
Computer Science and Information Systems 19(2):547–572 https://doi.org/10.2298/CSIS210217061E

Reasoning on the Usage Control Security policies over
Data Artifact Business Process Models

Montserrat Estañol1, Ángel Jesús Varela-Vaca2, Marı́a Teresa Gómez-López2, Ernest
Teniente1, and Rafael M. Gasca2

1 Universitat Politècnica de Catalunya
Barcelona, Spain

{estanyol,teniente}@essi.upc.edu
2 Universidad de Sevilla

Sevilla, Spain
{ajvarela,maytegomez,gasca}@us.es

Abstract. The inclusion of security aspects in organizations is a crucial aspect to
ensure compliance with both internal and external regulations. Business process
models are a well-known mechanism to describe and automate the activities of the
organizations, which should include security policies to ensure the correct perfor-
mance of the daily activities. Frequently, these security policies involve complex
data which cannot be represented using the standard Business Process Model Nota-
tion (BPMN). In this paper, we propose the enrichment of the BPMN with a UML
class diagram to describe the data model, that is also combined with security poli-
cies defined using the UCONABC framework annotated within the business process
model. The integration of the business process model, the data model, and the secu-
rity policies provides a context where more complex reasoning can be applied about
the satisfiability of the security policies in accordance with the business process and
data models. To do so, we transform the original models, including security policies,
into the BAUML framework (an artifact-centric approach to business process mod-
elling). Once this is done, it is possible to ensure that there are no inherent errors
in the model (verification) and that it fulfils the business requirements (validation),
thus ensuring that the business process and the security policies are compatible and
that they are aligned with the business security requirements.

Keywords: Business Process, Security policy, Usage control model, Data artifact,
Reasoning.

1. Introduction

Business processes specify the workflow of the activities in an organisation facilitating
decision-making support [43] to achieve its objectives. These activities are not carried out
in a void, but in many cases, they have to follow certain compliance rules which govern
the operation of a company [17]. In this respect, compliance rules are also used for risk
management [60] to control threats. Thus, a set of compliance rules may refer to security
policies to control security threats. According to the SANS Institute definition, a security
policy is a set of security requirements or rules (i.e., access control restrictions) that must
be met in order to achieve the business goals. Thereby in this paper, we assume that a
set of rules may represent a security policy of an organisation. The necessity of including

548 Montserrat Estañol et al.

security policies in business process models is well-known and has been studied in the
literature [33], but security issues are mostly overlooked by default and not tackled in a
practical way.

Security policies are not necessarily defined at the same time as the business process;
rather, they are usually defined and implemented at later stages of software development.
As a result, many times they are specified independently from one another. However,
security policies and business process must be aligned [2]. Ensuring this will reduce risky
situations and the propagation of errors during process deployment [53]. The combination
of both business processes and policy rules is fundamental for the Business Continuity, as
described in ISO 22301:2012.

Unfortunately, traditional approaches to process modelling are insufficient when it
comes to defining security policies. The inclusion of security controls into process-aware
information systems is currently an open challenge [26]. Most of the process-centric ap-
proaches try to incorporate access control mechanisms by adapting traditional access con-
trol models [29]. However, they fail to incorporate the flexible and complex security poli-
cies that modern business information systems demand. These process-centric approaches
tend to focus on representing the sequence of activities in the process and disregard or
place little importance on the data required. However, security policies may refer to com-
plex data, which cannot be represented through the process-centric approaches. Further,
security policies can represent restrictions regarding the number of uses of the resources.
One such example is found in the context of a customer’s loan request to a credit provider
[32]. A security requirement could be that it is not possible to request a loan when there
are previously denied loan requests or a staff member is not allowed to review more than
ten loan requests in a period of time. Note that, due to the lack of a data model, it would
be impossible to represent this policy.

On the other hand, artifact-centric approaches incorporate data in the definition of
the process, and are more appropriate when security policies are involved, since it will
be possible to represent them. Not only this but following an artifact-centric approach
makes it possible to apply reasoning techniques to the process model and the security
policies. Through these techniques, it can be checked that the process model and the
security policies are aligned, i.e. there are no contradictions between them (verification),
and that they fulfil the business requirements (validation).

As mentioned previously, the importance of specifying security-aware business pro-
cesses is well-known [5]. Moreover, security policy complexity has been studied in [50],
but it was only sketched how they could be modelled in an artifact-centric paradigm. In
terms of reasoning, existing artifact-centric approaches do not yet consider verification
and validation of security policies. For these reasons, there is a need for a proposal that
deals with the verification of the security of business processes. As we have explained,
it should be based on the use of an artifact-centric approach to be able to represent com-
plex data structures related to security policies. Therefore, the main challenges to tackle
are twofold: 1) the specification security policies based on UCON models into artifact-
centric process models, and; 2) the provision of reasoning techniques to verify the security
policies using an artifact-centric approach.

Summarising, the main contributions of this paper are:

1. Definition of an enriched model that includes security policies over data arti-
facts. We have defined a model which enables the definition of UCON-based secu-

Reasoning on the Usage Control Security policies over Data Artifact BPM 549

Fig. 1. Proposed Framework

rity policies [39] for artifact-centric process models. To do this, we use BPMN [36]
and UML class diagram [37], which are de facto standards for process modelling
and data specification respectively. We combine and enrich both notations by using
security policies defined in Object Constraint Language (OCL) [10] following the
UCONABC model. This provides a data artifact process model with security policies
defined in OCL.

2. Transformation of partial models into the BAUML framework. We have defined
and implemented a transformation of the initial models into a BAUML framework
[15] which can be used for reasoning on the model, detecting potential errors and
ensuring that it fulfils the requirements and goals.

3. Reasoning using the enriched model. After a transformation process, we propose
to reuse existing techniques [15] for verifying and validating the artifact-model as a
whole, considering also the security policies and the data involved in the policies into
a BPMN model.

4. Evaluation of feasibility. We have used a running example as a Proof-of-Concept
(PoC) during the explanation in each stage and to demonstrate how our approach can
reach the verification of a security policy.

The remainder of the paper is structured as follows. Section 2 presents the enriched
model and the different parts that form it with an example. Section 3 details how these
initial models can be translated into the BAUML framework for reasoning. Section 4
presents the types of reasoning that can be tackled thanks to using the enriched model.
Section 5 analyses the related work. Finally, Section 6 presents the conclusions and further
work.

2. Enriching Process Models with Security Policies

This section presents the models used in our approach: the UML class diagram, the BPMN
diagram, OCL operation contracts and the UCONABC framework to represent security

550 Montserrat Estañol et al.

policies. In addition, we introduce a running example, to make our proposal easier to
understand.

The UML class diagram is used to represent the data in the domain of interest, and the
BPMN diagram to model the process. Both models are interrelated in so far as UML dia-
grams are able to represent the data and their relations while BPMN provides an activity-
centric perspective about the activities that can make changes to the data. Both languages
are the standard and most common formalisms for representing data and processes, re-
spectively. In addition, we use OCL operation contracts to formally specify each task in
the business process, similarly to [12, 38]. This provides the ability for reasoning or exe-
cuting the resulting models. We then enrich the models including security policies defined
using the UCONABC framework.

To illustrate our approach, a running example based on the customer’s loan request
[32] is used through the paper. The running example consists of a loan request to a credit
provider which considers two acceptance reports before deciding on the request.

2.1. UML Class Diagram

A UML class diagram is formed of a set of classes (or concepts), which may be in a hi-
erarchy, n-ary associations among such classes (where some of them might be reified, i.e,
association classes), and some attributes inside these classes. In addition, a UML schema
might be annotated with minimum/maximum multiplicity constraints over its association-
ends/attributes, and hierarchy constraints (i.e., disjoint/complete constraints).

Figure 2 shows the UML class diagram representing the data required by the process
in our running example. For example, a LoanRequest is defined by its id, amount, pending,
accepted, date and risky. Pending and accepted attributes represent whether the loan is
waiting for approval or has been accepted, respectively. In turn, a Customer may submit
several loan requests, which are going to be revised by the Operation Staff of the Credit
Provider to decide on the risk and the rate of the loan.

