
Computer Science and Information Systems 19(1):205–227 https://doi.org/10.2298/CSIS210104046S 

 

Applied Machine Learning in Recognition of 

DGA Domain Names 

Miroslav Štampar1 and Krešimir Fertalj
2
 

1 SekuriPy LLC, Mirka Račkog 10, 

10360 Zagreb, Croatia 

miroslav.stampar@sekuripy.hr 
2 Faculty of Electrical Engineering and Computing, Unska 3, 

10000 Zagreb, Croatia 

kresimir.fertalj@fer.hr 

Abstract. Recognition of domain names generated by domain generation 

algorithms (DGAs) is the essential part of malware detection by inspection of 

network traffic. Besides basic heuristics (HE) and limited detection based on 

blacklists, the most promising course seems to be machine learning (ML). There 

is a lack of studies that extensively compare different ML models in the field of 

DGA binary classification, including both conventional and deep learning (DL) 

representatives. Also, those few that exist are either focused on a small set of 

models, use a poor set of features in ML models or fail to secure unbiased 

independence between training and evaluation samples. To overcome these 

limitations, we engineered a robust feature set, and accordingly trained and 

evaluated 14 ML, 9 DL, and 2 comparative models on two independent datasets. 

Results show that if ML features are properly engineered, there is a marginal 

difference in overall score between top ML and DL representatives. This paper 

represents the first attempt to neutrally compare the performance of many 

different models for the recognition of DGA domain names, where the best 

models perform as well as the top representatives from the literature. 

Keywords: domain generation algorithm, binary classification, supervised 

machine learning, deep learning, blind evaluation. 

1. Introduction 

When attempting to establish a connection with command and control (C&C) server(s), 

a certain type of malicious programs (malware) create numerous domain name system 

(DNS) queries for domain names generated in a pseudo-random way, from which the 

majority never was and will never be registered. With the same initial value (i.e. random 

seed), usually associated with the run-time environment (e.g. current time), attackers can 

blindly share the same fresh list of domain names with infected hosts, without taking any 

intermediary steps. Thus, in case of a need for exchanging data with infected hosts, 

attackers have to register only a few domains from the current list and point them to the 

C&C server’s IP address. 

The family of algorithms intended for the described algorithmic creation of domain 

names is called domain generation algorithms (DGAs). Such algorithms can 
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pseudo-randomly generate a large number of algorithmic (or simply DGA) domain 

names (Table 1) to bypass potential security mechanisms used for detection and 

blocking of malicious network traffic [1]. Depending on the set of elements used in the 

pseudo-random generation, DGAs further split to regular (R) – using characters, and 

dictionary (D) – using a predefined set of words, where the latter represents the less 

common, but harder to detect class. In further text, DGA will refer to regular class if not 

explicitly declared. 

Table 1. Examples of DGA domain names 

DGA Type Example domain names 

Bobax R qrwxktojqz.yi.org, ttcwzadqxpm.dynserv.com 

Banjori D earnestnessbiophysicalohax.com 

Cryptolocker R bqwqeiswupyny.org, oocevdwyruhdi.co.uk 

Conficker R ntpyocx.info, kfoqmgax.com, eiwzqeaosf.info 

Dyre R aa1442a1beba3793bbde2582b4127b66ae.cc 

Locky R hrgcmmihpxth.in, cbkmotlvy.yt, ecsiequ.pm 

Necurs R vyguwpynyxaxld.in, caxadsjuygrem.ac 

Pushdo R qaqicvofe.com, cumocuwupjo.com, cumocuwu.kz 

TinyBanker R ghefvfkkxtgg.ru, mqsqytogddne.ru, hosgnecdevwt.ru 

 

Malware writers choose DGA to create resilient botnet infrastructures [2]. Resilience 

is primarily assured by disrupting the ability to block malware-related C&C 

communication, such as in the case of using blacklists of known malicious domain 

names [3]. Namely, if we consider the situation where each malware family uses its 

variant of DGA, we can conclude that the whole process of collection, distribution, and 

usage of blacklist(s) for all up-to-date DGA domains quickly becomes impractical. For 

example, malware from the Conficker family can generate 250 to 50,000 domain names 

per day, depending on the variant, while only one of these domains has to be registered 

by attackers to propagate new instructions to infected hosts [4]. 

Domain name is a sequence of labels split by dots (e.g. www.example.com), with 

chosen prefix (e.g. example) and public suffix (e.g. .com, .co.uk) as most distinguished 

parts. As a public suffix – also known as a top-level domain (TLD) – can contain more 

than one label (e.g. .co.uk), the term effective TLD (eTLD) is the more correct one [2]. 

Along with the use of regular registration of domain names (e.g. 3b580fa7.com), there 

are cases where malware (e.g. Bobax, Corebot, Symmi, etc.) uses DGA to generate 

domain names with dynamic domain providers (e.g. zqjotkxwrq.dyndns.org). Thus, in 

this research, we will analyze only properties for the chosen prefix, which represents the 

arbitrarily selected label for the registered domain. 

One important case which perfectly illustrates the necessity to inspect only the chosen 

prefix, while ignoring other labels, is the usage of DNS Blacklist Lookup (DNSBL) 

services. Such services provide a quick way to lookup entries in centralized databases 

through the usage of DNS protocol, where server response contains the lookup results. 

Entries can be anything requiring the additional check, such as suspicious domain 

names, IP addresses, file hashes, e-mail addresses, etc. Generally, as DNS labels have a 



 Applied Machine Learning in Recognition of DGA Domain Names           207 

restricted set of ASCII characters that can be used, entries are specially encoded (e.g. 

Base32 format) and prepended to the domain name used for such service (e.g. 

ff572stfjvxezcp5ueuzxsttvebqeaqbaeaq.a.e.e5.sk – for Avast blacklist lookup). As a 

result, related domain names can appear to be DGA generated.  

As the whole point of DGA is the evasion of potential security mechanisms, malware 

authors should be able to register any of the generated domain names, while in the case 

of DNSBL services main domain name is always the same. Otherwise, security 

providers could simply blacklist the main (i.e. common) domain name to deal with the 

DGA malware. Hence the necessity to analyze only the chosen prefix of the inspected 

domain name as it represents the part that can be registered within the eTLD or dynamic 

DNS registrar. 

Thus, network security analysts should be able to programmatically detect C&C 

communication attempts toward DGA domains and neutralize infected hosts inside their 

organization(s). Related DNS traffic is generally “noisy” and should be relatively easy 

to detect with manual inspection, as queried domain names generally do not look like 

they have been generated by a human. Nevertheless, the real challenge is the automatic 

recognition of DGA domain names, with as much accuracy as possible, which is the 

main topic of our research. 

2. Brief Introduction to Recognition of DGA Domain Names 

One of the essential features of malware that uses DGA to communicate with C&C 

server(s) is the noticeable amount of failed DNS queries (Note: response code 

NXDOMAIN – no such name) [5]. As such behavior appears as an anomaly when 

compared to regular traffic, network security analyst should be able to fairly easily 

recognize artificially created DGA domain names (e.g. mkhjbvxvuqznmcjmy.com) – at 

least for regular DGAs – by manually inspecting the DNS log entries. Nevertheless, in 

this research, we are trying to find the best method to perform the recognition in an 

automated way. 

