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Abstract. Visual Question Answering (VQA) has attracted much attention recently
in both natural language processing and computer vision communities, as it offers
insight into the relationships between two relevant sources of information. Tremen-
dous advances are seen in the field of VQA due to the success of deep learning.
Based upon advances and improvements, the Affective Visual Question Answer-
ing Network (AVQAN) enriches the understanding and analysis of VQA models
by making use of the emotional information contained in the images to produce
sensitive answers, while maintaining the same level of accuracy as ordinary VQA
baseline models. It is a reasonably new task to integrate the emotional information
contained in the images into VQA. However, it is challenging to separate question-
guided-attention from mood-guided-attention due to the concatenation of the ques-
tion words and the mood labels in AVQAN. Also, it is believed that this type of
concatenation is harmful to the performance of the model. To mitigate such an ef-
fect, we propose the Double-Layer Affective Visual Question Answering Network
(DAVQAN) that divides the task of generating emotional answers in VQA into two
simpler subtasks: the generation of non-emotional responses and the production
of mood labels, and two independent layers are utilized to tackle these subtasks.
Comparative experimentation conducted on a preprocessed dataset to performance
comparison shows that the overall performance of DAVQAN is 7.6% higher than
AVQAN, demonstrating the effectiveness of the proposed model. We also introduce
more advanced word embedding method and more fine-grained image feature ex-
tractor into AVQAN and DAVQAN to further improve their performance and obtain
better results than their original models, which proves that VQA integrated with af-
fective computing can improve the performance of the whole model by improving
these two modules just like the general VQA.
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1. Introduction

In recent years, multimodal learning for natural language processing (NLP) and Computer
Vision (CV) has gained broad interest, such as Visual Question Answering (VQA) [1],
image captioning [41] and image-text matching [10], among several others [24]. Com-
pared to other multimodal learning tasks, VQA is more challenging, since it requires a
fine-grained understanding of both textual questions and visual images, and it may also
involve complex reasoning and require common sense knowledge to answer the questions
correctly. Therefore, VQA is regarded as a test of the deep visual and textual understand-
ing ability of a model, as well as a benchmark for general artificial intelligence (AI). An
instance of VQA consists of typical tasks that connect an image and a related question,
so the task of the machine is to produce the correct answer. There are many potential ap-
plications for VQA, such as a personal assistant or robotics designed to assist individuals
with physical disabilities.

In early VQA models, the conventional approach is to train a deep neural network
with supervision, which maps the given question and the given image to a relative scor-
ing of candidate answers. Specifically, the input question is first tokenized into words, so
then the model utilizes the word embedding method to transform the terms into single
vectors. Next, the model inputs the word vectors into a Recurrent Neural Network (RNN)
to obtain the question features and inputs the given image into a Convolutional Neural
Network (CNN) pre-trained on object recognition to capture the image features. Finally,
the model fuses the question features and the image features through linear pooling (such
as element-wise multiplication) and then feeds the joint embedding into a classification
layer to predict the correct answer. With the emergence of advanced word embedding
methods, fine-grained feature extractors, cognitive fusion mechanisms and various atten-
tion mechanisms, the performance of VQA models is also improved.

It is noteworthy that most of the existing VQA models do not further understand nor
analyze the emotional information contained in the input images. Part of the reason is
due to the fact that, there is no VQA dataset that includes rich emotional information
to the images it contains so far. Till recently, the Affective Visual Question Answering
Network (AVQAN) [34] enriches the model’s understanding and analysis of VQA by
making use of the emotional information contained in the images to produce sensitive
answers, while maintaining the same level of accuracy as ordinary VQA baseline models.
It is a reasonably new task to integrate the emotional information contained in the images
into VQA.

However, it is challenging to separate question-guided-attention from mood-guided-
attention in AVQAN, due to the concatenation of question words and mood labels. It is
believed that this type of concatenation is hazardous to the performance of the model. To
mitigate this effect, we propose the Double-Layer Affective Visual Question Answering
Network (DAVQAN), which divides the task of generating emotional answers in VQA
into two relatively simple subtasks, i.e., the generation of non-emotional responses and
the production of mood labels, and utilizing two independent layers to tackle the two
subtasks respectively. In such studies, the emotional information contained in the images
refers to human facial expressions. Since there is no publicly available dataset suitable for
VQA integrated with affective computing, we use the same method as AVQAN to con-
struct a preprocessed dataset to complete the proposed research. We conduct a compara-
tive experiment on the preprocessed dataset to compare the performance of AVQAN and
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DAVQAN, and the experimental results show that the overall performance of DAVQAN
is 7.6% higher than that of AVQAN, showing the effectiveness of the proposed model.
We also introduce more advanced word embedding method and more fine-grained image
feature extractor into AVQAN and DAVQAN to further improve their performance and
obtain better results than their original models, what shows that VQA integrated with af-
fective computing can improve the performance of the entire model by improving these
two modules just like the general VQA.

