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Abstract. The decoupling of the data plane and the control plane in the Software-

Defined Network (SDN) can increase the flexibility of network management and 

operation. And it can reduce the network limitations caused by the hardware.  

However, the centralized scheme in SDN also can introduce some other security 

issues such as the single point of failure, the data consistency in multiple- 

controller environment and the spoofing attack initiated by a malicious device in 

the data plane. To solve these problems, a security framework for SDN based on 

Blockchain (BCSDN) is proposed in this paper. BCSDN adopts a physically 

distributed and logically centralized multi-controller architecture. LLDP protocol 

is periodically used to obtain the link state information of the network, and a 

Merkle tree is establised according to the collected link information and the 

signature is generate based on KSI for each link that submitted by a switch by the 

main controller selected by using the PoW mechanism. Such, the dynamic change 

of network topology is recorded on Blockchian and the consistency of the 

topology information among multiple controllers can be guaranteed. The main 

controller issues the signature to the corresponding switch and a controller checks 

the legitimate of a switch by verifying the signature when it requests the flow rule 

table from the controller later. The signature verification ensures the authenticated 

communication between a controller and a switch. Finally, the simulation of the 

new scheme is implemented in Mininet platform that is a network emulation 

platform and experiments are done to verify our novel solution in our simulation 

tool. And we also informally analysis the security attributes that provided by our 

BCSDN. 
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1. Introduction 

With the rapid development of Internet application, the Software-Defined Networking 

(SDN) is coming into being to meet the increasing demand for the network traffics and 

have been widely applied in many areas [1-5]. While the SDN provides convenience in 

network management and operation, the split of the control plane and the data plane also 

maybe result in some security issues [3, 6-9], such as the single points of failure in the 

control plane, and the fragile channels between the control plane and the data plane, the 

data consistency in multiple controllers environment and all kinds of attacks initiated by 

a malicious switch and so on. The control plane is the most important component of 
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SDN. It is a key research area to resolve the problems that mentioned above. The 

redundant manner that uses the multi-controller architecture is a generic solution, such 

as the master-slave backup [10-13] and Byzantine Fault Tolerance scheme (BFT) [14-

17]. In the master-slave backup architecture, these two controllers that are respectively 

called the master controller and the slave controller are used. When the master controller 

is shut down because of some failures or other reason, the slave controller is initiated 

and replaces the master controller to provide the network management task. The 

mechanism can ensure the data consistency and can improve the resiliency of the control 

layer. However, the method can’t fundamentally solve the single point of failure. In [14-

17], Byzantine fault-tolerant mechanisms based on Byzantine protocol are proposed to 

achieve the data consistency on different controllers and to confirm a failure controller. 

However, in these mechanisms, when the main controller fails, a view shift needs to be 

performed, which can cause a great overhead of network resources.  

Blockchain [18-19] is a proof-tamper, and distributed database that is jointly 

maintained by multiple parties. It can achieve credible data sharing without the 

participation of a Trusted Third Party (TTP) and can increase the scalability and 

flexibility of the network. A survey about deployment of Blockchain in SDN is done in 

[20]. To solve the security problem of the control plane in SDN, some solutions based 

on Blockchain are proposed in [21-29]. However, these schemes still adopts the native 

structure of SDN about the internal structure of the controller, so they can’t fully take 

advantage of the Blockchain features, and don’t provide a systematic security 

mechanism.  

In addition, the Link Layer Discovery Protocol (LLDP) [30] is a standard protocol of 

the network topology. However, some attacks such as the switch spoof, LLDP flood and 

so on, are found in [31]. Secondly, the establishment of a secure channel between the 

control plane and the data plane in SDN is also a hot research direction. The Transport 

Layer Security Protocol (TLS) [32] used by the Openflow protocol is by default a 

protocol between a controller and a switch. However, due to the complex configuration 

and the communication cost, TLS is considered as an alternative solution in later 

versions, which often lead to some security issues such as DDoS attack [33].  

Keyless Signatures Infrastructure (KSI) [34] is a globally distributed system for 

providing timestamp and server-supported digital signature service. Only hash operation 

is used in KSI, so the scheme will not be impacted by some security problems such as a 

key leakage. KSI can ensure the long-term validity of digital signature and often is used 

for achieving a reliable communication. Using of KSI can prevent some attacks such as 

the switch spoof and so on. However, although KSI provides a complete cryptographic 

system, the core layer must calculate the root of the hash tree generated every time and 

publish it in the database. At present, there are still problems such as the lack of a 

credible mechanism for the database, the release cycle cannot meet the more fine-

grained requirement, and the release channel must be a secure channel. The combination 

of Blockchain and KSI can solve these above problems. The hash calendar (Merkle tree) 

generated when the network topology change can be stored on Blockchain.  

