
Computer Science and Information Systems 19(2):523–545 https://doi.org/10.2298/CSIS210222001G

A novel Security Mechanism for Software Defined

Network Based on Blockchain

Xian Guo, Chen Wang, Laicheng Cao, Yongbo Jiang, and Yan Yan

School of Computer and Communication,
Lanzhou University of Technology, Gansu 730050, China

iamxg@163.com, {572957016, 28140795, 670342320, 414696390}@qq.com,

Abstract. The decoupling of the data plane and the control plane in the Software-

Defined Network (SDN) can increase the flexibility of network management and

operation. And it can reduce the network limitations caused by the hardware.

However, the centralized scheme in SDN also can introduce some other security

issues such as the single point of failure, the data consistency in multiple-

controller environment and the spoofing attack initiated by a malicious device in

the data plane. To solve these problems, a security framework for SDN based on

Blockchain (BCSDN) is proposed in this paper. BCSDN adopts a physically

distributed and logically centralized multi-controller architecture. LLDP protocol

is periodically used to obtain the link state information of the network, and a

Merkle tree is establised according to the collected link information and the

signature is generate based on KSI for each link that submitted by a switch by the

main controller selected by using the PoW mechanism. Such, the dynamic change

of network topology is recorded on Blockchian and the consistency of the

topology information among multiple controllers can be guaranteed. The main

controller issues the signature to the corresponding switch and a controller checks

the legitimate of a switch by verifying the signature when it requests the flow rule

table from the controller later. The signature verification ensures the authenticated

communication between a controller and a switch. Finally, the simulation of the

new scheme is implemented in Mininet platform that is a network emulation

platform and experiments are done to verify our novel solution in our simulation

tool. And we also informally analysis the security attributes that provided by our

BCSDN.

Keywords: SDN, LLDP, Blockchain, KSI.

1. Introduction

With the rapid development of Internet application, the Software-Defined Networking

(SDN) is coming into being to meet the increasing demand for the network traffics and

have been widely applied in many areas [1-5]. While the SDN provides convenience in

network management and operation, the split of the control plane and the data plane also

maybe result in some security issues [3, 6-9], such as the single points of failure in the

control plane, and the fragile channels between the control plane and the data plane, the

data consistency in multiple controllers environment and all kinds of attacks initiated by

a malicious switch and so on. The control plane is the most important component of

524 Xian Guo et al.

SDN. It is a key research area to resolve the problems that mentioned above. The

redundant manner that uses the multi-controller architecture is a generic solution, such

as the master-slave backup [10-13] and Byzantine Fault Tolerance scheme (BFT) [14-

17]. In the master-slave backup architecture, these two controllers that are respectively

called the master controller and the slave controller are used. When the master controller

is shut down because of some failures or other reason, the slave controller is initiated

and replaces the master controller to provide the network management task. The

mechanism can ensure the data consistency and can improve the resiliency of the control

layer. However, the method can’t fundamentally solve the single point of failure. In [14-

17], Byzantine fault-tolerant mechanisms based on Byzantine protocol are proposed to

achieve the data consistency on different controllers and to confirm a failure controller.

However, in these mechanisms, when the main controller fails, a view shift needs to be

performed, which can cause a great overhead of network resources.

Blockchain [18-19] is a proof-tamper, and distributed database that is jointly

maintained by multiple parties. It can achieve credible data sharing without the

participation of a Trusted Third Party (TTP) and can increase the scalability and

flexibility of the network. A survey about deployment of Blockchain in SDN is done in

[20]. To solve the security problem of the control plane in SDN, some solutions based

on Blockchain are proposed in [21-29]. However, these schemes still adopts the native

structure of SDN about the internal structure of the controller, so they can’t fully take

advantage of the Blockchain features, and don’t provide a systematic security

mechanism.

In addition, the Link Layer Discovery Protocol (LLDP) [30] is a standard protocol of

the network topology. However, some attacks such as the switch spoof, LLDP flood and

so on, are found in [31]. Secondly, the establishment of a secure channel between the

control plane and the data plane in SDN is also a hot research direction. The Transport

Layer Security Protocol (TLS) [32] used by the Openflow protocol is by default a

protocol between a controller and a switch. However, due to the complex configuration

and the communication cost, TLS is considered as an alternative solution in later

versions, which often lead to some security issues such as DDoS attack [33].

Keyless Signatures Infrastructure (KSI) [34] is a globally distributed system for

providing timestamp and server-supported digital signature service. Only hash operation

is used in KSI, so the scheme will not be impacted by some security problems such as a

key leakage. KSI can ensure the long-term validity of digital signature and often is used

for achieving a reliable communication. Using of KSI can prevent some attacks such as

the switch spoof and so on. However, although KSI provides a complete cryptographic

system, the core layer must calculate the root of the hash tree generated every time and

publish it in the database. At present, there are still problems such as the lack of a

credible mechanism for the database, the release cycle cannot meet the more fine-

grained requirement, and the release channel must be a secure channel. The combination

of Blockchain and KSI can solve these above problems. The hash calendar (Merkle tree)

generated when the network topology change can be stored on Blockchain.

Aiming to the SDN security issues discussed before, a security framework for SDN

based on Blockchain (BCSDN) is proposed in this paper. BCSDN adopts a physically

distributed and logically centralized multi-controller architecture, and uses blockchain

technology to build a unified database among controllers. All nodes in the network will

periodically collect the link state information according to the instruction comes from

 A novel Security Mechanism for Software 525

the main controller selected by the consensus scheme PoW [35-36]. A Merkle tree will

be set up according to the link state information and the signature will be generated for

each switch by the main controller based on KSI. The data consistency among multiple

controllers can be ensured by using of the Blockchain. And the root hash value

generated in every round will be written into the block header. The main controller will

issue the signature to the corresponding switch. The proof-tamper, auditable and

traceable features of Blockchain and KSI’s features provide security guarantees. Finally,

the simulation of BCSDN is implemented in Mininet platform [37] that is a network

emulation platform and experiments are done to verify our novel solution in our

simulation tool. And we informally analysis the security attributes that provided by our

BCSDN.

The rest of the paper is organized as follows. Section 2 presents the related work.

Some backgrounds on our solution are given in section 3, followed by our new scheme

BCSDN in section 4. In section 5, security attributions of BCSDN are informally

analyzed. Implementation and performance analysis of our solution are introduced in

section 6. Finally we conclude our work in section 7.