The remainder of this article is organized as follows. Section 2 reviews the works re-
lated to VQA, while in section 3 is provided the details of DAVQAN. Next, details on how
we construct the preprocessed dataset for the experiments and experimental evaluation are
presented in Section 4, and finally, we present the conclusions and future directions of this
work in Section 5.

2. Related work

Text-based Question Answering. Text-based question answering is a longstanding prob-
lem that has been studied for decades in natural language processing. The model needs to
fully understand the textual questions and requires a wide range of knowledge to answer
the questions correctly [26] [23]. The early text-based question answering system [39]
uses information retrieval to find out the text containing the answer as the output of the
model. Recently, advanced methods, e.g. [3], have improved the accuracy of their answers
by constructing large-scale knowledge bases. Through all the efforts, text-based question
answering has been successfully applied to search engines, mobile devices, and other
fields. Various methods and models for text-based question answering inspire VQA tech-
niques. Nevertheless, unlike text-based question answering, VQA is naturally grounded
in images – requiring the understanding of both visual images and textual questions. The
information contained in the visual images is more abundant and noisier than that con-
tained in the textual questions. Therefore, VQA is more challenging to deal with than
text-based question answering. Meanwhile, the interactions between the visual images
and the textual questions are also essential to VQA. Furthermore, the questions are gener-
ated by humans, making the need for complex reasoning and common sense knowledge
more essential.

Describing Visual Content. For many years, many researches have been devoted to
the study of joint learning which combines the visual and textual information [4], [5],
[30], [32], [37], [46], [40], [44]. Related to VQA are the tasks of image tagging [21],
[15], video captioning [33], [13] and image captioning [22], [8], [27], [41], where the
models are used to generate sentences or words to describe visual content. Automatically
describing the content of an image is a fundamental problem of artificial intelligence
[16]. In the early stages, the researches on describing visual content mainly included the
object classification task and the task of assigning descriptions. While these tasks require
both semantic and visual knowledge, captions can often be non-specific. Even the more
advanced methods and models for generating generic image captions are of little use for
VQA, since the questions in VQA require detailed specific information about the images.
Therefore, compared with captioning tasks, VQA is more complex, more interactive, and
has a broader range of applications.
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Visual Question Answering. In the past few years, VQA has attracted more and more
attention. The first VQA dataset developed as a benchmark is Data Set for Question An-
swering on Real World (DAQUAR) [25]. With the continuous development, the most
popular modern datasets use images sourced from Microsoft Common Objects in Context
(COCO) [38], a dataset initially designed for image recognition. Those images constitute
a diverse collection of photographs. Some of the latest versions of these datasets, such as
VQA v2.0 [11], have been proposed to address issues of dataset biases and other issues.
Based on these datasets, many models have been proposed to deal with VQA tasks. Most
of these models learn the joint embedding of the image features and the question features
and then input them into a classification layer to predict the correct answer.

From the above description, we can see that in most VQA models, the first step is
to use the word embedding method to transform the question words into single vec-
tors. Initially, common word embedding methods included the one-hot representation of
words and the GloVe word embeddings [28] pre-trained on a large-scale corpus. ELMo
[29], a later proposed method, improves the performance of word embedding methods
by concatenating the left-to-right and the right-to-left word features extracted from the
text. However, models like ELMo are feature-based and not profoundly bidirectional.
At present, the more advanced method BERT [7] can pre-train a deep bidirectional Trans-
former and can be fine-tuned with just one additional output layer to create state-of-the-art
models for a wide range of natural languages processing tasks, such as word embedding
and sentence classification.

