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Abstract. In this paper, we propose SimAndro-Plus as an improved variant of the
state-of-the-art method, SimAndro, to compute the similarity of Android applica-
tions (apps) regarding their functionalities. SimAndro-Plus has two major differ-
ences with SimAndro: 1) it exploits two beneficial features to similarity computa-
tion, which are totally disregarded by SimAndro; 2) to compute the similarity score
of an app-pair based on strings and package name features, SimAndro-Plus consid-
ers not only those terms co-appearing in both apps but also considers those terms
appearing in one app while missing in the other one. The results of our extensive ex-
periments with three real-world datasets and a dataset constructed by human experts
demonstrate that 1) each of the two aforementioned differences is really effective to
achieve better accuracy and 2) SimAndro-Plus outperforms SimAndro in similarity
computation by 14% in average.
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1. Introduction

Android applications (in short, apps) are rapidly growing in the number and variety [5]
[17] distributed via the official Google Play Store3 and other third-party stores such as
Amazon App Store4 and APKPure5. Google Play Store contains a huge number of apps
divided into various categories such as game, communication, and business [11] [24]. As
the number of apps in app stores increases dramatically, even if they are divided into var-
ious categories, smartphone users face a serious problem to find relevant apps providing
their required functionalities [5] [13]. Therefore, there is an important demand for app
search engines or recommender systems to alleviate this problem where employing an
accurate similarity method is one of the most challenging issues [13] [15].

In the literature, some methods have been proposed for similarity computation of apps
where we aim to find similar apps regarding their functionalities [4–7] [13] [22]. To do

? Corresponding author
3 http://play.google.com/apps
4 https://www.amazon.com
5 https://apkpure.com
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this, proposed methods in references [4], [6], [22], SimApp [5], and DNADroid [7] ex-
tract the required features from the app stores; these feature might be inaccurate, varied
in different app stores, unavailable, affected by language barrier, and unappropriated
for similarity computation. Therefore, exploiting these features may lead us to inaccurate
similarity computation [13]. On the contrary, SimAndro [13], an effective state-of-the-art
method, exploits the features extracted (i.e., mined) from apps and the Android platform
itself to compute the similarity of apps. The motivation behind SimAndro is that apps con-
tain helpful and unique features for similarity computation such as API calls and manifest
information that clearly capture the apps functionalities.

In this paper, we propose SimAndro-Plus as an improved variant of SimAndro to com-
pute the similarity of apps more effectively. As SimAndro does, SimAndro-Plus performs
feature extraction and similarity computation steps; however, it has two major differences
with SimAndro in the both steps as follows. First, instead of API-method and manifest-
complete, SimAndro-Plus exploits two new beneficial features to similarity computation
named as API-full-method and manifest-partial, respectively. API-method implicitly cap-
ture the app’s functionalities in some cases; for example, overloaded APIs are regarded as
an identical feature, while they somehow perform different tasks. However, our API-full-
method considers the API’s signature (i.e., API’s fully qualified name and its parameter
list) as a feature, thereby capturing the app’s functionalities explicitly. Manifest-complete
considers the app components (i.e., extracted from the AndroidManifest.xml file) as part
of the feature, which are not predefined entities in the Android platform and exploiting
them in similarity computation may be misleading; for example, declaring an activity
component by two different apps cannot imply the similarity between the two apps since
these activity components can be implemented to perform totally different tasks in each
of the two apps. However, SimAndro-Plus does not consider app components as part of
the feature by exploiting the manifest-partial feature. Second, in computing the similarity
score between two apps based on their corresponding strings and package name features,
SimAndro considers only the terms co-appearing in both apps; however, it has been shown
that in computing the similarity between two objects of terms (e.g., documents), the num-
ber of those terms appearing in one object while missing in the other one is important
as well [16]. Therefore, by following [16], SimAndro-Plus considers those terms appear-
ing in one app while missing in the other one along with those terms co-appearing in
both apps. The results of our extensive experiments with three real-world datasets and
a dataset constructed by human experts (i.e., authors) demonstrate that SimAndro-Plus
outperforms SimAndro.

The contributions of this paper are as follows:

– We extract two new helpful features from apps.
– In computing the similarity based on strings and package name feature, we not only

consider those terms appearing in both apps but also consider those terms appearing
in only one of the apps.

– We verify the last two contributions help to improve the accuracy of original SimAn-
dro.

The rest of the paper is organized as follows. In Section 2, we briefly explain the ex-
isting methods. In Section 3, we present our SimAndro-Plus and its two orthogonal steps.
Section 4 explains our experimental setup and analyzes the results of our experiments. In
Section 5, we conclude our paper.
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2. Related Work

In this section, we explain SimAndro and other existing methods. However, since we
mainly focus on SimAndro in this paper, the other methods are explained briefly; the
complete explanations about them can be found at [13, Section 2].