Aiming to the SDN security issues discussed before, a security framework for SDN 

based on Blockchain (BCSDN) is proposed in this paper. BCSDN adopts a physically 

distributed and logically centralized multi-controller architecture, and uses blockchain 

technology to build a unified database among controllers. All nodes in the network will 

periodically collect the link state information according to the instruction comes from 
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the main controller selected by the consensus scheme PoW [35-36]. A Merkle tree will 

be set up according to the link state information and the signature will be generated for 

each switch by the main controller based on KSI. The data consistency among multiple 

controllers can be ensured by using of the Blockchain. And the root hash value 

generated in every round will be written into the block header. The main controller will 

issue the signature to the corresponding switch. The proof-tamper, auditable and 

traceable features of Blockchain and KSI’s features provide security guarantees. Finally, 

the simulation of BCSDN is implemented in Mininet platform [37] that is a network 

emulation platform and experiments are done to verify our novel solution in our 

simulation tool. And we informally analysis the security attributes that provided by our 

BCSDN. 

The rest of the paper is organized as follows. Section 2 presents the related work. 

Some backgrounds on our solution are given in section 3, followed by our new scheme 

BCSDN in section 4. In section 5, security attributions of BCSDN are informally 

analyzed. Implementation and performance analysis of our solution are introduced in 

section 6. Finally we conclude our work in section 7. 

2. Related Work 

A redundant manner that uses the multi-controller architecture is a generic solution to 

resolve the single point of failure in SDN. The architecture is a scalable control plane 

solution for the large-scale SDN. To achieve high resilience, an SDN switch can connect 

one master controller for normal operation and one slave controller that backup the 

function of the master controller. Once the master controller fails, one of the slave 

controllers will be assigned to switches to works as the new master controller. However, 

the inappropriate slave controller assignment may cause controller chain failure, where 

running out of the capacity of the assigned controller, even crash the entire network. In 

[10], a dynamic slave controller assignment that prevents the network crash by planning 

slave controller assignment ahead of the controller failures is proposed. The controller 

chain failure phenomenon that incurred by unreasonable slave controller assignment can 

be solved. The slave controller assignment problem is formulated as a multi-objective 

mixed optimization problem that considers multiple network factors such as latency, 

load balancing and robustness. And it has been proven that it is a NP-complete 

complexity problem. A dynamic slave controller assignment (DSCA) scheme is 

introduced in [10]. DSCA firstly checks whether there are controller failures in state 

detection module, then completes the elastic slave assignment and generates a new slave 

assignment for switches in efficient slave assignment module. Finally, in role adjustment 

module, it changes the roles of some controllers and reconnects switches. Simulation 

results show DSCA can decrease the worst case latency under controller failures by 

35.1% averagely, and reduce the probability of network crash. 

In multi-controller architecture, the uneven distribution of traffic load in the 

controllers can degrade system performance. In [11], a self-adaptive load balancing 

(SALB) scheme that balances load among multiple controllers dynamically with 

multiple switch migration from source controllers to target controllers is proposed. The 

key feature of SALB is an effective distribution of load under high load condition while 

https://www.sciencedirect.com/topics/computer-science/master-controller
https://www.sciencedirect.com/topics/computer-science/optimisation-problem
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considering the distance between switches and target controllers simultaneously. The 

efficacy of SALB is demonstrated through experimentation in [11] and the experimental 

results show that SALB experiences a small number of packet drops, which is less than 

1.23% of the total number of message exchanges among the controllers. 

Robustness and fault tolerance are two important metrics to be considered in 

assessing SDN’s advantage. The currently available SDN controllers offer different fault 

tolerance mechanisms. In [12], existing fault-tolerant SDN controller solutions are 

surveyed and a mechanism is proposed to design a consistent and fault-tolerant Master-

Slave SDN controller. The scheme [12] is able to balance consistency and performance. 

The main objective of [12] is to bring the performance of an SDN Master-Slave 

controller as close as possible to the one offered by a single controller. This is achieved 

by introducing a simple replication scheme, combined with a consistency check and a 

correction mechanism, that influence the performance only during the few intervals 

when it is needed, instead of being active during the entire operation time. 

Despite many advantages of SDN, its deployment in the practical field is restricted 

since reliability and fault-tolerance capabilities of the system are not satisfactory. To 

overcome these difficulties of SDN, an architecture called FT-SDN has been proposed 

in [13]. The proposed architecture consists of a simple and effective distributed Control 

Plane with multiple controllers. FT-SDN uses a synchronized mechanism to periodically 

update the controller’s state within themselves. In case of failure, FT-SDN has the 

ability to select another working controller based on the distance and delays among 

different network entities.  

In the multi-controller architecture, most of state synchronization processes on 

different controllers depend on the assumption of a correct decision-making in the 

controllers. Successful introduction of SDN in the critical infrastructure networks also 

requires catering to the issue of unavailable, unreliable (e.g. buggy), and malicious 

controller failures. A framework tolerant to unavailability and Byzantine failures is 

proposed in [14]. It is called as MORPH. The MORPH can distinguish and localize 

faulty controller instances and appropriately reconfigure the control plane. A prototype 

SDN controller that can tolerate Byzantine faults in both the control and data planes is 

proposed in [15]. The performance of the novel solution is compared with current 

standard fault vulnerable open source SDN controllers. The experiment shows there is a 

reasonable slowdown of [15] as is expected in the transition from a fault vulnerable to a 

fault tolerant design. Their best controller can show only a 2x slowdown even though it 

only need 4 replica components, and so it can tolerate a single compromised component 

without affecting control and/or forwarding decisions in the networks. However, 

controllers in [15] are not fit for high performance levels to be adopted in large-scale 

networks. 