After transforming the question words into single vectors, the VQA models need to ex-
tract the question features and the image features. The Long Short-Term Memory (LSTM)
[14] and the Gated Recurrent Unit [17] are the most common methods to extract question
features. And most of the original VQA models use the VGGNet [36] to extract image fea-
tures. Now the more advanced methods for extracting image features are the ResNet [18]
and the bottom-up attention network [2] derived from Faster R-CNN [35]. The question
features and the image features obtained by early VQA models are at the global-level and
contain noisy information. In many cases, keywords of the questions and the local areas
of the images are the key to answer the questions correctly. As a result, various attention
mechanisms have been proposed and have become an integral part of VQA models (e.g.,
[2]). The core idea of attention mechanism is to assign different weights to local features
so that the model can focus on the essential local features rather than the global features.
Furthermore, the multimodal feature fusion mechanisms of question features and image
features are also fundamental to VQA models because of the requirements of the models
for understanding and analyzing the content of the input questions and the input images
and the relationships between them. The element-wise addition and the element-wise mul-
tiplication are the earliest multimodal feature fusion mechanisms used for VQA. To obtain
higher-level interactions between question features and image features, several methods
based on bilinear pooling have been proposed, such as MCB [9]. With the development
of the above technologies, the performance of VQA models also improved.

3. Double-Layer Affective Visual Question Answering Network

Although AVQAN enriches the model’s understanding and analysis of VQA, it is diffi-
cult for AVQAN to separate question-guided-attention from mood-guided-attention due
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to the concatenation of the question words and the mood labels. Different from AVQAN,
DAVQAN divides the task of generating emotional answers into two relatively simple
subtasks, i.e., the generation of non-emotional answers and the generation of mood la-
bels, and uses two independent layers to tackle the two subtasks respectively. The non-
emotional layer takes the images, and the questions as input to predict non-emotional
answers, and the emotional layer deals with the emotional information contained in the in-
put images to predict mood labels for the images. Finally, we combine the non-emotional
answers and the mood labels to compose the emotional answers. In this section, we first
introduce the non-emotional layer. The emotional layer will be detailed in the second part.

3.1. Non-emotional layer

In the early stages, the image features used in VQA models were global features and
contained irrelevant and noisy information. In many cases, the local areas of the image
are the key to answer the question correctly. Thus, the attention mechanisms based on
visual attention were proposed and have become an integral part of VQA models. With
the development of attention mechanisms, researchers have successfully proposed the co-
attention mechanisms [6], [45] that can focus on both the keywords of the questions and
the local areas of the images to improve the performance of VQA models. For a fair
comparison, DAVQAN uses the same attention mechanism as AVQAN, that is, we use
the input questions to guide the model to focus on the local areas of the input images.

We introduce the spatial attention [12], [42] into the standard LSTM to construct our
non-emotional layer. The non-emotional layer takes the images and the questions as input
to predict the non-emotional answers. It learns to attend to the pertinent regions of the
input image as it reads the input question tokens in a sequence. Specifically, the input
textual question Q = (q1, q2, . . . , qn) is first tokenized into words and these words are
then transformed into one-hot representations by function OH(·). And the input visual
image I is represented as a set of regional image features extracted from a pre-trained
CNN model. Now there are many advanced image feature extractors such as the ResNet
[18] and the bottom-up attention network [2] derived from Faster R-CNN [35]. For fair
comparison, we choose the same image feature extractor as AVQAN, i.e., the VGGNet
[36]. In the experimental part, we also replace the VGGNet with ResNet to extract more
fine-grained image features to further improve the performance of the models.

The embeddings of the image and the question tokens can be given as follows:

v0 =Wi[F (I)] + bi . (1)

vi =Ww[OH(ti)], i = 1, ..., n . (2)

where F(·) represents the CNN extractor which transforms the visual image I from the
pixel space to a 4096-dimensional feature representation. The Wi matrix and the Ww ma-
trix are used to embed the image feature and the question word embeddings into the same
dimension. Thus, we can concatenate the image feature and the question word embed-
dings and input them into the LSTM model one by one to infuse our attention mecha-
nism. In AVQAN, the embedding of the mood label is also added to the concatenation.
We think that in this kind of concatenation, the question-guided-attention and the mood-
guided-attention will interfere with each other. The update rules of our non-emotional
layer can be defined as follows:
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it = σ(Wvivt +Whiht−1 +Wrirt + bi) . (3)

ft = σ(Wvfvt +Whfht−1 +Wrf rt + bf ) . (4)

ot = σ(Wvovt +Whoht−1 +Wrort + bo) . (5)

gt = tanh(Wvgvt +Whght−1 +Wrgrt + bg) . (6)

ct = ft � ct−1 + it � gt . (7)

ht = ot � tanh(ct) . (8)