2. Related Work

A redundant manner that uses the multi-controller architecture is a generic solution to

resolve the single point of failure in SDN. The architecture is a scalable control plane

solution for the large-scale SDN. To achieve high resilience, an SDN switch can connect

one master controller for normal operation and one slave controller that backup the

function of the master controller. Once the master controller fails, one of the slave

controllers will be assigned to switches to works as the new master controller. However,

the inappropriate slave controller assignment may cause controller chain failure, where

running out of the capacity of the assigned controller, even crash the entire network. In

[10], a dynamic slave controller assignment that prevents the network crash by planning

slave controller assignment ahead of the controller failures is proposed. The controller

chain failure phenomenon that incurred by unreasonable slave controller assignment can

be solved. The slave controller assignment problem is formulated as a multi-objective

mixed optimization problem that considers multiple network factors such as latency,

load balancing and robustness. And it has been proven that it is a NP-complete

complexity problem. A dynamic slave controller assignment (DSCA) scheme is

introduced in [10]. DSCA firstly checks whether there are controller failures in state

detection module, then completes the elastic slave assignment and generates a new slave

assignment for switches in efficient slave assignment module. Finally, in role adjustment

module, it changes the roles of some controllers and reconnects switches. Simulation

results show DSCA can decrease the worst case latency under controller failures by

35.1% averagely, and reduce the probability of network crash.

In multi-controller architecture, the uneven distribution of traffic load in the

controllers can degrade system performance. In [11], a self-adaptive load balancing

(SALB) scheme that balances load among multiple controllers dynamically with

multiple switch migration from source controllers to target controllers is proposed. The

key feature of SALB is an effective distribution of load under high load condition while

https://www.sciencedirect.com/topics/computer-science/master-controller
https://www.sciencedirect.com/topics/computer-science/optimisation-problem

526 Xian Guo et al.

considering the distance between switches and target controllers simultaneously. The

efficacy of SALB is demonstrated through experimentation in [11] and the experimental

results show that SALB experiences a small number of packet drops, which is less than

1.23% of the total number of message exchanges among the controllers.

Robustness and fault tolerance are two important metrics to be considered in

assessing SDN’s advantage. The currently available SDN controllers offer different fault

tolerance mechanisms. In [12], existing fault-tolerant SDN controller solutions are

surveyed and a mechanism is proposed to design a consistent and fault-tolerant Master-

Slave SDN controller. The scheme [12] is able to balance consistency and performance.

The main objective of [12] is to bring the performance of an SDN Master-Slave

controller as close as possible to the one offered by a single controller. This is achieved

by introducing a simple replication scheme, combined with a consistency check and a

correction mechanism, that influence the performance only during the few intervals

when it is needed, instead of being active during the entire operation time.

Despite many advantages of SDN, its deployment in the practical field is restricted

since reliability and fault-tolerance capabilities of the system are not satisfactory. To

overcome these difficulties of SDN, an architecture called FT-SDN has been proposed

in [13]. The proposed architecture consists of a simple and effective distributed Control

Plane with multiple controllers. FT-SDN uses a synchronized mechanism to periodically

update the controller’s state within themselves. In case of failure, FT-SDN has the

ability to select another working controller based on the distance and delays among

different network entities.

In the multi-controller architecture, most of state synchronization processes on

different controllers depend on the assumption of a correct decision-making in the

controllers. Successful introduction of SDN in the critical infrastructure networks also

requires catering to the issue of unavailable, unreliable (e.g. buggy), and malicious

controller failures. A framework tolerant to unavailability and Byzantine failures is

proposed in [14]. It is called as MORPH. The MORPH can distinguish and localize

faulty controller instances and appropriately reconfigure the control plane. A prototype

SDN controller that can tolerate Byzantine faults in both the control and data planes is

proposed in [15]. The performance of the novel solution is compared with current

standard fault vulnerable open source SDN controllers. The experiment shows there is a

reasonable slowdown of [15] as is expected in the transition from a fault vulnerable to a

fault tolerant design. Their best controller can show only a 2x slowdown even though it

only need 4 replica components, and so it can tolerate a single compromised component

without affecting control and/or forwarding decisions in the networks. However,

controllers in [15] are not fit for high performance levels to be adopted in large-scale

networks.

A security framework based on the Byzantine protocol is proposed in [16]. In the

scheme, controllers execute the Byzantine protocol and each switching device is

managed by a controller view. The control information is given after multiple controllers

arbitrate. By quantifying the heterogeneity of controllers, a two-stage controller view

election algorithm is designed to ensure the availability of the network and the security

of views.

Network survivability is the ability to maintain service continuity in the presence of

failures. In [17], the network survivability of SDN is discussed in disaster situations.

The solution in [17] considers multi-controller failure and the mechanism can reduce the

 A novel Security Mechanism for Software 527

non-operational network devices in disaster situations. Preliminary results show that, by

applying the proposed new approach, it is possible to achieve substantial improvements

in network survivability.

To resolve security and privacy issues in SDN, some solutions based on Blockchain

have explored. In [21], Blockchain Security over SDN (BSS) is proposed which protects

privacy and availability of resources against non-trusting members. To verify their

solution, mininet emulator is used for simulating custom SDN network topology.

OpenDaylight controller is integrated with OpenStack controller. For testing purpose of

Blockchain, Pyethereum tester tool under Ethereum platform is implemented. Serpent

programming is used for creating contract in the blockchain. The simulation result

shows that BSS facilitates files sharing among SDN users in distributed peer-to-peer

basis using OpenStack as a cloud storage platform.

Since the large number of devices connected to the Internet of things (IoT) networks,

the SDN-based network architecture makes the deployment and configuration of IoT

much easier. In the IoT network, the fine-grained network traffic is critical to network

management. In [22], a novel scheme based on Blockchain is proposed to measure the

fine-grained network traffic in the SDN-based IoT networks and to ensure the security

and consistency of the statistics. To measure flow traffic with low overhead and high

accuracy, an ARIMA model and forecast the network traffic with the coarse-grained

measurement of flows is designed. An objective function in ARIMA mode can decrease

the estimation errors. A heuristic algorithm to obtain the optimal solution of the fine-

grained measurement is used due to the objective function is an NP-hard problem.