Reference [4] proposes a method for app recommendation where the similarity score
of an app-pair is computed based on their titles and user comments. Reference [22] pro-
poses a method to invoke users for replacing an already installed app a with a new app b
where the similarity score between a and b is computed by exploiting their descriptions. In
SimApp [5], the similarity between two apps is computed individually based on multiple
features such as description, rating, permissions, and size; then, the obtained individual
similarity scores are combined into a single value as the final similarity score. In refer-
ence [6], a method is proposed for automatically tagging apps where the similarity score
of an app-pair is computed as in SimApp. DNADroid [7] detects app cloning by comput-
ing the similarity between apps based on different features such as title, developer, and
description. All of the aforementioned methods extract the required features from the app
stores, which might incur the problems of being inaccurate (e.g., permission list), varied
in different app stores (e.g., description and user comment), unavailable (e.g., user com-
ment and rating), affected by language barrier (e.g., description and user comments), and
unappropriated for similarity computation (e.g., size and rating); exploiting these features
may lead us to inaccurate similarity computation. These methods highly depend on the
human explanations and descriptions of apps and neglect the useful features that can be
mined from apps themselves and the Android platform [13].

SimAndro [13] is an effective state-of-the-art method to compute the similarity of
apps by exploiting features extracted (i.e., mined) from apps and the Android platform
itself; it is an easy-to-understand and straightforward similarity method for apps that can
be applied to a wide range of applications such as app search engines, app recommen-
dation, and app clustering. The motivation behind SimAndro is that apps contain helpful
and unique features for similarity computation that clearly capture the apps functional-
ities without depending on the human explanations or descriptions of apps. SimAndro
performs the two orthogonal steps of feature extraction and similarity computation. In the
former step, API-methods, manifest-complete, strings, and package name are extracted
as four different features from the classes.dex, AndroidManifest.xml, strings.xml, and An-
droidManifest.xml files, respectively. We note that a typical app is an archive file type
called Android Package (APK); this file is easily extractable by any archiving software
and contain different folders (e.g., assets, lib, and META-INF) and files (e.g., Android-
Manifest.xml, classes.dex. and strings.xml) [9] [13]. In the latter step, four similarity
scores of an app-pair (a, b) are calculated based on the aforementioned heterogeneous
features separately. Then, by utilizing TreeRankSVM [1], the weighted linear combina-
tion of the above four scores is regarded as the final similarity score of (a, b).

3. Proposed Method

Figure 1 illustrates an overview of our SimAndro-Plus. The overall process in both feature
extraction and similarity computation steps are somehow similar to the ones in SimAndro;
however, in order to make the paper self-contained, we briefly explain the two steps in this
section along with the two major differences between SimAndro-Plus and its predecessor.
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Fig. 1. An overview of SimAndro-Plus

3.1. Feature Extraction

In this step, we extract API-full-method, manifest-partial, strings, and package name from
apps as four heterogeneous features where API-full-method and manifest-partial are two
new features disregarded by SimAndro, while strings and package name are same as the
ones exploited by SimAndro.

API-full-method Feature APIs in the Android platform are utilized by apps to inter-
act with the underlying Android system and the device [8] [13]; for example, by call-
ing the “android.os.Handler. removeMessages (int what)” API, an app removes pending
messages with code “what” from the message queue. More specifically, API calls can
clearly capture the app’s behaviors and functionalities [12] [13] [23]. Therefore, we ex-
tract the API calls as a feature to understand what operations an app executes. SimAn-
dro considers the API’s fully qualified name as a feature called API-method (e.g., “an-
droid.os.Handler.removeMessages” for the above API). Let us consider the “android.os.
Handler.removeMessages (int what, object obj)” API that removes pending messages
with code “what” whose object is “obj” from the message queue. Although these two
APIs are different, they are regarded identical by the API-method feature. To solve this
problem, SimAndro-Plus exploits a new feature called API-full-method that considers
the API’s signature (i.e., API’s fully qualified name and its parameter list) instead of
only the fully qualified name. As an example, for the two aforementioned APIs, “an-
droid.os.Handler.removeMessages (I)”6 and “android.os.Handler.removeMessages (I, L)”
are considered as the API-full-method feature, respectively. API-full-method captures the
apps functionalities more accurate that API-method since it considers the API’s param-
eter list as the part of the feature. In Section 4.2, we show that API-full-method is more
beneficial than API-method to similarity computation.

To extract the API-full-method feature, we utilize both APK file and Android plat-
form as follows. First, we mine the DEX file via it’s different sections such as the header,
method ids, string ids, type ids, proto ids, and data. The method ids section contains
identifiers for all the app’s methods; the string ids section contains identifiers for all the
strings (e.g., classes, methods, parameters, etc.) in the app; the type ids section contains

6 For simplicity, we use Dalvik symbols to represent parameters.
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identifiers for all the types (classes and primitive types) defined by the app; proto idx con-
tains identifier for the return type and parameters of each method in the app; the header
section defines the offset and the size of each of the aforementioned sections. Through the
starting address of the method ids section in the header, we read all entries in the section.
Each entry in this section is a data structure that contains various kinds of information
about a method including an index (class idx) to an offset in the type ids section, an index
(name idx) to an offset in the string ids section, and an index (proto idx) to an offset in
the proto ids section. The offset pointed by class idx has an index to another offset in the
string ids section where we obtain the name of the method’s owner class. We also extract
the name of the method itself through name idx. The offset pointed by proto idx has an
index to an offset in other list contains number of parameters and their types. For each
entry in the method ids section, we concatenate its class name, method name, and param-
eter list to construct a candidate API-full-method. Then, we apply the Java reflection to
the “android.jar” file to obtain a list of all API descriptions in the Android platform; if a
candidate API-full-method does not belong to this list, we ignore it.