In a general case, groups of DGA domain names can be discovered based on a list of 

responses for failed DNS queries generated by an infected host. Domain names in such 

groups usually share two or more common attributes, such as length, TLD, client IP 

address, high Shannon-entropy score [6], similar frequency of occurrences for different 

types of characters (e.g. vowels, consonants, numbers, etc.), and temporal proximity of 

associated DNS traffic. Such groups with shared attributes property are also referred to 

as clusters [7][8]. 

Heuristics (HE) are fast decision-making strategies based on limited information, yet 

frequently correct [8]. A simplistic HE method for identifying DGA domain names may 

include the search for all failed DNS queries generated per client for domain names 

having at least 8 characters long chosen prefix (e.g. bsfwptsyobt.com) and percentage of 

vowel occurrences of less than 10%. These conditions are based on general observation 

where DGA domain names should be sufficiently large to cover a significant number of 

combinations, while the percentage of vowel usage should be distinctively lower than in 

any spoken human language. 
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By processing entries in Alexa Top 1 Million Sites (ALEXA1M) [9], list of most 

popular domain names used in similar research, we found that the mean length of regular 

domain’s chosen prefix is 10.35, percentage of vowel usage is 36.96%, while percentage 

of chosen prefixes that could trigger false-positive (FP) identification in proposed HE 

method is 0.08%. Additionally, if the condition where the corresponding DNS query has 

to result with the lookup failure is applied, the probability of FP identification 

effectively becomes negligible. 

Running such HE method for 24 hours inside the Class B production network 

environment resulted in the detection of three infected hosts which generated queries for 

different clusters of non-existent domains. By running additional checks with help of 

specialized service DGArchive [10], we found that recognized clusters of DGA domain 

names are specific to the malware families Conficker, Necurs, and Nymaim. Thus, if the 

final goal is simply the detection of infected network hosts, running the described HE 

method should be sufficient in a general case. 

While the proposed HE method could be used for a quick check of potential DGA 

malware presence in network traffic, it is not suitable for usage in systems where it is 

crucial to perform classifications with high accuracy (ACC), i.e. Intrusion Detection 

System (IDS) and Intrusion Prevention System (IPS). Hence, as found in related work, 

some form of supervised machine learning (ML) is commonly used to detect DGA 

domains. 

In ML, a feature is an individual measurable property or characteristic of a 

phenomenon being observed [11], where the main challenge is finding the right set of 

features for learning purposes. In such a case, input data is described appropriately, so 

the underlying algorithm could find an optimal parametric model connecting input 

feature vectors with the expected results. In the case of DGA recognition, potential 

features include the length of chosen prefix and the percentage of vowel occurrences, as 

described in the simplistic HE method. 

Deep learning (DL) is a special class of relatively new ML algorithms, based on 

artificial neural networks (ANN), where feature extraction is automatized [12]. This 

means that compared to conventional ML algorithms, where human engineer – with a 

considerable amount of engineering skills and domain expertise – has to choose what 

features (e.g. length, digit ratio, etc.) to include in the model, DL algorithms can 

automatically select “critical” features during the learning process. Since DL represents 

a distinguished field of ML, with key differences in methodology and philosophy when 

compared to conventional ML algorithms, the corresponding class of algorithms will be 

referred to as DL, while conventional ML algorithms will be referred to with just ML in 

further text. 

Antonakakis et al. [7] used the statistical Hidden Markov Model (HMM) for 

classification, analyzing features: length and entropy of each label within a domain 

name, hierarchical level, n-gram distribution, etc. Positive class representatives used for 

learning were based on 59,144 DGA generated domains, collected inside the virtual 

environment for a relatively small set of malware families: Conficker, Murofet, Bobax, 

and Sinowal, while negative class representatives were based on the top 10,000 domain 

names from ALEXA1M. While authors achieved almost perfect results during the 

regular learning process, with a true-positive rate (TPR) of 99.72% and false-positive 

rate (FPR) of 0.1%, during the evaluation on real-life network traffic authors achieved 

TPR of 91% and FPR of 3%. To conclude on this point, in cases when research is 
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focused on severely limited datasets, with a narrow list of DGAs, experimental results 

are far from those achievable in real-life. Thus, in our research, we included 

representatives for the majority of known DGAs, which resulted in consistent 

performance between different datasets and better results in the production environment. 

Ahluwalia et al. [13] used Random Forest (RF) for classification, analyzing features: 

number of consonants, number of vowels, number of digits, 3-gram distribution, and 

total length. Positive class representatives used in the training process were based on the 

analysis of 100,000 DGA domains for the following malware families: Cryptolocker, 

Zeus, Conficker, Tinba, Ramdo, Matsnu, Rovnx, and GameOver Zeus. Negative class 

representatives were based on the analysis of the top 100,000 domains from 

ALEXA1M. As a result, authors achieved results of TPR 98.96 % and FPR 2.1%. One 

of the conclusions was that the total length of the domain name is a key feature for 

identifying DGA domains and that FPR drastically rises for cases below 8 characters. 

During the feature selection process, we came to the same conclusion that length indeed 

represents one of the most important features. 

Wang and Chen [14] used RF, Support Vector Machine (SVM), and Naive Bayes 

(NB) for classification, analyzing features: length and entropy of second-level domain 

(SLD), together with appearance probabilities of contained n-grams (3, 4, and 5), based 

on the probability lists calculated from most commonly used English terms and 

ALEXA1M domain names. The best results were achieved with RF – TPR 97.53% and 

FPR 0.20%, similar to our results for the standard dataset. It should be noted that while 

authors included statistical analysis for 5-grams as a feature too, we found in 

experiments that it does not add any additional value to the ML model in terms of 

performance. 

Yu et al. [15] used DL for classification, particularly models based on Long 

Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) neural 

networks, along with comparative ML algorithm RF. For regular training purposes, 

authors used domain names obtained from real-traffic, for both positive and negative 

class representatives, while using an additional gold set, consisting of ALEXA1M and 

DGA domain names retrieved from DGArchive, for “ground truth” validation. Final 

results of ground truth validation were: LSTM – TPR 74.05% and FPR 0.54%, CNN – 

TPR 72.89% and FPR 0.31%, RF – TPR 71.28% and FPR 1.33%. During the 

evaluation, we showed that the proposed feature set is inferior to ours. The main reason 

is the English-bias, resulting in worse performance and inconsistent behavior between 

different datasets. 

Tran et al. [16] did research on the multi-class imbalance in DGA classification, 

where the distribution of dataset samples for different DGA families is not uniform. 

Trained models based on ML algorithm Random Undersampling Boosting (RUB) and 

DL algorithm Long Short-Term Memory (LSTM) had similar performance in binary 

classification task – F1 0.98, which is in pair with our results got for the standard 

dataset, while used DL models scored considerably better in a multi-class classification 

task. Even though it is not part of our research, based on related work, we assume that 

DL models are superior in the multi-class classification, mainly because of their intrinsic 

ability to memorize the prolonged lexicographical patterns of observed DGA 

domains [17]. 

Yu et al. [18][19] compared simple Endgame (single LSTM layer) and complex DL 

architectures: Invincea (parallel CNN layers), CMU (forward LSTM layer + backward 
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LSTM layer), MIT (stacked CNN layers + single LSTM layer), NYU (stacked CNN 

layers). One of the conclusions was that there is surprisingly little difference between 

evaluated DL models in terms of accuracy, prompting a preference for the simpler 

architectures, as they are faster to train and score, while less prone to overfitting. 

