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Abstract. The Hughes phenomenon of Hyperspectral images (HSIs) with the hun-
dreds of continuous narrow bands makes the computational cost of HSIs process-
ing high. Band selection is an effective way to solve such a problem and a lot of
band selection methods have been proposed in recent years. In this paper, a novel
hyper-graph regularized subspace clustering with skip connections (HRSC-SC) is
proposed for band selection of hyperspectral image, which is a clustering-based
band selection method. The networks combine subspace clustering into the convo-
lutional auto-encoder by thinking of it as a self-expressive layer. To make full use
of the historical feature maps obtained from the networks and tackle the problem of
gradient vanishing caused by multiple nonlinear transformations, the symmetrical
skip connections are added to the networks to pass image details from encoder to
decoder. Furthermore, the hyper-graph regularization is presented to consider the
manifold structure reflecting geometric information within data, which accurately
describes the multivariate relationship between data points and makes the results of
clustering more accurate so that select the most representative band subset. The pro-
posed HRSC-SC band selection method is compared with the existing robust band
selection algorithms on Indian Pines, Salinas-A, and Pavia University HSIs, show-
ing that the results of the proposed method outperform the current state-of-the-art
band selection methods. Especially, the overall accuracy of the clustering is the best
on three real HSIs compared to other methods when the band selection number is
25, reaching 82.62%, 92.48%, and 96,5% respectively.

Keywords: Band selection, hyper-graph regularization, skip connections, subspace
clustering, hyperspectral image

1. Introduction

Hyperspectral images (HSIs) with hundreds of narrow bands containing abundant spatial
and spectral information so that it can identify the region of interest. Due to the high re-
dundancy, the so-called Hughes phenomenon happens on HSIs frequently and increases
computation complexity. Band selection (BS) is an effective way to reduce the dimension-
ality of HSIs, aiming to select the significant bands with the most information from the
original data set as a band subset. The details of band selection are shown in Fig. 1. The
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BS methods do not destroy the physical properties of the HSIs, which is different from the
feature extraction methods that transform the physical characteristics of HSIs. Therefore,
the BS methods are easier to explain than the feature extraction methods. BS methods can
be classed as supervised and unsupervised fashions [1]. The supervised methods have to
apply the prior knowledge, and the unsupervised methods are the opposite. Considering
the difficulty to get the labeled samples of HSIs in reality, the unsupervised methods have
better application prospects and attracted more attention in recent years.
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Fig. 1. Details of band selection.

The unsupervised BS methods can be divided into three categories: the searching-
based methods, the ranking-based methods, and the clustering-based methods. The searching-
based methods, such as multi-objective optimization based band selection (MOBS) [2],
optimize the given metric using the heuristic searching, but such methods cost much time
on heuristic searching. The ranking-based methods select band according to the impor-
tance of the bands, which allocate a rank for each band, such as maximum-variance prin-
cipal component analysis (MVPCA) [3], sparsity-based band selection (SpaBS) [4], and
Laplacian score (Lap-score)[5]. The clustering-based methods cluster the bands into sev-
eral categories according to the assumption that all bands can be separated based on the
similarity of the bands, and we can select the band subset from the categories, i.e., sparse
non-negative matrix factorization clustering (SNMF) [6], improved sparse subspace clus-
tering (ISSC) [7], deep subspace clustering for Band Selection (DSCBS) [8], etc. The
clustering-based methods make full consideration the interaction between bands so that
the clustering-based methods get great success over the past years. In this paper, we use
a cluster-based method for band selection, which is based on the deep subspace cluster-
ing (DSC) [9] network. The proposed method makes full use of the globally nonlinear
spectral-spatial relationship, improving the performance of band selection.