Finally, based on the API-full-method feature, an app is represented as a binary vec-
tor, A-vector, where each dimension corresponds to a feature value and the content of a
dimension indicates the presence (i.e., value as 1) or absence (i.e., value as 0) of its corre-
sponding feature value in the app [19]. In order to clarify it, suppose that {a1, a2, ..., an}
is a set of n distinctive API-full-methods extracted from all the apps in a dataset; then,
A-vector of app a is represented as <v′0, v

′
1, ..., v

′
n−1> with n dimensions where v′i=1

(0 ≤ i ≤ n− 1) if a contains the feature value ai+1; otherwise v′i = 0.

Manifest-partial Feature The AndroidManifest.xml file holds useful meta information
(i.e., manifest information) about an app such as permissions, hardware/software compo-
nents, app components (i.e., activity, service, broadcast receiver, and content provider),
and intent filters (i.e., action and category); these information supports both installation
and execution of the app [8] [13]. The permissions are required to perform critical tasks
such as network access, the hardware/software components indicate either an essential or
optional hardware (e.g., GPS) and software (e.g., VoIP) components that the app requires,
the activity component implements a task with UI (user interface), the service component
implements a background task without UI, the broadcast receiver component enables the
app to receive events broadcast by the Android system or other apps, the content provider
component supplies data access interface, and intent filters facilitates communication be-
tween the app’s components and also between different apps. This information can cap-
ture the app’s behaviors and functionalities as API calls do [2] [12] [13]; thus, we extract
the manifest information as a feature for similarity computation.

SimAndro considers all the aforementioned information including the four app com-
ponents as a feature called manifest-complete. An app component is defined by developers
as a subclass of its specific standard class in the Android platform to implement the app’s
specific functionalities. For example, although two activity components c1 and c2 from
two different apps a and b are both defined as subclasses of the “android.app.Activity”
class, they are developed with their own arbitrary names and under specific functional-
ities of a and b, respectively; even if c1 and c2 are both activity components, they may
not implement similar functionalities. More specifically, contrary to permissions, hard-
ware/software components, action, and category, app components are not predefined enti-
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ties in the Android platform and are developed independently for each app under the app’s
specifications, thereby considering them as a feature may provide us inaccurate similar-
ity scores. To solve this problem, SimAndro-Plus exploits a new feature called manifest-
partial where only permissions, hardware/software components, action, and category are
considered.

Based on the manifest-partial feature, an app is represented as a binary vector, M-
vector, which is similar to A-vector. In Section 4.2, we show that manifest-partial is more
beneficial than manifest-complete to similarity computation.

Strings and Package Name Features Furthermore, we consider strings and package
name as two other features as SimAndro does. The strings.xml file is a single reference for
various strings in an app where each string has a name attribute as its unique identifier [13,
Fig. 3]; we extract both the string and its name attribute since the name attribute also
represents some semantic information about the app. As an example, the following line
in the strings.xml file of “Weather Forecast”, a free app for weather forecasting, defines a
string:

<string name=”weather sunny”> Sunny </string>

The package name located in the AndroidManifest.xml file is a unique identifier for
the app and follows Java package naming convention. It is a combination of multiple
terms (i.e., simple term or compound one) concatenated by dot and normally provides
us abstract information about the app’s functionalities; for example, the “weather.widget.
weatherforecast” is the package name of the “Weather Forecast” app. For each of these
two features, we remove non-alphabetical characters, split compound strings (e.g., weath-
erforecast), remove stop words, perform stemming, and calculate the TF-IDF score [19]
for each term. Finally, based on strings and package name features, an app is represented
as two non-binary vectors S-vector and P-vector, respectively, where each dimension cor-
responds to a term and the content of the dimension is the TF-IDF score of the term.

Feature Refinement In order to obtain better accuracy in similarity computation, we
need to perform a feature refinement. The reason is that some of the feature values are
widely used in a large number of apps regardless of their functionalities, thereby exploit-
ing them in similarity computation leads to inaccurate similarity scores. An as examples,
consider the two following cases; the “android.os.Message.sendToTarget()” API used by
an app to send a message to a specific handler is invoked in more than 90% of apps in our
datasets, and the “INTERNET” permission allowing the Internet access is requested by
more than 95% of apps in our datasets. We apply a feature refinement similar to the one
in SimAndro to our new features, API-full-method and manifest-partial, as follows.

To refine the API-full-method feature with a dataset, we consider a threshold, T, from
10% to 70% of the dataset size in step of 10% and a feature value is neglected if the
number of apps in the dataset containing it is higher than T; in other words, we do not
consider those feature values that are common among more than T of apps. Then, we
compute the apps similarity based on only the API-full-method feature refined with each
value of T and compare the accuracy of these seven different cases; the T value of the
case providing us the better accuracy is selected as the best value of T. To refine the
manifest-partial feature, we perform the same process.
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3.2. Similarity Computation

As explained before, an app is represented by four different vectors as A-vector, M-vector,
S-vector, and P-vector corresponding to its API-full-method, manifest-partial, strings, and
package name features, respectively. As in SimAndro, to calculate the similarity score of
an app-pair (a, b) based on the API-full-method feature, A-score(a, b), and the manifest-
partial feature,M -score(a, b), we apply Jaccard Coefficient (Jaccard) [19] to correspond-
ing A-vectors and M-vectors of a and b, respectively. In the case of A-score(a, b), it is
calculated as follows:

A-score(a, b) =
ΣiA

a
i ·Abi

ΣiAai +ΣiAbi −ΣiAai ·Abi
(1)

where Aai and Abi denote the contents (i.e., 0 or 1) of the ith dimensions in A-vector of a
and A-vector of b, respectively.