Additionally, the authors pointed that an interesting direction for future work would be 

to test the trained DL models more extensively on domain names generated by new and 

previously unseen malware families. In our research, we performed such evaluation, 

where we showed that ML models generally perform better than DL models, particularly 

in case of unseen regular DGAs. 

Pereira et al. [20] used graph-based method WordGraph for extracting dictionaries 

used by dictionary DGAs. The proposed method is completely agnostic to the dictionary 

used by the DGA and should learn it by itself. The main proposition is that once these 

dictionaries are known, it should become straightforward to construct a domain name 

classifier based on them. For training purposes, authors used ground truth data based on 

samples collected from ALEXA1M and DGArchive, similar as in [15]. While results 

look promising, with an almost perfect score in all tested cases, a couple of questions 

arise. Particularly, authors state that they were able to extract 81 dictionaries in five days 

of real traffic, with 15 validated through service DGArchive, while claiming that they 

manually verified the remaining 66 dictionaries and confirmed they were malicious, 

without providing any details whatsoever. At the end, they classified those new 

dictionaries as generated by unknown malware. 

At the beginning of our research, the main focus was on ML models. Based on 

expertise acquired in everyday network analysis and literature review, we chose an 

initial set of features, which we heuristically adapted during experimental runs. By 

analyzing the results for each attempt, we quickly concluded that feature engineering 

represents the critical part of ML modeling. Nevertheless, as DL became more popular 

in recent studies, mainly because of its flexibility and a lack of requirement for explicit 

feature declaration, we gradually extended the scope of our study. Based on initial 

findings, it became clear that DL modeling is the step forward in this field. 

In this paper, we present the results of our study, where we objectively and 

extensively compare the performance of different ML and DL models for the DGA 

binary classification. For such a task, we engineered a robust feature set and created two 

independent datasets, including samples for the majority of known regular and 

dictionary DGAs. In the end, we evaluated the models, where the most interesting 

findings are related to the performance of best ML and DL models on samples 

representing previously unseen (i.e. untrained) DGAs, and the usability validation on 

historical one-year DNS logs collected from the production environment. 

3. Methodology 

To find the best model for recognition of algorithmic domains, binary classifiers based 

on the following ML algorithms were trained in a supervised manner and finally 

evaluated: NB, Multilayer Perceptron (MLP), Linear Discriminant Analysis (LDA), 

Quadratic Discriminant Analysis (QDA), k-Nearest Neighbors (KNN), SVM, Decision 

Tree (DT), Extra Trees (ET), RF, Bagging (BAG), Gradient Boosting (GB), Extreme 
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Gradient Boosting (XGB), Adaptive Boosting (AB) and RUB; along with simple DL 

models: Simple Recurrent Neural Network (SRNN), Gated Recurrent Unit (GRU), 

CNN and LSTM (Endgame), and complex DL models: Invincea, C2W, CMU, MIT, 

NYU. 

Implementation was done using the programming language Python and third-party 

programming libraries scikit-learn (sklearn) [21], keras [22], xgboost [23], and 

imbalanced-learn (imblearn) [24], where each represents the de facto standard in its 

field of operation. Parameter values used during the instantiation of ML and simple DL 

models can be found in Table 2. 

Table 2. Parameter values used in ML and simple DL model instantiations 

Model Library Classifier / Base layer Parameter values 

NB sklearn GaussianNB - 

MLP sklearn MLPClassifier 
hidden_layer_sizes=(128,

) 

LDA sklearn LinearDiscriminantAnalysis solver=’SVD’ 

QDA sklearn 
QuadraticDiscriminantAnalysi

s 
- 

KNN sklearn KNeighborsClassifier n_neighbors=15 

SVM sklearn SVC kernel=’linear’ 

DT sklearn DecisionTreeClassifier max_depth=None 

ET sklearn ExtraTreesClassifier n_estimators=128 

RF sklearn RandomForestClassifier n_estimators=128 

BAG sklearn BaggingClassifier n_estimators=128 

GB sklearn GradientBoostingClassifier n_estimators=128 

XGB xgboost XGBClassifier - 

AB sklearn AdaBoostClassifier n_estimators=128 

RUB imblearn RUSBoostClassifier n_estimators=128 

SRNN keras SimpleRNN units=128 

GRU keras GRU units=128 

LSTM keras LSTM units=128 

CNN keras Conv1D filters=128, kernel_size=4 

 

After extensive initial tests and analysis of obtained results, we decided to use default 

parameter values where changes did not result in noticeably better results. To avoid the 

potential issue with the different number of estimators used in ensemble [25] type of ML 

models and units or filters in DL models, we chose to set respective parameter values of 

n_estimators, hidden_layer_size, units, and filters to 128 where applicable. Even though 

it seems to be the popular choice in related work (e.g. [15] [16][18][19][26]), we 

experimentally confirmed the assumption that higher value should not yield with 

significantly better results in evaluated classifiers. 

For such a task, we used sklearn’s GridSearchCV, a specialized tool for an exhaustive 

search for best values over the specified list of parameters. It resulted in the 

(inconsistent) best case accuracy improvements of less than 0.08%, compared to 

experimental results got with our chosen parameter values, in case of all models except 

KNN. In that case, the change of initial value for n_neighbors from 5 to GridSearchCV 

suggested 15 resulted in the accuracy improvement of 0.16%. Furthermore, it should be 
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noted that, in the case of MLP, adding more hidden layers did not result in any 

improvements. 

Based on expertise acquired in everyday network analysis and literature review, we 

chose the following self-explanatory features for ML modeling purposes: length (I), 

character (Shannon) entropy (II), (decimal) digit ratio (III), length of the longest 

vowelless sequence (IV), length of the longest common prefix that can be found in at 

least two ALEXA1M chosen prefixes (V), length of the longest common suffix that can 

be found in at least two ALEXA1M chosen prefixes (VI), mean positional distance of 

nearby vowels (VII), mean ASCII distance of adjacent characters (VIII), number of 

occurrences of numerical sequences (IX), mean frequency indices of 2-grams (X), 

3-grams (XI) and 4-grams (XII) given the previously calculated lists of all possible 

n-grams found within ALEXA1M chosen prefixes sorted by the number of occurrences. 

It should be noted that the n-grams not appearing in the ALEXA1M have been treated as 

the last elements of notable lists, thus avoiding additional penalization. 

The first chosen prefix (example) in the given example (Table 3) represents the 

regular domain name, the second chosen prefix (spiderwjzbmsmu7y) represents the Tor 

(anonymity network) domain name – included only for comparative purposes, while the 

last chosen prefix (wxkjzdbmowq) represents the DGA domain name. At first look, 

features based on ALEXA1M n-grams (X, XI, XII) seem to be the most promising for 

the recognition of DGA domain names, as there appears to be a significant difference in 

calculated values between different classes of domain names. 

Calculated distances and sequence (run) lengths were specifically inspired by 

Diehard [27] and FIPS PUB 140-2 [28], specialized batteries of statistical tests for 

testing the quality of pseudo-random number generators (PRNG). The main proposition 

was that as DGA domain names are generated in a pseudo-random way, they should 

have better statistical results when tested for pseudo-randomness, compared to regular 

domain names. While mentioned batteries require significantly larger binary sequences, 

we derived a couple of simplified tests – namely IV, VII, VIII, IX – to perform similar 

statistical analysis tests on chosen prefixes for domain names. 