A security framework based on the Byzantine protocol is proposed in [16]. In the 

scheme, controllers execute the Byzantine protocol and each switching device is 

managed by a controller view. The control information is given after multiple controllers 

arbitrate. By quantifying the heterogeneity of controllers, a two-stage controller view 

election algorithm is designed to ensure the availability of the network and the security 

of views. 

Network survivability is the ability to maintain service continuity in the presence of 

failures. In [17], the network survivability of SDN is discussed in disaster situations. 

The solution in [17] considers multi-controller failure and the mechanism can reduce the 
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non-operational network devices in disaster situations. Preliminary results show that, by 

applying the proposed new approach, it is possible to achieve substantial improvements 

in network survivability. 

To resolve security and privacy issues in SDN, some solutions based on Blockchain 

have explored. In [21], Blockchain Security over SDN (BSS) is proposed which protects 

privacy and availability of resources against non-trusting members. To verify their 

solution, mininet emulator is used for simulating custom SDN network topology. 

OpenDaylight controller is integrated with OpenStack controller. For testing purpose of 

Blockchain, Pyethereum tester tool under Ethereum platform is implemented. Serpent 

programming is used for creating contract in the blockchain. The simulation result 

shows that BSS facilitates files sharing among SDN users in distributed peer-to-peer 

basis using OpenStack as a cloud storage platform. 

Since the large number of devices connected to the Internet of things (IoT) networks, 

the SDN-based network architecture makes the deployment and configuration of IoT 

much easier. In the IoT network, the fine-grained network traffic is critical to network 

management. In [22], a novel scheme based on Blockchain is proposed to measure the 

fine-grained network traffic in the SDN-based IoT networks and to ensure the security 

and consistency of the statistics. To measure flow traffic with low overhead and high 

accuracy, an ARIMA model and forecast the network traffic with the coarse-grained 

measurement of flows is designed. An objective function in ARIMA mode can decrease 

the estimation errors. A heuristic algorithm to obtain the optimal solution of the fine-

grained measurement is used due to the objective function is an NP-hard problem. 

To improve forwarding efficient of devices in the data plane of SDN, a method called 

TrustBlock is proposed in [23], which introduces trust as a security attribute in SDN 

routing planning. Besides, in order to enhance the integrity and controllability of trust 

evaluation, the double-layer blockchain architecture is established in [23]. In the first 

layer, the behavior data of the node is recorded, and then the trust calculation is 

performed in the second layer. In the evaluation model, nodes’ trust is calculated from 

three aspects: direct trust, indirect trust and historical trust. Firstly, from the perspective 

of security, blockchain is used to achieve identity authentication of nodes, after that, 

from the perspective of reliability, the forwarding status is used to calculate the trust 

value. Secondly, consensus algorithm is used to filter malicious recommendation trust 

value and prevent colluding attacks. Finally, the adaptive historical trust weight is 

designed to prevent the periodic attack. In [23], the entropy method is used to determine 

the weight of each evaluation attribute, which can avoid the problem that the subjective 

judgment method is not adaptable to the weight setting. Simulation results show that the 

detection rate of the TrustBlock is up to 98.89%, which means this model can 

effectively identify the abnormal nodes in SDN. Moreover, it is attractive in terms of 

integrity and controllability. 

In Software-Defined Networking (SDN), Northbound Interface provides APIs, which 

allow network applications to communicate with SDN controllers. However, a malicious 

application can access to SDN controller and perform illegal activities via these APIs. 

Although some studies proposed AAA (Authentication, Authorization, Accounting) 

systems to protect SDN controllers from malicious applications, their proposed systems 

also exist several limitations. Attackers can compromise a system, then modify its 

database or files to gain higher privileges. This system can be taken down because of 

Single Point of Failure threat. A novel system BlockAS is proposed to improve security 
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for the Northbound interface in [24]. It is used to authenticate, authorize and monitor 

accessing critical controller resources from applications. Specifically, BlockAS 

leverages Blockchain features to maintain the immutability and decentralization of 

credential data. In SDN, the lack of consistent records of network data poses difficulties 

for network management, and heterogeneous device heterogeneity poses a hindrance to 

software-defined network interoperability. [25] summarizes the development status and 

existing problems of software-defined network, proposes, realizes distributed consistent 

record of software-defined network data, and breaks the multi-vendor device isolation 

for fault recovery. Reduce the cost of network failure recovery and achieve unified 

scheduling of business capabilities. A security framework is also proposed that 

integrates Blockchain technology with multi-controller SDN in [26]. The main idea of 

the framework is to associate a set of controllers to each domain and to ensure a secure 

and trustworthy inter-controller communication. So, the proposed architecture considers 

a master controller and redundant controllers for each network domain. The architecture 

also integrates a reputation mechanism to identify a malicious controller. In [27], a 

distributed Blockchain-based SDN-IoT enabled architecture is proposed. It is the main 

goal of this framework to manage smart building. The traditional approach that manages 

the health-related data is often the centralized approach. It is not convenient to share and 

process electronic health data across the different institutions. In [28], an alternative way 

based on Blockchian technology is proposed to deal with information exchange across 

multiple stakeholders. A Blockchain-enabled Packet Parser (BPP) of the SDN is 

proposed in [29]. The scheme not only can detect attack in SDN and also can implement 

Blockchain protocol in data plane. 