However, although DSC has a good effect on general images, it is difficult to achieve
better results for complex HSIs. For example, the average clustering accuracy of DSC can
reach 98% on the ORL data set [9], but only 75% on the Indian Pines data set and 70% on
the Pavia University data set [10]. Therefore, skip connections and hyper-graph learning
are introduced to optimize the network and improve the accuracy of BS.
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The skip connections [11], also known as residual connections, can skip one or more
layers in different layers to build extra connections between nodes. These skip connec-
tions can solve the problem of gradient vanishing, recover the original image and make
full use of the historical feature maps obtained from the networks by pass image details
from the encoder to the decoder in auto-encoder networks. The graph learning [12,13] is
an important topic and has been widely used in image processing, which reflects the geo-
metric information of data by learning the manifold structure. However, the simple graph
model can only represent the simple relationships between data so it can not obtain robust
results in complex high-order relationships of images. To overcome the obstacles, hyper-
graph learning [14] has been introduced to describe the multivariate relationship between
simples of complex HSIs. To better compare the pros and cons of different methods, we
summarize the above methods, as shown in table 2.

In this paper, a novel hyper-graph regularized subspace clustering with skip connec-
tions (HRSC-SC) for band selection of hyperspectral image is introduced, which is the
clustering-based band selection method. The subspace clustering is used to combine the
convolutional auto-encoder by thinking of it as a self-expressive layer. The symmetri-
cal skip connections are added to the convolutional auto-encoder (CAE) [15] for HSIs
clustering, which pass image details from encoder to decoder. In addition, the hyper-
graph regularized is introduced to describe the multivariate relationship between simples
of complex HSIs. The main contributions of this paper are summarized as follows:

1. We propose a hyper-graph regularized subspace clustering with skip connections
(HRSC-SC) for band selection of the hyperspectral image.

2. The symmetrical skip connections are added into the convolutional auto-encoder with
a self-expressive layer to make full use of the historical feature maps obtained from
the networks and tackle the problem of gradient vanishing caused by multiple nonlin-
ear transformations, which pass image details from encoder to decoder and produce
more beneficial representation for better clustering.

3. The hyper-graph regularized is introduced to describe the multivariate relationship
between simples of complex HSIs that can fully consider the manifold structure re-
flecting geometric information within data, making the modeling of images more ac-
curate. Three HSI data sets are utilized to evaluate the performance and efficiency of
the proposed band selection algorithm. Experimental results show that the proposed
HRSC-SC band selection method has state-of-the-art performance, outperforming the
current robust band selection methods.

To make the subsequent expression clearer, we construct table 1 to summarize the
acronyms in this paper. The rest of the paper is structured as follows. In Section 2, we
briefly review the sparse subspace clustering and the convolutional auto-encoder. Then,
the details of the proposed HRSC-SC for band selection are introduced in section 3. In
section 4, we evaluate the HRSC-SC for three well-known HSI data sets. Finally, conclude
with a summary and discuss the future research directions in section 5.

2. Previous Work

2.1. Sparse Subspace Clustering

The subspace clustering methods consist of two steps: first, evaluate the affinity for each
pair of simples to build an affinity matrix, which is the most crucial step and determines
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Table 1. Acronyms in the paper.

Full name Acronyms
Average Accuracy AA

Alternating Direction Method of Multipliers ADMM
Auto-Encoders AE
Band Selection BS

Convolutional Auto-Encoder CAE
Deep Subspace Clustering DSC

Deep Subspace Clustering for Band Selection DSCBS
Hyper-graph Regularized Subspace Clustering with Skip Connections HRSC-SC

Hyperspectral Images HSIs
Improved Sparse Subspace Clustering ISSC

Laplacian score Lap-score
Multi-objective Optimization based Band Selection MOBS
Maximum-variance Principal Component Analysis MVPCA

Overall Accuracy OA
Self-expressive SE

Sparse Non-negative Matrix Factorization SNMF
Sparsity-based Band Selection Spa-BS

Sparse Subspace Clustering SSC

Table 2. Comparison of band selection methods.