To improve forwarding efficient of devices in the data plane of SDN, a method called

TrustBlock is proposed in [23], which introduces trust as a security attribute in SDN

routing planning. Besides, in order to enhance the integrity and controllability of trust

evaluation, the double-layer blockchain architecture is established in [23]. In the first

layer, the behavior data of the node is recorded, and then the trust calculation is

performed in the second layer. In the evaluation model, nodes’ trust is calculated from

three aspects: direct trust, indirect trust and historical trust. Firstly, from the perspective

of security, blockchain is used to achieve identity authentication of nodes, after that,

from the perspective of reliability, the forwarding status is used to calculate the trust

value. Secondly, consensus algorithm is used to filter malicious recommendation trust

value and prevent colluding attacks. Finally, the adaptive historical trust weight is

designed to prevent the periodic attack. In [23], the entropy method is used to determine

the weight of each evaluation attribute, which can avoid the problem that the subjective

judgment method is not adaptable to the weight setting. Simulation results show that the

detection rate of the TrustBlock is up to 98.89%, which means this model can

effectively identify the abnormal nodes in SDN. Moreover, it is attractive in terms of

integrity and controllability.

In Software-Defined Networking (SDN), Northbound Interface provides APIs, which

allow network applications to communicate with SDN controllers. However, a malicious

application can access to SDN controller and perform illegal activities via these APIs.

Although some studies proposed AAA (Authentication, Authorization, Accounting)

systems to protect SDN controllers from malicious applications, their proposed systems

also exist several limitations. Attackers can compromise a system, then modify its

database or files to gain higher privileges. This system can be taken down because of

Single Point of Failure threat. A novel system BlockAS is proposed to improve security

528 Xian Guo et al.

for the Northbound interface in [24]. It is used to authenticate, authorize and monitor

accessing critical controller resources from applications. Specifically, BlockAS

leverages Blockchain features to maintain the immutability and decentralization of

credential data. In SDN, the lack of consistent records of network data poses difficulties

for network management, and heterogeneous device heterogeneity poses a hindrance to

software-defined network interoperability. [25] summarizes the development status and

existing problems of software-defined network, proposes, realizes distributed consistent

record of software-defined network data, and breaks the multi-vendor device isolation

for fault recovery. Reduce the cost of network failure recovery and achieve unified

scheduling of business capabilities. A security framework is also proposed that

integrates Blockchain technology with multi-controller SDN in [26]. The main idea of

the framework is to associate a set of controllers to each domain and to ensure a secure

and trustworthy inter-controller communication. So, the proposed architecture considers

a master controller and redundant controllers for each network domain. The architecture

also integrates a reputation mechanism to identify a malicious controller. In [27], a

distributed Blockchain-based SDN-IoT enabled architecture is proposed. It is the main

goal of this framework to manage smart building. The traditional approach that manages

the health-related data is often the centralized approach. It is not convenient to share and

process electronic health data across the different institutions. In [28], an alternative way

based on Blockchian technology is proposed to deal with information exchange across

multiple stakeholders. A Blockchain-enabled Packet Parser (BPP) of the SDN is

proposed in [29]. The scheme not only can detect attack in SDN and also can implement

Blockchain protocol in data plane.

3. Research Background

3.1. The SDN Architecture

To resolve some issues in traditional network architecture, Software Defined Networks

(SDN) is proposed. SDN is an emerging network architecture that decouples the control

plane from the data plane and provides a software-based centralized controller. By this

separation of control plane and data plane, switches in network become simple

forwarding devices. Whereas, routing decision making is shifted to the controller, which

can provide a global view of the network and a programming abstraction. This

centralized entity provides a capability that an operator can program and real-time

control underlying networks and devices. By using SDN, the network management

becomes simply and helps in removing rigidity from the network.

The layered structure of SDN architecture, as shown in Fig. 1 has three major planes

such as the data plane, the control plane, and the management plane. The data plane

contains physical network elements, which form the path for data transmission. The

control plane has a Network Operating System (NOS), also referred to as a controller,

which generates the flow rule table for devices in data plane. These rules and policies

are designed in the management plane of SDN architecture. The communication

 A novel Security Mechanism for Software 529

between these planes is established by using well-defined Application Programmable

Interfaces (APIs). These interfaces are divided into southbound, northbound, eastbound,

and westbound APIs. The communications between the control plane and the data plane

is implemented through the southbound API, which enables flow installation and

configuration of devices. The control plane and the management plane use northbound

API to provide programmability in SDN. Inter-controller communication of SDN

domains is established using eastbound API, whereas westbound API is responsible for

the legacy domain to SDN domain communication. The detail of these interfaces can be

found in some literatures.

Application 1 Application 2 Application 3

MP:Management plane NB API:REST API

Controllers:OpenDayLight,

Floodlight,ONOS etc.

Control plane

SDN Controller

Source Destination

SB API:OpenFlow

Data plane

Fig. 1. The SDN Architecture [3]

3.2. The Link Layer Discovery Protocol

The decoupling between the control plane and the data plane introduced by SDN allows

operators to employ remarkably cheap but very fast hardware to forward packets,

moving the control logic to the much smarter controller. The controller plays the role of

an operating system of the network. One of fundamental functions that a controller must

offer is an accurate, nearly real time view of the network topology. This function is

known as the topology discovery. The Link Layer Discovery Protocol (LLDP) [30] is a

standard method of the network topology discovery in SDN. Fig. 2 shows the principle

that how LLDP works. To discover the unidirectional link s1 → s2, the controller

530 Xian Guo et al.

encapsulates a LLDP packet in a Packet-out message and sends it to s1. The Packet-out

contains instruction for s1 to send the LLDP packet to s2 via port p1. When s2 receives

the LLDP packet via port p2, s2 encapsulates it as a destination switch in a Packet-in

message and sends it back to the controller. The controller receives the LLDP packet

and concludes that there is a unidirectional link from s1 to s2. The same process is

performed to discover the opposite direction s2 →s1 as well as all other links in the

network. After all switches perform such operations, the controller will obtain the

network topology information of the entire network. However, the network topology will

dynamically change incurred by switches leave and join the network. So the controller

needs to periodically repeat the process described in Fig. 2.

LLDP

Packet-in +

LLDP

Packet-out +

LLDP

P2P1

Controller

S2S1

Fig. 2. The link discovery process [30]

3.3. Blockchain and PoW

Blockchain technology has been applied in many areas [18-19]. Blockchain is a

system that is composed of nodes, communicating with each other through a protocol. A

node can be a physical machine or a virtual machine. The IP address is used to identify

the node in the Blockchain network. The public key is used as an user identification in

the network. The private key is generally used for signing on message transmitted on the

network. As a result, each user can log in from any node in the system. The consistency

of data stored on Blockchain must be guaranteed on the entire network and can be

achieved by some consensus algorithm such as PoW, PoS and so on [36]. And data on

the Blockchain network is digitally signed to guarantee authenticity and accuracy

properties. Blockchain technology can ensure an immutable storage and a fraud

protection property. The work mechanism of the Blockchain network is shown in Fig. 3.