3. Research Background 

3.1. The SDN Architecture 

To resolve some issues in traditional network architecture, Software Defined Networks 

(SDN) is proposed. SDN is an emerging network architecture that decouples the control 

plane from the data plane and provides a software-based centralized controller. By this 

separation of control plane and data plane, switches in network become simple 

forwarding devices. Whereas, routing decision making is shifted to the controller, which 

can provide a global view of the network and a programming abstraction. This 

centralized entity provides a capability that an operator can program and real-time 

control underlying networks and devices. By using SDN, the network management 

becomes simply and helps in removing rigidity from the network. 

The layered structure of SDN architecture, as shown in Fig. 1 has three major planes 

such as the data plane, the control plane, and the management plane. The data plane 

contains physical network elements, which form the path for data transmission. The 

control plane has a Network Operating System (NOS), also referred to as a controller, 

which generates the flow rule table for devices in data plane. These rules and policies 

are designed in the management plane of SDN architecture. The communication 



 A novel Security Mechanism for Software           529 

between these planes is established by using well-defined Application Programmable 

Interfaces (APIs). These interfaces are divided into southbound, northbound, eastbound, 

and westbound APIs. The communications between the control plane and the data plane 

is implemented through the southbound API, which enables flow installation and 

configuration of devices. The control plane and the management plane use northbound 

API to provide programmability in SDN. Inter-controller communication of SDN 

domains is established using eastbound API, whereas westbound API is responsible for 

the legacy domain to SDN domain communication. The detail of these interfaces can be 

found in some literatures. 

Application 1 Application 2 Application 3

MP:Management plane NB API:REST API

Controllers:OpenDayLight,

Floodlight,ONOS etc.

Control plane

SDN Controller

Source Destination

SB API:OpenFlow

Data plane

 

Fig. 1. The SDN Architecture [3] 

3.2. The Link Layer Discovery Protocol 

The decoupling between the control plane and the data plane introduced by SDN allows 

operators to employ remarkably cheap but very fast hardware to forward packets, 

moving the control logic to the much smarter controller. The controller plays the role of 

an operating system of the network. One of fundamental functions that a controller must 

offer is an accurate, nearly real time view of the network topology. This function is 

known as the topology discovery. The Link Layer Discovery Protocol (LLDP) [30] is a 

standard method of the network topology discovery in SDN. Fig. 2 shows the principle 

that how LLDP works. To discover the unidirectional link s1 → s2, the controller 
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encapsulates a LLDP packet in a Packet-out message and sends it to s1. The Packet-out 

contains instruction for s1 to send the LLDP packet to s2 via port p1. When s2 receives 

the LLDP packet via port p2, s2 encapsulates it as a destination switch in a Packet-in 

message and sends it back to the controller. The controller receives the LLDP packet 

and concludes that there is a unidirectional link from s1 to s2. The same process is 

performed to discover the opposite direction s2 →s1 as well as all other links in the 

network. After all switches perform such operations, the controller will obtain the 

network topology information of the entire network. However, the network topology will 

dynamically change incurred by switches leave and join the network. So the controller 

needs to periodically repeat the process described in Fig. 2. 

LLDP

Packet-in +

LLDP

Packet-out +

LLDP

P2P1

Controller

S2S1
 

Fig. 2. The link discovery process [30] 

3.3. Blockchain and PoW 

Blockchain technology has been applied in many areas [18-19]. Blockchain is a 

system that is composed of nodes, communicating with each other through a protocol. A 

node can be a physical machine or a virtual machine. The IP address is used to identify 

the node in the Blockchain network. The public key is used as an user identification in 

the network. The private key is generally used for signing on message transmitted on the 

network. As a result, each user can log in from any node in the system. The consistency 

of data stored on Blockchain must be guaranteed on the entire network and can be 

achieved by some consensus algorithm such as PoW, PoS and so on [36].  And data on 

the Blockchain network is digitally signed to guarantee authenticity and accuracy 

properties. Blockchain technology can ensure an immutable storage and a fraud 

protection property. The work mechanism of the Blockchain network is shown in Fig. 3. 

The transaction data is stored in a specific data structure called “block” in Blockchain. 

The blocks generated during the transaction process are linked together via the 

cryptographic hash function to form a chain of blocks. That is to say, each block inside 

the Blockchain stores a hash value of the previous block. Thus, the chain of blocks is 

grouped or linked in a chronological order. As a result, the data that stored on the 
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Blockchain won’t be modified without cooperation of all nodes inside the system. So, 

the mechanism provides a proof-tamper feature. 