Methods Based Technology Band interaction Spectral-spatial
MOBS [2] searching heuristic searching no not consider

MVPCA [3] ranking maximum-variance no not consider
SpaBS [4] ranking sparse representation no not consider

Lap-score [5] ranking Laplacian score no not consider
SNMF [6] clustering sparse non-negative matrix factorization yes not consider
ISSC [7] clustering sparse subspace clustering yes not consider

DSCBS [8] clustering deep auto-encoder+subspace clustering yes consider
HRSC-SC clustering Hyper-graph+Skip Connections+DSC yes full consider

the results of clustering; second, utilize spectral clustering [16] or normalized cuts [17]
method by using the affinity matrix. Here, we briefly introduce the SSC [18] method. Let
the data set be the size of M × N , where M and N denote the dimension of the feature
and the number of data points respectively. Assuming that all the data points lie in a union
of t affine subspaces S = S1, S2, · · ·St , where the t subspace has dimensions {di}ti=1

and d1 + d2 + · · · dt = M . Based on the hypothesis above, the optimization equation can
be represented as:

min
C

∥C∥1 , s.t.Y = YC+N, diag (C) = 0 (1)

where C is the coefficient matrix. Y represents the data points. N denotes the error
matrix. 1 stands for the l1-norm regularization, which can be 0, 1, 2 in other subspace clus-
tering methods. To avoid trivial solution, the diag (C) is constrained to be 0. The ADMM
[19,20] method is applied to optimize Eq.1. Then, the similarity graph is constructed by
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the coefficient matrix C, the affinity matrix M can be written as:

M = |C|+ |C|T (2)

In the end, according to the similarity graph, the results of the clustering can be ob-
tained by the spectral clustering method.

2.2. Convolutional Auto-encoder

The AE consists of the symmetrical encoder and decoder structure, which can convert
the data points into the latent space representation. In recent years, the AE methods have
been widely used and achieved state-of-the-art performance in learning data deep rep-
resentation, e.g. variational auto-encoder [21], sparse auto-encoder [22], and denoising
auto-encoder [23].

The structure of the CAE is similar to the AE, which consists of the symmetrical
convolutional and deconvolutional layers. Here, we can define the convolutional layer as
φ = E (x;αe) , in which φ denotes the latent representation (or bottleneck) to reveal
the intrinsic information of the input data, x and αe stand for data points and parameters
respectively. Analogously, the deconvolutional can be defined as x̂ = D (φ;αd), where x̂
is the reconstruction of input data and αd represents the parameters of the decoder. Then,
we can define the loss function as:

L (αe;αd) =
1

2

N∑
i=1

∥xi − x̂i∥2F (3)

3. Proposed Method

3.1. Convolutional Auto-encoder with Self-expressive layer

The main structure of the HRSC-SC is to insert a SE layer into a Convolutional CAE
[23] to learn a representation for HSI. The SE layer between the encoder and decoder of
the CAE to imitate the “self-expressive” property of the traditional subspace clustering.
Therefore, the SE layer is as similar as SSC [18], which is defined as:

Ẑ = CZ (4)

where Ẑ denotes the reconstruction of Z, which is the input of the SE layer. C is the
coefficient matrix obtained from the SE layer. The loss function of the SE layer as follows:

LSE =
λ1

2

∥∥∥Z− Ẑ
∥∥∥2
F
+

λ2

2
∥C∥2F (5)

There are two parts in Eq.5: the first part is the reconstruction error; the second part
uses an F-norm regularization to constrain C. Here, we have not to use the condition of
diag (C) = 0 like the traditional SSC because using F-norm without diagonal constraints
will not lead to trivial solutions [24].
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Fig. 2. Overall architecture of the HRSC-SC.

As shown in Fig. 2, giving the input HSI X = {xi}mi=1 and it can be coded through
the encoder to obtain the latent representations Z, the function of the encoder is defined as
Z = fβ (X). Symmetrically, the refactored X can be defined as X̂ = gγ (Z). Each layer
of the CAE followed by a batch normalization and a ReLU activation. The loss function
of the CAE and the CAE with SE layer are defined as Eq.6 and Eq.7, respectively:

LAE =
1

2

∥∥∥X− X̂
∥∥∥2
F

(6)

LAES (β; γ) = LAE + LSE (7)

3.2. Skip Connections

Using the CAE with SE layer for HSI clustering can solve the problem of the nonlinear
subspaces. However, all nodes in the SE layer are connected by linear weights that have
no bias and non-linear activations so that N2 parameters exist in the SE layer, making the
SE layer the focus of training and overwhelming the optimize of CAE networks. Besides,
the multiple layers networks may cause the problem of vanishing gradient.