Table 3. Example of calculated feature values for different chosen prefixes 

Feature 
example 

(.com) 

spiderwjzbmsmu7y 

(.onion) 

wxkjzdbmowq 

(.info) 

Length (I) 7 16 11 

Character (Shannon) entropy (II) 2.52 3.75 3.28 

Digit ratio (III) 0 0.06 0 

Length of longest vowelless sequence (IV) 3 (mpl) 8 (wjzbmsmu) 8 (wxkjzdbm) 

Length of longest (ALEXA1M) common prefix (V) 7 (example) 7 (spiderw) 2 (wx) 

Length of longest (ALEXA1M) common suffix (VI) 7 (example) 2 (7y) 3 (owq) 

Mean positional distance of nearby vowels (VII) 3 4 5.5 

Mean ASCII distance of adjacent characters (VIII) 11.33 16.4 8.2 

Number of occurrences of numerical sequences (IX) 0 1 0 

Mean frequency index (ALEXA1M) of 2-grams (X) 142 424 570 

Mean frequency index (ALEXA1M) of 3-grams (XI) 1,037 13,443 17,644 

Mean frequency index (ALEXA1M) of 4-grams (XII) 4,935 147,773 230,265 

 

As part of the data preparation phase, calculated feature vectors were standardized to 

normally distributed data, with the sklearn’s preprocessing utility class StandardScaler. 

The main reason is the requirement of specific ML algorithms, such as KNN and SVM, 
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which assume that all features are centered on zero and have variance in the same order, 

while that same transformation does not affect the performance of other ML algorithms. 

Because of DL algorithms’ ability to recognize and learn patterns in long sequences, 

such as in text or images, in DGA classification task samples represent raw numerical 

representation of chosen prefixes for domain names. Hence, instead of using feature 

vectors as in the case with ML models, in featureless DL models, chosen prefixes are 

transformed to integer representations of contained characters. If we know that the 

maximum length of a label in the domain name is 63, each chosen prefix is transformed 

to a zero-padded vector of length 63, with elements representing character indices inside 

the lookup table of valid DNS characters. For example, chosen prefix google becomes a 

numerical vector [7, 15, 15, 7, 12, 5, 0, 0, 0 … 0]. 

Simple DL models – SRNN, GRU, LSTM, and CNN – are based on Endgame [29], 

mostly because of its simplicity, wide acceptance, and generally good performance, 

where LSTM can be considered as the Endgame itself. Pseudo-code for the creation of 

simple DL models can be found in the continuation, where italicized identifiers 

represent utilized keras-specific layers (i.e. classes): 

 

// Valid DNS label characters 

alphabet := "abcdefghijklmnopqrstuvwxyz0123456789-" 

// Maximum length of DNS label 

max_label_length := 63 

// Length of embedding vector 

embedding_vector_length := 128 

// Dropout threshold value 

threshold := 0.5 

 

function CreateDLModel(main_layer_class) 

  m := Sequential() 

  m.add(Embedding(input_dim := LENGTH(alphabet)+1, output_dim 

:= \ 

    embedding_vector_length, input_length := max_label_length)) 

  if main_layer_class = Conv1D then 

    m.add(main_layer_class(filters := embedding_vector_length, 

\ 

      kernel_size := 4)) 

    m.add(GlobalMaxPooling1D()) 

  else 

    m.add(main_layer_class(units := embedding_vector_length)) 

  endif 

  m.add(Dropout(threshold)) 

  m.add(Dense(1)) 

  m.add(Activation("sigmoid")) 

  m.compile(loss := "binary_crossentropy", optimizer := "adam") 

  return m 

end function 

 

srnn := CreateDLModel(SimpleRNN) 

gru := CreateDLModel(GRU) 

lstm := CreateDLModel(LSTM) 

cnn := CreateDLModel(Conv1D) 
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Complex DL models – Invincea, C2W, CMU, MIT, and NYU – were implemented 

with the minimum modifications compared to the original work. In case that there were 

no details regarding certain aspects of the model in the original paper, we chose the 

preferred solution based on our initial findings and other related work. The basic 

architecture information can be found in Table 4. 

Table 4. Architectures used in complex DL models 

Model Architecture Reference 

Invincea Parallel CNN layers [30] 

C2W Forward LSTM + backward LSTM layer [31] 

CMU Forward GRU + backward GRU layer [32] 

MIT Stacked CNN layers + single LSTM layer [33] 

NYU Stacked CNN layers [34] 

 

It should be noted that we decided to use the name C2W for the LSTM-based model, 

inaccurately referred to as CMU by Yu et al. [19], while reestablishing the name CMU 

for the GRU-based model. The reasoning is based on the original (CMU) research [32], 

where Dhingra et al. explicitly state that the proposed GRU-based architecture “uses a 

similar structure to the C2W model in [31], with LSTM units replaced with GRU units”. 

The same inaccuracy can be found in other derived work (e.g. [35]). 

While the process of setting up and training ML models in sklearn was 

straightforward, in the case of DL models we had to fine-tune certain aspects. Most 

notably, to prevent overfitting in DL models, and thus avoid poorer prediction 

performance on new datasets (e.g. blind dataset), we used early stopping. In this 

method, the validation loss – performance measure function used for cross-validation on 

a fraction of the training data (10% of training samples) – is calculated after each epoch. 

In case of no improvement, the whole training process is interrupted. Additionally, to 

avoid the local extrema entrapment, a patience level of 5 is used, thus training stops 

only in case of 5 consecutive epochs without training improvement, while the best model 

is preserved between epochs for future use. 

To evaluate ML and DL models in a “blind trial”, two independent datasets were 

used. Namely, along with the standard set, which is generally considered sufficient in 

similar DGA research, an additional (independent) blind set was used. While in the 

majority of related work standard set is the only one used and split in different ways 

(e.g. holdout, k-fold cross-validation, random subsampling, etc.) for different purposes, 

in our research we also used blind set created from unrelated sources and by using 

different filtering methods. Thus, while the standard set was used for regular training 

and standard evaluation, with 70% of samples for training and 30% for testing purposes, 

the blind set was used for additional unbiased blind evaluation of trained models.  

Standard set is the primary (regular) dataset that was used for training and basic 

performance evaluation of corresponding models. Set is balanced, with 739,377 positive 

samples and the same number of negative samples. Positive samples consist of synthetic 
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chosen prefixes, representing uniformly distributed 51 regular1 and 4 dictionary2 DGAs, 

while negative samples consist of filtered ALEXA1M chosen prefixes. 

Basic filtering of ALEXA1M chosen prefixes was done by excluding all entries, 

where length (i.e. 4 or less) or the character set used (i.e. non-alphanumeric) could in no 

way be associated with known DGA. Additionally, “problematic” chosen prefixes that 

could not be classified manually by network security analyst as non-algorithmic were 

also excluded, such as 132770(.com) (decimal digits), 6f76b4c82656094f26(.com) 

(hexadecimal digits) or gtplkcbpl(.com) (consonant-only). This way we reduced the 

possibility of introducing undesired noise into the standard set that could potentially 

affect the performance of trained models. 

