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Abstract. This paper addresses the feature selection problem in learning to rank 

(LTR). We propose a graph-based feature selection method, named FS-SCPR, 

which comprises four steps: (i) use ranking information to assess the similarity 

between features and construct an undirected feature similarity graph; (ii) apply 

spectral clustering to cluster features using eigenvectors of matrices extracted 

from the graph; (iii) utilize biased PageRank to assign a relevance score with 

respect to the ranking problem to each feature by incorporating each feature’s 

ranking performance as preference to bias the PageRank computation; and (iv) 

apply optimization to select the feature from each cluster with both the highest 

relevance score and most information of the features in the cluster. We also 

develop a new LTR for information retrieval (IR) approach that first exploits FS-

SCPR as a preprocessor to determine discriminative and useful features and then 

employs Ranking SVM to derive a ranking model with the selected features. An 

evaluation, conducted using the LETOR benchmark datasets, demonstrated the 

competitive performance of our approach compared to representative feature 

selection methods and state-of-the-art LTR methods. 

Keywords: Feature selection, Feature similarity graph, Spectral clustering, Biased 

PageRank, Learning to rank, Information retrieval. 
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1. Introduction 

Ranking, a crucial task in information retrieval (IR), involves creating an ordered list of 

documents in which the relative order of documents represents their degree of relevance 

to the given query or their importance. In the last decade, learning to rank (LTR), which 

leverages machine learning to build effective ranking models, has received much 

attention. LTR automatically learns from the training data for tuning model parameters 

or by combining some features (or ranking models in context) into one more effective 

model [40]. Existing literature has proposed a variety of approaches, such as McRank 

[38], PRank [14], Ranking SVM [27][30], RankBoost [21], RankNet [8], FRank [62], 

AdaRank [67], SVM-MAP [72], and ListNet [9] (see Section 2.1). 

As LTR algorithms incorporate more and more features, feature selection for ranking 

is needed because high-dimensional features tend to include irrelevant and redundant 

features, which can deteriorate the models’ performance and make the models difficult 

to understand. High-dimensional features also lead to high computational costs in 

training and prediction. However, feature selection, which constructs and selects useful 

subsets of features for building a good predictor [25], reduces data dimensionality and 

eliminates redundant and irrelevant features. Thus, much work has been done in recent 

years to develop feature selection methods dedicated to LTR since the pioneering work 

of [22]. See Section 2.2 for an overview of feature selection methods for LTR. 

We propose a graph-based feature selection method for LTR, referred to as FS-SCPR 

(Feature Selection Using Spectral Clustering and Biased PageRank) (see Fig. 3). We 

then develop a new LTR for IR approach that exploits FS-SCPR as a preprocessor to 

determine discriminative and useful features. This approach employs Ranking SVM 

[27][30] to derive a ranking model with the selected features (see Fig. 2). FS-SCPR 

selects a subset of features that have minimum redundancy with each other and have 

maximum relevance to the ranking problem. To minimize redundancy, FS-SCPR drops 

redundant features that are grouped in the same cluster. To maximize relevance, FS-

SCPR greedily collects a representative feature with high relevance to the ranking 

problem from each cluster. 

FS-SCPR comprises four steps. First, it uses ranking information to assess the 

similarity between two features and construct an undirected feature similarity graph. 

Second, it applies spectral clustering [44] to cluster features based on eigenvectors of 

matrices derived from the feature similarity graph. Then, it utilizes biased PageRank 

[26] to create a relevance score with respect to the ranking problem for each feature by 

analyzing the link structure of the feature similarity graph while incorporating each 

feature’s ranking performance as preference to bias the PageRank computation. Finally, 

it applies optimization to select the feature from each cluster with both the highest 

relevance score and most information of the features in the cluster. 

The main contributions of this paper are twofold: 

1. We propose FS-SCPR, a graph-based feature selection method for LTR, to 

model feature relationships as a graph and leverage the graph model to select features 

using spectral clustering for redundancy minimization and biased PageRank for 

relevance analysis. In addition, we develop a new LTR for IR approach that integrates 

FS-SCPR and Ranking SVM. 

2. We perform extensive experiments to evaluate the performance and 

effectiveness of the proposed approach using the LETOR benchmark datasets. The 

experimental results suggest that FS-SCPR helps improve the ranking performance. We 
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show the performance gains of the proposed approach compared to other feature 

selection methods and state-of-the-art LTR methods. 

The remainder of this paper is structured as follows. Section 2 briefly reviews the 

related work. Section 3 elaborates the technical details of our LTR for IR approach, 

which incorporates FS-SCPR. Section 4 presents and discusses the experimental results. 

Finally, Section 5 concludes and points out possible directions for further work. 

2. Related Work 

2.1. LTR Methods 

An LTR task consists of training and testing processes (see Fig. 1). Suppose that F = 

{f1, ..., f|F|} is the feature set, Q = {q1, ..., q|Q|} is the query set, and D = {d1, ..., d|D|} is 

the document set. In the training process, the learning algorithm takes training data as 

inputs. In IR, the training data {(qi, dj), yi,j} comprise query-document pairs, each pair 

(qi, dj)  Q  D is associated with a relevance label yi,j that indicates the relationship 

between qi and dj. Each query-document pair is modeled by a vector in an |F|-

dimensional feature space, and each component of the vector denotes the degree of 

relevance of document dj to query qi respecting feature fk. The training process aims to 

learn a ranking model (or function) f from the training data and f(qi, dj) is assumed to 

assign the “true” relevance judgment for qi and dj. In the testing process, the model f is 

utilized to decide the relevance between a new query q and each document di in D. 

Then, sorting documents based on the relevance judgments constructs the document 

ranking list for query q. 

 

Fig. 1. Framework of LTR for IR [69] 

Existing literature has explored three categories of LTR methods [40]: pointwise 

approaches, pairwise approaches, and listwise approaches.‡ In pointwise approaches, the 

relevance label associated with each instance (qi, dj) is either a class of relevance or a 

                                                           
‡ See [40] which provides a comprehensive survey of the literature. 