We note that M -score(a, b) is also calculated in the same way. We employed Jaccard
to calculate these two scores since in the literature, it is a well-known similarity measure
widely used to calculate the similarity of binary vectors (i.e., sets) in various topics such as
image segmentation [10], document summarization [20], and similarity computation [14].

On contrary to SimAndro, to compute the similarity score of an app-pair (a, b) based
on the strings feature, S-score(a, b), and the package name feature, P -score(a, b), we
apply SMTP (similarity measure for text processing) [16] instead of Cosine [19] to cor-
responding S-vectors and P-vectors of a and b, respectively, for the following reasons.
S-vector and P-vector are non-binary vectors where each dimension corresponds to a
term (i.e., a feature value) and the content of the dimension is set as its weight (i.e., the
TF-IDF score). To calculate the similarity between two non-binary vectors, not only the
proximity between the weights of co-appearing terms in both vectors but also the num-
ber of those terms appearing in one vector while missing in the other one is important
as well. More specifically, as have been shown in [16], 1) the presence or absence of a
term is more important in similarity computation than the difference between the weights
of a co-appearing term in both vectors; 2) the similarity score should increase when the
difference between the weights of a co-appearing term decreases; 3) the similarity score
should decrease when the number of terms appearing in one vector but missing in the
other one increases. Let us consider three sample vectors i=<2, 0, 3, 0>, j=<2, 1, 3, 1>,
and k=< 2, 4, 2, 2 >. Although there are two missing terms in i, the Cosine similarity
score between i and j (i.e., 0.93) is higher than that between j and k (i.e., 0.78) where
there is not any missing terms; Cosine does not acknowledge the third aforementioned
case.

SMTP is an effective measure that considers all the three aforementioned cases in
similarity computation. To calculate S-score(a, b), we apply SMTP to the corresponding
S-vectors of a and b as follows:

S-score(a, b) =

ΣiN∗(S
a
i ,S

b
i )

ΣiN∪(Sa
i ,S

b
i )
+λ

1+λ
, (2)
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N∗(S
a
i , S

b
i )=


0.5·

(
1+exp

(
−(S

a
i −S

b
i

σi
)2
))

, Sai , S
b
i 6=0, σi 6=0

0.5, Sai , S
b
i 6=0, σi=0

0, Sai , S
b
i =0

−λ, otherwise

N∪(S
a
i , S

b
i ) =

{
0, Sai , S

b
i =0

1, otherwise

where Sai and Sbi denote the weights of the ith terms in S-vector of a and S-vector of
b, respectively. λ denotes a constant and σi does the standard deviation of all non-zero
weights of the ith term in the dataset. Note that we regard an extra condition “Sai , S

b
i 6=

0, σi = 0”, which is not considered in the SMTP original formulation; if σi = 0, the
SMTP definition is incorrect and the similarity score is undefined since the division by
zero happens. N∪ sums up the number of terms contributing in similarity computation.

The following three cases are considered through the four conditions in calculating
N∗: 1) those terms co-appearing in both apps contribute positively to the similarity compu-
tation where the amount of contribution depends on the proximity of their corresponding
weights in two apps and their standard deviations in the dataset (i.e., if Sai , S

b
i 6=0, σi 6=0).

when the standard deviation is zero, the amount of contributions is less than the former
case (i.e., if Sai , S

b
i 6=0, σi=0). 2) Those terms missing in both apps, do not contribute to

the similarity computation (i.e., if Sai , S
b
i =0). 3) Those terms appearing in one app but

missing in the other one adversely affect the similarity score (i.e., fourth condition).
The similarity score of (a, b) based on their package name features, P -score(a, b), is

also calculated in the same way as S-score(a, b). In Section 4.2, we show that SMTP is
more beneficial than Cosine to similarity computation of apps. Finally, as in SimAndro,
we apply a weighted linear combination to combine the four scores into a single value as
the final similarity score of (a, b) as follows:

S(a, b) = w1 ·A-score(a, b) + w2 ·M -score(a, b)
+w3 · P -score(a, b) + w4 · S-score(a, b) (3)

wherew1,w2,w3, andw4 are weights to control the degree of importance of each score in
the combination. We automatically find the best value of these four weights by utilizing
TreeRankSVM [1] as a machine learning technique; more details can be found in [13,
Section 3.3].

It has been shown that instead of considering all the above scores equally significant
and simply summing up them into a single value as the final similarity score, applying
a weighted linear combination to combine them contributes to obtain better accuracy in
similarity computation [13]. We note that it also could be an option to simply combine
our four heterogeneous features into a single one (i.e., each app is represented by a single
binary vector) and then compute apps similarity based on this single feature; however,
it has been shown that considering each of the four heterogeneous features separately in
similarity computation is beneficial to obtain better accuracy [13].