The transaction data is stored in a specific data structure called “block” in Blockchain.

The blocks generated during the transaction process are linked together via the

cryptographic hash function to form a chain of blocks. That is to say, each block inside

the Blockchain stores a hash value of the previous block. Thus, the chain of blocks is

grouped or linked in a chronological order. As a result, the data that stored on the

 A novel Security Mechanism for Software 531

Blockchain won’t be modified without cooperation of all nodes inside the system. So,

the mechanism provides a proof-tamper feature.

Header

Block # 208364

Hash: 00000566b52cd2e2f2330015234005112d02bc0
Previous block Hash: ...e3a23

Nonce: 1165787096

Meta-data

Merkle root:

hash of block n-1

Transactions

Block n

hash of block n

Transactions

Block n+1

hash of block n-2

Transactions

Block n-1

Block # 208363

: ...e3a23

TX TX TX TX TX TX

TX TX TX TX TX TX

e3b990

Fig. 3. The Blockchain and block structure [18]

Blockchain technology has been applied in many areas [18-19]. Blockchain is a

system that is composed of nodes, communicating with each other through a protocol. A

node can be a physical machine or a virtual machine. The IP address is used to identify

the node in the Blockchain network. The public key is used as an user identification in

the network. The private key is generally used for signing on message transmitted on the

network. As a result, each user can log in from any node in the system. The consistency

of data stored on Blockchain must be guaranteed on the entire network and can be

achieved by some consensus algorithm such as PoW, PoS and so on [36]. And data on

the Blockchain network is digitally signed to guarantee authenticity and accuracy

properties. Blockchain technology can ensure an immutable storage and a fraud

protection property. The work mechanism of the Blockchain network is shown in Fig. 3.

The transaction data is stored in a specific data structure called “block” in Blockchain.

The blocks generated during the transaction process are linked together via the

cryptographic hash function to form a chain of blocks. That is to say, each block inside

the Blockchain stores a hash value of the previous block. Thus, the chain of blocks is

grouped or linked in a chronological order. As a result, the data that stored on the

Blockchain won’t be modified without cooperation of all nodes inside the system. So,

the mechanism provides a proof-tamper feature.

3.4. Proof of Work

Blockchain is a key technology to build a distributed trust in the environment that users

don’t trust each other and there doesn’t exist a Trust Third Party (TTP). In Blockchain

network, the consensus scheme ensures the consistency of data stored on the

Blockchain. More recently, some consensus schemes for Blockchain have been

532 Xian Guo et al.

proposed and most of them are based on three basic algorithms that often used in a

distributed network, such as Proof of Work (PoW) [35], Proof of Stake (PoS) and Direct

Acyclic Graph (DAG). A comprehensive performance comparison is done among them

in [36].

Index

number

Previous

block hash
Timestamp Random

number

Merkle root

hash

Assemble into block header

Target value = SHA256 (SHA256 (block header))

Less than the network

target value

Change

random

number

End

Y

N

As input below

Fig. 4. Proof of Work

PoW [35] used in Bitcoin is the most classical consensus algorithm in the Blockchain.

The PoW involves a scanning of a hash value that computed by using a hash algorithm

such as SHA-256. The hash value begins with a string of 0 bits. The average workload is

exponent in the number of 0 bits required and can be verified by executing a single hash.

The PoW is implemented by incrementing a nonce in the block until a hash value that

contains the required number of 0 bits in the block’s hash. Fig. 4 shows how the PoW

works. Once the computed value satisfies the requirement of PoW, the block cannot be

changed without re-executing the work. As subsequent blocks are chained to the new

generated block, modifying a block means regenerating all the blocks after the modified

block. So the core idea of PoW used in Blockchain is that miners use their computing

power to compete the hashing operation. The winner who first finds the hash value

lower than the announced target has the right to insert a new block into the blockchain

and get a certain amount of reward.

3.5. Keyless Signature Instructure

The Keyless Signature Instructure (KSI) [34] is a globally distributed system for

providing digital signature services. KSI is an alternative solution to traditional PKI

signature. It has some benefits and has been payed widely attention. It can detect the

change status of digital assets and submit this information for further audit and

 A novel Security Mechanism for Software 533

investigation. A mechanism with multiple signatures can be obtained in KSI. That is to

say, multiple documents can be signed together at once. The signing process includes

the following three steps. Hash: a hash value of the data or file generated by the client

will be calculated; Aggregation: The gateway layer collects and processes the hash

values that comes from the clients, aggregates them into a Merkle tree, and sends the

generated root hash value to the aggregation layer. The aggregation layer server

processes the root hash value generated and sent by the gateway layer, and adds it to the

Merkle tree. Finally, the generated root hash value will be transferred to the core layer;

Release: a permanent hash tree will be created according to the first three hash values of

the aggregation tree collected each time and it is released as a trust anchor.

x12 = h(x1|x2) x34 = h(x3|x4)

xtop = h(x12|x34)

x1 x2 x3 x4

x1

y3= h(y2|x34)

y2 = h(x1 | y)

y

x34

Fig. 5. Hash Tree and Hash Calendar. [34]

Hash Trees: Hash-tree aggregation process described before was first introduced in

[38]. In hash-tree time-stamping scheme, a one-way hash function is used to convert a

list of data or files into a fixed length hash value that is generally associated with time. A

signature token generated by the service according to a hash of a document from client

is considered as a proof that the data sent by the client existed at the given time and that

the request was received through a specific access point. All received requests are

aggregated together into a large hash tree; and the top of the tree is fixed and retained

for each second as shown in Fig.5. The signature token contains data for reconstructing

a path through the hash tree—starting from a signed hash value (a leaf) to the top hash

value. For example, to verify a token y in the place of x2 (Fig. 5), a concatenation

operation is firstly done between y and x1 (retained as a part of the signature token) and

then a hash value y2 = h(x1 | y) is calculated and is used as the input of the next hash step,

the process will be end when it reach the top hash value, i.e. y3 = h(y2|x34) in the example

case. If y3 = xtop then it is safe to prove that y was in the original hash tree.

Hash Calendar: These top hash values obtained in each round are linked together to

generate a globally unique hash tree (The hash tree is called a hash calendar in [34])—so

that new leaves are added only to one side of the tree. Time value is encoded as the

shape of the calendar—the modification of which would be evident to other users.