Synthetic chosen prefixes for regular DGAs were artificially generated based on 

descriptive regular expressions obtained from DGArchive, with a generalization that the 

distribution of pseudo-randomly chosen characters is uniform within the predefined 

character set. For example, Bamital DGA described with the regular expression 

[0-9a-f]{32}\.(org|info|co\.cc|cz.cc)$, resulted in the function BAMITALDGA, returning 

the string of length 32, pseudo-randomly chosen from a pool of hexadecimal digits. In 

this way, quality, quantity, and variety of positive classification data dramatically 

increased compared to other related work, although they were not generated by any 

existing DGA. The main proposition was that this way we could artificially generate any 

number of samples for positive classification, without a way to easily differentiate when 

compared to real DGA runs. As an example, chosen prefix bde15d38ecc65c8 

01a6ab50a59cea738 generated by real Bamital DGA does not have any distinct 

property – such as length, character domain, or character (Shannon) entropy – when 

compared to synthetic chosen prefix f5c087c1905b38e110e30d5a2743469e generated 

by synthetic function BAMITALDGA. Pseudo-code for the whole process of creation of 

synthetic chosen prefixes for regular DGAs is as follows: 

letters := "abcdefghijklmnopqrstuvwxyz" 

digits := "0123456789" 

 

function Generate(alphabet, min_length, max_length) 

  a := RandomInteger(min := min_length, max := max_length) 

  r := RandomString(pool := alphabet, length := a) 

  return r 

end function 

 

// Generates sample for BAMITAL DGA 

function BAMITALDGA() 

  a := CONCAT(digits, "abcdef") 

  r := GENERATE(alphabet := a, min_length := 32, max_length := 

32) 

  return r 

end function 

// ... functions for 49 more DGA algorithms ... 

                                                           
1 Bamital, Bedep, Blackhole, Bobax, Conficker, Corebot, Cryptolocker, DNS Changer, DirCrypt, Dyre, 

EKforward, Emotet, Feodo, Fobber, Gameover, Gameover P2P, Gspy, Hesper, Locky, MadMax, Modpack, 

Murofet, Necurs, Nymain, Oderoor, PadCrypt, Proslikefan, Pushdo, Pushdotid, Pykspa, Pykspa 2, Qadars, 

Qakbot, Ramdo, Ramnit, Ranbyus, Rovnix, Shifu, Simda, Sisron, Sphinx, Sutra, Symmi, Szribi, 

Tempedreve, TinyBanker, Torpig, Urlzone, Virut, VolatileCedar, XxHex 
2 Banjori, Gozi, Matsnu, Suppobox 
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// Main procedure 

procedure Main()  

  a := {BAMITALDGA, ...} 

  b := Input("# of samples to generate:") 

  for i in {0..b} do 

    c := RandomSample(pool := a, min_length := 1, max_length := 

1)[0] 

    d := c() 

    Print(d) 

  end for 

end procedure 

Main() 

In the case of dictionary DGAs, synthetic chosen prefixes were generated based on 

reverse-engineered algorithms found in public code repositories3. To eliminate the 

problem related to the usage of the same seed words, trait manifested with repetition of 

identical patterns across all related samples inside the time-constrained blacklists, we 

used different seeds found in the “wild”. Therefore, in the example of Banjori DGA, we 

uniformly utilized 37 different characteristic seeds4 in the process of generation, along 

with different pseudo-randomly chosen dates. 

This way, we eliminated the potential bias specific for related research, where the 

training and evaluation of models are based on arguable dictionary DGA samples 

extracted from daily DGA blacklists, with evident excessive repetition of elongated 

patterns (e.g. nvpnestnessbiophysicalohax, nxzmestnessbiophysicalohax, eoyoestnessbi 

ophysicalohax, etc.). In our opinion, such unreasonable usage of excessive repetitions in 

datasets gives an unfair advantage to DL models, having the well-known ability to 

memorize prolonged lexicographical patterns [17] – while those same patterns usually 

turn out as useless outside the evaluation environment, mostly because of the narrow 

period of validity. 

Blind set is the control dataset, independent of standard, created to provide the 

support for unbiased blind evaluation of trained ML models. Set contains 170,045 

positive samples and the same number of negative samples. Negative samples consist of 

170,045 valid (i.e. non-NXDOMAIN) chosen prefixes collected in the Class B 

production network environment during one month. Positive samples consist of chosen 

prefixes for real algorithmic domains collected from one week (5-11 July 2020) of DGA 

blacklist source DGArchive, for 81 DGAs – 76 regular and 5 dictionary DGAs, with 43 

regular DGAs and 4 dictionary DGAs appearing in the standard dataset too. The 

discrepancy is preserved principally for dataset independence preservation, along with 

the opportunity to analyze model behavior in the expected case of the appearance of 

previously unseen DGA. 

                                                           
3 https://github.com/baderj/domain_generation_algorithms and https://github.com/andrewaeva/DGA 
4 abehmsigotg, alitydevonianizuwb, amentalistfanchonut, anarianaqh, ancorml, anerraticallyqozaw, 

ardenslavetusul, byplaywobb, ellefrictionlessv, enhancedysb, epictom, ererwyatanb, erionirkutskagl, 

estnessbiophysicalohax, fordlinnetavox, idablyhoosieraw, inaaforementionedagf, inalcentricem, 

iologistbikerepil, lcationgreedinessb, leasuredehydratorysagp, llaabettingk, machuslazaroqok, men, 

orcajanunal, orshipecmascriptivylv, partbulkyf, plefrostbitecycz, rasildeafeninguvuc, rgradienton, 

rsensinaix, sagabardinedazyx, satformalisticirekb, semitismgavenuteq, sikathrinezad, thoodivettewl, 

vinskycattederifg 
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Negative samples consist of valid chosen prefixes for 437 different TLDs: .com 

(54.46%), .net (7.35%), .hr (5.61%), .org (3.97%), .uk (2.23%), .de (1.83%), .it 

(1.53%), .ru (1.44%), .rs (1.33%), .info (1.15%), etc. The main assumption used during 

the collection of negative samples from real traffic was that, in the general case, 

resolution of DGA domain name would either fail (i.e. NXDOMAIN) or result with the 

sinkholed response, while the probability for a resolution to a valid non-sinkhole IP 

address can be effectively ignored. For exclusion of sinkholed domain names, a list of 

1,330 IP addresses for known sinkholes has been used, gathered from Maltrail – 

Malicious traffic detection system [36], a specialized IDS system for tracking of 

malware-related network activities. This way we practically reduced the probability for 

the inclusion of regular DGA domain names down to zero. 

It should be noted that as ALEXA1M represents the list of most popular domain 

names on the Internet, there is an inherent overlap of negative samples between standard 

and blind datasets, with a percentage of 37.37%. Although the whole process of creation 

of datasets is kept independent, this is the single point of sample overlap. As the removal 

of shared entries from the blind dataset would potentially strengthen the regional bias 

and move the focus of evaluation on less popular domain names, while at the same time 

take out the realistic aspect of DNS traffic gathered in the production environment, we 

decided to leave them. 

While a concept blind set used in our research is similar to the gold set used by Yu et 

al. [15], there are a couple of crucial differences. Gold set – based on ALEXA1M and 

DGA domain names from DGArchive – was used for ground truth validation, while 

blind set – based on real-domains gathered from everyday traffic and DGA domain 

names from the same source – was used for blind evaluation in our research. As in other 

related work, during research, we found by trial-and-error that ALEXA1M is the best 

source for negative samples used in the training process. Additionally, we used real 

DGA domain names for blind evaluation and synthetically generated positive samples 

for standard evaluation – specifically avoided by Yu et al., because of their concern on 

limited availability based on the usual approach with malware runs inside the virtual 

environment. Therefore, instead of establishing the gold truth dataset and “losing” the 

possibility of training models based on ALEXA1M, while at the same time providing 

the independence between datasets used in the standard evaluation and blind evaluation, 

a blind set was created. Furthermore, conducted blind evaluation can be roughly 

considered as the measurement of classifier performance in the real-network traffic 

environment, as all blind dataset samples were either gathered in the production 

environment or from a daily blacklist of current DGA domain names. 