144           Jen-Yuan Yeh and Cheng-Jung Tsai 

relevance score (ordinal or numerical). The goal is to find a model that assigns each 

instance a class or a relevance score as close as possible to the instance’s true class or 

relevance score. There are three main streams: classification-based methods (e.g., [43] 

and McRank [38]) and ordinal regression-based methods (e.g., [55] and PRank [14]) for 

dealing with classes of relevance; and regression-based methods (e.g., 13) for tackling a 

relevance score. The pairwise approach is based on learning pairwise preferences. This 

approach views a pair of instances, (qi, dj) and (qi, dk), as a new single instance and 

learns a binary classifier that can predict the preference between dj and dk for qi. 

Example algorithms include Ranking SVM (or RankSVM for short) [27][30], 

RankBoost [21], RankNet [8], LambdaRank [7], and FRank [62]. The listwise approach 

takes the document ranking lists as instances and builds a model that can directly 

produce the ordered list (or permutation) of the documents according to a score assigned 

to every document. Most methods of this type focus on the direct optimization of 

ranking performance (e.g., AdaRank [67], SVM-MAP [72], SoftRank [61], and 

PermuRank [68]) or on permutations count (e.g., ListNet [9], ListMLE [66], 

RankCosine [52], and BoltzRank [63]). 

2.2. Feature Selection Methods for LTR 

Three general categories of feature selection methods for LTR are filter, wrapper, and 

embedded approaches. A filter approach performs feature ranking based on a relevance 

criterion. As a preprocessing step, it selects subsets of features independently of the 

chosen LTR algorithm. Feature selection for ranking was pioneered in [22], which 

addressed a multi-objective optimization problem in greedily finding a feature subset 

with minimum total similarity scores and maximum total importance scores. Two 

method variants, GAS-E and GAS-L, were proposed that utilize performance measures 

and loss functions in ranking, respectively, to assess feature importance. A hierarchical 

feature selection strategy was developed in [28] by which clusters of features are 

constructed and the best performing feature is selected from each cluster. RankFilter 

[71] extends Relief [32] to compute feature weights from multi-level relevance 

judgments. In [24], the authors selected the subset of features according to their 

expected divergence over relevance classes and their importance derived from 

evaluation scores. The work in [42] exploited greedy result diversification techniques, 

including maximal marginal relevance (MMR), max-sum dispersion (MSD), and 

modern portfolio theory (MPT). In [56], the subset of features was selected via 

minimum redundancy maximum relevance (mRMR) based on their importance and 

similarity. [23] devised several algorithms, including NGAS that greedily selects the 

subset of features by minimizing similarity and maximizing relevance, XGAS (an 

extension of NGAS) that considers more features at each selection iteration, and HCAS 

that selects the feature with the largest relevance score from each feature cluster, built 

through hierarchical clustering. In [49], an architecture-agnostic neural feature selection 

approach was proposed based on a neural LTR model. The approach consists of neural 

model training, feature group mining based on saliency map, and feature selection based 

on hierarchical clustering. 

With an LTR algorithm as a “black box,” a wrapper approach scores subsets of 

features according to their ranking performance. In [28], the authors proposed a 
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hierarchical feature selection strategy that builds feature clusters with a linear ranking 

model trained per cluster to select the feature of the highest model weight. Methods 

using boosted regression trees were explored in [47], including two greedy approaches 

(selecting the features with the highest relative importance as computed by boosted trees 

and discounting importance by feature similarity) and a randomized approach with 

feature-importance-based backward elimination. RankWrapper [71] extends Relief [32] 

to compute the feature weights from relative orderings. The best first search was used in 

[15] to greedily partition features into subsets and coordinate ascent was then used to 

combine features in each subset into one single feature. Greedy RankRLS [45] selects 

the feature subset of the maximal ranking performance for RankRLS [46] based on 

greedy forward selection and leave-query-out cross-validation. In [39], language 

modeling smoothing approaches with different parameters were proposed for selecting 

the ranking features. [16] considered a multi-objective Pareto-efficient method that 

optimizes both risk-sensitive evaluation and ranking performance. MOFSRank [11] is a 

multi-objective evolutionary algorithm consisting of an instance selection strategy, a 

multi-objective feature selection algorithm, and an ensemble strategy. [17] adopted 

forward stepwise selection and chose Akaike’s information criterion [1] to decide which 

feature to be added to the selected subset. In [4], a subset of features was viewed as a 

state in the search space, and simulated annealing was utilized to find the best subset of 

features. 

In an embedded approach, the feature selection procedure is integrated into the LTR 

algorithm. SuperSelRank [33] is a general framework for sparse LTR based on a 

hierarchical Bayesian model. RSRank [59] performs 𝓁1 regularization using truncated 

gradient descent to achieve sparsity in ranking models. FenchelRank [34], a primal-dual 

algorithm for sparse LTR, minimizes the 𝓁1 regularized pairwise ranking loss while 

simultaneously conducting model selection. SparseRank [35] is a gradient descent 

algorithm for minimizing the ranking errors with the 𝓁1 regularization. FSMRank [36] is 

a one-stage method for solving a joint convex optimization problem in which the 

ranking errors are minimized and meanwhile feature selection is conducted. A general 

framework using SVM (support vector machines) with sparse regularizations to handle 

nonconvex penalties was presented in [37]. EGRank [18] uses exponentiated gradient 

updates to solve a convex optimization problem on a sparsity-promoting 𝓁1 constraint 

and a pairwise ranking loss. In [53], a deep neural LTR model was provided. The 

authors used group 𝓁1 regularization to optimize the weights of a neural network, select 

the relevant features with active neurons at the input layer, and remove inactive neurons 

from hidden layers. The work in [19] incorporated the 𝓁1 regularized sparse term into 

the cost-sensitive ListMLE model proposed in [41], and an efficient proximal gradient 

descent learning method with adaptive Lipschitz constant was applied to obtain the 

global optimal parameters of the model. 