To deal with the problems above, the symmetrical skip connections are introduced
into the CAE. As shown in Fig. 2, skip shortcuts connect the convolution feature map
and their deconvolution feature map in a symmetrical manner [25]. The gradients can
back-propagate to the corresponding encoder layers directly without going through the
SE layer. Ideally, using skip connections can make the network’s train from scratch easier.
Suppose xj represents the j-th encoder layer mapping and x̃j is the corresponding j-th
underlying decoder mapping, the skip connection mapping can fit:

H (xj) = x̃j − xj (8)

According to Eq.8, the j-th underlying decoder mapping can be:

x̃j = H (xj) + xj (9)
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3.3. Hyper-graph Learning

According to the graph learning methods [12], the potential geometry of high dimensional
data points can be retained by the neighbor graph of the original data [13]. Therefore, we
can use the theory to consider the manifold structure reflecting geometric information
within data. Different from the traditional graph learning that can only explain the simple
relationships between data points, the hyper-graph explains the complex relationships by
connecting three or more vertices to describe the multivariate relationships of data accu-
rately, achieving outstanding performance in recent works[26]. Therefore, we introduce
the hyper-graph regularized into the subspace clustering networks to fully consider the
multivariate relationships of complex HSIs. The hyper-graph structure can be represented
as Fig. 3.

e1 e2 e3
v1 1 0 0
v2 1 0 0
v3 1 0 0
v4 1 0 1
v5 0 0 1
v6 0 1 0
v7 0 1 1
v8 0 1 0

(b)

e1e2

e3

v1

v2v3

v4

v5

v6

v7

v8

(a)

Fig. 3. (a) Illustration of the hyper-graph. (b) Corresponding to (a), V = {vi}mi=1 is a
vertex and E = {ej}nj=1 denote a hyper-edge, set (vi, ej) = 1 if the vertex i on the hyper-
edge or (vi, ej) = 0 when the vertex i is not on the hyper-edge.

Assuming there is a hyper-graph G = (V,E,W), in which V = {vi|i = 1, 2, · · · ,m}
denotes the multiple non-empty vertex set, E = {ej |j = 1, 2, · · ·n} is non-empty hyper-
edge subsets and W represents the weight matrix. We can define the w (e) as weight of
each hyper-edge. The incident matrix ζ is:

ζ (v, e) =

{
1, if v ∈ e

0, if v /∈ e
(10)

Then, the degree of a vertex v and the hyper-graph e can be defined as Eq.11 and
Eq.12 respectively:

d (v) =
∑

{e∈E|v∈V }

w (e) =
∑
e∈E

w (e) ζ (v, e) (11)
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ϕ (e) = |e| =
∑
v∈V

ζ (v, e) (12)

Finally, the hyper-graph Laplacian matrix Lh can be written as:

Lh = Dv − ζWD−1
e ζT (13)

where Dv denotes the degree matrix of vertex and De is the degree matrix of hyper-
edge, both of them are the diagonal matrices.

3.4. Training and Band Selection

Algorithm 1 Pseudocode of HRSCNet
Input: image data set X; number of clusters: k; hyper-parameters: λ1, λ2, λ3.
Output: Clustering results.

1 Preprocess image data set;
2 Initialize C, β and γ of the HRSCNet in Eq.14 ;
3 Compute the hyper-graph Laplacian matrix Lh according

to Eq.13;
4 while maximum iteration is met do
5 Calculate the output of the encoder: Z = fβ (X);
6 Calculate the output of the SE layer: Ẑ = CZ;
7 Calculate the output of the decoder: X̂ = gγ (Z);
8 Calculate the loss according to Eq. 14;
9 Update C, β and γ using Adam optimizer;
10 end
11 Construct affinity matrix according to Eq.15;
12 Calculate clustering results using spectral clustering;
13 Return clustering results.