Header

Block # 208364

Hash: 00000566b52cd2e2f2330015234005112d02bc0  
Previous block Hash: ...e3a23

Nonce: 1165787096

Meta-data

Merkle root: 

hash of block n-1

Transactions

Block n

hash of block n

Transactions

Block n+1

hash of block n-2

Transactions

Block n-1

Block # 208363

:  ...e3a23

TX TX TX TX TX TX

TX TX TX TX TX TX

e3b990     

 

Fig. 3. The Blockchain and block structure [18] 

Blockchain technology has been applied in many areas [18-19]. Blockchain is a 

system that is composed of nodes, communicating with each other through a protocol. A 

node can be a physical machine or a virtual machine. The IP address is used to identify 

the node in the Blockchain network. The public key is used as an user identification in 

the network. The private key is generally used for signing on message transmitted on the 

network. As a result, each user can log in from any node in the system. The consistency 

of data stored on Blockchain must be guaranteed on the entire network and can be 

achieved by some consensus algorithm such as PoW, PoS and so on [36].  And data on 

the Blockchain network is digitally signed to guarantee authenticity and accuracy 

properties. Blockchain technology can ensure an immutable storage and a fraud 

protection property. The work mechanism of the Blockchain network is shown in Fig. 3. 

The transaction data is stored in a specific data structure called “block” in Blockchain. 

The blocks generated during the transaction process are linked together via the 

cryptographic hash function to form a chain of blocks. That is to say, each block inside 

the Blockchain stores a hash value of the previous block. Thus, the chain of blocks is 

grouped or linked in a chronological order. As a result, the data that stored on the 

Blockchain won’t be modified without cooperation of all nodes inside the system. So, 

the mechanism provides a proof-tamper feature. 

3.4. Proof of Work 

Blockchain is a key technology to build a distributed trust in the environment that users 

don’t trust each other and there doesn’t exist a Trust Third Party (TTP). In Blockchain 

network, the consensus scheme ensures the consistency of data stored on the 

Blockchain. More recently, some consensus schemes for Blockchain have been 
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proposed and most of them are based on three basic algorithms that often used in a 

distributed network, such as Proof of Work (PoW) [35], Proof of Stake (PoS) and Direct 

Acyclic Graph (DAG). A comprehensive performance comparison is done among them 

in [36].  

Index 

number

Previous 

block hash
Timestamp Random 

number

Merkle root 

hash

Assemble into block header

Target value = SHA256 (SHA256 (block header))

Less than the network 

target value

Change 

random 

number

End

Y

N

As input below

 

Fig. 4. Proof of Work 

PoW [35] used in Bitcoin is the most classical consensus algorithm in the Blockchain. 

The PoW involves a scanning of a hash value that computed by using a hash algorithm 

such as SHA-256. The hash value begins with a string of 0 bits. The average workload is 

exponent in the number of 0 bits required and can be verified by executing a single hash. 

The PoW is implemented by incrementing a nonce in the block until a hash value that 

contains the required number of 0 bits in the block’s hash. Fig. 4 shows how the PoW 

works. Once the computed value satisfies the requirement of PoW, the block cannot be 

changed without re-executing the work. As subsequent blocks are chained to the new 

generated block, modifying a block means regenerating all the blocks after the modified 

block. So the core idea of PoW used in Blockchain is that miners use their computing 

power to compete the hashing operation. The winner who first finds the hash value 

lower than the announced target has the right to insert a new block into the blockchain 

and get a certain amount of reward. 

3.5. Keyless Signature Instructure 

The Keyless Signature Instructure (KSI) [34] is a globally distributed system for 

providing digital signature services. KSI is an alternative solution to traditional PKI 

signature. It has some benefits and has been payed widely attention. It can detect the 

change status of digital assets and submit this information for further audit and 
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investigation. A mechanism with multiple signatures can be obtained in KSI. That is to 

say, multiple documents can be signed together at once. The signing process includes 

the following three steps. Hash: a hash value of the data or file generated by the client 

will be calculated; Aggregation: The gateway layer collects and processes the hash 

values that comes from the clients, aggregates them into a Merkle tree, and sends the 

generated root hash value to the aggregation layer. The aggregation layer server 

processes the root hash value generated and sent by the gateway layer, and adds it to the 

Merkle tree. Finally, the generated root hash value will be transferred to the core layer; 

Release: a permanent hash tree will be created according to the first three hash values of 

the aggregation tree collected each time and it is released as a trust anchor.  

x12 = h(x1|x2) x34 = h(x3|x4)

xtop = h(x12|x34)

x1 x2 x3 x4

x1

y3= h(y2|x34)

y2 = h(x1 | y)

y

x34

 

Fig. 5. Hash Tree and Hash Calendar. [34] 

Hash Trees: Hash-tree aggregation process described before was first introduced in 

[38]. In hash-tree time-stamping scheme, a one-way hash function is used to convert a 

list of data or files into a fixed length hash value that is generally associated with time. A 

signature token generated by the service according to a hash of a document from client 

is considered as a proof that the data sent by the client existed at the given time and that 

the request was received through a specific access point. All received requests are 

aggregated together into a large hash tree; and the top of the tree is fixed and retained 

for each second as shown in Fig.5. The signature token contains data for reconstructing 

a path through the hash tree—starting from a signed hash value (a leaf) to the top hash 

value. For example, to verify a token y in the place of x2 (Fig. 5), a concatenation 

operation is firstly done between y and x1 (retained as a part of the signature token) and 

then a hash value y2 = h(x1 | y) is calculated and is used as the input of the next hash step, 

the process will be end when it reach the top hash value, i.e. y3 = h(y2|x34) in the example 

case. If y3 = xtop then it is safe to prove that y was in the original hash tree. 