Feature extraction is another technique for dimension reduction. In contrast to feature 

selection which selects a subset of the original features, feature extraction creates a 

small set of new features to represent the input data by merging or transforming the 

original features. LifeRank [48], for instance, views the input dataset as a matrix and 

constructs a new low-rank dataset with the projection of a transformation matrix that is 

optimized for the original dataset by minimizing the pairwise ranking loss. More 

examples of feature extraction methods for LTR can refer to [2] and [20]. 
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3. Proposed Method 

FS-SCPR identifies a subset of features that can accurately represent the data, reduce 

the complexity of the feature space, and enhance performance in ranking problems. This 

study develops a new LTR for IR approach by extending the framework of LTR for IR 

in Fig. 1 with the proposed feature selection method, FS-SCPR. See Fig. 2. 

 

Fig. 2. The proposed LTR for IR approach that incorporates FS-SCPR 

3.1. Relevance Labeling 

Relevance labeling, which is often done by human annotators, assigns each instance a 

proper relevance judgment, which plays the role of answers (or observations) that guide 

the learning algorithm to learn an effective ranking model. Possible relevance 

judgments include (1) a class; (2) an ordinal rating; (3) a ranking order; and (4) a 

relevance score [69]. For the labeling scheme, this study adopts an n-star rating. To be 

specific, each relevance label yi,j  {0, 1, …, n1}, 0 indicates not relevant, n1 means 

definitely relevant, and higher yi,j indicates higher relevance. 

3.2. Feature Extraction 

Feature extraction transforms the data into numerical values of ad hoc features. Let fvk 

be the feature extraction function for feature fk, and wi,j,k = fvk(qi, dj) denote the degree 

of relevance of document dj to query qi respecting feature fk. The value of wi,j,k is 

normalized via query-level min-max normalization as follows: 

, ,

fv ( , ) min{fv ( , )}

max{fv ( , )} min{fv ( , )}

k i j k i l

i j k

k i l k i l

q d q d
w

q d q d





, 

(1) 

where all dl  D, min{} and max{} respectively stand for the minimum and maximum 

values of fvk(qi, dl). 
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The extracted features in this study cover low-level content features (e.g., the 

occurrences of a query term in a document and the document length), high-level content 

features (e.g., BM25 [54] and LMIR [73]), and other features (e.g., the number of out- 

or in-links of a webpage and the PageRank centrality [6] of a webpage). See Section 

4.1. 

3.3. Proposed Feature Selection Method, FS-SCPR 

The proposed feature selection method, FS-SCPR, is a filter approach. It targets at 

selecting a subset of features that have minimum redundancy with each other and have 

maximum relevance to the ranking problem. To minimize redundancy, FS-SCPR drops 

redundant features, which are grouped into the same cluster. To maximize relevance, 

FS-SCPR greedily collects a representative feature with high relevance to the ranking 

problem from each cluster. To produce a feature subset F* (F*  F), the process flow of 

FS-SCPR (see Fig. 3) involves the steps below. 

 

Fig. 3. Process flow of FS-SCPR 

 

1. Feature similarity graph construction. Features are modeled as an undirected 

feature similarity graph. A vertex refers to a feature and an edge indicates that 

the corresponding features relate to each other. The pairwise feature similarity 

is measured relying on the correlation of two features’ ranking results. 

2. Feature clustering using spectral clustering. To find redundant features, 

similar features are grouped into clusters. This study applies spectral clustering 

[44] that groups data based on eigenvectors of matrices extracted from the 

feature similarity graph. 

3. Feature relevance analysis using biased PageRank. The PageRank [6] 

centrality is utilized to capture the relative “importance” of features by 

analyzing the link structure of the feature similarity graph. This study further 

incorporates the ranking performance of each feature as preference to bias the 
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PageRank computation, giving each feature a more accurate relevance score 

with respect to the ranking problem. 

4. Representative feature subset selection. Representative features are selected 

from each cluster to form the feature subset F*. For each cluster, this study 

selects the feature that not only has the highest relevance score but also 

contains most information of the features in the cluster. 

With the feature subset F* comprising an |F*|-dimensional space, every query-

document pair (qi, dj) is depicted as a vector in the reduced feature space. Every 

component of the vector is obtained using Eq. (1). 

Feature Similarity Graph Construction 

Given a query q, there are |F| document ranking lists {Rq,1, …, Rq,|F|}. Here, Rq,i is 

established by sorting (in descending order) the retrieved documents Dq according to 

their feature values regarding feature fi. Widely-used non-parametric measures of 

ordinal association, e.g., Spearman’s rho (ρ) [57] and Kendall’s tau (τ) [31], can assess 

the degree of correlation (or similarity) between two ranking lists. This study refers to 

the correlation between two document ranking lists as the similarity between two 

features with respect to the given query. 

This study chooses Kendall’s τ. For two document ranking lists Rq,i and Rq,j, the 

Kendall’s τ value is computed as 

, ,

, ,

|{( , ) |   and } |
( , )

|{( , )} |

q i q js t s R t s R t

q i q j

s t

d d d d d d
R R

d d
  , 

(2) 

where ds, dt  Dq, (ds, dt) represents a document pair, 
,q is R td d  denotes that dt is 

ranked ahead of ds in Rq,i. For a set of queries, the overall similarity between features fi 

and fj is defined in Eq. (3) as the average of their Kendall’s τ values for all the queries: 

, ,

1
( , ) ( , )

| |
i j q i q jq Q

sim f f R R
Q




  . 
(3) 

Given the pairwise similarities between features, this study thus represents features 

as an undirected similarity graph G = (V, E). A vertex denotes a feature, i.e., V = {f1, ..., 

f|F|}, and E  V  V. Two vertices fi and fj are connected if sim(fi, fj)  §, and the edge 

weight is given by sim(fi, fj). The graph G can be represented by an adjacency matrix W 

= [wi,j]i,j=1, …,|F|, and each element wi,j is denoted by 

,
 

( , )   if  and ( )

0                 otherwise

i j i j

i j

sim f f i j sim f , f
w

 
 


. 
(4) 

Note that the matrix W is symmetric since wi,j = wj,i holds. 