There are four parts included in the HRSC-SC: the CAE, the SE layer, the skip con-
nections, and the hyper-graph regularization. Therefore, the loss function of the HRSC-SC
contains the CAE loss LAE in Eq.6, the SE layer loss LSE in Eq.5, and the hyper-graph
regularized loss Lh = λ3

2 Tr
(
CTLhC

)
, expressed as:

L (C;β; γ) = LAE + LSE + Lh

=
1

2

∥∥∥X− X̂
∥∥∥2
F

+
λ1

2

∥∥∥Z− Ẑ
∥∥∥2
F

+
λ2

2
∥C∥2F +

λ3

2
Tr

(
CTLhC

)
(14)

where λ1, λ2 and λ3 in LSE and Lh denote the balancing parameters. The Adam [20]
gradient descent method can be utilized to optimize Eq.14. It is worth noticing that we
can train the HRSC-SC from scratch because of the skip connections technique, which is
different from some existing deep subspace clustering methods that require pre-training.

According to the Fig. 2, we can get the coefficient matrix C after training the net-
works. Then, using C to construct a symmetric matrix M:

M = |C|+ |C|T (15)
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It can be seen in Fig. 2, the subspace clustering method is used to get the clustering
results by cluster M into k classes. Then, the average of bands in each class is deemed
as a cluster center, and we calculate the distance from each band to the cluster center.
Finally, the selected band is the band closest to the cluster center in each category.

To express the HRSC-SC more clearly, the pseudocode of the proposed algorithm is
shown in Algorithm 1.

4. Results

4.1. Data Set and Experimental Settings

We utilize three widely used images data sets for experiments: Indian Pines, Salinas-
A, and Pavia University data sets 3. For the convenience of experiment, the subscence
located are used on Indian Pines and Pavia University data sets at [50 ∼ 120, 50 ∼ 120]
and [200 ∼ 300, 100 ∼ 200], respectively. The details of the three data sets are shown in
Table 3.

Table 3. Summary of Indian Pines, Salinas-A and Pavia University data sets.

Data sets Indian Pines Salinas-A Pavia University
Pixels 70× 70 86× 83 100× 100
Bands 200 204 103
Sensor AVIRIS AVIRIS ROSIS

In the HRSC-SC network, the layers of encoder and decoder are all set to 3 and the
encoder and the decoder have a symmetrical structure. Therefore, if the channels of the
encoder in three layers are set to 16, 32, 64, respectively, the channels of the decoder will
be set to 64, 32, 16. The learning rate is set to 1.0×10−4 and the hyper-parameters λ1, λ2

and λ3 are all set to 1.0. For a more intuitive description, the hyper-parameters setting of
all comparison BS methods is shown in Table 4. All methods except the MOBS method
run in Python 3.6 and the MOBS method run in Matlab 2016. All code of the methods is
run on the Intel Core i5 3.10GHz.

4.2. Comparison of Performance

In this experiment, the number of the selected bands is changed in the range of 5 to 30, and
the interval is set as 5. The SVM classifier [27,28] is used for all band selection methods
to evaluate the OA, AA, and kappa coefficient (Kappa) of the different methods. To ensure
the fairness of the experiment, we select 5% of labeled samples from each data set as the
training set, and others as the testing set. To better test the performance of the algorithm,
we evaluate all methods for 10 independent rums. The seven well-known band selection
methods, Lap-score [5], SpaBS [4], ISSC [7], SNMF [6], MVPCA [3], DSCBS [8] and
MOBS [2], are used as comparison methods to compare with the proposed HRSC-SC
method on Indian Pines, Salinas-A, and Pavia University data sets.

3 http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote Sensing Scenes
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Fig. 4. Performance comparison of different BS methods with different band subset sizes
on Indian Pines data set:(a) OA, (b) AA, and (c) Kappa.

The performance comparison of different BS methods with different band subset sizes
is shown in Fig. 4 to Fig 6. Overall, it can be seen that the proposed HRSC-SC method
achieves the best band selection results on three data sets. As shown in Fig. 4, the OA,
AA, and Kappa of HRSC-SC are lower than some methods, but it achieves the best per-
formance than other sever methods when the selected bands are 10 to 30. In addition,
the HRSC-SC, SpaBS, ISSC, and MOBS show the best performance when selecting 15
bands, and show the downward trend after 15, that is the accuracy increases first and
decreases with the selected bands increasing. The above phenomenon is called Hughes,
which is mentioned in section 1. However, the HRSC-SC also achieves the best results
than others, which shows the superiority of the HRSC-SC. It is noticed that the ranking-
based methods, i.e. MVPCA, SpaBS, and Lap-score, achieve relatively poor accuracy
than other approaches because of the increased chances of the misestimating band due to
the noise of HSI.