However, the top hash of the calendar is required to periodically publish in widely

witnessed media. There is a deterministic algorithm to compute the top hash of the

linking hash tree, giving a distinct top level hash value at each second. Also there is an

algorithm to extract time value from the shape of the linking hash tree for each second,

giving a hard-to-modify time value for each issued token.

534 Xian Guo et al.

4. BCSDN Framework

The BCSDN architecture proposed in this paper is a distributed multi-controller

architecture. In the control plane of BCSDN, the controllers collect the link status

information from each switch that joined to the network, by using the link discovery

protocol LLDP during the link discovery phase. A switch will package the link

information in a Packet_in packet during the link discovery, and then it will submit the

Packet_in packet to a controller. In BCSDN, the submission is considered as a

transaction process in the Blockchain network. The consensus algorithm such as PoW is

used to elect a main controller from these controllers. The selected main controller that

plays a role of a miner verifies the transaction and aggregates all of hash values to

generate a Merkle tree according to KSI algorithm. Finally, it will generate a block of

the root hash value and storage on the Blockchian network, and then it will issue

signature to each switch according to KSI signature rule. Each block is related to a hash

calendar. Thus, the chain of blocks records and represents the dynamical change process

of the network topology. The main controller will issue the latest network topology

information collected from the network to other controllers so that the scheme ensures

the consistency of the network view among controllers. When a switch in the network

needs to forward a data, interaction will be performed between the switch and the

controller that directly connected with the switch to request the flow rule table. The

controller sends the latest flow rule table after verifying the signature owned by the

switch. So, our BCSDN framework is shown in Fig. 6 and it is consisted of the

following 5 components: The network topology generation, Blockchain establishment,

the selection of the main controller, the signature generation and signature verification.

n+2 n+3

application 1 application 2 application 3 application 4

Controller 1 Controller 3Controller 2

Send network

stream

Send network status

resources

switch switch

n n+1

Global network topology

KSI
Send network

stream

Send

request

Application

plane

Control

plane

Data

plane

Blockchain

layer

Fig. 6. The Entire Framework of BCSDN

 A novel Security Mechanism for Software 535

4.1. The Network Topology Generation

In BCSDN, the standard link layer discovery protocol LLDP introduced in section 3.2 is

used to collect the network link state information. The SDN controller initiates the link

discovery process. The process consists of the following 4 steps. (1) The SDN controller

periodically sends a LLDP packet Packet_out packet to all switches that connected with

it. (2) Once a switch receives the Packet_Out packet from the SDN controller, it will

broadcast the Packet_out packet to all of devices that connected with the switch via all

of its ports.（3) In our BCSDN, we assume that the neighboring switches are an

OpenFlow switch. That is to say, the switch have no a special flow rule entry for

processing LLDP messages, so they will send a LLDP packet Packet_in packet to the

controller connected with them. (4) After the controller receives a Packet-In packet, it

will analyze the data packet and save the link information between the two switches in

its link discovery table and calculate a hash value of message in the Packet-In packet by

using SHA256. The algorithm is described in Algorithm 1.

Algorithm1: Hash the Link Information

Input: Packet_out{}

Output: temptxList{}

1：while a switch receives packet_out{} message do

2： forward the message to neighboring switches

3： neighboring switches sends the packet_in to the controller

4： temptxList{} ← sha256(packet_in)

5：return temptxList{}

4.2. Blockchain Establishment

Algorithm2: Merkle Tree Construction

Input: temptxList{}

Output: root

1： while newTxList.size() != 1 do

2： index = 0

3： while index < tempTxList.size() do

4： left ← tempTxList.(index)

5： index++

6： right ← " "

7： if index != tempTxList.size() then

8： right = tempTxList(index)

9： newTxList{} ← SHA256(left , right)

10： index++

11：root ← newTxList(0)

12：return root

In BCSDN, the main controller will generate a Merkle tree according to the KSI scheme

during the link discovery process. The main controller will save the hash value of the

root node as a block on the Blockchain maintained by these controllers according to the

536 Xian Guo et al.

principle of Blockchain. A new block on Blockchain is set up as shown in Fig. 6. That is

to say, an update (a hash calendar) of the network topology will generate a new block on

the Blockchain. That is to say, the Merkle tree locally represents the current network

topology information. The construction algorithm of the Merkle tree is shown in

Algorithm 2.

 Index

number

Previous

block hash

Time-

stamp

Random

number

transaction1 transaction2 transaction3 transaction4

Hash3Hash1 Hash2 Hash4

Hash

（1,2）

Hash

（3,4）

Hash

（1,2,3,4）

Merkle root

hash

...

Block header

Block body

Fig. 6. A block generation on Blockchain

4.3. Selection of a Main Controller

In order to solve the single-point failure problem incurred by a single controller in SDN,

a multi-controller architecture is adopted in our BCSDN framework. These controllers

are deployed in physically distributed and logically centralized manner. The PoW

introduced in section 3.4 is used for selecting a main controller from these controllers.

The algorithm is described in Algorithm 3.

The main controller just selected will play a role of a miner in the Blockchain network

and issue the topology information to all of controllers. So, our novel BCSDN can

ensure the consistency of the network topology information on these different

controllers.

 A novel Security Mechanism for Software 537

Algorithm3: Proof of Work

Input: index， rootHex， time， previousBlockHash， random， TargetValue

Output: Block

1： Block ← index + rootHex + time + previousBlockHash + random

2： while true do

3： if SHA256(SHA256(Block)) >= TargetValue then

4： random ++

5： Block ← index + rootHex + time + previousBlockHash + random

6： else

7： break

8： end if

9： end while

10： return Block

4.4. The Signature Generation

The main controller selected in PoW process will manage the entire network. The main

controller will use the KSI scheme to generate and issue a signature to each switch that

submitted the correct link information to it. The signature information generated by the

main controller is a concatenation of these hash values on nodes which is located on the

Merkle tree. These nodes together form a path from a leaf node that represents

information of a link to the root of the Merkle tree. So, this signature means that the

switch sent a Packet_In packet containing the link information to construct the Merkle

tree that recorded the current network topology information. The signature process is

shown in Algorithm 4.