where σ(·) represents the sigmoid function and
⊙

is the element-wise multiplication
operator. The convolutional features and the previous hidden state determine the attention
term rt, which is the weighted average of the convolutional features and can be calculated
by the following formula:

et = wT
a tanh(Wheht−1 +WceC(I)) + ba . (9)

at = softmax(et) . (10)

rt = aTt C(I) . (11)

where the pre-trained model VGGNet extracts the 14×14 512-dimensional convolutional
image features which are represented by C(I), et represents the embedding of the pre-
vious hidden state ht−1, and at stands for a 196-dimensional vector of the image atten-
tion weights. The dimension of the regional image features is 512 and each image has
14×14 regions. All the weight matrices Ws, biases bs and the attention terms in our non-
emotional layer are learnable parameters. Finally, we relay the last LSTM hidden state to
the Softmax classifier to predict the non-emotional answers. Figure 1 shows the structure
of our non-emotional layer.

3.2. Emotional layer

Recent works have studied on utilizing CNN for visual attribute detection. In this paper,
we follow the study from [31] to build our emotional layer. The emotional layer takes
the visual images as input to predict mood labels for the images. In our settings, there
are two tasks: the prediction of non-emotional answers and the prediction of mood labels.
Both of these tasks share the same lower layers of the pre-trained CNN model VGGNet.
The pre-trained CNN model VGGNet takes a square pixel RGB image as input and is
composed of five successive convolutional layers C1. . . C5. After C5, there are three fully
connected layers FC6. . . FC8. These three fully connected layers compute Y6=σ(W6Y5 +
B6), Y7=σ(W7Y6 + B7) and Y8=ψ(W8Y7 + B8), where Yk denotes the output of the k-th
layer, Wk, Bk are the learnable parameters of the k-th layer, and σ(X)[i]=max(0,X[i]) and
ψ(X)[i]=eX[i]/ΣjeX[j] are the “ReLU” and “SoftMax” non-linear activation functions.

Although the emotional layer and the pre-trained CNN model VGGNet are both de-
signed to tackle the image classification task, the object labels of the two are quite differ-
ent. To solve this problem, we remove the output layer FC8 of the VGGNet and add an
adaptation layer formed by two fully connected layers FCA and FCB. FCA and FCB take
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Fig. 1. The structure of the non-emotional layer

the output vector Y7 of the layer FC7 as input to predict a mood label for the given image.
The calculation formula is as follows:

Ya = σ(WaY7 +Ba) . (12)

Yb = ψ(WbYa +Bb) . (13)

where Wa, Ba, Wb, Bb are learnable parameters. In our emotional layer, FC6 and FC7
have the same size 4096, FCA has size 2048 and FCB has a size equal to the number of
mood categories.

The layers C1. . . C5, FC6, and FC7 are pre-trained on the ImageNet and then trans-
ferred to our mood classification task and kept fixed. The two fully connected layers FCA
and FCB are trained on the preprocessed dataset. Figure 2 shows the architecture of the
emotional layer.

4. Experiments and results

In this section, we will describe how we construct the preprocessed dataset for our exper-
iments and perform the experimental evaluation.

4.1. The preprocessed dataset

Since there is no publicly available dataset suitable for VQA integrated with affective
computing, we use the same method as AVQAN to construct a preprocessed dataset,
which is composed of images of people, questions, answers and mood labels, based on the
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Fig. 2. Deep architecture of the emotional layer

Visual7w dataset [43] to complete our research. The Visual7w dataset is a subset of the Vi-
sual Genome QA dataset [20], which is one of the largest datasets designed for VQA with
1.7 million question/answer pairs. Besides, the Visual7w dataset uses the seven questions
(What, Where, When, Who, Why, How and Which) to systematically check the visual
and textual comprehension capabilities of a model. Note that, the 7th Which question cat-
egory is used to extend existing VQA setups to accommodate visual answers, which is
irrelevant to our study.

Specifically, we remove the images that are irrelevant to our task from the Visual7w
dataset, leaving only the images bearing at least one person, and label each image with
a mood label. It is worth noting that the Visual7w dataset is not a dataset dedicated to
mood classification tasks, and many images of it contain little or no emotional informa-
tion. Thus, we only obtain a limited set of samples. Considering that the corpus of the
question words is tiny, we set the questions in our preprocessed dataset relatively simple
to prevent the accuracy of the models from being too low. The 3 mood labels used are
happy, surprised, and neutral, for there are too few samples of other mood labels such as
sad. Among the total number of instances in the preprocessed dataset, 50% for training,
20% for validation, and 30% for testing. The ratios remain as they are in the AVQAN
paper to ensure a fair comparison.