3.3. Overall Process: Review

In this section, we present a simple review of the overall process required to compute the
similarity between two apps as follows.
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Feature extraction and refinement First, we use an archiving software (e.g., ark7) to
unzip all the apps in the dataset. Then, we extract the features for each app as follows. We
mine the app’s classes.dex file through its different sections to extract API-full-method
(in the case of SimAndro-Plus) and API-method (in the case of SimAndro); the mining
process of the classes.dex file is described in Section 3.1 and [13, Section 3.2.1] in detail.
As an example, for the ”WhatsApp Messenger” app, we extracted 5,398 feature values
for API-full-method and 5,301 features values for API-method. Note that the API-full-
method feature has more values since it considers the API’s parameter list as part of the
feature. As an example, ”WhatsApp Messenger” calls both of the two following APIs:
the ”android.media.MediaCodec.releaseOutputBuffer (int index, boolean render)” API is
called to return an unnecessary buffer to the codec or to render it on the output surface,
while the ”android.media.MediaCodec.releaseOutputBuffer (int index, long renderTimes-
tampNs)” API is called to update the surface timestamp of an unnecessary buffer and re-
turn it to the codec to render it on the output surface; API-full-method considers two vari-
ous feature values for the above two APIs as ”android.media.MediaCodec.releaseOutput-
Buffer (I, Z)” and ”android.media.MediaCodec.releaseOutputBuffer (I, J)”, respectively;
however, API-method considers an identical feature value for both cases as ”android.-
media.MediaCodec.releaseOutputBuffer”. Next, we apply the feature refinement to both
API-full-method and API-method features as explained in Section 2.1 where the best val-
ues of T are 30% (i.e., refer to Table 2) and 20% (i.e., refer to [13, Table 4]), respectively,
with the google dataset. As an example, we have 1,907 and 1,561 feature values for API-
full-method and API-method, respectively, with “WhatsApp Messenger” after refining
them as its final features.

Now, we exploit the AndroidManifest.xml file to extract manifest-partial (in the case
of SimAndro-Plus) and manifest-complete (in the case of SimAndro); since this file is in
the XML format, the feature extraction is straightforward and not tedious on contrary to
that of the classes.dex file. For example, for the ”WhatsApp Messenger” app, we extracted
85 and 97 values for manifest-partial and manifest-complete features, respectively. Note
that the manifest-partial feature has less number of values since it does not take into ac-
count the app components (i.e., activity, service, broadcast receiver, and content provider).
Now, we apply the feature refinement to both manifest-partial and manifest-complete fea-
tures where the best values of T are 30% (i.e., refer to Table 2) and 20% (i.e., refer
to [13, Table 6]), respectively, with the google dataset. As an example, we have 64 and 74
values for manifest-partial and manifest-complete features, respectively, with “WhatsApp
Messenger” after refining them as its final features.

Next, we extract the package name (e.g., ”com.whatsapp” for our sample app), decom-
pound it into its constituent terms (e.g., ”com whats app” for above case) by utilizing the
Levenshtein algorithms [3], remove non-alphabetical characters and stop words, perform
stemming on the terms, and measure the TF-IDF score of each term to obtain the package
name feature. Finally, we extract the name attributes and their unique identifiers from the
strings.xml file, remove non-alphabetical characters, split the strings, remove stop words
including the Java reserved keywords as well, perform stemming on the remaining terms,
and calculate the TF-IDF score of each term to obtain the strings feature.

7 https://apps.kde.org/ark/

https://apps.kde.org/ark/
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Automatic weight tuning Each app is represented by four vectors as A-vector, M-vector,
S-vector, and P-vector; in the case of SimAndro-Plus, these vectors correspond to the API-
full-method, manifest-partial, strings, and package name features of the app, respectively,
while in the case of SimAndro, they correspond to the API-method, manifest-complete,
strings, and package name features, respectively. Now, we utilize TreeRankSVM to find
the best values of w1, w2, w3, and w4 in Equation (3) automatically as follows; these
values are later used to compute the similarity score of any app-pairs. We randomly choose
75% of the apps in the dataset to make a training set where each of the chosen apps is
regarded as a query app. For each possible app-pair (a, q) regarding to a query app q, we
make a hyperplane vector (see [13, Section 3.3] for more detail) as follows:

{r, qid,A-score(a, q),M -score(a, q), P -score(a, q), S-score(a, q)} (4)

when r is set as 1 if a is relevant to q (i.e., a belongs to the same category of q), otherwise 0
and qid is a real number started from 1 denoting a query number. For both SimAndro-Plus
and SimAndro, A-score(a, q) and M -score(a, q) are calculated by applying Jaccard to
the corresponding A-vectors and M-vectors of a and q, respectively. For SimAndro-Plus,
P -score(a, q) and S-score(a, q) are calculated by applying SMTP to the corresponding
P-vectors and S-vectors of a and q, respectively; in these two cases, for SimAndro, Cosine
is utilized instead of SMTP.

Similarity computation Let us consider two apps a as ”WhatsApp Messenger” and
b as ”TalkU”. To compute the similarity score of app-pair (a, b), SimAndro-Plus em-
ploys Jaccard to calculate A-score(a, b) and M -score(a, b), employs SMTP to calcu-
late P -score(a, b) and S-score(a, b), and finally applies the best values of w1, w2, w3,
and w4 (i.e., obtained in the previous step) to Equation (3) to compute S(a, b). SimAn-
dro performs the same process; however, 1) A-score(a, b) and M -score(a, b) are cal-
culated based on API-method and manifest-complete, respectively; 2) P -score(a, b) and
S-score(a, b) are calculated by employing Cosine; 3) consequently, the best values of
w1, w2, w3, and w4 are also obtained by a separate automatic weight tuning than the one
performed with SimAndro-Plus.