                                                           
§ This study empirically sets  to 0.1. 
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Feature Clustering Using Spectral Clustering 

To cluster features into k subsets, this study applies the normalized spectral clustering 

algorithm in [44]. The algorithm uses k eigenvectors of a normalized graph Laplacian 

simultaneously for spectral graph partitioning, as the eigenvectors carry clustering 

information. By the spectral graph theory [12], the normalized graph Laplacian matrix L 

is formulated as 

1/2 1/2 1/2 1/2( )L A A W A I A WA       , (5) 

where W is the aforementioned adjacency matrix, I is the unit matrix, and A = 

diag(a1, …, a|F|) is the diagonal matrix whose every diagonal element 
| |

,

F

i i jj
a w . 

Since both matrices W and A are symmetric real matrices, L is also symmetric and real. 

Additionally, L has |F| eigenvalues, 1, …, |F|, and 1 | |0 ... F    . 

In our problem, the inputs contain the feature set F accompanying the matrix W and 

the number k of clusters to build. The output is the set of clusters of features {C1, …, 

Ck}. Algorithm 1 states the steps of the normalized spectral clustering algorithm. 

 

Algorithm 1 Normalized Spectral Clustering [44] 

Input: The feature set F = {f1, …, f|F|} accompanying the matrix W and the number k of 

clusters to build. 

Output: The feature clusters {C1, …, Ck}.  fi,  j s.t. fi  Cj. 

Procedure: 

1. Compute the matrix L = I  A1/2WA1/2. 

2. Build the matrix X = [x1 x2 … xk]  
| |F k

 whose columns x1, …, xk are the k 

smallest eigenvectors of L. 

3. Build from X the matrix Y  
| |F k

 whose every element 
,

,
2

,

i j

i j

i jj

x
y

x



. 

4. Let Y’s every row be a data point in 
k

, and build k clusters via bisecting K-means. 

5. Assign feature fi to cluster Cj if Y’s row i is in cluster Cj. 

There are two points to note. First, [44] constructs the matrix I  L in Step 1, which 

only changes the eigenvalues (from i to 1  i) and not the eigenvectors. Thus, in Step 

2, [44] finds the k largest eigenvectors (referring to the k largest eigenvalues), we 

instead consider the k smallest eigenvectors (referring to the k smallest eigenvalues). 

Second, [44] uses K-means in Step 4. This study utilizes bisecting K-means [58] 

because it in practice produces better-quality clustering results (see [60]). 

The trick of spectral clustering is to embed the data in a low-dimensional space 

wherein the data’s cluster properties become prominent. The method’s success is mainly 

owing to that no assumptions are made on the form of the clusters and their statistics 

[64] (as opposed to, for example, K-means, where the clusters are convex sets). Thus, 

spectral clustering very often outperforms conventional clustering algorithms. 

Additionally, spectral clustering is simple to implement, can be solved efficiently by 

standard linear algebra software, is efficient to obtain near-optimal partitions, and is 

reasonably fast for large sparse data sets [64]. Furthermore, spectral clustering does not 

necessarily need the data in the embedded form (i.e., featured objects) [65]. The data 

can be represented as relationships between objects, as in this work features are 



150           Jen-Yuan Yeh and Cheng-Jung Tsai 

modeled by a feature similarity graph. For these reasons, we choose spectral clustering 

to obtain feature clusters instead of conventional clustering methods. 

Feature Relevance Analysis Using Biased PageRank 

This study assesses feature relevance to the ranking problem via biased PageRank [26]. 

Given a feature similarity graph G = (V, E), each vertex (i.e., feature in this context) is 

scored by applying biased PageRank on the graph. The score s for a vertex fi is assigned 

by the recursive equation 

,

( ) ,

( )

( ) (1 ) ( )  ( )
j i

k j

i j

i i j

f M f j k

f M f

w
s f p f s f

w
 





     


, 
(6) 

where  is a damping factor (0 ≤  < 1)**, p(fi) is the preference weight†† assigned to 

vertex fi, and M(fi) is the set of those vertices that have links to the vertex fi. 

The feature relevance analysis approach iterates until convergence is achieved. When 

iterations stop, a score is associated with every vertex as its feature relevance. In each 

iteration, function p() introduces additional preferences to the appropriate vertices. By 

selecting the appropriate preference weights, the PageRank computation can be made to 

prefer certain vertices. This study assigns larger preference weights to those features 

that have better ranking performance. The idea is to incorporate ranking performance 

into the biased PageRank to better capture feature relevance. This study uses MAP (see 

Section 4.2 for its definition) for p(). Note that the preference weights of features are 

normalized by 
( )

( )

i

jj

p f

p f
 before they are used in Eq. (6). 

Representative Feature Subset Selection 

After feature clustering, redundant features are grouped into the same cluster. 

Additionally, each feature is scored for its relevance to the ranking problem after feature 

relevance analysis. This study selects one representative feature from each cluster, 

according to which feature that not only has the highest relevance score but also 

contains most information of the features in the cluster. All the other features in the 

cluster are discarded. Thus, the resulting feature subset contains features that have 

minimum redundancy with each other and have maximum relevance to the ranking 

problem. 

Algorithm 2 depicts the steps of our feature subset selection approach. In Step 2.1, 

this study measures the similarity between features using the matrix Y in Algorithm 1. 

To determine which feature in a cluster has the highest relevance score and contains 

most information of the other features, we deal with the multi-objective problem using a 

linear combination of a feature’s relevance score and its sum of pairwise similarities to 

the other features, as shown in Step 2.2. 

                                                           
** This study sets  to 0.85 according to [6]. 
†† In the original PageRank [6], each vertex is weighted with an equal preference of 1/|V|. 
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Algorithm 2 Representative Feature Subset Selection 

Input: The feature clusters {C1, …, Ck}. 

Output: The selected feature subset F*. 

Procedure: 

1. Set F* to an empty set, F* = . 

2. For each cluster Ci, do: 

2.1. For each feature f in Ci, compute SSim(f), i.e., the sum of its pairwise 

similarities to the other features in Ci. 