In Fig. 5, similar to Indian Pines, the HRSC-SC shows the best performance when
selecting more than 10 bands. Different from Indian Pines, the HRSC-SC has no obvious
Hughes phenomenon on Salinas-A. But other methods, like SpaBS, ISSC, and MOBS,
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Fig. 5. Performance comparison of different BS methods with different band subset sizes
on Salinas-A data set:(a) OA, (b) AA, and (c) Kappa.

also have the Hughes phenomenon. Therefore, HRSC-SC achieves significant results and
outperforms all other methods.

In Fig. 6, the HRSC-SC shows great performance when the selected bands are 5 to
15. Then, the results of HRSC-SC are slightly inferior to the DSCBS method. However,
the overall performance comparison result is similar to Indian Pines and Salinas-A data
sets. The clustering-based methods can fully consider the mutual relations between dif-
ferent bands, especially the proposed method, which added the skip connections and the
hyper-graph regularization to consider the deeper relationship of data. Consequently, the
proposed clustering-based method can achieve better results than other methods.

4.3. Analysis of the Selected Bands

We can analyze the selected bands according to the results of the tables and figures. To
ensure the results more obvious, 15 bands are selected for all selected bands experiments
on three data sets. Table 5 shows the selected bands of all methods when the number of
selected bands is 15 on three data sets. Relatively, Fig. 7, Fig. 8, and Fig. 9 show the
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Fig. 6. Performance comparison of different BS methods with different band subset sizes
on Pavia University data set:(a) OA, (b) AA, and (c) Kappa.

locations of the selected bands (above) on the spectrum, and the entropy curve (below) of
three data sets.

In Fig. 7, the value of entropy is relatively average. For HRSC-SC, the selected bands
have uniform distribution and no continuous bands. As for other algorithms, they all have
continuous bands, especially MVPCA and Lap-score. The selected bands of the proposed
HRSC-SC methods are most evenly distributed.

In Fig. 8, the value of entropy is similar to Indian Pines, it can be seen that the entropy
curve has a relatively uniform distribution, which illustrates that better results can be
obtained when the band selection is more uniform. In contrast, the MVPCA and the Lap-
score methods select a lot of continuous bands. The other comparison algorithms select
the relatively evenly bands. However, all of them select some continuous bands, which
affect the final classification results. Therefore, the HRSC-SC method achieves the best
performance.

Fig. 9 shows the selected bands and the entropy curve of Pavia University. As shown
in this figure, the value of entropy is smooth initially and gradually increases, and reaches
stability in the end. According to the distribution of entropy, choose server bands in num-
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Table 4. Hyper-parameters setting of all comparison BS methods.

Methods Hyper-paramenters
Lap-score -

SpaBS λ = 1e2
ISSC λ = 1e5

SNMF maxiter = 100
MVPCA -
DSCBS α = 1.0, λ = 1e− 3
MOBS maxiter = 100, NP = 100

HRSC-SC λ1 = λ2 = λ3 = 1.0

Lap-score
SpaBS

ISSC
SNMF

MVPCA
DSC

MOBS
HRSC-SC
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Fig. 7. The best 15 bands of Indian Pines data set selected by different BS methods (above)
and the entropy value of each band (below).

bers 0 to 40, and approximately the average selection of bands after number 40 can get
good results. Compare with the algorithm, HRSC-SC selects server bands and approxi-
mately average selects bands after band number 40. The performance of other methods
is the same as using Indian Pines and Salinas-A. Therefore, HRSC-SC can get the best
results for band selection on three data sets.