4.2. Experiment setup

During the experiment, the non-emotional layer takes the visual images, and the textual
questions as input to predict non-emotional answers, and the emotional layer deals with
the emotional information contained in the input images to predict mood labels for the
images. If the mood label of an image is neutral, the emotional aspect is ignored in the
answer. We use backpropagation to train our model and choose cross-entropy as our loss
function. During validating, we use the validating split of the preprocessed dataset for
hyper-parameter selection and early stopping. During testing, the model takes the visual
images and textual questions as input, and we say the model is correct on a question if
it manages to output the correct mood label and the correct non-emotional answer. The
dimensions of the LSTM gates and memory cells are 512 in all the experiments, and the
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model is trained with Adam update rule [19]. In this paper, we evaluate the generated
answers in the open-ended setting. An alternative method to evaluate is to let the model
pick the correct mood label and the correct non-emotional answer among the candidates.

4.3. Answer categories

The answers generated by our proposed DAVQAN model can be classified as partially
wrong (A: having a wrong mood but the rest of the answer is correct or B: having a
correct mood but the rest of the answer is wrong), C: completely wrong, or D: completely
correct. Figure 3 shows several examples of the four categories and Table 1 shows the
accuracy of the four categories during testing.

 

Fig. 3. The four answer categories from DAVQAN

Indeed, visual attribute detection is one of the most challenging problems in computer
vision. As shown in Table 1, the performance of the emotional layer is not satisfactory.
Although there are only three types of mood labels, the accuracy can only reach 79.89%.
We think the reason that limits the performance of the emotional layer is that the pre-
processed dataset is not large enough. In future studies, we will construct a larger and
more suitable dataset for VQA integrated with affective computing to give full play to the
advantages of deep learning.

4.4. Comparison with original AVQAN

Table 1. Analyzing the overall percentage of answers in each category for the DAVQAN
model

category accuracy
A 12.50%
B 24.46%
C 7.61%
D 55.43%

Nelson et al. [34] indicate that the integration of affective computing in AVQAN has
no significant impact on the performance of ordinary VQA baseline models but rather
enriches the model’s understanding and analysis of images. In AVQAN, however, it is
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difficult to separate question-guided-attention from mood-guided-attention due to the con-
catenation of the question words and the mood labels. To solve this problem, we propose
DAVQAN and conduct a comparative experiment on our preprocessed dataset to compare
the performance of AVQAN and DAVQAN. To carry out the comparative experiment, we
set the emotional answers as supervision for AVQAN, and the non-emotional answers
and the mood labels as supervision for DAVQAN. To compare their structures fairly, the
two models not only use the same word embedding method, the same feature extractors
and the same attention mechanism, but also have the same parameter settings. Table 2
shows the results of AVQAN and DAVQAN on our preprocessed dataset. As observed in
Table 2, the overall performance of DAVQAN is 7.6% higher than AVQAN, which shows
the effectiveness of the proposed model. Due to the size limitation of the preprocessed
dataset, the corpus of question words is very limited. The question-guided-attention is not
effective enough to help the model answer questions correctly. Thus, we only count the
overall performance of the two models, and the accuracy of AVQAN is slightly poorer
than in Nelson et al. [34]. Besides, the imbalance of the preprocessed dataset may be an-
other factor. In future researches, we will expand the size of the dataset and add more
emotional information to the images of it to better train and evaluate the VQA models
integrated with affective computing.

Table 2. The results of AVQAN and DAVQAN on our preprocessed dataset

Model Accuracy
AVQAN 47.83%

DAVQAN 55.43%

4.5. AVQAN and DAVQAN with GloVe

Feature representation plays an important role in improving VQA performance. The AVQAN
and DAVQAN described above use the one-hot representation of words to embed the
question words. Now there are more advanced methods for word embedding, such as
GloVe [28], ELMo [29] and BERT [7]. In order to study whether the more advanced
word embedding methods can improve the performance of the two models, we use the
GloVe word embeddings to replace the one-hot representation of the question words and
carry out experimental verification. GloVe is a global log-bilinear regression model for the
unsupervised learning of word representations, which can directly obtain the global cor-
pus statistics. Instead of using individual context windows in a large corpus and the entire
sparse matrix, the GloVe model uses the nonzero elements in a word-word co-occurrence
matrix to train and construct a vector space with meaningful sub-structure thus efficiently
leverages statistical information.