2.2. From Ci, find feature f that has not only the largest SSim(f) but also the highest 

feature relevance, as scored by Eq. (6). That is, 

( )
arg max 0.5 ( ) 0.5

| | 1i

SSim f
f s f

C

 
    

 
. Note that SSim(f) is normalized 

by |Ci|  1. 

2.3. Assign feature f to F*, i.e.,  * *F fF . 

3.4. Ranking Model Learning and Prediction 

This study employs Ranking SVM [27][30] to derive a ranking model since previous 

studies have demonstrated its feasibility and effectiveness. Ranking SVM views the 

LTR problem as binary classification on pairs of documents and applies SVM (support 

vector machines) to solve the classification problem. In other words, Ranking SVM 

targets binary ordering relations between documents with respect to queries and learns, 

based on parts of the observations of the target (or optimal) ranking lists, a model that 

minimizes the count of discordant pairs. Considering the class of linear ranking 

functions, the following optimization problem is solved in Ranking SVM [30]: 

, ,

*

, ,

, ,

1
: ξ

2

 :  

     , ( , ) : ( , ) ( , ) 1 ξ

     : ξ 0

i j q

i j q i j i j q

i j q

minimize w w C

subject to

q d d r w q d w q d

i j q

 

       

   



. 

(7) 

Here, the weight vector w  is arranged in learning; C trades-off between margin and 

training error; , ,ξi j q  is a non-negative slack variable; *

qr  is the target ranking list, given 

query q; and ( , )iq d  is a feature vector that depicts the relevance of document di to 

query q in terms of features. 

For all the queries, pairs of instances and their relative preferences are inputted into 

Ranking SVM for training. Note that each instance is modeled as a vector in the reduced 

feature space (see Section 3.3). Regarding ranking prediction, the learned ranking model 

decides for a new query whether pairs of documents are in concordant order. The final 

document ranking list can thus be established according to the outputted binary ordering 

relations between documents. 
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4. Evaluation 

4.1. Datasets 

To evaluate the performance and effectiveness of the proposed LTR for IR approach, 

we conducted experiments on the publicly available LETOR‡‡ benchmark collections. 

We selected the following four datasets: HP2004, NP2004, OHSUMED, and MQ2008. 

The first three datasets are from LETOR 3.0 and the last one is from LETOR 4.0. The 

datasets come as query-document pairs. A pair contains a feature vector and its 

relevance judgment. For cross-validation, each dataset is split into five subsets. In each 

fold, three subsets are used for learning, one subset for validation, and the other one for 

testing. See [51] and [50] for details on the selection of document corpora, the sampling 

of documents, the extraction of features and meta-information, and the finalization of 

datasets. Table 1 depicts the statistics of the datasets. Table 2 illustrates some sample 

data; each row stands for a query-document pair. 

 

 

Table 1. Statistics of the datasets. For HP2004 and NP2004, the relevance judgments are on two 

levels (relevant and not relevant); for OHSUMED and MQ2008, the relevance judgments are on 

three levels (definitely relevant, possibly relevant, and not relevant) 

 HP2004 NP2004 OHSUMED MQ2008 

No. of queries 75 75 106 784 

No. of query-document 

pairs (i.e., instances) 

74,409 73,834 16,140 15,211 

No. of features 64 64 45 46 

Relevance levels 2 2 3 3 

Table 2. Sample data excerpted from MQ2008 

Label Query f1 … f46 Note 

2 qid:10032 1:0.056537 … 46:0.076923 #doc: GX029-35-

5894638 

0 qid:10032 1:0.279152 … 46:1.000000 #doc: GX030-77-

6315042 

0 qid:10032 1:0.130742 … 46:1.000000 #doc: GX140-98-

13566007 

1 qid:10032 1:0.593640 … 46:0.000000 #doc: GX256-43-

0740276 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

4.2. Evaluation Measures 

We use two common measures, namely, MAP (mean average precision) [5] and NDCG 

(normalized discounted cumulative gain) [29], as the evaluation measures. 

                                                           
‡‡ https://www.microsoft.com/en-us/research/project/letor-learning-rank-information-retrieval/. 
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Eq. (8) denotes the average precision (AvgP) for a query, and for all the queries the 

mean of their average precisions is the MAP. 

1
P@ ( )

AvgP
# of relevant documents for the query

N

n
n rel n







, 

(8) 

In the equation, N is the number of retrieved documents, P@n (namely, precision at 

position n) is the fraction of relevant documents among the top n results, and rel(n)  

{0, 1} implies that the document at position n is relevant or not. 

For a query’s ranking list, the NDCG at position n is calculated by 

( )
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in which Zn is a normalization parameter that allows producing an NDCG of 1.0 for the 

perfect list, and r(j) means the rating of the document at position j. The NDCG@n 

values for all queries are averaged and reported. 

We present the results of NDCG@1, NDCG@3, NDCG@5, NDCG@10, and MAP 

for comparisons. 

4.3. Experimental Setup 

We conducted experiments to verify whether FS-SCPR helps improve the ranking 

performance and to understand whether FS-SCPR outperforms other baseline feature 

selection methods and state-of-the-art LTR approaches. Five-fold cross-validation is 

conducted, and all the presented results are the average performance on the testing set. 

In each fold, we use the training set to select features, and train a ranking model from 

the training set with the selected features. The validation set is utilized for parameter 

tuning and model selection. The above two steps are repeated to identify the best 

ranking model. Then, the obtained ranking model is evaluated on the testing set. 

For simplicity, we denote the proposed approach as FS-SCPR and use “feature 

selection” and “feature selection for LTR” interchangeably for the remainder of this 

paper. Additionally, for efficient learning, we use RankSVM-Primal [10] (an efficient 

version of Ranking SVM) instead of Ranking SVM. 

4.4. Baseline Algorithms 

We tested two groups of baseline algorithms.§§ The first group tested LTR methods 

without using feature selection. This study selects AdaRank-MAP (a listwise method) 

[67], RankSVM-Primal (a pairwise method) [10], ListNet (a listwise method) [9], and 

RankBoost (a pairwise method) [21]. AdaRank-MAP, RankSVM-Primal, and ListNet 

learn linear ranking models, while RankBoost learns a non-linear ranking model. 