Hash Calendar: These top hash values obtained in each round are linked together to 

generate a globally unique hash tree (The hash tree is called a hash calendar in [34])—so 

that new leaves are added only to one side of the tree. Time value is encoded as the 

shape of the calendar—the modification of which would be evident to other users. 

However, the top hash of the calendar is required to periodically publish in widely 

witnessed media. There is a deterministic algorithm to compute the top hash of the 

linking hash tree, giving a distinct top level hash value at each second. Also there is an 

algorithm to extract time value from the shape of the linking hash tree for each second, 

giving a hard-to-modify time value for each issued token. 
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4. BCSDN Framework 

The BCSDN architecture proposed in this paper is a distributed multi-controller 

architecture. In the control plane of BCSDN, the controllers collect the link status 

information from each switch that joined to the network, by using the link discovery 

protocol LLDP during the link discovery phase. A switch will package the link 

information in a Packet_in packet during the link discovery, and then it will submit the 

Packet_in packet to a controller. In BCSDN, the submission is considered as a 

transaction process in the Blockchain network. The consensus algorithm such as PoW is 

used to elect a main controller from these controllers. The selected main controller that 

plays a role of a miner verifies the transaction and aggregates all of hash values to 

generate a Merkle tree according to KSI algorithm. Finally, it will generate a block of 

the root hash value and storage on the Blockchian network, and then it will issue 

signature to each switch according to KSI signature rule. Each block is related to a hash 

calendar. Thus, the chain of blocks records and represents the dynamical change process 

of the network topology. The main controller will issue the latest network topology 

information collected from the network to other controllers so that the scheme ensures 

the consistency of the network view among controllers. When a switch in the network 

needs to forward a data, interaction will be performed between the switch and the 

controller that directly connected with the switch to request the flow rule table. The 

controller sends the latest flow rule table after verifying the signature owned by the 

switch. So, our BCSDN framework is shown in Fig. 6 and it is consisted of the 

following 5 components: The network topology generation, Blockchain establishment, 

the selection of the main controller, the signature generation and signature verification. 

n+2 n+3

application 1 application 2 application 3 application 4

Controller 1 Controller 3Controller 2

Send network 
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n n+1

Global network topology

KSI
Send network 

stream

Send 

request

Application 

plane

Control 

plane

Data 

plane

Blockchain 

layer

 

Fig. 6. The Entire Framework of BCSDN 
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4.1. The Network Topology Generation 

In BCSDN, the standard link layer discovery protocol LLDP introduced in section 3.2 is 

used to collect the network link state information. The SDN controller initiates the link 

discovery process. The process consists of the following 4 steps. (1) The SDN controller 

periodically sends a LLDP packet Packet_out packet to all switches that connected with 

it. (2) Once a switch receives the Packet_Out packet from the SDN controller, it will 

broadcast the Packet_out packet to all of devices that connected with the switch via all 

of its ports.（3) In our BCSDN, we assume that the neighboring switches are an 

OpenFlow switch. That is to say, the switch have no a special flow rule entry for 

processing LLDP messages, so they will send a LLDP packet Packet_in packet to the 

controller connected with them. (4) After the controller receives a Packet-In packet, it 

will analyze the data packet and save the link information between the two switches in 

its link discovery table and calculate a hash value of message in the Packet-In packet by 

using SHA256. The algorithm is described in Algorithm 1. 

 

Algorithm1: Hash the Link Information  

Input: Packet_out{} 

Output: temptxList{} 

1：while a switch receives packet_out{} message do 

2：      forward the message to neighboring switches 

3：      neighboring switches  sends the packet_in to the controller 

4：              temptxList{} ← sha256(packet_in )  

5：return temptxList{} 

4.2. Blockchain Establishment 

Algorithm2: Merkle Tree Construction 

Input: temptxList{} 

Output: root 

1： while newTxList.size() != 1 do 

2：      index = 0 

3：      while index < tempTxList.size() do 

4：              left ← tempTxList.(index) 

5：              index++ 

6：              right ← " " 

7：              if  index != tempTxList.size() then 

8：                     right = tempTxList(index) 

9：              newTxList{} ← SHA256(left , right) 

10：            index++ 

11：root ← newTxList(0) 

12：return root 

 

In BCSDN, the main controller will generate a Merkle tree according to the KSI scheme 

during the link discovery process. The main controller will save the hash value of the 

root node as a block on the Blockchain maintained by these controllers according to the 
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principle of Blockchain. A new block on Blockchain is set up as shown in Fig. 6. That is 

to say, an update (a hash calendar) of the network topology will generate a new block on 

the Blockchain. That is to say, the Merkle tree locally represents the current network 

topology information. The construction algorithm of the Merkle tree is shown in 

Algorithm 2. 
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Fig. 6. A block generation on Blockchain 

4.3. Selection of a Main Controller 

In order to solve the single-point failure problem incurred by a single controller in SDN, 

a multi-controller architecture is adopted in our BCSDN framework. These controllers 

are deployed in physically distributed and logically centralized manner. The PoW 

introduced in section 3.4 is used for selecting a main controller from these controllers. 