2.2. BPMN Diagram

BPMN (Business Process Model and Notation) is a widely used and well-known ISO and
OMG standard language for modelling business processes known as the defacto standard
for business process modelling [25]. In a nutshell, the language uses nodes to represent the
activities or tasks of the process, whose execution order is determined by a set of directed
edges. Different gateway nodes are available to control the flow, to allow for parallel or
alternative execution paths, for instance. Moreover, using BPMN it is also possible to
represent the interaction between different parties involved in the process, messages and
business objects are able to flow between various business processes [41].

The BPMN model is shown in Figure 3 where three different pools cover its main
functions: pool Customer manages the request process from the viewpoint of a customer;
pool Credit Provider describes how the administration staff manages the loan request,
obtains the acceptance reports and notifies customers about the decisions; and pool Oper-
ation Staff deals with the evaluation of the loan requests. We use in the example some col-
laboration components since various data with different cardinalities flow through busi-
ness process instances [40, 31]. Single instances of the process Credit Provider need to

Reasoning on the Usage Control Security policies over Data Artifact BPM 551

Fig. 2. Data Model of the Loan Request

interact and be synchronised with multiple instances of processes Customer and Opera-
tion Staff simultaneously [18]. Loop Activities (⟳) and Parallel Activities (|||) are included
to describe the synchronisation between the pools. Data objects, such as LoanRequest or
Customer, appear in the BPMN diagram but their details are modelled in the UML class
diagram, as we have shown.

2.3. OCL Operation Contracts

In order to define the behaviour of the tasks that perform work in the BPMN model, we
propose the use of OCL operation contracts. Each contract contains: a header, including
the operation name and input parameters; a precondition, stating the conditions that must
be true before the task can be executed; and a postcondition, describing the state of the
system after the successful execution of the activity. Below we present the contracts of
two tasks of the example, RequestALoan and SendApprovedNotification. OCL contracts
for the other activities would be defined similarly.

RequestALoan(pId: String, am: int, c: Customer, t: Date, cp: CreditProvider,
r:boolean)

post: LoanRequest.allInstances()->exists(l | l.oclIsNew() and l.id = pId and
l.amount = am and l.date = t and l.accepted = false and l.pending = true and
l.creditProvider = cp and l.customer = c and l.risky=r)

Activity ReceiveNotification has no OCL operation contract because it waits until receiv-
ing a message through the incoming message flow.

552 Montserrat Estañol et al.

Fig. 3. BPMN Model for the Loan Request

SendApprovedNotification(l: LoanRequest, acc: boolean)
post: l.accepted = acc and l.pending = false

2.4. Describing Security Policies

Finally, the last elements of our proposal are the security policies. They can be seen as
business compliance rules [17] with specific security semantics, such as Separation of
Duties (SoD) [9]. There is not a standard framework or formalism to specify them. In this
paper, we follow the UCONABC model [39] which has emerged as a generic formal model
to represent complex, adaptable and flexible security policies in new environments, such
as Internet of Things (IoT). For instance, Digital Right Management (DRM) is an access
control mechanism which can be modelled by UCONABC . Moreover, other traditional
access control and trust management mechanisms can be defined by using this model. A
UCONABC model consists of the following components:

– A Subject is a component which holds or exercises certain rights on objects. An Ob-
ject is an entity that a subject can access or use with certain rights.

– Rights are privileges that a subject can hold and exercise on an object.
– Predicates for the evaluation:

• Authorisations (A) have to be evaluated for usage decisions and return whether
the subject (requester) is allowed to perform the requested rights on the object or
not.

• Obligations (B) represent functional predicates that verify mandatory require-
ments a subject has to perform before or during a usage exercise.

Reasoning on the Usage Control Security policies over Data Artifact BPM 553

• Conditions (C) evaluate environmental or systems factors to check whether rele-
vant requirements are satisfied or not.

All these predicates can be evaluated before or while the rights are exercised. For
this reason, the UCONABC model splits each predicate into two types of sub-predicates
depending on when it must be evaluated: (1) a pre-Authorisation (preA) predicate is eval-
uated before a requested right is exercised; and (2) an on-Authorisation (onA) predicate is
checked while the right is exercised. Likewise, obligations and conditions can be divided
into pre- and on-predicates. Further, UCONABC introduces a new factor to be considered
in predicates: the use of inmutable or upgradeable attributes. Thus, in certain predicates
we may need to check the conditions based on the inmutability or the updating of subject
and/or object’s attributes. To summarise, all types of predicates and updating predicates
supported are given in Table 1 as indicated in [39]. For instance, an onA3 predicate rep-
resents a usage control scenario where the access decision is evaluated during beginning
the usage and it also requires a post-update of attributes during the access. Furthermore,
thanks to the use of UCON, it enables us to represent traditional access control (e.g.,
MAC) by means of preA0 and preA1 predicates.

Table 1. The predicates supported by UCONABC [39].

0 (inmutable) 1 (pre-update) 2 (ongoing-update) 3 (post-update)
preA ✓ ✓ ✗ ✓
onA ✓ ✓ ✓ ✓
preB ✓ ✓ ✗ ✓
onB ✓ ✓ ✓ ✓
preC ✓ ✗ ✗ ✗
onC ✓ ✗ ✗ ✗

The policies according to [50] are shown in Figure 4. Although our approach can sup-
port most of the predicates, just some of them have been used in the running example.
They have been modelled together with the BPMN model (cf. Figure 3). The reason be-
hind this is that these policies can help to improve the documentation, the analysis and
optimisation of the process model, and the alignment of systems according to the given
security requirements, as proposed in [34].

The BPMN model has been designed in an extension of the bpmn.io modeller which
integrates a security DSL [52] which enables the graphical specification of security poli-
cies employing locks (cf. locks in the diagram) attached to activities. Although the type
of rules have been pointed out as text annotations attached to each security policy.

For each rule, the left-hand side of the double implication refers to the right, whereas
the right-hand side states what needs to be evaluated. For example, policy onB1 (cf. R4)
states that the staff can only review a maximum of 10 loan requests. Some rules use a
preUpdate predicate in the right-hand side. It establishes an update of an object’s attribute
prior to the usage. For instance, onA1 (cf. R6) checks if the rate of a loan requests is
greater or equal than six and the risk assigned is low or medium. In terms of subjects and
objects, onC0 (cf. R4) is an on condition (C), and its subject is the credit provider and its
objects are a loan request and a loan request report.

For a better understanding, a brief description of the security policies is given below:

554 Montserrat Estañol et al.

Fig. 4. Security Policies for the Loan Request

1. R1 : preA0: the request of more than one loan is not permitted when there are previ-
ously unaccepted loans.

2. R2 : preB0: the loan requests of more than fifty thousand are not permitted for the
credit provider without accepting a clause of risk.

3. R3 : onC0: the loan request is accepted iff risk is medium or low.
4. R4 : onB1: an operation staff cannot review more than ten loan requests at the same

time.
5. R5 : preA0: the second review must not be the same than the first one (Separation of

Duties principles).
6. R6 : onA1: the reviewer is able to send a loan request report with a rate of six (or

greater), an amount less than five thousand, and risk low or medium since requires
supervision (Four eye principle).

3. Transforming the Models into an Integrated Solution

Given the models described in the previous section, our goal is to determine the cor-
rectness of the business process model as a whole (i.e. considering the data and process
models, and the definition of the activities) and its security policies. This means check-
ing that there are no errors, and that the requirements are fulfilled when the models and
security policies are considered together, basing our reasoning approach on [15].

Three steps need to be carried out to achieve this objective:

1. Formalize the security policies, so that they can be incorporated into the models.
2. Transform our starting models to be able to reason with them.
3. Perform the reasoning itself, after merging the formalized security policies with the

model.

The first two steps are described in the remainder of this section. Step 3 is explained
in section 4.