To compute the similarity score between a new app and the existing ones in the dataset,
we utilize the already identified values of w1, w2, w3, and w4. To update these values, we
can follow some strategies; for example, if the number of new apps added to the dataset is
25% of the original dataset size (i.e., identical to our test set for the last automatic weight
tuning), we perform a new automatic weight tuning on the dataset.

4. Evaluation

In this section, we carefully evaluate the effectiveness of our two contributions (i.e., ex-
ploiting the two new features and applying SMTP instead of Cosine) and compare the
accuracy of SimAndro-Plus with that of SimAndro.

4.1. Experimental Setup

In order to conduct a fair evaluation, we employed the same datasets with SimAndro;
google, apkpure, and amazon are three real-world datasets constructed based on the data
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Table 1. Statistics of our datasets
google apkpure amazon manual

# apps 8903 11068 20570 444
# categories 74 43 204 37

obtained by crawling Google Play Store, APKPure, and Amazon App Store, respec-
tively. We constructed the manual dataset by selecting few apps from the three real-world
datasets and carefully dividing them into various categories based on their functionalities.
Table 1 shows the statistics of our datasets.

For the manual dataset, we can regard the categories as a ground truth set since
the precise categorization is performed by humans expert (i.e., authors). For real-world
datasets, their original categories are regarded as the ground truth sets since it is dif-
ficult and time-consuming to categorize them by humans expert (i.e., performing user
studies); however, in order to conduct accurate and reliable evaluations, we consider a
fine-grained categorization in our real-world datasets. For example, in our google dataset,
the “Tools” category contains six sub-categories as “Alarm”, “Flashlight”, “Calculator”,
“Input”, “Wi-Fi”, and “Recommended”; instead of considering all the apps in these six
sub-categories under a single category as “Tools”, we consider these sub-categories as
six distinct main categories as “Tools Alarm”, “Tools Flashlight”, “Tools Calculator”,
“Tools Input”, “Tools Wi-Fi”, and “Tools Recommended”.

To evaluate the effectiveness, MAP, precision, recall [19], and PRES [18] are utilized
as our evaluation metrics. In Equation (2), we set the value of λ as 1 by following [16].

4.2. Results and Analyses

In this section, we refine our new features, compare the effectiveness of applying API-
full-method, manifest-partial, and SMTP to similarity computation with those of API-
method, manifest-complete, and Cosine, respectively. Finally, we compare the accuracy
of SimAndro-Plus with that of SimAndro.

Feature Refinement As explained in Section 3.1, we perform a feature refinement for
API-full-method and manifest-partial features with our four datasets through the same
process as in SimAndro. Figure 2(a) illustrates the result of our feature refinement for
API-full-method with the google dataset on top k (k=5, 10, 15, 20, 25, 30) results; in the
top of the figure, different values of T and their corresponding line patterns are shown
(e.g., T = 30 and T = 60 are represented with triangle and circle marked lines, respec-
tively). As shown in Figure 2(a), the best accuracy in terms of MAP, precision, recall,
and PRES is observed when the value of T is set as 30% regardless of k; by setting T
to smaller values than 30% (i.e., 10% and 20%) or to larger values than 30% (i.e., 40%,
50%, 60%, and 70%), we would get lower accuracy. Figure 2(b) illustrates the result of
the feature refinement for the manifest-partial feature with the google dataset on top k
results where the best accuracy is observed when the value of T = 30% regardless of k.
Table 2 summarizes the complete results of the feature refinement with all datasets.
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Fig. 2. Feature refinement with the google dataset.

Table 2. Results of feature refinement
google apkpure amazon manual

API-full-method 30% 30% 20% 20%
manifest-partial 30% 30% 40% 40%

Effectiveness Comparison of API-full-method and API-method As explained in Sec-
tion 3.1, we exploit API-full-method instead of API-method, which is one of the major dif-
ferences between SimAndro-Plus and SimAndro. Now, we compare the effectiveness of
API-full-method with that of API-method in similarity computation with our four datasets
as follows. For each dataset, we employ the best values of T for API-full-method from
Table 2 and for API-method from [13, Table 4]; for example, with the google dataset, we
set the best value of T as 30% and 20% for API-full-method and API-method, respec-
tively. Then, with each dataset, we apply Jaccard to compute the similarity of apps by
exploiting only API-full-method and API-method features separately; in other words, we
do not consider the other three features in similarity computation. Finally, we compare
the results of these two similarity computations for each dataset where for simplicity,
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Fig. 3. Accuracy of API-full-method and API-method.

Table 3. Accuracy improvements(%) by API-full-method over API-method
MAP precision recall PRES

google 5 3 7 5
apkpure 4 4 6 7
amazon 3 3 4 4
manual 4 5 3 4

the effectiveness is considered as the average of MAP, precision, recall, and PRES on
different values of k8. Figure 3 shows the results of this comparison; with all datasets,
API-full-method shows better accuracy in terms of MAP, precision, recall, and PRES
since it captures the apps functionalities more accurate than API-method by considering
the API’s signature, while API-method considers only the API’s fully qualified name and
neglects its parameter list. Table 3 represents the percentage of improvements in accuracy
obtained by API-full-method over API-method with each dataset.