4. Evaluation Results 

In preparation for the evaluation, after the initial runs, we noticed that in some cases 

reduced set of features resulted in slightly better overall results – particularly in the case 

with simpler ML models such as NB and QDA. Hence, to remove the possibility of 

training potentially weaker ML models, we performed the feature selection beforehand. 

In such a task, the feature set is being reduced, without significant performance 
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degradation in the recognition system [37], where features contributing the least in the 

decision process are discarded. 

To ease the process, for each trained ML model based on tree-based algorithms (DT, 

RF, ET, GB, XGB, and AB) it is possible to extract the feature importance (FI) list. 

Such lists, consisting of calculated feature scores with values ranging from 0 (irrelevant) 

to 1 (single most important feature), can be used to find how each feature contributes to 

the overall classification process of the corresponding ML model. 

Even though we expected that each ML model will score individual features 

differently by their importance, during our research we found that some features share a 

similar level of importance throughout all models (where FI is available). Thus, the 

observed phenomenon became the basis of our feature selection process, particularly in 

the case with the least relevant features. 

Table 5. FI for different ML models 

Feature DT RF ET GB XGB AB  

Mean ASCII distance of adjacent characters (VIII) 0.01 0.01 0.01 0.00 0.00 0.01 0.01 

Number of occurrences of numerical sequences (IX) 0.00 0.00 0.01 0.00 0.00 0.02 0.01 

Character (Shannon) entropy (II) 0.01 0.03 0.02 0.00 0.00 0.02 0.01 

Mean positional distance of nearby vowels (VII) 0.01 0.03 0.02 0.00 0.00 0.02 0.01 

Length of longest vowelless sequence (IV) 0.01 0.02 0.01 0.00 0.00 0.06 0.02 

Mean frequency index (ALEXA1M) of 2-grams (X) 0.01 0.09 0.05 0.00 0.00 0.02 0.03 

Digit ratio (III) 0.01 0.01 0.01 0.01 0.03 0.04 0.02 

Length (I) 0.06 0.04 0.05 0.06 0.07 0.18 0.08 

Length of longest (ALEXA1M) suffix (VI) 0.03 0.09 0.15 0.03 0.06 0.09 0.08 

Mean frequency index (ALEXA1M) of 3-grams (XI) 0.02 0.19 0.12 0.01 0.01 0.12 0.08 

Length of longest (ALEXA1M) prefix (V) 0.03 0.15 0.12 0.04 0.07 0.12 0.09 

Mean frequency index (ALEXA1M) of 4-grams (XII) 0.80 0.34 0.43 0.85 0.76 0.30 0.58 

 

Based on obtained FI (Table 5), we concluded that the mean frequency index 

(ALEXA1M) of 4-grams makes the most important feature across ML models. More 

importantly, all features based on lexical ALEXA1M properties generally have greater 

importance than other features. The relevance of the 4-gram feature (XII) stands out so 

much compared to others that our immediate impression was that it could be solely used 

as a HE method for recognition of DGA domains. 

Therefore, performing the training process for the “shallow” (i.e. depth set to 1) DT 

model, primarily chosen due to the intuitive IF-THEN-ELSE resulting structure 

representing the trained model, we came to the value of 90,674 above which the mean 

frequency index (ALEXA1M) of 4-grams would have to be valued to classify the tested 

chosen prefix as DGA. Finally, for comparison purposes with other evaluated models, 

we created a simple HE method ALEXA4G based only on that single check (Table 6). 

Furthermore, as a result of FI analysis, we came to an auxiliary hypothesis that we 

could use a HE approach in feature selection of evaluated ML models by simply 

removing features that were at least in one case marked as absolutely irrelevant (i.e. 
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value 0.00 – highlighted with dashed border in Table 5) – similar to a voting system 

with right of veto. Thus, we discarded the upper half (VIII, IX, II, VII, IV, X) of 

features listed in Table 5, while leaving the lower half (III, I, VI, XI, V, XII). To verify 

the hypothesis, we conducted the training and evaluation of all ML models and 

compared the performance in both full and reduced sets of features. As a result, in the 

case of reduced feature set, we got an overall 0.1% improvement of classification 

performance (Note: based on  score) in all ML models, while the training time has 

been reduced on average by 73% compared to the original time. Hence, we continued 

the evaluation with a reduced set of features. 

Finally, after the successful evaluation of ML and DL models, the following values 

were calculated: TPRA, FPRA, ACCA, F1A, TPRB, FPRB, ACCB, F1B, and  (Table 6). 

The first eight values represent the performance of the corresponding binary classifier, 

depending on the used dataset (A – standard, B – blind), while the last  represents the 

mean value based on F1A and F1B. Basic measures TPR and FPR were chosen as they 

represent the most basic metrics used in related work. In general, TPR has to be as high, 

while FPR has to be as low as possible for a model to be acceptable, as otherwise, the 

detection mechanism could become unusable because of too many positive-misses or too 

many false-alarms. 

Out of all statistical performance measures available for finding the “best” model, 

ACC and F1 represent the two most commonly used for binary classification in related 

work. ACC is the measure of all the correctly identified cases and is preferred when the 

detection of positive and negative classes is of equal importance. For example, in the 

case of a passive system like IDS, detection of a DGA domain could be considered of 

the same importance as the detection of a non-DGA domain, as the network security 

engineer analyzing its report would need to invest additional time “triaging” the false 

detections of any kind. In comparison, in the case of an active system like IPS, false 

detection of regular domains would most probably be detrimental to the network-user 

experience, while missing true detection of DGA-domains up to a certain threshold 

could be considered as acceptable. 
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Table 6. Evaluation results for standard (A) and blind (B) datasets 