Specifically, instead of using the one-hot encoding, we use the 300-D GloVe word
embeddings pre-trained on a large-scale corpus to transform the question words into 300-
dimensional word vectors. The following operations are the same as those in the orig-
inal AVQAN and DAVQAN models, that is, we embed the question word vectors and
the image features into the same dimension and then take them as input to the LSTM
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model to complete the subsequent experiments. Table 3 shows the results of AVQAN
and DAVQAN with GloVe. By comparing with Table 2, we can see that the accuracy of
AVQAN and DAVQAN models after using GloVe is improved by 3.8% and 2.72% respec-
tively, which proves that the improvement on the word embedding method can improve
the performance of VQA models integrated with affective computing.

Table 3. The results of AVQAN and DAVQAN with GloVe on our preprocessed dataset

Model Accuracy
AVQAN with GloVe 51.63%

DAVQAN with GloVe 58.15%

4.6. AVQAN and DAVQAN with ResNet

The AVQAN and DAVQAN described above use the VGGNet [36] to extract image fea-
tures. Now there are more advanced image feature extractors, such as the ResNet [18]
and the bottom-up attention network [2]. In this section, we use the ResNet to replace the
VGGNet to extract more fine-grained image features to study whether the more advanced
image feature extractors can improve the performance of the two models. The depth of
image representation is crucial to many visual tasks, but the deeper neural networks are
more difficult to train. The ResNet uses a residual learning framework to simplify the
training of networks that are substantially deeper than those used previously. Instead of
learning unreferenced functions, the ResNet explicitly reformulates the layers as learn-
ing residual functions with reference to the layer inputs. Empirical evidence shows that
these residual networks are easier to optimize and can obtain accuracy from significantly
increased depth to produce better results than previous networks.

The original AVQAN and DAVQAN models use VGGNet to extract image features
to infuse attention mechanism and complete mood detection. For simple and convincing
comparison, we only use the ResNet to replace the VGGNet used in the mood detector
to complete our experiments. The rest of the two models are the same as the correspond-
ing original model and the results are shown in Table 4. By comparing with Table 2,
we can see that the accuracy of AVQAN and DAVQAN models after using ResNet-50
is improved by 5.97% and 1.09% respectively, which proves that better image feature
extractors can improve the performance of VQA models integrated with affective com-
puting. We have also explored the deeper network ResNet-101 and use it to improve the
accuracy of AVQAN model to 54.35%. For DAVQAN, using ResNet-50 and ResNet-101
yielded similar results.

5. Conclusion and future work

The Affective Visual Question Answering Network (AVQAN) enriches the model’s un-
derstanding and analysis of VQA by making use of the emotional information contained
in the images while maintaining the same level of accuracy as ordinary VQA baseline
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Table 4. The results of AVQAN and DAVQAN with ResNet-50 on our preprocessed
dataset

Model Accuracy
AVQAN with ResNet-50 53.80%

DAVQAN with ResNet-50 56.52%

models. It is a fairly new task to integrate the emotional information contained in the im-
ages into VQA. In AVQAN, however, it is difficult to separate question-guided-attention
from mood-guided-attention due to the concatenation of the question words and the mood
labels. We think that this kind of concatenation harms the performance of the model. To
mitigate this effect, we propose the Double-Layer Affective Visual Question Answering
Network (DAVQAN), which divides the task of generating emotional answers in VQA
into two relatively simple subtasks, i.e., the generation of non-emotional answers and the
generation of mood labels, and uses two independent layers to tackle the two subtasks re-
spectively. Although the word embedding method, the feature extractors, and the attention
mechanism used by the two models are the same, the overall performance of DAVQAN
is 7.6% higher than that of AVQAN. We also introduce more advanced word embedding
method and more fine-grained image feature extractor into AVQAN and DAVQAN to fur-
ther improve their performance and obtain better results than their original models, which
proves that VQA integrated with affective computing can improve the performance of the
whole model by improving these two modules just like the general VQA. Furthermore,
the performance of the models is limited because the dataset used is not large enough
to give full play to the advantages of deep learning, and the emotional information con-
tained in the images of the dataset is not rich enough. In future work, we will construct
a larger, more specialized, and more balanced dataset to promote VQA tasks integrated
with affective computing.
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