3.1. Formalizing Security Policies Utilizing OCL Constraints

The security policies defined in Figure 4 give an intuitive idea of their meaning, but as they
are, cannot be added to the model for reasoning due to a lack of formalization. To solve
this, we specify them using OCL language. This is not a limitation since the transforma-
tion from informal models to specific formal models has been tackled in previous works
[42] and using OCL as a formalism to specify UCONABC policies has been considered
in previous work [27].

Reasoning on the Usage Control Security policies over Data Artifact BPM 555

Each security policy defines conditions over a set objects. We propose representing a
security policy as follows:

<SecPolicyName>

Objects: <obj1>:<Type1>, ..., <objN>:<TypeN>

Condition: <OCL expression>

where OCL expression refers to obj1 to objN using OCL constructs and should result
in a Boolean value. Note that these objects should either be input parameters of the tasks
to which the policies are attached or be created by them.

We also allow the use of @post in OCL expression, to refer the new value of an
attribute. This is necessary for policies that include the expression preUpdate, indicating
that the new value of the element should be considered. Below, we show policies R1, R2,
R4 and R6 expressed in OCL:
R1 (preA0):

Objects: c:Customer
Condition: c.loanRequest->forAll(l | l.pending=false and l.accepted=true)

R2 (preB0):

Objects: lr:LoanRequest
Condition: (lr.amount ≤ 50,000 ∧ lr.risky = false) ∨ (lr.amount > 50,000 ∧

lr.risky = true)

R4 (onB1):

Objects: op:OperationStaff
Condition: op.loanRequest@post->size() ≤ 10

R6 (onA1):

Objects: l:LoanRequestReport
Condition: l.rate@post ≥ 6 ∧ l.loanrequest.amount ≤ 5000 ∧ (l.risk = ’low’ ∨

l.risk = ’medium’)

3.2. Transforming the Models into BAUML

As stated earlier, our goal is to be able to verify UCONABC policies in the context of a
business process model annotated with data artifacts that support complex data structures.
To achieve this, we will apply the verification techniques for artifact-centric business pro-
cess models [15]. In order to do so, we need to adapt our starting models to the input
required by the BAUML framework.

BAUML uses four different models: a UML class diagram, a UML state machine di-
agram, UML activity diagrams and OCL operation contracts. Therefore, we will need to
translate or map the starting models (BPMN diagram, UML class diagram, OCL operation
contracts and security policies) into these, to be able to reuse the existing techniques. Intu-
itively, there will be an (almost) direct mapping between the class diagrams and the OCL
operation contracts in both approaches. However, we will need to translate the BPMN di-
agram into a state machine diagram and a set of activity diagrams to obtain an equivalent
BAUML model. For this reason, we introduce state machine and activity diagrams.

556 Montserrat Estañol et al.

Definition 1. A state machine diagram is defined as SA = ⟨V, vo, vf , E,X, T ⟩, where V
is a set of states, vo ∈ V is the initial state, vf ∈ V is the final state, E is a set of events,
X is a set of effects, and T ⊆ V ×OCLM ×E ×X × V is a set of transitions between
pairs of states, where OCLM is an OCL condition over M that must be true in order
to the transition to take place. Note that vo cannot have any incoming transition, and vf
cannot have any outgoing transition.

Definition 2. P is a set of UML activity diagrams, such that for every state machine
diagram S=⟨V, vo, vf , E,X, T ⟩ ∈ S, and for every event ε ∈ EXTEVENTS(S) there
exists exactly one activity diagram Pε ∈ P . Pε is a tuple ⟨N,no, nf , F ⟩, where N is a set
of nodes, no ∈ N is the initial node, nf ⊂ N is the set of final nodes and F is a set of
transitions between pairs of nodes.

Obtaining an equivalent BAUML model The main challenge is to translate the BPMN
diagram into a state machine diagram and a set of activity diagrams. This is not a trivial
task since the former shows the interaction among the evolution of different classes in the
class diagram, whereas in the BAUML modelling approach this interaction is implicitly
represented using state machine diagrams. Other approaches also tackled this type of
problem as in [14] where the authors propose the synthesising of object life cycles (state
machines) from business process models.

Due to this complexity we deal here with a fragment of the BPMN diagram. In par-
ticular, we will translate only one of the pools, the Customer one. We focus on this pool
because its tasks have a direct effect on the evolution of class LoanRequest, as shown on
the contracts of activities or tasks RequestALoan and ReceiveNotification.

For this purpose, we will distinguish two types of tasks in the BPMN diagram:

– Tasks that send information or perform certain work by themselves. They can be
identified by the dark envelope or by the lack of a symbol. We will refer to them as
action tasks.

– Tasks that receive information and, as such, they are waiting for something to happen
outside the scope of the pool. They can be identified by a white envelope symbol. We
will call them receive message tasks. If these tasks do not have an incoming message
flow, we will refer to them as passive tasks.

The first type of task will correspond to events in the state machine diagram, whereas
the second type to states, but will require the incoming message flows to be considered
in the translation process. Moreover, XOR-split nodes will also correspond to states. We
will globally refer to XOR-split nodes, initial nodes and passive tasks as passive nodes.

Obtaining the State Machine Diagram. Algorithm 1 begins the translation process by
obtaining a list of all the nodes in the BPMN diagram and translating them into the corre-
sponding element in the state machine diagram. Note that the algorithm merely translates
the nodes and not the connections between them.

Action tasks will correspond to events E. Passive tasks, XOR-split nodes and the final
node correspond to states V . Initial nodes correspond to the initial pseudo-state vo of the
state machine diagram. XOR-merge nodes do not correspond to a specific node in the
resulting state machine diagram. Finally, each incoming message flow will correspond to
an event.

Reasoning on the Usage Control Security policies over Data Artifact BPM 557

Algorithm 1 translateNodesAndMessages()
nodeMap = ∅
▷ We first create a map containing the task nodes in the BPMN diagram and their translation to an event or a state.
▷ nodeList contains all the nodes in the BPMN diagram
for all node ∈ nodeList do

if node is ActionTask then
nodeMap.add(<node, new Event(node)>)

else if node is PassiveTask then
nodeMap.add(<node, new State(node)>)

else if node is XOR-split then
nodeMap.add(<node, new State(node)>)

else if node is InitialNode then
nodeMap.add(<node, new InitialPseudostate(node)>)

else if node is FinalNode then
nodeMap.add(<node, new State(node)>)

end if
end for
▷ We then create an event for each incoming message flow in the pool
▷ receiveMessageTaskList contains all the tasks with incoming message flows
▷ messageMap will contain a map between the receive message task and the incoming message flows, translated to
events
messageMap = ∅
for all rm ∈ receiveMessageTaskList do

incomingFlowList = rm.getIncomingMessageFlows()
eventList = ∅
for all if ∈ incomingF lowList do

sourceNode = if.getSource()
event = new Event (sourceNode)
eventList.add(event)

end for
messageMap.add(<rm, eventList>)

end for

Algorithm 2 initiates the processing of the nodes. It iterates over all the nodes and
obtains the next nodes for the current node. Then it provides the current node, the next
nodes and the node map (obtained by Algorithm 1) to Algorithm 3.

Algorithm 2 translateToSMD()
▷ nodeList contains all the nodes in the BPMN diagram
▷ nodeMap corresponds to the nodeMap obtained previously
for all node ∈ nodeList do

▷ We go through the elements of the list in order (i.e. before the processing of a node all its previous nodes must have
been processed)

nextNodeList = node.getNextNodes()
▷ getNextNodes() ignores XOR-merge nodes and returns the targets of the XOR-merge
if !nextNodeList.isEmpty() then

for all nextNode ∈ nextNodeList do
processNode(node, nextNode, nodeMap)

end for
end if

end for

Algorithm 3 is executed for every node (and its next node) in the pool of interest in
the initial BPMN diagram. As input, the algorithm receives the following: the current
node (node), the next node (nextNode), and the node map (nodeMap), which contains
the correspondence between the nodes in the BPMN diagram and the state machine dia-
gram, previously created by Algorithm 1. The algorithm assumes that all the nodes that

558 Montserrat Estañol et al.

can be executed previous to the current node have already been translated and connected
properly.