Algorithm4: Signature Generation

Input: CalculationPath, node

Output: HashSignature{}

Initialization： HashSignature{}= ∅

1： if the node is in CalculationPath and is a leaf

2： HashSignature{} ← node

3： if the node is in CalculationPath

4： traversing left and then right

5： otherwise HashSignature{} ← node

6： return HashSignature{}

4.5. Signature Verification

When a switch need to forward data for an end user, it firstly checks if there is a

matching entry in a flow rule table. If the check fails, a forwarding request event is

generated and then the switch sends the request with signature the main controller issued

to it to the controller connected with it. When the controller receives the request, it

verifies the signature of the switch according to KSI algorithm. If the verification is

successful, the controller transfers the latest flow rule table to the switch. Otherwise, it

drops the request and don’t response to the switch. The algorithm of signature

verification is described in Algorithm 5. The signature scheme used in BCSDN can

538 Xian Guo et al.

efficiently authenticate the switch and prevent some attacks such as spoofing incurred by

malicious switches controlled by adversary.

Algorithm5： Signature Verification

Input：HashSignature{node 0,node 1…node i}, root

Output：result

Initialization: HashNode = ∅

1： HashNode ← node 0

2： for (n=1, n<=i, n++)

3： HashNode= sha256(HashNode, node n)

4： if HashNode == root then

5： result ← verify successfully

6： break

7： else

8： result ← verify failed

9： end if

10：return result

5. Security Analysis

In this section, we informally discuss the security issues solved in our BCSDN. BCSDN

can efficiently solve the single point of failure, the view consistency of multi-controller

SDN network and the authentication of the interaction between a controller and a switch.

Proposition 1: BCSDN can solve the single point of failure.

Proof: In BCSDN, the multi-controller architecture is used to solve the single point of

failure. That is to say, a logically centralized and physically distributed multi-controller

framework is adopted in the control plane of SDN. The selected main controller

manages the entire network. When the main controller shut down because of some

reason, the re-elected main controller will take over the network management task.

Therefore, the multi-controller architecture can conquer the single point of failure,

improve the processing capacity of the control plane, and also ensure the reliability of

the network management.

Proposition 2: BCSDN can ensure the consistency of the network topology on the

different controllers.

Proof： In BCSDN, the mechanism based on Blockchain is implemented in the

control plane. The dynamic change of the network topology will be recorded in

Blockchain. These features of Blockchain such as proof-tamper, auditable, distributed

storage and so on will ensure that the network topology information stored in the

Blockchain is correct and won’t be modified and also guarantee that the network

topology information stored on the different controllers is consistent.

Proposition 3: The communication between a controller and a switch can be

authenticated.

Proof: In BCSDN, KSI is used when a controller collect the topology information of

the network. That is to say, the controller will generate a signature for each switch

according to the KSI mechanism in link discovery process. The signature is a proof that

javascript:;
javascript:;

 A novel Security Mechanism for Software 539

proves the switch ever took part in the link discovery process in the corresponding

network topology. That is to say, each link (that submitted by the switch) in the network

topology is a legal link. The KSI scheme ensures that the signature that the controller

sent to each switch can’t be forged and these signatures information are saved on

Blockchain. When a switch that needs to forward data requests the flow rule table from a

controller, the controller will verify the signature generated in link discovery process

and owned by the switch. So, using of KSI can ensure the authenticated communication

between a controller and a switch.

6. BCSDN Implementation

6.1. BCSDM simulation Implementation

Fig. 7. The Simulated Network Topology.

In this section, we implement our BCSDN architecture by using simulation method. The

network emulator Mininet on Ubuntu 16.04 system is used to simulate a custom

topology of a SDN network. The Floodlight controller is used to establish a multi-

controller architecture for SDN to manage the entire network. We illustrate the

operation of the BCSDN network by a simply network topology as shown in Figure 7.

Three Floodlight controllers are used to establish a multi-controller architecture. These

controllers together form a simply p2p network and are used to manage and maintain a

Blockchain network. The main controller is selected by using the PoW alogrithm. We

implement the network architecture instance of BCSDN in the network simulation

platform Mininet. These controllers in BCSDN periodically collect the network link

information by the link discovery protocol LLDP introduced in 3.2 section. The main

controller generates the signature corresponding to each link according the Merkle tree

that presents the current network topology. The network state information is recorded

on the Blockchain as a distributed ledger. The simulation topology includes 2 OpenFlow

switches and 4 hosts connected to these two switches respectively. Built-in Mininet

network commands such as “ping” and so on can be used to test the correctness,

540 Xian Guo et al.

feasibility and overhead of BCSDN. The details of each node in the simulation topology

are described as shown in Figure 8. In Fig. 9a, the information from the log file of the

node displays the block creation and the collection of the network topology. In Fig. 9b,

the signature verification result is shown when the switch applies for the flow rule table

from the controller.

Fig. 8. Information of the Network Nodes.

2020-08-11 09:04:21.988 INFO [n.f.l.i.LinkDiscoveryManager]

Received LLDP packet on sw 00:00:00:00:00:00:00:01, port 2

The first block： Block{

 index=0,

 rootHex='IFmBkeOfebmNHm0qTf508QsMrfPTflqMt5yKph8LsYU=',

 time=1597161862025,

 previousBlockHash=0,

 random=945}

The second block：Block{

 index=1,

 rootHex='65Bm8Zbb69XU3pWHDusPh8mc7sicAm9TmRqJoFlwcTs=',

 time=1597161862064,

 previousBlockHash=NebGApj7T6pIv7Ho87IbMNDdfPLOrE3ix1wU7D0mjm4=,

 random=388}

a. Block information

2020-08-11 09:05:46.865 INFO [n.f.f.Forwarding] sign pass

b. The Signature Verification

Fig. 9. The results of the Network Simulation.

6.2. Performance Analysis

The performance of BCSDN is analyzed under different network scale in this section.

We compare performance metrics such as the network convergence time, network

 A novel Security Mechanism for Software 541

throughput and the response time between the singe controller solution and our BCSDN.

The Floodlight controller is used in the experimental analysis.

Fig. 10. The Network Convergence time

Fig.10 shows the convergence time of these two simulated networks that one only

uses a single controller and another uses our BCSDN solution. It can be clearly seen that

these different networks can converge successfully in three different network sizes and

obtain the entire network topology. BCSDN needs to set up Blockchain network

according to the change of the network topology. So, the convergence time is higher

than the solution used the single controller. But, we can see that the curve of the

convergence time in BCSDN will become smooth as the network size increases. That is

to say, BCSDN is better than the network that there exists only a single controller in

large scale network.