The algorithm is described in Algorithm 3.  

The main controller just selected will play a role of a miner in the Blockchain network 

and issue the topology information to all of controllers. So, our novel BCSDN can 

ensure the consistency of the network topology information on these different 

controllers. 
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Algorithm3: Proof of Work 

Input: index，  rootHex，  time，  previousBlockHash，  random，  TargetValue 

Output: Block 

1：  Block ← index + rootHex + time + previousBlockHash + random 

2：  while true do       

3：        if  SHA256(SHA256(Block))  >=  TargetValue  then 

4：           random ++  

5：           Block ← index + rootHex + time + previousBlockHash + random 

6：        else 

7：           break 

8：        end if 

9：   end while   

10： return Block 

4.4. The Signature Generation 

The main controller selected in PoW process will manage the entire network. The main 

controller will use the KSI scheme to generate and issue a signature to each switch that 

submitted the correct link information to it. The signature information generated by the 

main controller is a concatenation of these hash values on nodes which is located on the 

Merkle tree. These nodes together form a path from a leaf node that represents 

information of a link to the root of the Merkle tree. So, this signature means that the 

switch sent a Packet_In packet containing the link information to construct the Merkle 

tree that recorded the current network topology information. The signature process is 

shown in Algorithm 4. 

Algorithm4: Signature Generation 

Input: CalculationPath, node 

Output: HashSignature{} 

Initialization： HashSignature{}= ∅ 

1： if  the node is in CalculationPath and is a leaf 

2：      HashSignature{} ← node 

3： if  the node is in CalculationPath  

4：      traversing left and then right 

5： otherwise   HashSignature{} ← node 

6： return  HashSignature{} 

4.5. Signature Verification 

When a switch need to forward data for an end user, it firstly checks if there is a 

matching entry in a flow rule table. If the check fails, a forwarding request event is 

generated and then the switch sends the request with signature the main controller issued 

to it to the controller connected with it. When the controller receives the request, it 

verifies the signature of the switch according to KSI algorithm. If the verification is 

successful, the controller transfers the latest flow rule table to the switch. Otherwise, it 

drops the request and don’t response to the switch. The algorithm of signature 

verification is described in Algorithm 5. The signature scheme used in BCSDN can 
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efficiently authenticate the switch and prevent some attacks such as spoofing incurred by 

malicious switches controlled by adversary.  

 

Algorithm5：  Signature Verification 

Input：HashSignature{node 0,node 1…node i}, root 

Output：result 

Initialization: HashNode = ∅  

1：  HashNode ← node 0 

2：  for (n=1, n<=i, n++) 

3：     HashNode= sha256(HashNode, node n) 

4：  if  HashNode == root  then 

5：      result ← verify successfully 

6：      break 

7：  else 

8：     result ← verify failed 

9：  end if 

10：return  result 

5. Security Analysis 

In this section, we informally discuss the security issues solved in our BCSDN. BCSDN 

can efficiently solve the single point of failure, the view consistency of multi-controller 

SDN network and the authentication of the interaction between a controller and a switch. 

Proposition 1: BCSDN can solve the single point of failure. 

Proof: In BCSDN, the multi-controller architecture is used to solve the single point of 

failure. That is to say, a logically centralized and physically distributed multi-controller 

framework is adopted in the control plane of SDN. The selected main controller 

manages the entire network. When the main controller shut down because of some 

reason, the re-elected main controller will take over the network management task. 

Therefore, the multi-controller architecture can conquer the single point of failure, 

improve the processing capacity of the control plane, and also ensure the reliability of 

the network management. 

Proposition 2: BCSDN can ensure the consistency of the network topology on the 

different controllers. 

Proof： In BCSDN, the mechanism based on Blockchain is implemented in the 

control plane. The dynamic change of the network topology will be recorded in 

Blockchain. These features of Blockchain such as proof-tamper, auditable, distributed 

storage and so on will ensure that the network topology information stored in the 

Blockchain is correct and won’t be modified and also guarantee that the network 

topology information stored on the different controllers is consistent.  

Proposition 3: The communication between a controller and a switch can be 

authenticated. 

Proof: In BCSDN, KSI is used when a controller collect the topology information of 

the network. That is to say, the controller will generate a signature for each switch 

according to the KSI mechanism in link discovery process. The signature is a proof that 

javascript:;
javascript:;
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proves the switch ever took part in the link discovery process in the corresponding 

network topology. That is to say, each link (that submitted by the switch) in the network 

topology is a legal link.  The KSI scheme ensures that the signature that the controller 

sent to each switch can’t be forged and these signatures information are saved on 

Blockchain. When a switch that needs to forward data requests the flow rule table from a 

controller, the controller will verify the signature generated in link discovery process 

and owned by the switch. So, using of KSI can ensure the authenticated communication 

between a controller and a switch. 

6. BCSDN Implementation 

6.1. BCSDM simulation Implementation 

 

 

Fig. 7. The Simulated Network Topology. 