Current

Previous
Node

Current
Node

Next
Node

inter_PreviousCurrent inter_CurrentNext

XOR Split

Current

Current

Visual Paradigm for UML Community Edition [not for commercial use]

(a) BPMN fragment (b) Translation of fragment in (a)

Fig. 5. Translation of an action node surrounded by passive nodes

Then, it translates the connections between the current and the previous/next nodes
according to their types. If the current node is an action task, it will correspond to an
event in the state machine diagram. Hence, we will have to create a transition with the
event, which will require a source and a target state. These source and target states will
correspond to other BPMN nodes, if the surrounding nodes are passive nodes or a message
receive task (see Figure 5). In contrast, if the surrounding nodes are action tasks, they will
require an auxiliary state (see Figure 6).

Current

Previous
Node

Current
Node

Next
Node

Previous Next

(a) BPMN fragment (b) Translation of fragment in (a)

Fig. 6. Translation of an action node surrounded by other action nodes

If the current node is a receive message task, the semantics of BPMN state that it is
not possible to move to the next node until a message is received. Therefore, for each
incoming message flow in the node, the state machine diagram will require a transition
with the message represented as an event to move to the next state. Considering this, the
current node corresponds to a state acting as the source state of the transition. Then we
need to consider the next node. If the next node is another receive message task or a
passive node (e.g. XOR-split), then the target state will be the corresponding state in the
state machine diagram (see Figure 7). Otherwise, if the next node is an action task , an
intermediate state will need to be created to act as the target state (Figure 8).

If the current and next node are passive nodes, the only thing that needs to be done
is to create a transition between both (see Figure 9). This transition will be automatic as
there will be no events between both. Note that we do not consider the case of the next

Reasoning on the Usage Control Security policies over Data Artifact BPM 559

M
ai

n
P

o
o

l

Current

Current
Node

Next
Node

Send

(a) BPMN fragment (b) Translation of fragment in (a)

Fig. 7. Translation of a receive message task followed by a passive node

M
ai

n
Po

ol Current

Current
Node

Next
Node

Send

Next

(a) BPMN fragment (b) Translation of fragment in (a)

Fig. 8. Translation of a receive message task followed by an action

node being an action or a receive message task, as in this case the necessary changes will
be made by the algorithm in the next iteration.

Next

Current
Node

Next
Node

(a) BPMN fragment (b) Translation of fragment in (a)

Fig. 9. Translation of a passive node followed by another passive node

560 Montserrat Estañol et al.

Algorithm 3 processNode(node, nextNode, nodeMap)
if node is ActionTask then

Event e = nodeMap.get(node)
prevNodeList = node.getPrevious()
for all prevNode ∈ prevNodeList do

if prevNode is PassiveNode then
State source = nodeMap.get(prevNode)
if nextNode is PassiveNode ∨ nextNode is ReceiveMessageNode then

State target = nodeMap.get(nextNode)
Transition t = new Transition (source, target, e)

else if nextNode is ActionTask then
State target = new State (“inter ” + node.getName() + nextNode.getName())
Transition t = new Transition(source, target, e)

end if
else if prevNode is ActionTask then

if nextNode is PassiveNode ∨ nextNode is ReceiveMessageNode then
▷ We obtain the target state of the previous ActionTask, which will be the source state for our new transition
State source
State target = nodeMap.get(nextNode)
Transition t = new Transition (source, target, e)

else if nextNode is ActionTask then
▷ We obtain the target state of the previous ActionTask, which will be the source state for our new transition
State source
State target = new State (“inter ” + node.getName() + nextNode.getName())
Transition t = new Transition (source,target, e)

end if
else if prevNode is ReceiveMessageNode then

State source = get intermediate state generated by Rec. Message Event
if nextNode is PassiveNode ∨ nextNode is ReceiveMessageTask then

State target = nodeMap.get(nextNode)
Transition t = new Transition (source, target, e)

else if nextNode is ActionTask then
State target = new State (“inter ” + node.getName() + nextNode.getName())
Transition t = new Transition (source, target, e)

end if
end if

end for
else if node is ReceiveMessageTask then

List<Event> eventList = messageMap.getIncomingMessageFlow(node)
State source = nodeMap.get(node)
if nextNode is ActionTask then

State target = new State (“inter ” + node.getName() + nextNode.getName())
for all e ∈ eventList do

Transition t = new Transition (source, target, e)
end for

else if nextNode is PassiveNode ∨ nextNode is ReceiveMessageTask then
State target = nodeMap.get(nextNode)
for all e ∈ eventList do

Transition t = new Transition (source, target, e)
end for

end if
else if node is PassiveNode ∧ nextNode is PassiveNode then

State source = nodeMap.get(node)
State target = nodeMap.get(nextNode)
Transition t = new Transition (source, target)
▷ If nextNode is ActionTask, we do nothing because it will be processed in the next iteration.

end if

Reasoning on the Usage Control Security policies over Data Artifact BPM 561

Figure 10 shows the resulting translation for the customer pool in the BPMN diagram.
Note that the action task RequestALoan corresponds to an event. The receive message task
ReceiveNotification corresponds to a state. The incoming message flow of ReceiveNoti-
fication connected action tasks SendApprovedNotification and SendNegativeNotification
from another pool to ReceiveNotification. Therefore, these action tasks, SendApproved-
Notification and SendNegativeNotification, has been translated to an event in the state
machine diagram. Finally, state FinalState corresponds to the final state in the BPMN
diagram. We have given it this name for easier readability.

The BAUML framework requires the state machine diagram to be linked to a class,
called the artifact. In this case, it will be linked to class LoanRequest, since the changes
made by the activities or tasks have an impact on it.

FinalStateReceiveNotification

SendNegativeNotification

SendApprovedNotification
RequestALoan

Powered By Visual Paradigm Community Edition

Fig. 10. State machine diagram

RequestALoan

RequestALoan

Powered By Visual Paradigm Community Edition

LoanRequest

ReceiveNotification FinalState

{d,c}

Powered By Visual Paradigm Community Edition

Fig. 11. Activity diagram and updated class diagram

Obtaining the Activity Diagrams The BAUML framework requires an activity diagram
for each event in the state machine diagram. They can be automatically generated for
each event obtained by the previous algorithms. Therefore, for each event we will have
the corresponding activity diagram: it will have an initial node, a final node, and one task
with the corresponding OCL operation contract. Figure 11 shows the activity diagram for
event RequestALoan.

Once the state machine and activity diagrams from the BPMN diagram have been
obtained, we already have all the components necessary to reason using the techniques in
[15]. What needs to be done is to make some minor changes to the class diagram and the
operation contracts before incorporating the security policies into the model.

Updating the Class Diagram and the Operation Contracts The last step in the process is
to update the class diagram and the OCL operation contracts. In the BAUML framework,
the state machine diagram shows the evolution of an artifact (i.e. a class in the class
diagram), and each state corresponds to a subclass of the artifact. Therefore, once the

562 Montserrat Estañol et al.

state machine diagram and the activity diagrams have been obtained, the class diagram
needs to be updated by including as many classes as states there are in the state machine
diagram. In our particular example, class LoanRequest should be updated with subclasses
ReceiveNotification and FinalState, forming a disjoint, complete hierarchy (see Figure
11).

Then, it is also necessary to update the OCL operation contracts to ensure the proper
evolution of the class. Therefore, the postcondition of the contract of task RequestALoan
must be updated to ensure that the LoanRequest has the type ReceiveNotification:

LoanRequest.allInstances()->exists(l | l.oclIsNew() and l.id = pId and l.amount =
am and l.date = t and l.accepted = false and l.pending = true and
l.creditProvider = cp and l.customer = c and l.risky=r and
l.oclIsTypeOf(ReceiveNotification))

Similarly, SendApprovedNotification and SendNegativeNotification should be updated
to change the state of LoanRequest to FinalState and to ensure it is no longer of the
previous subtype (ReceiveNotification). Below we show the updated postcondition for
SendApprovedNotification:

l.accepted = acc and l.pending = false and l.oclIsTypeOf(Finalstate) and not
l.oclIsTypeOf(ReceiveNotification)

These updates can be performed automatically, as the changes can be inferred from
the state machine diagram obtained previously. More specifically, considering that each
task is part of a transition in the state machine diagram, the postcondition should ensure
that the class has the subtype represented by a target state, and that it no longer is of the
subtype of the source state.