Fig. 11. Throughput Comparison Between the Sing Controller network and BCSDN

The network throughput is compared between BCSDN and the network with the

single controller as shown in Figure 11. In BCSDN, three controllers are used. the

processing ability is indeed stronger than the network with a single controller. This

shows that our multi-controller network architecture is more excellent than the single

controller network architecture.

542 Xian Guo et al.

 a. CPU usage b. The Response Time

Fig. 12. Comparison of CPU usage and the Response Time

In addition, the CPU usage rate and the response time are analyzed in these two

solutions as shown in Fig.12. Clearly, because using of Blockchian, the CPU usage rate

in BCSDN is higher than the solution that used a single controller as Fig. 12a. However,

the response time is tested by using performing 20 ping operations. As shown in Figure

12b, it can be seen that the ping response time of BCSDN and a single controller

network is almost the same except that the time of the first ping. That is to say, BCSDN

can meet the requirements of network rapid processing.

7. Summary

In this paper, a security framework for SDN BCSDN is proposed by integrating

Blockchain and KSI in this paper. The BCSDN adopts a physically distributed and

logically centralized multi-controller architecture. In BCSDN, LLDP protocol is used to

obtain the topology information of the network, and the dynamic change of the network

topology is recorded on Blockchain. The main controller selected according to PoW

play a role that manage the entire network. So, BCSDN can efficiently solve the single

point of failure in single-controller architecture. In addition, using of Blockchain scheme

ensures the consistency of the topology information on different controllers. Using of

KSI is used to authenticate the communication between a controller and a switch. The

correctness, reliability and feasibility are verified by an emulation method in mininet

emulation platform in this paper. We also simply analyze security attributes and

performance of the BCSDN framework. We will further improve our solution in the

future work.

Acknowledgments. This work is supported by NSFC No. 61461027; Gansu province science and

technology plan project under grant No. 20JR5RA467; Innovation Promotion Education Fund of

Ministry of Education No. 2018A05003.

 A novel Security Mechanism for Software 543

References

1. Rishikesh Sahay, Weizhi Meng, Christian D. Jensen.: The application of Software Defined

Networking on securing computer networks: A survey [J]. Journal of Network and Computer

Applications, Vol. 131, 89-108. (2019)

2. Y. Zhao, Y. Li, X. Zhang, G. Geng, W. Zhang and Y. Sun.: A Survey of Networking

Applications Applying the Software Defined Networking Concept Based on Machine

Learning [J], IEEE Access, Vol. 7, 95397-95417. (2019)

3. Ali, J.; Lee, G.-M.; Roh, B.-H.; Ryu, D.K.; Park, G.: Software-Defined Networking

Approaches for Link Failure Recovery: A Survey [J], Sustainability, Vol. 12, No. 10, 4255.

(2020)

4. Sanjeev Singh, Rakesh Kumar Jha.: A Survey on Software Defined Networking: Architecture

for Next Generation Network [J]. Journal of Network and Systems Management, Vol. 25,

321-374. (2016)

5. Hu T, Guo Z, Yi P, et al. Multi-controller based software-defined networking: A survey [J].

IEEE Access, Vol. 6, 15980-15996. (2018)

6. Heng Zhang, Zhiping Cai, Qiang Liu, Qingjun Xiao, Yangyang Li, Chak Fone Cheang.: A

Survey on Security-Aware Measurement in SDN [J], Security and Communication

Networks, vol. 2018, 14 pages. (2018)

7. Y. Liu, B. Zhao, P. Zhao, P. Fan and H. Liu.: A survey: Typical Security Issues of Software-

Defined Networking [J], China Communications, vol. 16, no. 7, 13-31. (2019)

8. Juan Camilo Correa Chica, Jenny Cuatindioy Imbachi, Juan Felipe Botero Vega.: Security in

SDN: A Comprehensive Survey [J], Journal of Network and Computer Applications, Vol.

159, 102595. (2020)

9. Tao Han, Syed Rooh Ullah Jan, Zhiyuan Tan, et. al.: A Comprehensive Survey of Security

Threats and Their Mitigation Techniques for Next-generation SDN Controllers [J],

Concurrency and Computation： Practice and Experience, Vol. 32. (2020)

10. Tao Hu, Peng Yi, Zehua Guo, Julong Lan, Yuxiang Hu.: Dynamic slave controller

assignment for enhancing control plane robustness in software-defined networks [J], Future

Generation Computer Systems, Vol. 95, 681-693. (2019)

11. Madhukrishna Priyadarsini, Joy Chandra Mukherjee, Padmalochan Bera, Shailesh Kumar,

A. H. M. Jakaria, M. Ashiqur Rahman. An adaptive load balancing scheme for software-

defined network controllers, Computer Networks, Vol. 164 (2019)

12. A. J. Gonzalez, G. Nencioni, B. E. Helvik and A. Kamisinski.: A Fault-Tolerant and

Consistent SDN Controller [C], In Proceeding of 2016 IEEE Global Communications

Conference (GLOBECOM), Washington, DC, 1-6 (2016)

13. Das, R.K., Pohrmen, F.H., Maji, A.K. et al.: FT-SDN: A Fault-Tolerant Distributed

Architecture for Software Defined Network [J]. Wireless Personal Communication, Vol. 114,

1045–1066. (2020).

14. E. Sakic, N. Ðerić and W. Kellerer. : MORPH: An Adaptive Framework for Efficient and

Byzantine Fault-Tolerant SDN Control Plane [J], IEEE Journal on Selected Areas in

Communications, Vol. 36, No. 10, 2158-2174. (2018)

15. K. ElDefrawy and T. Kaczmarek. : Byzantine Fault Tolerant Software-Defined Networking

(SDN) Controllers [C], In Proceeding of 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC), Atlanta, GA, 208-213. (2016)

16. Gao J., Wu J. X.,Hu Y. X,et al. Research on Anti-attack of Software-Defined Network

Control Surface Based on Byzantine Fault Tolerance [J]. journal of Computer Applications,

Vol. 37, No. 8, 2281-2286. (2017) (in Chinese).

17. Luis Guillen, Hiroyuki Takahira, Satoru Izumi, Toru Abe, Takuo Suganuma.: On Designing

a Resilient SDN C/M-Plane for Multi-Controller Failure in Disaster Situations [J], IEEE

Access, Vol. 8, 141719-141732. (2020)

544 Xian Guo et al.

18. Dharmin Dave, Shalin Parikh, Reema Patel, Nishant Doshi.:A Survey on Blockchain

Technology and its Proposed Solutions [J], Procedia Computer Science, Vol. 160, 740-745.