The second group tested feature selection methods, including GAS-E (a filter method) 

                                                           
§§ The presented results of the baselines are cited from the LETOR datasets and the original papers. 
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[22], FSMSVM (a wrapper method) [36], and FSMRank (an embedded method) [36]. 

See Section 2.2 for a brief description of these methods. As the proposed approach 

adopts RankSVM-Primal as the learning algorithm, the implementation of GAS-E in 

this work also chooses RankSVM-Primal (instead of Ranking SVM or RankNet used in 

[22]). As a simple feature selection method, FSMSVM selects top features with large 

weights according to their weights in a pre-trained model (which in [36] is learned by 

FSMRank) and uses the selected features to learn a ranking model by RankSVM-Primal. 

4.5. Results 

Comparison with RankSVM-Primal 

This experiment compares the ranking performance of FS-SCPR with RankSVM-

Primal. FS-SCPR considers only the selected features, while RankSVM-Primal uses all 

the features. The objective of this experiment is to empirically justify whether the 

proposed feature selection method helps enhance the performance of ranking 

predictions. Tables 3–6 present the results on four datasets. The row named “Imp.” in 

each table denotes the relative improvement*** of FS-SCPR versus RankSVM-Primal. 

Table 3. Ranking performance of FS-SCPR and RankSVM-Primal on HP2004 (best performance 

bold-faced) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.6337 0.7590 0.7893 0.8179 0.7216 

RankSVM-

Primal 

0.5733 0.7129 0.7528 0.7720 0.6712 

Imp. +10.54% +6.47% +4.85% +5.95% +7.51% 

Table 4. Ranking performance of FS-SCPR and RankSVM-Primal on NP2004 (best performance 

bold-faced) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5527 0.7603 0.7842 0.8159 0.6809 

RankSVM-

Primal 

0.5600 0.7236 0.7719 0.7950 0.6755 

Imp. 1.3% +5.07% +1.59% +2.63% +0.8% 

Table 5. Ranking performance of FS-SCPR and RankSVM-Primal on OHSUMED (best 

performance bold-faced) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5459 0.4959 0.4785 0.4584 0.4491 

RankSVM-

Primal 

0.5460 0.4855 0.4689 0.4504 0.4446 

Imp. 0.02% +2.14% +2.05% +1.78% +1.01% 

                                                           
*** When b is compared to a, the relative improvement is calculated as (b  a) / a  100%. 
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Table 6. Ranking performance of FS-SCPR and RankSVM-Primal on MQ2008 (best 

performance bold-faced) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.3692 0.4375 0.4770 0.2318 0.4776 

RankSVM-

Primal 

0.3725 0.4333 0.4765 0.2309 0.4744 

Imp. 0.89% +0.97% +0.1% 0.39% +0.67% 

 

The results of FS-SCPR are significantly boosted by the proposed feature selection 

method. Looking at NDCG@10, the performance of FS-SCPR is enhanced by 5.95% on 

HP2004, by 2.63% on NP2004, by 1.78% on OHSUMED, and by 0.39% on MQ2008. 

In terms of MAP, FS-SCPR has relative increases of 7.51% on HP2004, 0.8% on 

NP2004, 1.01% on OHSUMED, and 0.67% on MQ2008. Similar enhancements can be 

seen in other measures. For each dataset, the maximum enhancements over distinct 

measures are increases of 10.54% in NDCG@1 on HP2004, 5.07% in NDCG@3 on 

NP2004, 2.14% in NDCG@3 on OHSUMED, and 0.97% in NDCG@3 on MQ2008. 

However, there are few exceptions, including the NDCG@1 scores on NP2004, 

OHSUMED, and MQ2008. In these cases, the performance of FS-SCPR deteriorated by 

1.3%, 0.02%, and 0.89%, respectively, compared to the performance of RankSVM-

Primal. 

Comparison with Feature Selection Methods 

This experiment focuses on understanding how effectively FS-SCPR performs 

compared to other feature selection methods. Tables 7–10 present the comparison 

results. In each column, the methods are ranked by their scores, and the rankings are 

shown in parentheses. 

First, FS-SCPR is observed in most cases to have superior performance to GAS-E (a 

filter method) and FSMSVM (a wrapper method). The few exceptions are the cases of 

NDCG@1 on NP2004 and OHSUMED and the case of NDCG@5 on MQ2008. Taking 

NDCG@10 as an example, FS-SCPR outperforms GAS-E by 4.2%, 2.53%, 1.82%, and 

1.22% on HP2004, NP2004, OHSUMED, and MQ2008, respectively. Compared to 

FSMSVM, FS-SCPR has performance gains of 3.81%, 1.23%, 3.08%, and 2.98% in 

NDCG@10 on HP2004, NP2004, OHSUMED, and MQ2008, respectively. Regarding 

MAP, FS-SCPR outperforms GAS-E by 4.2%, 1.08%, 0.36%, and 0.19% on HP2004, 

NP2004, OHSUMED, and MQ2008, respectively. Compared to FSMSVM, FS-SCPR 

has performance gains of 2.88%, 0.9%, 1.13%, and 0.67% in MAP on HP2004, 

NP2004, OHSUMED, and MQ2008, respectively. 

Second, compared to FSMRank (an embedded method), FS-SCPR performs 

competitively only in a few cases. For instance, it outperforms FSMRank in MAP on 

HP2004 and MQ2008 with increases of 0.15% and 0.1%, respectively. As another 

example, its NDCG@1 scores on the four datasets are superior to those of FSMRank 

with increases of 3.33% on HP2004, 1.1% on NP2004, 1.21% on OHSUMED, and 

0.16% on MQ2008. The comparison results in most cases demonstrate that FS-SCPR 

does not perform better than FSMRank, especially in NDCG@3, NDCG@5, and 

NDCG@10. These observations are not unexpected since an embedded method that 
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conducts feature selection inside the LTR algorithm generally tends to have superior 

performance to a filter method that selects features independently of the LTR algorithm. 