4. Reasoning on Security Policies

Once the security policies have been defined by using OCL and the starting models trans-
lated to BAUML, we need to merge both with the goal of checking them as a whole. First,
it is necessary to present how to add the policies to the models and later on to explain how
reasoning with them.

4.1. Adding the Security Policies to BAUML

Intuitively, if the conditions established by a security policy are not met, the task to which
they are linked should never take place. Considering that our modelling approach uses
pre and postconditions for each task, this means that security policies should be added to
the preconditions, to ensure that the task does not execute if they are not met, with the
following considerations:

1. The tasks that these policies are attached to, should have as input the objects of the
policy.

2. If this is not the case, these objects should be created or specialised by the task.
This is easy to identify by looking for either obj.oclIsNew() (creation) or
obj.oclIsTypeOf(ObjType) (specialization) in the postcondition.

Reasoning on the Usage Control Security policies over Data Artifact BPM 563

3. If the OCL expression corresponding to the security policy contains @post, it needs
to be modified before it can be added to the precondition. @post refers to the value
of the attribute in postcondition time, which cannot be accessed in precondition time.
To deal with this, we need to look for the parameter that will assign a new value to
this attribute, and substitute it in the expression.

Note that if the task is a receive message task in the BPMN, the predicates will be
added to the tasks that result from the translation of the incoming message flows to events.

Returning to our example, there are two security predicates that should be checked
in the precondition of RequestALoan, as indicated by the BPMN diagram in Fig-
ure 3. We will first look at R1, whose OCL corresponds to the security policy
as defined earlier: c.loanRequest->forAll(l | l.pending=false and
l.accepted=true). In this case, this expression can be incorporated directly into the
precondition of the task. Since the object of the policy is Customer c and RequestALoan
has a customer as input parameter (also c in our example), we only need to make sure
that the policy refers to this customer, by rewriting its name if necessary.

In the case of R2, its object refers to LoanRequest. The operation con-
tract does not have a LoanRequest as input; however, it does create the Loan-
Request in its postcondition (LoanRequest.allInstances()->exists(l |
l.oclIsNew()...)). In this case, we have to replace all references to lr.amount
and lr.risky in the policy with the corresponding parameters which will be accessi-
ble at precondition time. Since l.amount = am and l.risky = r, as stated in the
postcondition, we have to replace lr.amount with am and lr.risky with r, result-
ing in (am<=50000 and r=false) or (am>50000 and r=true), as shown
below.
RequestALoan(pId: String, am: int, c: Customer, t: Date, cp: CreditProvider,

r:boolean)
pre: c.loanRequest->forAll(l | l.pending=false and l.accepted=true) and ((am<=50000

and r=false) or (am>50000 and r=true))
post: LoanRequest.allInstances()->exists(l | l.oclIsNew() and l.id = pId and

l.amount = am and l.date = t and l.accepted = false and l.pending = true and
l.creditProvider = cp and l.customer = c and l.risky = r)

4.2. Reasoning over Security Policies

Once the security policies have been added to the BAUML model it is possible to run ver-
ification and validation tests as described in [15]. Given a BAUML model, this approach
automatically translates it into the required logic for satisfiability checking, and then de-
termines whether the model fulfils certain semantic correctness properties. The underlying
satisfiability checker can deal with negated predicates and, in the case of unsatisfiability,
provides the list of constraints that prevent it.

Internally, this is done by SVTe [16], a tool that uses the CQCE method [47], and
which has also been used successfully in [44, 46]. It is aimed at building a consistent state
of a database schema that satisfies a certain goal. Starting from an empty solution (i.e. an
empty database), and given a goal, the database schema, a set of constraints and deriva-
tion rules, it tries to obtain a set of base facts that satisfy the goal without violating the
constraints. Note that for BAUML models, the derivation rules include the translation of
the tasks, activity diagrams and state machine diagram. The CQCE method is a semide-
cision procedure for finite satisfiability. That is, if the solution contains infinite elements,

564 Montserrat Estañol et al.

it does not terminate. However, termination is ensured if the model fulfils a set of prop-
erties, explained in [11]. They can be summarized as follows: 1) the cardinalities of the
associations, 2) the number of classes should be bounded, 3) the OCL expressions should
be unidirectional and navigational, i.e. when dealing with class instances that are modi-
fied by the model, they only refer to elements connected to the starting element. During
the inference process, CQCE uses Variable Instantiation Patterns (VIPs), which generate
only the facts that are needed to achieve the goal. If there is no instance found, then VIPs
guarantee that the goal cannot be achieved. Considering this, SVTe provides two different
types of result, depending on the outcome of the reasoning process. On the one hand, if it
finds a solution that fulfils the goal, it provides a sample instantiation. On the other hand,
if there is no solution, it shows the constraints that prevent the goal’s achievement.

As we mentioned earlier, it is possible to carry out both validation and verification
tests. Verification tests looks for inherent errors in the model, answering the question “Is
the model right?”, and validation tests ensure that the model represents the domain appro-
priately (i.e. it fulfils the requirements), answering the question “Is it the right model?”.

Given the BAUML model, verification tests can be generated and performed automat-
ically, as shown by the prototype tool in [15]. Some examples of these are: ensuring the
liveliness or a class or an association (i.e. ensuring that instances can be created), looking
for redundancies in the integrity constraints or ensuring that tasks in the process model
can execute. On the other hand, validation tests require manual definition, although they
can be run automatically. For instance: can loan requests for 60,000 be made without ac-
cepting the risky clause? or can a customer make a new loan request when some of his
other loan requests have been denied?.

loanReq()← LoanRequest(oid, id, am, ac, pend, d, t, r) ∧ am = 60, 000 ∧ r = false

newLoanReqWhenDenied()← LoanRequest(oid, id, am, ac, pend, d, t1)

∧ LoanRequest(oid2, id2, am2, ac2, pend2, d2, t2) ∧ pend2 = false

∧ ac2 = false ∧ oid ̸= oid2 ∧ t1 = t2

These tests have the form of logic derivation rules. Each test has a head: if it is pos-
sible to generate the head of the rule, then the test is satisfiable. The body contains the
representation of the elements in the model and the conditions which they should satisfy
for the test.

Returning to the validation tests above, LoanRequest corresponds to an instance of
class LoanRequest, and am = 60, 000 ∧ r = false state the value that these variables
am, r should have. The second example states that, in order for the test to execute success-
fully, there must be two different LoanRequests which coexist simultaneously (t1 = t2),
one of which has been denied.

If we run these tests, the first one will result in unsatisfiability, whereas the second
test will execute successfully. In the first case, this is due to security policy R2. In the
second case, although there is policy R1 to prevent the creation of new LoanRequests
when previous ones have been denied, the policy does not consider the case in which
several pending loan requests from the customer may coexist simultaneously. Eventually,
one of these loan requests may be denied, but there will be other pending loan requests
which will require evaluation and which may be accepted.

Reasoning on the Usage Control Security policies over Data Artifact BPM 565

5. Related Work

Compliance of business processes with security policies at the design and runtime
stages has been considered in several stages of business process management [26]. The
extension of BPMN with annotations related to security requirements is not new [45]. A
vast number of works provide several ways to represent and verify security requirements
at the design stage, such as [48, 57, 49]. Salnitri et al. [49] establishes mechanisms to rep-
resent security policies in BPMN by means of the extension SecBPMN. The authors also
provide a language to verify if the business process model complies with the security poli-
cies established. [53] proposes a risk analysis of the business process models combining
the partial risks of the activities that conform them. However, our approach focuses on the
verification of the security policy in artifact-centric business process models to support
the contexts where there various involved data and with different cardinalities between
them involved in the policy rules. [3] detected the difficulty to combine data and busi-
ness processes, but different data objects with various relations between them were not
included.

