and l transitions t1, · · · , tl
where u0 = q0 and ul ∈ F and for i = 1, · · · , l, we have ti = (ui−1, ui, wi) ∈
T , the proxy re-encrypts CT as follows.
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i. If first computesA0 = e(Cstart1, rk1) e(Cstart2, rk2)−1 = e(g,D0)s0H1(y)

ii. For i = 1 to l, it computes:

Ai = Ai−1 · e(Ci−1,1, rkti,1) · e(Ci,2, rkti,2) · e(Ci,1, rkti,3)

= e(g,Dui)
siH1(y)

Since M accepts w, we have that ul = qx for some qx ∈ F and Al =
e(g,Dx)slH1(y).

iii. It sets

Aend = Al · e(Cendx,1 , rkendx,1)−1 · e(Cendx,2 , rkendx,2) · e(Cendx,3 , rk3)

= e(g, g)αslH1(y)

iv. The proxy sets C1 = SYM.Enc(H2(δ), ξ), C2 = Encrypt(PP, ω′, δ),
where δ ∈R GT and ξ = (CT ||Aend||rk4). It finally outputs the re-encrypted
ciphertext CR = (C1, C2).

6. Dec(SKM , CT ): If

V erify(svk, (Cend4, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3))) = 1

and e(Cstart1, gsvk0 h0) = e(g, Cstart3) proceed; otherwise, output ⊥. First compute
B0 = e(Cstart1,Kstart1)e(Cstart2,Kstart2)−1 = e(g,D0)s0 . For i = 1 to l com-
pute Bi = Bi−1e(Ci−1,1,Kti,1) · e(Ci,2,Kti,2)−1 · e(Ci,1,Kti,3) = e(g,Dui)

si .
Since M accepts w, we have that ul = qx for some qx ∈ F and Bl = e(g,Dx)sl .
Finally compute

Bend = Bl · e(Cendx,1 ,Kendx,1)−1e(Cendx,2 ,Kendx,2) · e(Cendx,3 ,Kstart3)

= e(g, g)αsl

and output the message m = Cm
Bend

.
7. Dec(SKM , C

R):
(a) Run δ ← Decrypt(SKM , C2), compute ξ ← SYM.Dec(H2(δ), C1), where

ξ = (CT ||Aend||rk4).
(b) Run y ← Decrypt′(SKM , rk4) , then compute Key = A

H1(y)−1

end , while

Decrypt′(SKM , rk4)

runs as following If

V erify(svk, (Cend5, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · ,
(Cend1, Cl,2), Cend2, Cend3, Cend4))) = 1

and e(Cstart1, gsvk0 h0) = e(g, Cstart3) proceed; otherwise, output ⊥. First com-
pute B0 = e(Cstart1,Kstart1)e(Cstart2,Kstart2)−1 = e(g,D0)s0 . For i = 1
to l compute Bi = Bi−1e(Ci−1,1,Kti,1) · e(Ci,2,Kti,2)−1 · e(Ci,1,Kti,3) =
e(g,Dui)

si . Since M accepts w, we have that ul = qx for some qx ∈ F and
Bl = e(g,Dx)sl . Finally computeBend = Bl ·e(Cendx,1 ,Kendx,1)−1e(Cendx,2 ,

Kendx,2) · e(Cendx,3 ,Kstart3) = e(g, g)αsl and output the message m = Cm
Bend

.
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(c) Verify e(Cstart1, gsvk0 h0) = e(g, Cstart3), Verify

(svk, (Cend4, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cl,1, Cl,2),

Cend2, Cend3)))
?
= 1

If the equations hold, proceed; otherwise, output ⊥.
(d) Output the message m = Cm/Key.

Theorem 2. Suppose Liang et al’s original scheme is IND-CPA secure, SYM is a CCA-
secure symmetric encryption, OTS is a strongly existential unforgeable one-time signature
and H1, H2 are TCR hash functions, our DFA-based FPRE system is IND-CCA secure in
the standard model.

Proof. Here we just give the roughly security proof. For we just modify Liang et al.’s
scheme on the RekeyGen algorithm used in the re-encryption key generation process, and
the corresponding Decrypt algorithm. And other algorithms are the same as the original
scheme, thus the security proof is almost the same as Liang et al’s proof.

But there is a crucial difference, in our scheme

rk4 ← Encrypt′(PP, ω, y)

and

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl , Cend4 = (h′k)sl

Cend5 = Sign (ssk, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cend1, Cl,2), Cend2, Cend3, Cend4))

which has not the same structure as the ciphertexts outputted by the Encrypt algorithm

Cend1 = Cl,1 = gsl , Cend2 = (hendg
ab)sl , Cend3 = (hk)sl

Cend4 = Sign(ssk, (ω,Cm, Cstart1, Cstart2, Cstart3, (C1,1, C1,2), · · · , (Cend1, Cl,2),

Cend2, Cend3))

that means, part of the re-encryption key can not be used to recover y by querying to the
decryption oracle. Thus the above described attack can not be launched.

8. Conclusion

In this paper, we show two recently proposed proxy re-encryption schemes are not chosen
ciphertext secure, the reason why their schemes can not be CCA secure is that the adver-
sary can easily extract valid original level ciphertext from the re-encryption keys or the
re-encrypted ciphertexts, while these extracted ciphertexts are not the challenge original
level ciphertexts, neither the derivatives of challenge ciphertexts. We also propose a new
CCA-secure AMH-IBCPRE and a CCA-secure DFA-based FPRE system and roughly
analysis their security.
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