Model Type TPRA FPRA ACCA F1A TPRB FPRB ACCB F1B  

ALEXA4G HE 0.9216 0.0467 0.9375 0.9364 0.8916 0.0561 0.9178 0.9156 0.9260 

NB ML 0.9295 0.0508 0.9394 0.9387 0.9085 0.0538 0.9274 0.9260 0.9323 

RFYu ML 0.9136 0.0656 0.9240 0.9232 0.9502 0.0530 0.9486 0.9487 0.9359 

SRNN DL 0.9485 0.0303 0.9591 0.9587 0.8855 0.0381 0.9237 0.9206 0.9397 

QDA ML 0.9523 0.0531 0.9496 0.9497 0.9380 0.0669 0.9356 0.9357 0.9427 

CNN DL 0.9477 0.0292 0.9592 0.9588 0.9011 0.0393 0.9309 0.9288 0.9438 

C2W DL 0.9585 0.0225 0.9680 0.9677 0.8835 0.0312 0.9262 0.9229 0.9453 

LDA ML 0.9345 0.0226 0.9559 0.9549 0.9159 0.0404 0.9377 0.9363 0.9456 

DT ML 0.9616 0.0402 0.9607 0.9607 0.9331 0.0698 0.9316 0.9317 0.9462 

CMU DL 0.9604 0.0249 0.9678 0.9675 0.8890 0.0331 0.9279 0.9250 0.9463 

LSTM DL 0.9618 0.0203 0.9707 0.9705 0.8900 0.0297 0.9302 0.9272 0.9488 

GRU DL 0.9639 0.0244 0.9698 0.9696 0.8980 0.0333 0.9324 0.9300 0.9498 

MIT DL 0.9665 0.0236 0.9714 0.9713 0.8948 0.0326 0.9311 0.9285 0.9499 

Invincea DL 0.9571 0.0232 0.9670 0.9667 0.9039 0.0307 0.9366 0.9345 0.9506 

NYU DL 0.9667 0.0254 0.9707 0.9706 0.9015 0.0333 0.9341 0.9319 0.9512 

SVM ML 0.9604 0.0276 0.9664 0.9662 0.9393 0.0566 0.9413 0.9412 0.9537 

AB ML 0.9648 0.0239 0.9705 0.9703 0.9419 0.0570 0.9425 0.9424 0.9564 

RUB ML 0.9636 0.0207 0.9714 0.9712 0.9349 0.0510 0.9419 0.9415 0.9564 

ET ML 0.9659 0.0220 0.9719 0.9717 0.9377 0.0519 0.9429 0.9426 0.9572 

BAG ML 0.9664 0.0199 0.9733 0.9730 0.9369 0.0505 0.9432 0.9428 0.9579 

GB ML 0.9656 0.0192 0.9732 0.9730 0.9380 0.0484 0.9448 0.9444 0.9587 

RF ML 0.9668 0.0192 0.9738 0.9736 0.9379 0.0496 0.9441 0.9438 0.9587 

XGB ML 0.9645 0.0177 0.9734 0.9731 0.9365 0.0457 0.9454 0.9449 0.9590 

KNN ML 0.9670 0.0188 0.9741 0.9739 0.9397 0.0488 0.9454 0.9451 0.9595 

MLP ML 0.9711 0.0224 0.9743 0.9742 0.9486 0.0567 0.9459 0.9461 0.9602 

Even though ACC represents one of the most intuitive and obvious measures, the 

inclusion of F1-score has become the de facto standard in recent related work. One of 

the main reasons is the ongoing criticism, with claims that ACC solely cannot be 

considered as a reliable measure anymore, because it provides an over-optimistic 

estimation of the classifier ability on the majority class [38]. Nevertheless, as ACC and 

F1 represent the performance of the model distinctly, while at the same time making 

results comparable to other research, we included both as part of evaluation results and 

chose the mean value  as the final score for each model. 

Along with models described in the methodology part, the following comparative 

models were also included: ALEXA4G – representing the HE method based solely on 

the ALEXA1M 4-gram feature (XII) and RFYu – representing the ML model from 

related work (Yu et al. [15]), with English-biased set of features. 

From the evaluation results, it is clear that in most cases there is a consistency in 

performance between datasets, where better models generally scored better in both 
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datasets. Thus, the blind evaluation could be considered as the verification of standard 

evaluation results, where comparative and simpler (probabilistic) ML models scored the 

worst, ensemble and more “powerful” ML models scored the best, while DL models 

were in the middle. 

Only evident inconsistency in performance can be found in the case of the 

comparative RFYu. While in the case of the blind dataset it scored almost the same as 

correlative model RF, its performance has been remarkably poor in the case of the 

standard dataset, where even the comparative HE method ALEXA4G based on a single 

feature had better results. With close inspection of false recognitions, particularly FPs, 

we found that RFYu has a problem with regular domain names containing Internet 

characteristic non-English n-grams, such as xpose360, mp3koka, newxxxvideos, 1080ip, 

c365play, win7dwnld, etc., same n-grams that could be better learned by the model if 

only the underlying features nl2 and nl3 [15][39] were based on real-domain names 

instead of the English language. 

Better scoring of model RFYu in the case of the blind dataset could be explained by 

the considerably smaller size of the dataset compared to the standard dataset, where 

negative samples, consisting of regular domain names collected in real-network traffic, 

have a greater ratio of the most popular English-language oriented domains. To verify 

this, we calculated the mean of means for frequency indices of English 3-grams for 

negative samples, and got a value of 1,788.04 in the case of the standard dataset and a 

lower value of 1,602.55 in the case of the blind dataset, proving that blind dataset is 

indeed more English-oriented. 

Thus, the results of Yu et al. [15] – particularly performance comparison of DL 

models and RFYu against the truth-marked gold set – and the conclusion of DL 

superiority should be re-evaluated with a better ML feature set. Used comparative ML 

model RFYu is English-biased with inconsistent performance between different datasets 

compared to other models (Table 6), and most importantly underperforming in the case 

of ALEXA1M – the same set of domains used as a source for negative samples in the 

gold set. Hence, this can be considered as a prime example of an assertion that feature 

engineering represents the critical part of ML modeling. 

For a detailed comparison between ML and DL classes, we chose the best performing 

models – MLP (ML) and NYU (DL) – and further analyzed results for DGAs that had a 

TPRB less than 0.90 in at least one of those models (Table 7). In the case of dictionary 

DGA Suppobox, NYU had a TPRB of 0.46, while MLP underperformed with a TPRB of 

just 0.01. As a result of sample analysis, we found in both standard and blind datasets 

multiple usages of Suppobox characteristic suffixes such as sherburne, underhill, 

electricity, and blackwood, from where we concluded that DL models are superior to 

ML models in similar cases where the same characteristic prolonged lexicographical 

patterns can be found in distinct datasets. 

Nevertheless, in the case of dictionary DGAs Gozi, Matsnu, and Nymaim2 both 

models performed almost the same. While Nymaim2 represents the case of non-trained 

dictionary DGA, where both models perform badly as expected, Matsnu represents the 

case of trained dictionary DGA where even the DL model failed. By comparison of 

Matsnu samples in both datasets and the DGA algorithm internals, we concluded that 

this DGA is particularly problematic for both training and recognition because of lack of 

repeating patterns, mainly due to the extensive number of combinations generated from 
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large internal wordlists and the way they are combined (nouns and verbs) until the 

predefined chosen prefix length. 

In the case of regular DGAs, the MLP model generally scored better than NYU, with 

the substantial difference in performance for untrained DGAs Darkshell, Qhost, and 

Qsnatch. By inspecting related samples in the blind dataset, we concluded that NYU 

most probably failed to recognize those because of their shortness and consequently the 

lack of information to classify those as positives. In the case of Darkshell, samples had a 

length of 6 (e.g. r038zy), in the case of Qsnatch samples on an average had a length of 5 

(e.g. 4xxgz), while in the case of Qhost samples shared the same prefix ptmr, with 

numeric suffix having a mean length of 4. Nevertheless, ML representative MLP could 

recognize those due to lack of usage of most common n-grams. 

Table 7. TPRB for “problematic” DGAs 

DGA Type Trained 
MLP 

(ML) 
NYU (DL) 

Conficker R ⊤ 0.91 0.89 

Darkshell R  1.00 0.13 

Diamondfox R  0.91 0.82 

Gozi D ⊤ 0.41 0.41 

Matsnu D ⊤ 0.05 0.06 

Nymaim2 D  0.04 0.04 

Pitou R  0.56 0.56 

Pushdo R ⊤ 0.58 0.59 

Pykspa2 R ⊤ 0.83 0.88 

Qhost R  1.00 0.29 

Qsnatch R  0.91 0.34 

Simda R ⊤ 0.43 0.53 

Suppobox D ⊤ 0.01 0.46 

Symmi R ⊤ 0.67 0.67 

Szribi R  0.85 1.00 

UD3 R  1.00 0.75 

UD4 R  0.93 0.79 

Vawtrak R ⊤ 0.66 0.64 

Virut R ⊤ 0.76 0.75 

Volatilecedar R ⊤ 0.55 0.47 

 

By comparing overall performance concerning the complexity of models, the simplest 

ML models (NB, QDA, LDA, and DT) scored worse than more complex ML models, 

while in the case of DL there was no clear distinction. Even though complex NYU, 

Invincea, and MIT scored the best among DL models, simple GRU and LSTM scored 

better than complex CMU and C2W. Thus, we can confirm the results from Yu et al. 
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[18][19] and agree with the remark that simpler DL architectures should be preferred 

over complex DL architectures. 