In this section, we implement our BCSDN architecture by using simulation method. The 

network emulator Mininet on Ubuntu 16.04 system is used to simulate a custom 

topology of a SDN network. The Floodlight controller is used to establish a multi-

controller architecture for SDN to manage the entire network. We illustrate the 

operation of the BCSDN network by a simply network topology as shown in Figure 7. 

Three Floodlight controllers are used to establish a multi-controller architecture. These 

controllers together form a simply p2p network and are used to manage and maintain a 

Blockchain network. The main controller is selected by using the PoW alogrithm. We 

implement the network architecture instance of BCSDN in the network simulation 

platform Mininet. These controllers in BCSDN periodically collect the network link 

information by the link discovery protocol LLDP introduced in 3.2 section.  The main 

controller generates the signature corresponding to each link according the Merkle tree 

that presents the current network topology. The network state information is  recorded 

on the Blockchain as a distributed ledger. The simulation topology includes 2 OpenFlow 

switches and 4 hosts connected to these two switches respectively. Built-in Mininet 

network commands such as “ping” and so on can be used to test the correctness, 



540           Xian Guo et al. 

feasibility and overhead of BCSDN. The details of each node in the simulation topology 

are described as shown in Figure 8. In Fig. 9a, the information from the log file of the 

node displays the block creation and the collection of the network topology. In Fig. 9b, 

the signature verification result is shown when the switch applies for the flow rule table 

from the controller.  

 

Fig. 8. Information of the Network Nodes. 

2020-08-11 09:04:21.988 INFO  [n.f.l.i.LinkDiscoveryManager] 

Received LLDP packet on sw 00:00:00:00:00:00:00:01, port 2

The first block：     Block{

                                  index=0,

                                  rootHex='IFmBkeOfebmNHm0qTf508QsMrfPTflqMt5yKph8LsYU=', 

                                  time=1597161862025, 

                                  previousBlockHash=0, 

                                  random=945}
 

The second block：Block{

                                  index=1, 

                                  rootHex='65Bm8Zbb69XU3pWHDusPh8mc7sicAm9TmRqJoFlwcTs=', 

                                  time=1597161862064,

                                  previousBlockHash=NebGApj7T6pIv7Ho87IbMNDdfPLOrE3ix1wU7D0mjm4=, 

                                  random=388}
 

a. Block information 

2020-08-11 09:05:46.865 INFO  [n.f.f.Forwarding] sign pass

 

b. The Signature Verification 

Fig. 9. The results of the Network Simulation. 

6.2. Performance Analysis 

The performance of BCSDN is analyzed under different network scale in this section.  

We compare performance metrics such as the network convergence time, network 
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throughput and the response time between the singe controller solution and our BCSDN. 

The Floodlight controller is used in the experimental analysis. 

  

Fig. 10. The Network Convergence time 

Fig.10 shows the convergence time of these two simulated networks that one only 

uses a single controller and another uses our BCSDN solution. It can be clearly seen that 

these different networks can converge successfully in three different network sizes and 

obtain the entire network topology. BCSDN needs to set up Blockchain network 

according to the change of the network topology. So, the convergence time is higher 

than the solution used the single controller. But, we can see that the curve of the 

convergence time in BCSDN will become smooth as the network size increases. That is 

to say, BCSDN is better than the network that there exists only a single controller in 

large scale network. 

 

Fig. 11. Throughput Comparison Between the Sing Controller network and BCSDN 

The network throughput is compared between BCSDN and the network with the 

single controller as shown in Figure 11. In BCSDN, three controllers are used. the 

processing ability is indeed stronger than the network with a single controller. This 

shows that our multi-controller network architecture is more excellent than the single 

controller network architecture. 
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                          a. CPU usage                                             b. The Response Time 

Fig. 12. Comparison of CPU usage and the Response Time  

In addition, the CPU usage rate and the response time are analyzed in these two 

solutions as shown in Fig.12. Clearly, because using of Blockchian, the CPU usage rate 

in BCSDN is higher than the solution that used a single controller as Fig. 12a. However, 

the response time is tested by using performing 20 ping operations. As shown in Figure 

12b, it can be seen that the ping response time of BCSDN and a single controller 

network is almost the same except that the time of the first ping. That is to say, BCSDN 

can meet the requirements of network rapid processing. 

7. Summary 

In this paper, a security framework for SDN BCSDN is proposed by integrating 

Blockchain and KSI in this paper. The BCSDN adopts a physically distributed and 

logically centralized multi-controller architecture. In BCSDN, LLDP protocol is used to 

obtain the topology information of the network, and the dynamic change of the network 

topology is recorded on Blockchain. The main controller selected according to PoW 

play a role that manage the entire network. So, BCSDN can efficiently solve the single 

point of failure in single-controller architecture. In addition, using of Blockchain scheme 

ensures the consistency of the topology information on different controllers. Using of 

KSI is used to authenticate the communication between a controller and a switch. The 

correctness, reliability and feasibility are verified by an emulation method in mininet 

emulation platform in this paper. We also simply analyze security attributes and 

performance of the BCSDN framework. We will further improve our solution in the 

future work.  
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