Finally, from an overall perspective, the experimental results show that FS-SCPR 

practically performs well. In terms of MAP, FS-SCPR ranks first on HP2004 and 

MQ2008 and ranks second on NP2004 and OHSUMED. Considering NDCG@10, FS-

SCPR is the second best performer on the four datasets. To further identify which 

method demonstrates the best results in various measures on different datasets, Table 11 

presents a unified ranking of the methods. According to [3], the unified rank of a 

method is defined by 

1

( 1)M r

r

M r R
Rank

M

  
 , 

(10) 

in which M is the number of compared methods and Rr is the count the method appears 

in the r-th rank. From Table 11, a unified ranking of the methods is obtained: FSMRank 

 FS-SCPR  GAS-E  FSMSVM, in which the proposed FS-SCPR ranks second. 

Table 7. Ranking performance of FS-SCPR and other feature selection for LTR methods on 

HP2004 (best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.6337 (1) 0.7590 (2) 0.7893 (2) 0.8179 (2) 0.7216 (1) 

GAS-E 0.6133 (3) 0.7280 (3) 0.7679 (3) 0.7849 (4) 0.6925 (4) 

FSMSVM 0.6267 (2) 0.7136 (4) 0.7635 (4) 0.7879 (3) 0.7014 (3) 

FSMRank 0.6133 (3) 0.8070 (1) 0.8187 (1) 0.8383 (1) 0.7205 (2) 

Table 8. Ranking performance of FS-SCPR and other feature selection for LTR methods on 

NP2004 (best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5527 (2) 0.7603 (2) 0.7842 (2) 0.8159 (2) 0.6809 (2) 

GAS-E 0.5600 (1) 0.7236 (4) 0.7617 (4) 0.7958 (4) 0.6736 (4) 

FSMSVM 0.5467 (3) 0.7538 (3) 0.7830 (3) 0.8060 (3) 0.6748 (3) 

FSMRank 0.5467 (3) 0.7784 (1) 0.8000 (1) 0.8279 (1) 0.6837 (1) 

Table 9. Ranking performance of FS-SCPR and other feature selection for LTR methods on 

OHSUMED (best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5459 (3) 0.4959 (2) 0.4785 (2) 0.4584 (2) 0.4491 (2) 

GAS-E 0.5547 (1) 0.4794 (3) 0.4720 (3) 0.4502 (3) 0.4475 (3) 

FSMSVM 0.5492 (2) 0.4690 (4) 0.4640 (4) 0.4447 (4) 0.4441 (4) 

FSMRank 0.5394 (4) 0.5013 (1) 0.4824 (1) 0.4613 (1) 0.4498 (1) 

Table 10. Ranking performance of FS-SCPR and other feature selection for LTR methods on 

MQ2008 (best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.3692 (1) 0.4375 (2) 0.4770 (3) 0.2318 (2) 0.4776 (1) 

GAS-E 0.3601 (4) 0.4345 (3) 0.4772 (2) 0.2290 (3) 0.4767 (3) 

FSMSVM 0.3652 (3) 0.4278 (4) 0.4701 (4) 0.2251 (4) 0.4744 (4) 
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 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FSMRank 0.3686 (2) 0.4399 (1) 0.4791 (1) 0.2327 (1) 0.4771 (2) 

Table 11. Unified ranking of methods (the higher Rank value, the better) 

 Rr = 1 Rr = 2 Rr = 3 Rr = 4 Rank 

FS-SCPR 4 14 2 0 15.5 

GAS-E 2 1 10 7 9.5 

FSMSVM 0 2 8 10 8 

FSMRank 14 3 2 1 17.5 

Comparison with State-of-the-Art LTR Methods 

This experiment compares the ranking performance of FS-SCPR with other state-of-the-

art LTR methods (all without using feature selection). Tables 12–15 present the results. 

In each column, the methods are ranked by their scores, and the rankings are shown in 

parentheses. 

Table 12. Ranking performance of FS-SCPR and other state-of-the-art LTR methods on HP2004 

(best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.6337 (1) 0.7590 (2) 0.7893 (2) 0.8179 (2) 0.7216 (2) 

AdaRank-

MAP 

0.6133 (2) 0.8164 (1) 0.8277 (1) 0.8328 (1) 0.7219 (1) 

RankSVM-

Primal 

0.5733 (4) 0.7129 (4) 0.7528 (4) 0.7720 (4) 0.6712 (4) 

ListNet 0.6000 (3) 0.7213 (3) 0.7694 (3) 0.7845 (3) 0.6899 (3) 

RankBoost 0.5067 (5) 0.6989 (5) 0.7211 (5) 0.7428 (5) 0.6251 (5) 

Table 13. Ranking performance of FS-SCPR and other state-of-the-art LTR methods on NP2004 

(best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5527 (2) 0.7603 (1) 0.7842 (2) 0.8159 (1) 0.6809 (1) 

AdaRank-

MAP 

0.4800 (4) 0.6979 (4) 0.7310 (4) 0.7497 (4) 0.6220 (4) 

RankSVM-

Primal 

0.5600 (1) 0.7236 (3) 0.7719 (3) 0.7950 (3) 0.6755 (2) 

ListNet 0.5333 (3) 0.7587 (2) 0.7965 (1) 0.8128 (2) 0.6720 (3) 

RankBoost 0.4267 (5) 0.6274 (5) 0.6512 (5) 0.6914 (5) 0.5640 (5) 

Table 14. Ranking performance of FS-SCPR and other state-of-the-art LTR methods on 

OHSUMED (best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.5459 (2) 0.4959 (1) 0.4785 (1) 0.4584 (1) 0.4491 (1) 

AdaRank-

MAP 

0.5388 (3) 0.4682 (4) 0.4613 (3) 0.4429 (3) 0.4487 (2) 

RankSVM-

Primal 

0.5460 (1) 0.4855 (2) 0.4689 (2) 0.4504 (2) 0.4446 (4) 
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 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

ListNet 0.5326 (4) 0.4732 (3) 0.4432 (5) 0.4410 (4) 0.4457 (3) 

RankBoost 0.4632 (5) 0.4555 (5) 0.4494 (4) 0.4302 (5) 0.4411 (5) 