Although ML models generally scored better than DL models, the difference in the 

final score is marginal. The only significant difference can be found in the case of blind 

evaluation, where the best ML model MLP performed better in cases with untrained 

regular DGAs, while the best DL model NYU performed better in cases with trained 

dictionary DGAs where identical prolonged lexicographical patterns could be found in 

both datasets. Thus, when considering its flexibility, powerful ability to automatically 

memorize lexicographical patterns, and the fact that it does not require an extra step of 

careful feature engineering, a critical process that creates the competitive difference 

between comparative RFYu and correlative RF model, we came to the conclusion that 

DL can be considered as the preferred choice over ML for the recognition of DGA 

domain names. 

Even though it was not formally included in the evaluation results (Table 6), we also 

evaluated the comparative simplistic HE method described in the introductory 

Section Error! Reference source not found., based only on the chosen prefix length 

and vowel ratio. While at first glance it scored poorly with TPRA 0.1708, TPRB 0.2053, 

and  0.3160, it had remarkably low FPRA 0.0006 and FRPB 0.0012. If we assume that 

DGA malware generates at least 5 DGA DNS queries per day, we can conclude that it 

could be used to easily detect the infected client on the same day of infection, with an 

exceptionally low probability for FP detection. 

As part of usability validation, we chose the best ML model MLP, the best DL model 

NYU and the simplistic HE method, and ran those against the historical DNS logs for 

850 million queries collected inside the production environment for one year (Note: 1st 

July 2019 to 30th June 2020). As a result, we detected 2 clusters for the following 

DGAs: Conficker and Dromedan, where verification and DGA type recognition were 

based on query service provided by DGArchive. Cluster Conficker was active for 277 

days, with 9 infected clients, while cluster Dromedan was active for 189 days, with 6 

infected clients. All clusters have been detected by both models and a HE method, with 

a daily average TPR of 0.95 for both models and a daily average TPR of 0.31 for the HE 

method. 

Consequently, during the execution, we realized that the usability of ML and DL 

models is surprisingly low, at least if used against the DNS queries. No matter the 

generally good evaluation results (Table 6), even FPR as low as 0.01 (i.e. 1%) 

effectively results in useless reports. For example, if the daily expected number of 

queries – as in our case – is 2 million, with 20,000 unique chosen prefixes, FPR of 0.01 

results with 200 chosen prefixes being misclassified as DGA – or tens of thousands of 

wrongfully blocked DNS queries for non-DGA domains if used in an active system like 

IPS. Thus, the best candidate that could be used against the DNS queries, without 

additional fine-tuning of relevant thresholds, was the simplistic HE method based just on 

chosen prefix length and vowel ratio. Its exceptionally low FPR emerges it from other 

models in the real-life traffic environment. In our case, only 13% of all positive 

detections were FPs, which means that on the daily average positive detections of 62 

DGA domains, only 8 domains were not related to a known DGA. As a result of further 

analysis, we found that the FPs were in majority of cases related to Ad-serving related 

networks, where operators deliberately use DGA-alike domains (e.g. 

bmkz57b79pxk.com, 01mspmd5yalky8.com, wk4x5rdtoz2tn0.com) to make them more 
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resilient to potential blocking from clients. A common feature that differentiates them in 

DNS traffic from DGA domains is that those DGA-alike domains in general case resolve 

to valid IP addresses, which highlights the need for inspection of failed DNS responses 

(i.e. NXDOMAIN) in search of DGA traffic, at least in passive systems like IDS. 

5. Conclusions 

In this paper, we presented the results of standard and blind evaluations for 14 ML and 9 

DL models, along with 2 comparative models, for the recognition of DGA domain 

names. For such a task, along with the standard dataset used for training and standard 

evaluation, we used an additional independent “blind” dataset for blind evaluation. By 

choosing blacklisted DGA domain names and regular domain names collected from 

production network traffic in case of the blind dataset, in comparison to synthetic 

creation of positive samples and ALEXA1M list of most popular domain names in case 

of the standard dataset, we successfully ensured the independence. 

Based on calculated FI from different tree-based ML models, we performed a 

veto-based feature selection process and concluded that the mean frequency index 

(ALEXA1M) of 4-grams makes the most important feature across trained ML models. 

To verify this finding, we created a comparative HE method ALEXA4G based on this 

single feature, which during the evaluation scored only 3.5% worse than the best 

performing model MLP. Furthermore, we concluded that features based on lexical 

ALEXA1M properties (i.e. n-grams, longest common prefix, and longest common 

suffix) are overall more important than all other used features, meaning that the 

domain-based features should be the focus of related ML modeling. 

As a result of the evaluation, we found that ML models generally score better than 

DL models, although the difference in overall score is marginal. Concerning the 

complexity of models, the simplest ML models (NB, QDA, LDA, and DT) scored worse 

than more complex ML models, while in the case of DL there was no clear distinction. 

Nevertheless, a substantial difference between ML and DL classes could be found with 

untrained regular DGAs Darkshell, Qhost, and Qsnatch having short chosen prefixes, 

where best ML model MLP performed considerably better than best DL model NYU, 

and in the case with trained dictionary DGA Suppobox, where DL model scored better 

because identical characteristic prolonged lexicographical patterns could be found in 

both standard and blind datasets. 

Thus, when considering its flexibility, powerful ability to automatically memorize 

lexicographical patterns, and the fact that it does not require an extra step of careful 

feature engineering, a critical process that creates the difference between good and bad 

same-architecture ML models, we concluded that DL can be considered as the preferred 

choice over ML for the general recognition of DGA domain names. Nevertheless, in the 

case of the creation and usage of specialized models, ML should be the preferred choice 

for the recognition of regular DGAs, while DL should be the preferred choice for the 

recognition of dictionary DGAs. 

Usability validation for best performing ML model MLP and DL model NYU was 

done on historical one-year DNS query logs, along with the comparative simplistic HE 

method based on chosen prefix length and vowel ratio. As a result, we detected 2 
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clusters for the following DGAs: Conficker and Dromedan, with both models and a HE 

method. Surprisingly, we found that the best candidate for usage against the DNS 

queries, without additional fine-tuning of relevant thresholds, was the simplest – 

simplistic HE method. Its exceptionally low FPR emerges it from other models in the 

real-life traffic environment, resulting in a practically acceptable number of positives 

from the perspective of network security analysts. To improve the usability of ML and 

DL models, the focus of DNS traffic analysis should be moved from queries to failed 

responses, inadvertently losing the possibility to use such models in an IPS. 

Ideas for future work include further research related to specialized recognition of 

dictionary DGAs and usage of hybrid ML and DL models, where benefits should be 

taken from and drawbacks alleviated of both, to increase the prediction accuracy and 

decrease the computational complexity. 
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