Effectiveness Comparison of Manifest-partial and Manifest-complete As explained
in Section 3.1, SimAndro-Plus exploits the manifest-partial feature, while SimAndro ex-
ploits manifest-complete; this is another major difference between SimAndro-Plus and
SimAndro. Now, we compare the effectiveness of these two features in similarity com-
putation with our four datasets as follows. We employ the best values of T for manifest-
partial from Table 2 and for manifest-complete from [13, Table 6] regarding to the target
dataset; for example, with the apkpure dataset, we set the best value of T as 30% and
20% for manifest-partial and manifest-complete, respectively. Then, with each dataset,
we apply Jaccard to compute the similarity of apps by exploiting only manifest-partial
and manifest-complete features separately. Finally, we compare the results of these two

8 As an example, we compute MAP for k=5, 10, 15, 20, 25, 30; then, the average of these six values is
considered as MAP.
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Fig. 4. Accuracy of manifest-partial and manifest-complete.

Table 4. Accuracy improvements(%) by manifest-partial over manifest-complete
MAP precision recall PRES

google 9 2 6 8
apkpure 11 1 12 12
amazon 7 9 8 7
manual 7 8 7 7

similarity computations for each dataset. Figure 4 illustrates the results of this compar-
ison; with all datasets, manifest-partial shows better accuracy in similarity computation
than manifest-complete in terms of all evaluation metrics. The reason is that manifest-
complete considers app components in similarity computation; app components are not
predefined entities and are developed independently in an app by developers under their
own arbitrary names and functionalities, thereby considering them in similarity computa-
tion leads to inaccurate similarity scores. Table 4 represents the percentage of improve-
ments in accuracy obtained by manifest-partial over manifest-complete with each dataset.

Effectiveness Comparison of SMTP and Cosine As explained in Section 3.2, SimAndro-
Plus applies SMTP instead of Cosine to compute the similarity between two apps based on
their strings and package name features. We compare the effectiveness of these two mea-
sures in similarity computation as follows. For each dataset, we compute the similarity of
apps by applying Cosine and SMTP to only each of strings and package name features
separately (i.e., four different cases); then for each feature, we compare the results of two
similarity computations obtained by employing SMTP and Cosine. Figure 5 illustrates the
results of this comparison; in the case of both strings and package name features, with all
datasets, SMTP shows better accuracy than Cosine. The reason is that, on contrary to Co-
sine, SMTP considers not only the terms (i.e., feature values) co-appearing in both apps
but also takes into account those terms appearing in one app while missing in the other
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Fig. 5. Accuracy of SMTP and Cosine.

Table 5. Accuracy improvements(%) by SMTP over Cosine
strings package name

MAP precision recall PRES MAP precision recall PRES
google 10 7 9 11 4 3 4 5
apkpure 10 9 7 10 4 4 5 3
amazon 9 9 8 9 3 4 4 5
manual 12 10 8 9 5 4 4 6

one. Table 5 represents the percentage of improvements in accuracy obtained by SMTP
over Cosine with each dataset for both features; as observed in the table, SMTP shows
higher improvements over Cosine with the strings feature than those with the package
name feature since the latter feature for an app contains very few number of terms than
the former one.

Effectiveness Comparison of SimAndro-Plus and SimAndro As shown in the last
three sub-sections, considering API-full-method and manifest-partial as new features in-
stead of API-method and manifest-complete, respectively, are effective; also, applying
SMTP instead of Cosine to strings and package name features provides us better accu-
racy. These results imply that our both contributions are beneficial to similarity compu-
tation. As shown in reference [13], SimAndro outperforms existing methods proposed in
references [5], [4], [22], [6], and [7]; therefore, here, we only compare the accuracy of
SimAndro-Plus with that of SimAndro. More specifically, SimAndro-plus exploits API-
full-method, manifest-partial, strings, and package name as four features, and applies Jac-
card to the first two features and SMTP to the last two ones, while SimAndro exploits
API-method, manifest-complete, strings, and package name as four features, and applies
Jaccard to the first two features and Cosine to the last two ones. Figure 6 illustrates the
results of this comparison with the four datasets; SimAndro-Plus outperforms SimAndro
in terms of MAP, precision, recall, and PRES with all datasets. Table 6 represents the per-
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Fig. 6. Accuracy comparison between SimAndro-Plus and SimAndro.

Table 6. Accuracy improvements(%) by SimAndro-Plus over SimAndro
MAP precision recall PRES

google 14 12 13 16
apkpure 13 14 13 15
amazon 11 13 10 13
manual 15 14 16 13

centage of improvements in accuracy obtained by SimAndro-Plus over SimAndro with
each dataset; in average over all datasets, SimAndro-Plus outperforms its predecessor by
14%.