Table 15. Ranking performance of FS-SCPR and other state-of-the-art LTR methods on MQ2008 

(best performance bold-faced; second best in italics) 

 NDCG@1 NDCG@3 NDCG@5 NDCG@10 MAP 

FS-SCPR 0.3692 (5) 0.4375 (1) 0.4770 (2) 0.2318 (1) 0.4776 (1) 

AdaRank-

MAP 

0.3754 (2) 0.4370 (2) 0.4794 (1) 0.2288 (4) 0.4764 (4) 

RankSVM-

Primal 

0.3725 (4) 0.4333 (3) 0.4765 (3) 0.2309 (2) 0.4744 (5) 

ListNet 0.3754 (2) 0.4324 (4) 0.4747 (4) 0.2303 (3) 0.4775 (2) 

RankBoost 0.3856 (1) 0.4288 (5) 0.4666 (5) 0.2255 (5) 0.4775 (2) 

Table 16. Unified ranking of methods (the higher Rank value, the better) 

 Rr = 1 Rr = 2 Rr = 3 Rr = 4 Rr = 5 Rank 

FS-SCPR 11 8 0 0 1 17.6 

AdaRank-MAP 5 4 3 8 0 13.2 

RankSVM-Primal 2 5 5 7 1 12 

ListNet 1 4 10 4 1 12 

RankBoost 1 1 0 1 17 5.6 

 

On the different datasets, FS-SCPR ranks either first or second in various measures 

with the only exception being that it is ranked fifth in NDCG@1 on MQ2008. For 

example, for OHSUMED, FS-SCPR is the best performer for NDCG@3, NDCG@5, 

NDCG@10, and MAP, and is ranked second for NDCG@1. We briefly highlight some 

statistics. In terms of NDCG@10, FS-SCPR performs the best on NP2004, OHSUMED, 

and MQ2008, and is the second best performer on HP2004. On NP2004, it performs 

0.38% higher compared to the second best method (ListNet) and 2.63% higher 

compared to the third best method (RankSVM-Primal). On OHSUMED, it outperforms 

the second best method (RankSVM-Primal) by 1.78% and outperforms the third best 

method (AdaRank-MAP) by 3.50%. On MQ2008, it performs better than the second 

best method (RankSVM-Primal) with a 0.39% improvement and performs better than 

the third best method (ListNet) by 0.65%. On HP2004, it outperforms the third best 

method (ListNet) with a 4.26% improvement. 

Regarding MAP, FS-SCPR is ranked first on NP2004, OHSUMED, and MQ2008, 

and second on HP2004. On NP2004, it is superior to the second best method 

(RankSVM-Primal) and the third best method (ListNet) by 0.8% and 1.32%, 

respectively. On OHSUMED, it performs 0.09% better than the second best method 

(AdaRank-MAP) and performs 0.76% better than the third best method (ListNet). On 

MQ2008, it outperforms the second best methods (ListNet and RankBoost) by 0.02%. 

On HP2004, it outperforms the third best method (ListNet) by 4.59%. 

Overall, the comparison results indicate that FS-SCPR performs very competitively 

and has stable performance on ranking on different datasets compared to other 

baselines. Table 16 demonstrates the following unified ranking of the methods: FS-
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SCPR  AdaRank-MAP  RankSVM-Primal ＝ ListNet  RankBoost, in which the 

proposed FS-SCPR ranks first. 

5. Conclusion and Future Work 

This paper addresses the feature selection problem in LTR. We proposed a graph-based 

filter feature selection method, FS-SCPR (see Fig. 3). FS-SCPR selects a subset of 

features that have minimum redundancy with each other and have maximum relevance 

to the ranking problem. In practice, FS-SCPR models feature relationships as a feature 

similarity graph. Based on such a graph model, FS-SCPR selects features using spectral 

clustering for redundancy minimization and biased PageRank for relevance analysis. 

Furthermore, we developed a new LTR for IR approach that integrates FS-SCPR and 

Ranking SVM (see Fig. 2). This approach exploits FS-SCPR as a preprocessor to 

determine discriminative and useful features and utilizes Ranking SVM to derive a 

ranking model with the selected features. We evaluated the proposed approach using 

four LETOR datasets (namely, HP2004, NP2004, OHSUMED, and MQ2008) and 

found that it performed well with competitive results. We presented the performance 

gains of the proposed approach compared to representative feature selection methods 

(namely, GAS, FSMSVM, and FSMRank) and state-of-the-art LTR methods (namely, 

AdaRank, Ranking SVM, ListNet, and RankBoost). The experimental results showed 

that (1) FS-SCPR can significantly boost the ranking performance; (2) FS-SCPR has 

superior performance to GAS (a filter method) and FSMSVM (a wrapper method), and 

is competitive to FSMRank (an embedded method) in a few cases; and (3) FS-SCPR 

performs very competitively compared to several LTR baselines and has stable 

performance on ranking on different datasets. 

It is also worth noting that similar to other filter methods, this study tries to find a 

feature subset with minimum total similarity and maximum total relevance. However, 

the graph-based selection strategy makes this work quite distinct from the existing 

studies. Our approach is the first graph-based feature selection technique that uses 

spectral clustering for redundancy minimization and biased PageRank for relevance 

analysis. To the best of our knowledge, there was little graph-based attempt to tackle 

feature selection for LTR and this research contributes to this gap in the literature. 

There remains room for improvement. First, it would be valuable to study whether 

improving relationships between features in the feature similarity graph will directly 

profit FS-SCPR. Other measures of ordinal association, such as Spearman’s rho (ρ), are 

worth exploring to evaluate feature relationships. Second, methods of evaluating the 

goodness of a clustering can be utilized to help automatically decide the number of 

feature clusters. Another interesting issue to investigate is what kinds of ranking 

performance of features besides MAP contribute to FS-SCPR regarding biasing the 

PageRank computation. FS-SCPR could also be integrated with other learning methods, 

e.g., AdaRank-MAP. Finally, verifying the effectiveness of FS-SCPR using additional 

datasets would be beneficial. 
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