Access control models and process-centric approaches. There exist several and di-
verse access control models, a good taxonomy is provided in [29]. The most prominent
traditional access control models encompassed Mandatory Access Control (MAC), Dis-
cretionary Access Control (DAC), Role-based Access Control (RBAC), and; Attribute-
based Access Control (ABAC). These access control models are based on the restriction
on performing certain right. Depending on the properties used to evaluate the conditions
to apply or not the restriction define the access control model. For instance, MAC and
DAC are based on the ownership property but RBAC is based on the role property. There
exist also some access control models that are emerged as extension for workflow systems
such as TBAC [58][57], T-RBAC [35], and W-RBAC [55]. These access control models
just consist of adapting RBAC to the process-centric systems. However, all these access
control models focus on the request and grant the access only at request time skipping
other usage control aspects such as the number of times of using resources/objects or the
time of using. In conclusion, these access control models fail to integrate sophisticated
decision-making as UCON does.

Currently, monitoring and process mining techniques are new trends in order to
detect whether certain security requirements are fulfilled by analyzing event logs [1, 6].
The work in [51] enables the generation of security configuration workflows, whereas [54]
provides a framework to design product lines to verify security policies in accordance to
a set of available configurations. Nevertheless, these works only consider the activity-
centric perspective and overlook the artifact-centric perspective in most cases. In terms of
complying with security policies on activity-centric process models, different formalisms
are proposed to define security compliance rules, such a logic approach based on LTL or
declarative approach based on Answer Set [23]. The best approach for large-scale security
policies verification depends on time-consuming and easy to understand/update. Not only
security policies are important, the context-awareness of the business process should also
be considered (e.g. one of the process’s instances is executed in a platform and another
instance is executed in a different platform). For this reason, a recent work proposes a
language for the specification and design of context-aware and secure workflow systems
[59]. The approaches to enforce security policies at runtime mainly focus on integrating
security control mechanisms into business process management systems [9].

566 Montserrat Estañol et al.

Compliance and security policy verification in artifact-centric business processes
has been addressed in a previous work [28]. The authors extend the artifact-centric frame-
work by including the modelling of compliance rules, and obtain a model that complies
by design. Also, the paper [31] checks for conformance between process models and data
objects at design time. Weak conformance is used to verify that the correct execution of a
process model corresponds to a correct evolution of states of the data objects. Reachabil-
ity and weak-termination are verified in artifact-centric models combining structural and
data information [8].

Some previous works indicate the difficulty of security compliance using artifact-
centric models since there exists no well-defined operational semantics for directly exe-
cuting the defined models. But the work of [48] has been proposed to support process-
aware secure systems modelling and automated generation of secure artifact-centric im-
plementations.

In [50], an extension of artifact-centric process models based on the Usage Control
Model introduces mechanisms to specify security policies and verify their correctness.
However, it focuses on reachability and weak-termination of the model as a whole.

Verification and validation in artifact-centric business process models is also a re-
lated area of research. There are several works which focus on reasoning on Data-Centric
Dynamic Systems (DCDSs) [21, 22], grounded on logic. However, DCDSs use condition-
action rules and actions defined in logic. In contrast to our approach, these models are not
as intuitive, and using condition-action rules changes the representation paradigm, in the
sense that they do not force the execution of actions in a certain order. [30] encodes ac-
tions in the same way as DCDSs, but it uses a relational database for the data and Petri
nets to establish the execution order. In terms of reasoning, the approach mainly targets
reachability and model checking of properties defined in first-order logic. Decidability is
achieved by state-boundedness.

Other approaches, such as [7, 4, 13], define the models and the properties to be
checked in languages derived from logic. As a result, the models under consideration
are formal, but they are not intuitive nor practical from the point of view of the business.
Similarly, the properties to be checked have to be defined manually.

A more business-friendly representation for artifact-centric business processes can be
found on the Guard-Stage-Milestone (GSM) approach. GSM models show the stages in
the evolution of an artifact and the guard conditions which have to be true to enter a
certain state. However, they also have the concept of milestone: a condition that, once
it is achieved, it closes a state [24, 19, 20]. [24] simulates the behaviour of the system
given certain data. [19] is able to reason on the models but data types are limited and it
only allows one instance per artifact. Finally, [20] performs model checking from a multi-
agent perspective, but the number of objects is bounded which may lead to unreliable
results when the bound is exceeded.

The approach in [56] uses BPMN diagrams whose tasks may be annotated with pre-
conditions and effects defined in logic, and use an optional ontology to define the underly-
ing data. They have a prototype tool that can perform some tests. Since both the ontology
and the details of the effects are not compulsory, the final results can only be partial.

Note also that none of these works take security policies into consideration as we do
here.

Reasoning on the Usage Control Security policies over Data Artifact BPM 567

6. Conclusions and Further Work

We have proposed in this paper a combined business process model that supports the
definition, verification and reasoning of security policies involving different kinds of data
objects. The enriched model consists of a BPMN model, a UML class diagram, OCL
operation contracts for the BPMN activities, and UCONABC security policies defined
in OCL. All these components are then automatically translated into a BAUML model
which supports a set of verification and reasoning techniques. Thanks to our proposal,
organisations are able to describe their security policies into artifact-centric approaches
for business process modelling, providing a mechanism for verifying and validate the
model’s correctness. The model provides an easier manner to include the security rules
into business processes and allows us to ensure that they are compatible with the business
requirements and goals.

Although our proposal meets the objectives stated in the introduction, also presents
some limitations: 1) regarding UCON support, our approach demonstrates the use of only
certain types of predicates and update predicates; 2) regarding the reasoning, it is only
limited to the satisfactibility or not of a policy from a pool-by-pool perspective, we can
go an step forward by considering several pools, and 3) regarding the tools, our approach
depends on the use of different tools separately, and it would be interesting to integrate
them. Assuming these limitations, as future work we plan to extend the proposal by in-
cluding new use cases to fully test the whole set of security policies supported by UCON,
and to improve the reasoning by considering various pools simultaneously.

Acknowledgments. This work has been supported by Project PID2020-112540RB-C44
funded by MCIN/AEI/ 10.13039/501100011033, Project TIN2017-87610-R funded by
MCIN/AEI/10.13039/501100011033 and FEDER “Una manera de hacer Europa”, Project
2017-SGR-1749 by the Generalitat de Catalunya, Projects COPERNICA (P20 01224) and
METAMORFOSIS by the Junta de Andalucı́a.

References
1. Accorsi, R., Wonnemann, C., Stocker, T.: Towards Forensic Data Flow Analysis of Business

Process Logs. In: 2011 Sixth International Conference on IT Security Incident Management
and IT Forensics. IEEE (may 2011)

2. Ahmed, N., Matulevicius, R.: Securing business processes using security risk-
oriented patterns. Computer Standards & Interfaces 36(4), 723–733 (2014),
https://doi.org/10.1016/j.csi.2013.12.007

3. Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.M.P.: Linking data and pro-
cess perspectives for conformance analysis. Computers & Security 73, 172–193 (2018)

4. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems via data
abstraction. In: Kappel, G., Maamar, Z., Nezhad, H.R.M. (eds.) ICSOC 2011. LNCS, vol. 7084,
pp. 142–156. Springer (2011)

5. Bentounsi, M., Benbernou, S., Atallah, M.J.: Security-aware business process as a ser-
vice by hiding provenance. Computer Standards & Interfaces 44, 220–233 (2016),
https://doi.org/10.1016/j.csi.2015.08.011

6. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process mining. In:
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) En-
terprise, Business-Process and Information Systems Modeling. pp. 149–161. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009)

568 Montserrat Estañol et al.

7. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer (2007)

8. Borrego, D., Gasca, R.M., Gómez-López, M.T.: Automating correctness verification of artifact-
centric business process models. Information & Software Technology 62, 187–197 (2015)

9. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: modeling and enforc-
ing access control requirements in business processes. In: Atluri, V., Vaidya, J., Kern, A.,
Kantarcioglu, M. (eds.) 17th ACM Symposium on Access Control Models and Technolo-
gies, SACMAT ’12, Newark, NJ, USA - June 20 - 22, 2012. pp. 123–126. ACM (2012),
https://doi.org/10.1145/2295136.2295160

10. Cabot, J., Gogolla, M.: Object constraint language (ocl): A definitive guide. In: Bernardo, M.,
Cortellessa, V., Pierantonio, A. (eds.) Formal Methods for Model-Driven Engineering: 12th
International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures. pp. 58–
90. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

11. Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable UML artifact-centric business
process models. In: Li, J., Wang, X.S., Garofalakis, M.N., Soboroff, I., Suel, T., Wang, M.
(eds.) CIKM 2014. pp. 1289–1298. ACM (2014)

12. De Giacomo, G., Oriol, X., Estañol, M., Teniente, E.: Linking data and BPMN processes to
achieve executable models. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp.
612–628. Springer (2017)

13. Deutsch, A., Hull, R., Li, Y., Vianu, V.: Automatic verification of database-centric systems.
ACM SIGLOG News 5(2), 37–56 (2018)

14. Eshuis, R., Van Gorp, P.: Synthesizing object life cycles from business process models. Soft-
ware & Systems Modeling 15(1), 281–302 (Feb 2016)

15. Estañol, M., Sancho, M., Teniente, E.: Ensuring the semantic correctness of a BAUML artifact-
centric BPM. Information & Software Technology 93, 147–162 (2018)

16. Farré, C., Rull, G., Teniente, E., Urpı́, T.: Svte: a tool to validate database schemas giving
explanations. In: Giakoumakis, L., Kossmann, D. (eds.) DBTest 2008. p. 9. ACM (2008)

17. Gómez-López, M.T., Pérez-Álvarez, J.M., Gasca, R.M.: Compliance validation and diagnosis
of business data constraints in business processes at runtime. Information Systems 48, 26 – 43
(2015), http://www.sciencedirect.com/science/article/pii/S0306437914001306

18. Gómez-López, M.T., Pérez-Álvarez, J.M., Varela-Vaca, Á.J., Gasca, R.M.: Guiding the cre-
ation of choreographed processes with multiple instances based on data models. In: BPM 2016
International Workshops, Revised Papers. pp. 239–251 (2016)

19. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Verifying gsm-based business artifacts. In: Goble,
C.A., Chen, P.P., Zhang, J. (eds.) 2012 IEEE 19th International Conference on Web Services,
Honolulu, HI, USA, June 24-29, 2012. pp. 25–32. IEEE Computer Society (2012)

20. Gonzalez, P., Griesmayer, A., Lomuscio, A.: Model checking gsm-based multi-agent systems.
In: Lomuscio, A., Nepal, S., Patrizi, F., Benatallah, B., Brandic, I. (eds.) ICSOC 2013 Work-
shops. LNCS, vol. 8377, pp. 54–68. Springer (2013)

21. Hariri, B.B., Calvanese, D., Giacomo, G.D., Deutsch, A., Montali, M.: Verification of relational
data-centric dynamic systems with external services. In: Hull, R., Fan, W. (eds.) PODS 2013.
pp. 163–174. ACM (2013)

22. Hariri, B.B., Calvanese, D., Giacomo, G.D., Masellis, R.D., Felli, P., Montali, M.: Verifica-
tion of description logic knowledge and action bases. In: Raedt, L.D., Bessiere, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012. Frontiers in Artificial
Intelligence and Applications, vol. 242, pp. 103–108. IOS Press (2012)

23. Hewett, R., Kijsanayothin, P., Bak, S., Galbrei, M.: Cybersecurity policy verification with
declarative programming. Applied Intelligence 45, 83 – 95 (2016)

Reasoning on the Usage Control Security policies over Data Artifact BPM 569

24. III, F.F.T.H., Boaz, D., Gupta, M., Vaculı́n, R., Sun, Y., Hull, R., Limonad, L.: Barcelona: A
design and runtime environment for declarative artifact-centric BPM. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 705–709. Springer (2013)

25. Kocbek, M., Jost, G., Hericko, M., Polancic, G.: Business process model and no-
tation: The current state of affairs. Comput. Sci. Inf. Syst. 12(2), 509–539 (2015),
https://doi.org/10.2298/CSIS140610006K

26. Leitner, M., Rinderle-Ma, S.: A systematic review on security in Process-Aware Information
Systems – Constitution challenges, and future directions. Information and Software Technology
56(3), 273–293 (mar 2014)

27. Li, M., Wang, H.: Specifying usage control model with object constraint language. In: 2010
Fourth International Conference on Network and System Security. pp. 391–397 (Sept 2010)

28. Lohman, N.: Compliance by design for artifact-centric business processes. In: BPM 2011
LNCS vol 6896 Springer. p. 99–115 (2011)

29. Majumder, A., Namasudra, S., Nath, S.: Taxonomy and classification of access control models
for cloud environments, chap. 2, pp. 23–53. Springer London, London (2014)

30. Masellis, R.D., Francescomarino, C.D., Ghidini, C., Montali, M., Tessaris, S.: Add data into
business process verification: Bridging the gap between theory and practice. In: Singh, S.P.,
Markovitch, S. (eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California, USA. pp. 1091–1099. AAAI Press
(2017), http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14627

31. Meyer, A., Pufahl, L., Batoulis, K., Fahland, D., Weske, M.: Automating data exchange in
process choreographies. Inf. Syst. 53, 296–329 (2015)

32. Mpardis, G., Kotsilieris, T.: Bank loan processes modelling using bpmn. In: 2010 Develop-
ments in E-systems Engineering. pp. 239–242 (Sept 2010)

33. Müller, G., Accorsi, R.: Why are business processes not secure? In: Fischlin, M., Katzenbeisser,
S. (eds.) Number Theory and Cryptography - Papers in Honor of Johannes Buchmann on the
Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 8260, pp. 240–254.
Springer (2013), https://doi.org/10.1007/978-3-642-42001-6 17

34. Neubauer, T., Klemen, M.D., Biffl, S.: Secure business process management: A roadmap. In:
Proceedings of the The First International Conference on Availability, Reliability and Security,
ARES 2006, The International Dependability Conference - Bridging Theory and Practice, April
20-22 2006, Vienna University of Technology, Austria. pp. 457–464. IEEE Computer Society
(2006), https://doi.org/10.1109/ARES.2006.121

35. Oh, S., Park, S.: Task-role based access control (T-RBAC): an improved access control model
for enterprise environment. In: Ibrahim, M.T., Küng, J., Revell, N. (eds.) Database and Expert
Systems Applications, 11th International Conference, DEXA 2000, London, UK, September
4-8, 2000, Proceedings. Lecture Notes in Computer Science, vol. 1873, pp. 264–273. Springer
(2000), https://doi.org/10.1007/3-540-44469-6 25

36. OMG: Object Management Group, Business Process Model and Notation (BPMN) Version
2.0. OMG Standard (2011)

37. OMG: Object Management Group, Unified Modeling Language (UML) Version 2.5.1. OMG
Standard (2017)

38. Oriol, X., De Giacomo, G., Estañol, M., Teniente, E.: Embedding reactive behaviour into
artifact-centric business process models. Future Generation of Computer Systems p. Accepted
for publication (2021)

39. Park, J., Sandhu, R.: The UCON ABC usage control model. ACM Transactions on Information
and System Security 7(1), 128–174 (feb 2004)

40. Pérez-Álvarez, J.M., Gómez-López, M.T., Eshuis, R., Montali, M., Gasca, R.M.: Verifying the
manipulation of data objects according to business process and data models. Knowledge and
Information Systems (Jan 2020), https://doi.org/10.1007/s10115-019-01431-5