As another evaluation, we perform the same queries in reference [13] by employ-
ing SimAndro-Plus and compare their results with those of SimAndro as follows. We
consider two well-known apps in the google dataset as “WhatsApp Messenger” with the
package name “com.whatsapp” and “Opera Browser” with the package name “com.opera.
browser” from categories “Social Messenger” and “Communication WebBrowser”, re-
spectively. Then, we find out the 10 most similar apps to each of these query apps (i.e.,
result sets) by applying SimAndro-Plus as the similarity method. Table 7 shows the results
where the Relevant column contains Xsign if the retrieved app is in the same category as
the query; otherwise contains 7 sign. Table 8 borrowed from reference [13] shows the
results of the same queries with SimAndro. As shown in both tables, some apps are re-
peated under different signs in the Relevant column; the reason is that the google dataset
assigns multiple categories to some apps. As an example, in the top result set of Table 7,
the “Viber” app9 with the package name “com.viber.voip” is repeated three times where
it is marked as relevant in rank 8 since it belongs to the same category as the query, and
it is marked as irrelevant in ranks 9 and 10 since it belongs to other categories than the
query’s category.

9 Viber is a cross-platform voice over IP and instant messaging software application provided by Japanese
multinational company Rakuten.
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Table 7. Result sets obtained by SimAndro-Plus for sample queries
Rank Package Name Category Relevant

WhatsApp
Messenger

1 me.talkyou.app.im Social Messenger X

2 me.talkyou.app.im Communication Message 7

3 kik.android Social Messenger X

4 com.bbm Social Messenger X

5 com.bbm Communication MovieChatting 7

6 me.dingtone.app.im Communication Message 7

7 me.dingtone.app.im Social Messenger X

8 com.viber.voip Social Messenger X

9 com.viber.voip Communication MovieChatting 7

10 com.viber.voip Communication Message 7

Opera
Browser

1 com.opera.mini.native Communication WebBrowser X

2 com.apusapps.browser Communication WebBrowser X

3 com.superapps.browser Personalization 7

4 com.fsecure.ms.dc Tool Recommended 7

5 com.explore.web.browser Social 7

6 com.explore.web.browser Communication WebBrowser X

7 com.idotools.browser Comics 7

8 mobi.mgeek.TunnyBrowser Communication WebBrowser X

9 org.mozilla.firefox Communication WebBrowser X

10 com.chrome.beta Productivity 7

As observed by comparing tables 7 and 8, SimAndro-Plus provides us more accurate
results than SimAndro with the both queries. In the case of the first query (i.e., “WhatsApp
Messenger”) in Table 7, the “Kik Messenger” app10 with the package name “kik.android”
in rank 3 and the “Viber” app in ranks 8, 9, and 10 are both messenger apps as “WhatsApp
Messenger”, while they are absent in the result set obtained by SimAndro in Table 8. In
the case of the second query (i.e., “Opera Browser”) in Table 7, the “Firefox Browser”
app with the package name “org.mozilla.firefox” in rank 9 is a web browser as “Opera
Browser”, while it is absent in the result set obtained by SimAndro in Table 8. More
specifically, SimAndro-Plus fetches five similar apps for the both first and second query
apps, while SimAndro does three and four similar apps for the first and second query
apps, receptively.

5. Conclusions

In this paper, we proposed SimAndro-Plus to effectively compute the similarity of apps.
SimAndro-Plus is an improved variant of SimAndro, the state-of-the-art method; how-
ever, it has two following major differences with SimAndro. First, SimAndro-Plus ex-

10 Kik is a freeware instant messaging mobile app from the Canadian company Kik Interactive.
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Table 8. Result sets obtained by SimAndro for sample queries
Rank Package Name Category Relevant

WhatsApp
Messenger

1 net.mobileinnova.whatsmon Tool Recommended 7

2 me.talkyou.app.im Social Messenger X

3 me.talkyou.app.im Communication Message 7

4 com.bbm Social Messenger X

5 com.bbm Communication MovieChatting 7

6 me.dingtone.app.im Communication Message 7

7 me.dingtone.app.im Social Messenger X

8 com.contapps.android Communication PhoneNumberBlocking 7

9 com.bsb.hike Social 7

10 com.popularapp.fakecall Productivity 7

Opera
Browser

1 com.opera.mini.native Communication WebBrowser X

2 com.apusapps.browser Communication WebBrowser X

3 com.fsecure.ms.dc Tool Recommended 7

4 com.superapps.browser Personalization 7

5 com.explore.web.browser Social 7

6 com.explore.web.browser Communication WebBrowser X

7 com.idotools.browser Comics 7

8 nh.smart.opensign Finance 7

9 mobi.mgeek.TunnyBrowser Communication WebBrowser X

10 com.chrome.beta Productivity 7

ploits two new features as API-full-method and manifest-partial, which are completely
disregarded by SimAndro. Second, in similarity computation based on strings and pack-
age name features, SimAndro-Plus considers those terms appearing in one app but missing
in the other one along with those terms appearing in both apps by employing the SMTP
measure instead of Cosine. The results of our extensive experiments with four datasets
of apps demonstrated that 1) the both new features are beneficial to similarity compu-
tation, 2) employing SMTP provides us better accuracy than Cosine, 3) SimAndro-Plus
outperforms SimAndro.

As a future research direction, we plan to investigate the effectiveness of applying
SimAndro-Plus to the app recommendation systems. SimAndro-Plus can be regarded as
a reasonable solution to address the item cold start problem [21] in app recommendation
where new released apps (i.e., items) with no/few related information in the app store
cannot be recommended to the users. The reason is that SimAndro-Plus compute the
similarity between apps only based on the features extracted from apps themselves.
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