(2019)

19. Gamage, H.T.M., Weerasinghe, H.D. & Dias, N.G.J.: A Survey on Blockchain Technology

Concepts, Applications, and Issues [J]. SN Computer Science, Vol. 1, 114. (2020).

20. TALAL ALHARBI.: Deployment of Blockchain Technology in Software Defined Networks:

A Survey [J], IEEE Access, Vol. 8, 9146-9156. (2020)

21. S. R. Basnet and S. Shakya.: BSS: Blockchain security over software defined network [C], In

Proceeding of the 2017 International Conference on Computing, Communication and

Automation (ICCCA), Greater Noida, 720-725. (2017)

22. Huo, L., Jiang, D., Qi, S. et al.: A Blockchain-Based Security Traffic Measurement Approach

to Software Defined Networking [J]. Mobile Networks and Applications, (2020)

23. Bo Zhao, Yifan Liu, Xiang Li, Jiayue Li, Jianwen Zou.: TrustBlock: An adaptive trust

evaluation of SDN network nodes based on double-layer blockchain [J], PLoS One, Vol. 15,

No. 3, e0228844. (2019).

24. Hien Do Hoang, Phan The Duy, Van Hau Pham.: A Security-Enhanced Monitoring System

for Northbound Interface in SDN using Blockchain [C], In Proceedings of the Tenth

International Symposium on Information and Communication TechnologyDecember, NY,

USA, 197–204. (2019)

25. C. Xue, N. Xu and Y. Bo. : Research on Key Technologies of Software-Defined Network

Based on Blockchain [C], In Proceeding of 2019 IEEE International Conference on Service-

Oriented System Engineering (SOSE), San Francisco East Bay, CA, USA, 239-2394. (2019)

26. A. Derhab, M. Guerroumi, M. Belaoued, O. Cheikhrouhou. : BMC-SDN: Blockchain-Based

Multicontroller Architecture for Secure Software-Defined Networks, Wireless

Communications and Mobile Computing, vol. 2021, Article ID 9984666, 12 pages. (2021)

27. A. Rahman, M. K. Nasir, Z. Rahman, A. Mosavi, S. S. and B. Minaei-Bidgoli.

DistBlockBuilding: A Distributed Blockchain-Based SDN-IoT Network for Smart Building

Management [J], IEEE Access, vol. 8, 140008-140018. (2020)

28. D. Zlate, F. Sonja, M. Anastas, T. Vladimir. : Real time availability and consistency of

health-related information across multiple stakeholders: A blockchain based approach [J],

Computer Science and Information Systems, Vol. 18, No. 3, 927-955. (2021)

29. Abbas Yazdinejad, Reza M. Parizi, Ali Dehghantanha, Kim-Kwang Raymond Choo.: P4-to-

blockchain: A secure blockchain-enabled packet parser for software defined networking [J],

Computers & Security, Vol. 88. (2020)

30. W.-Y. Huang, T.-Y. Chou, J.-W. Hu, and T.-L. Liu. : Automatical end to end topology

discovery and flow viewer on SDN [C], In Proceeding 2014 28th International Conference

on Advanced Information Networking and Applications Workshops, Victoria, BC, 910-915.

(2014)

31. Mowla Nishat I, Doh Inshil, Chae Kijoon,: CSDSM: Cognitive switch-based DDoS sensing

and mitigation in SDN-driven CDNi word [J], Computer Science and Information Systems,

Vol. 15, No. 1, 163-185. (2018)

32. Dierks T, Rescorla E. The transport layer security (TLS) protocol version 1.2. RFC 5246, 1-

104. (2008).

33. A. Azzouni, N. T. Mai Trang, R. Boutaba and G. Pujolle. : Limitations of openflow topology

discovery protocol [C], In Proceeding of 2017 16th Annual Mediterranean Ad Hoc

Networking Workshop (Med-Hoc-Net), Budva, 1-3. (2017)

34. Buldas A., Kroonmaa A., Laanoja R.: Keyless Signatures’ Infrastructure: How to Build

Global Distributed Hash-Trees [C], Nordic Conference on Secure IT Systems, Lecture Notes

in Computer Science, Vol. 8208, 313-320.(2013)

35. Bin Cao, Zhenghui Zhang, Daquan Feng, et. al. : Performance analysis and comparison of

PoW, PoS and DAG based blockchains [J], Digital Communications and Networks, Vol. 6,

480-485. (2020)

 A novel Security Mechanism for Software 545

36. Satoshi Nakamoto.: Bitcoin: A Peer-to-Peer Electronic Cash System,

https://bitcoin.org/en/bitcoin-paper.

37. R. L. S. de Oliveira, C. M. Schweitzer, A. A. Shinoda and Ligia Rodrigues Prete. : Using

Mininet for emulation and prototyping Software-Defined Networks [C], In Proceeding of the

2014 IEEE Colombian Conference on Communications and Computing (COLCOM),

Bogota, 1-6. (2014)

38. Merkle, R.C.: Protocols for public-key cryptosystems [C]. In Proceedings of the 1980 IEEE

Symposium on Security and Privacy, Oakland, CA, USA, 122–134 (1980)

Xian Guo, is an associate professor of School of Computer and Communication,

Lanzhou University of Technology. He is a visiting scholar at University of Memphis.

He received MS and PhD in Lanzhou University of Technology, China, in 2008 and

2011, respectively, and BS in Nothwest Normal University. His current research

interests include network and information security, cryptographic, and blockchain. E-

mail: iamxg@ 163.com.

Chen Wang, is currently a master student at Computer and Communication School of

Lanzhou University of Technology. He received his Bachelor degree from Lanzhou

University of Technology in 2017, and started his master studying in 2018. His research

interests are Software Defined Networking, security of wireless network, blockchain.

Laicheng Cao, is a professor of School of Computer and Communication, Lanzhou

University of Technology. He received MS in Lanzhou University, China, in 2004. His

current research interests include network and information security, cryptography etc.

Yongbo Jiang, is a lecturer of School of Computer and Communication, Lanzhou

University of Technology. He received MS and PhD in Xidian University, China, in

2008 and 2013, respectively. His current research interests include network and

information security, information-centric networking etc.

Yan Yan, is an associate professor of School of Computer and Communication, Lanzhou

University of Technology. She received MS and PhD in Lanzhou University of

Technology, China, in 2005 and 2018, respectively. Her current research interests

include machine learning, privacy computing, and blockchain.

Received: February 02, 2021; Accepted: December 27, 2021.

	Blank Page