570 Montserrat Estañol et al.

41. Poels, Geert and Garcı́a, Félix and Ruiz, Francisco and Piattini, Mario: Architecting business
process maps. COMPUTER SCIENCE AND INFORMATION SYSTEMS 17(1), 117–139
(2020), http://dx.doi.org/10.2298/csis181118018p

42. Pozo, S., Varela-Vaca, Á.J., Gasca, R.M.: Mda-based framework for automatic generation of
consistent firewall acls with NAT. In: Computational Science and Its Applications - ICCSA
2009, International Conference, Seoul, Korea, June 29-July 2, 2009, Proceedings, Part II. pp.
130–144 (2009)

43. Pérez-Álvarez, J.M., Parody, L.P., Gómez-López, M.T., Gasca, R.M., Ceravolo, P.: Decision-
making support for input data in business processes according to former instances. Comput.
Sci. Inf. Syst. 18(3), 597–618 (2021), https://doi.org/10.2298/CSIS200522051P

44. Queralt, A., Teniente, E.: Verification and validation of UML conceptual schemas with OCL
constraints. ACM Trans. Softw. Eng. Methodol. 21(2), 13:1–13:41 (2012)

45. Rodrı́guez, A., Fernández-Medina, E., Trujillo, J., Piattini, M.: Secure business process model
specification through a UML 2.0 activity diagram profile. Decision Support Systems 51(3),
446–465 (2011), http://dx.doi.org/10.1016/j.dss.2011.01.018

46. Rull, G., Farré, C., Queralt, A., Teniente, E., Urpı́, T.: Aurus: explaining the validation of UM-
L/OCL conceptual schemas. Softw. Syst. Model. 14(2), 953–980 (2015)

47. Rull, G., Farré, C., Teniente, E., Urpı́, T.: Providing explanations for database schema valida-
tion. In: Bhowmick, S.S., Küng, J., Wagner, R.R. (eds.) DEXA 2008. LNCS, vol. 5181, pp.
660–667. Springer (2008)

48. Salnitri, M., Brucker, A.D., Giorgini, P.: From Secure Business Process Models to Secure
Artifact-Centric Specifications. In: Enterprise Business-Process and Information Systems Mod-
eling, pp. 246–262. Springer Science + Business Media (2015)

49. Salnitri, M., Dalpiaz, F., Giorgini, P.: Designing secure business processes with secbpmn. Soft-
ware and System Modeling 16(3), 737–757 (2017)

50. Varela-Vaca, Á.J., Borrego, D., Gómez-López, M.T., Gasca, R.M.: A usage control model ex-
tension for the verification of security policies in artifact-centric business process models. In:
BIS 2016. pp. 289–301 (2016)

51. Varela-Vaca, A.J., Galindo, J.A., Ramos-Gutiérrez, B., Gómez-López, M.T., Benavides,
D.: Process Mining to Unleash Variability Management:Discovering Configuration Work-
flows Using Logs. In: Proceeedings of the 23nd International Systems and Software Prod-
uct Line Conference, SPLC 2019, Paris, France, September 9-13, 2019. pp. – (2019),
https://doi.org/10.1145/3336294.3336303

52. Varela-Vaca, Á.J., Gómez-López, M.T.: Access control security policies DSL for BPMN.
http://www.idea.us.es/securitydsl/ (2020)

53. Varela-Vaca, A.J., Parody, L., Gasca, R.M., López, M.T.G.: Automatic verification and diag-
nosis of security risk assessments in business process models. IEEE Access 7, 26448–26465
(2019), https://doi.org/10.1109/ACCESS.2019.2901408

54. Varela-Vaca, A.J., Gasca, R.M., Ceballos, R., Gómez-López, M.T., Bernáldez Torres,
P.: CyberSPL: A framework for the verification of cybersecurity policy compliance
of system configurations using software product lines. Applied Sciences 9(24) (2019),
https://www.mdpi.com/2076-3417/9/24/5364

55. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC — a workflow security model incorporating
controlled overriding of constraints. International Journal of Cooperative Information Systems
12(04), 455–485 (Dec 2003), https://doi.org/10.1142/s0218843003000814

56. Weber, I., Hoffmann, J., Mendling, J.: Beyond soundness: on the verification of semantic busi-
ness process models. Distributed Parallel Databases 27(3), 271–343 (2010)

57. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven business process
security requirement specification. Journal of Systems Architecture 55(4), 211–223 (apr 2009)

58. Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) Business Process Management, 5th International Confer-
ence, BPM 2007, Brisbane, Australia, September 24-28, 2007, Proceedings. Lecture Notes in

Reasoning on the Usage Control Security policies over Data Artifact BPM 571

Computer Science, vol. 4714, pp. 64–79. Springer (2007), https://doi.org/10.1007/978-3-540-
75183-0 5

59. Zedan, H., Al-Sultan, S.: The Specification and Design of Secure Context-Aware Workflows .
Expert Systems With Applications 86, 367–384 (2017)

60. Zoet, M., Versendaal, J., Ravesteyn, P.: A business rules viewpoint on risk and com-
pliance management. In: 24th Bled eConference: eFuture Creating Solutions for the In-
dividual, Organisations and Society, Bled, Slovenia, June 12-15, 2011. p. 25 (2011),
http://aisel.aisnet.org/bled2011/25

Montserrat Estañol obtained her Ph.D. in 2016, at Universitat Politècnica de Catalunya
(UPC), where she currently teaches an undergraduate course on Software Engineering.
She has worked as a postdoc researcher at InLab FIB, UPC, and at Barcelona Supercom-
puting Center (BSC). Her research interests include conceptual modeling and ontologies,
artifact-centric business process modeling and automated reasoning on both conceptual
schemas and artifact-centric business process models.

Ángel Jesús Varela-Vaca received an MSc in Software Engineering and Technology
(2009) and obtained his PhD with honours at the University of Seville (2013). He is
currently working as Associate Professor at the Universidad Sevilla and belongs to the
IDEA Research Group. He has led various private and public research projects and he has
published several papers in high-impact factor journals, including Computers in Industry,
ACM Computing Surveys, Empirical Software Engineering, Decision Support Systems,
Information and Software Technology, Journal System and Software, Information Sys-
tems, among others. He was nominated as a member of Program Committees in different
conferences, ISD 2016, BPM Workshops 2017, SIMPDA 2018, SIMPDA 2019, SPLC
2019, and SPLC 2020. He has served as a reviewer for many reputed journals.

Marı́a Teresa Gómez-López is PhD in Computer Science, Lecturer at the University of
Seville and the head of the IDEA Research Group. Her research areas include Business
Processes and Data management in Big Data environment. She has led several private
and public research projects and has published more than twenty impact papers (DSS,
IS, DKE, IST ·). She was nominated as a member of several Program Committees (BPM,
ER, EDOC, CAiSE Doctoral Consortium, ·), and she has been reviewing for international
journals. She has been invited speaker at various conferences and summers schools.

Rafael M. Gasca holds a PhD in computer science from the Universidad de Sevilla,
in Spain. He is full professor since 2018. He has led the Quivir Research Group since
2000, since 2015, he has been a member of the IDEA Research Group at the Universidad
de Sevilla. He has been the leader of different public and private research projects and
has directed twelve PhD theses. He has published tens dozens of papers in high-impact
factor, including IEEE Computing, IEEE Communications Magazine, Information and
Software Technology, Journal System and Software, Information Systems, Information
and Software Technology, and Data and Knowledge Engineering. He has been a reviewer
in relevant security conferences and journals and an organiser of artificial intelligence
conferences and an international summer school on fault diagnosis of complex systems.

572 Montserrat Estañol et al.

Ernest Teniente is Professor of Software Engineering in the Department of Service and
Information System Engineering at the Universitat Politècnica de Catalunya (UPC). He
is also Director of inLab FIB, the innovation laboratory of the Computer Science Fac-
ulty of Barcelona, and head of the Information Modeling and Processing (IMP) research
group at the UPC. His research interests include ontologies and conceptual modeling,
business process management, automated reasoning, automatic code generation, integrity
constraints enforcement, and data integration.

Received: February 17, 2021; Accepted: October 20, 2021.