4.4. Impact of Epochs

As shown in Fig. 10, we plot the accuracy of the HRSC-SC and the training losses on
different epochs to analyze the convergence on three data sets. The selected bands are set
to 20. In Fig. 10 (a), we set the number of iterations from 0 to 200. It can be seen that the
lower accuracy at the beginning, and the accuracy increases to maximum when the epoch
increases close to 100, then fluctuate within a certain range the loss stabilizes. We set the
number of iterations from 0 to 100 on the Salinas-A data set. According to the Fig.10
(b), the accuracy increases with the losses decrease, and then the accuracy reaches the
maximum value when the epoch increases close to 50. When the epoch increases close
to 100, the accuracy fluctuates within a certain range and the loss tends to be 0 while the
accuracy achieve stable. As for Pavia University, we set the number of iterations from
0 to 300. As shown in Fig. 10 (c), before the number of iterations is 100, the accuracy
fluctuates greatly. When it is close to 150 times, it tends to stabilize and reach a larger
value, and the loss tends to be 0. Combining the above results, to get the best accuracy
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Fig. 8. The best 15 bands of Salinas-A data set selected by different BS methods (above)
and the entropy value of each band (below).
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Fig. 9. The best 15 bands of Pavia University data set selected by different BS methods
(above) and the entropy value of each band (below).

and cost minimal time, the number of the iterations for Indian Pines, Salinas-A, and Pavia
University data sets are set to 100, 50, and 150, respectively.

4.5. Visualization of Affinity Matrix

The affinity matrices of three data set is shown in Fig. 11. According to the theory of
the affinity matrix in section 3, the affinity matrix has a symmetrical and sparse block
diagonal structure. The block of the affinity matrix can be used to cluster, which is the
crucial element for subspace clustering. As shown in Fig. 11, the block is independent
relatively and the affinity matrix obtained from the three data sets has good symmetry so
that the affinity matrices achieve robust performance.

5. Conclusions

In this paper, a hyper-graph regularized subspace clustering with skip connections (HRSC-
SC) was proposed for band selection of the hyperspectral image. The networks com-
bine subspace clustering into the convolutional auto-encoder by thinking of it as a self-
expressive layer. Moreover, the symmetrical skip connections are added to the networks
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Table 5. The best 15 bands of three data sets (Indian Pines, Salinas-A, Pavia University)
selected by different band selection methods.

Data sets Methods Selected bands

Indian Pines

Lap-score [45,46,47,48,49,50,51,52,53,54,55,56,57,58,59]
SpaBS [4,8,13,20,27,122,127,129,130,136,137,139,147,164,193]
ISSC [1,2,40,62,103,104,128,150,152,189,192,199,200,201,202]

SNMF [1,2,3,7,13,26,27,62,98,103,112,174,197,199,202]
MVPCA [117,118,119,120,158,183,190,191,192,193,194,195,196,197,198]
DSCBS [16,38,41,62,63,64,66,71,75,83,102,139,171,177,182]
MOBS [6,7,13,22,47,67,69,94,101,111,131,132,155,182,185]

HRSC-SC [5,35,51,92,117,122,131,140,146,149,156,172,181,185,203]

Salinas-A

Lap-score [45,46,47,48,49,50,51,52,53,54,55,56,57,58,59]
SpaBS [4,8,13,20,27,122,127,129,130,136,137,139,147,164,193]
ISSC [1,2,40,62,103,104,128,150,152,189,192,199,200,201,202]

SNMF [1,2,3,7,13,26,27,62,98,103,112,174,197,199,202]
MVPCA [117,118,119,120,158,183,190,191,192,193,194,195,196,197,198]
DSCBS [16,38,41,62,63,64,66,71,75,83,102,139,171,177,182]
MOBS [6,7,13,22,47,67,69,94,101,111,131,132,155,182,185]

HRSC-SC [5,35,51,92,117,122,131,140,146,149,156,172,181,185,203]

Pavia University

Lap-score [19,20,21,22,23,24,25,26,27,36,37,38,39,40,41]
SpaBS [2,15,24,30,31,32,33,34,35,36,37,38,39,61,103]
ISSC [5,14,20,26,32,38,44,51,57,65,72,79,86,94,100]

SNMF [2,5,7,15,21,26,32,39,42,52,67,73,76,99,101]
MVPCA [13,14,15,16,17,18,19,20,21,37,38,39,40,41,42]
DSCBS [4,6,7,17,26,33,43,45,48,49,68,76,79,83,97]
MOBS [15,16,19,40,43,51,54,58,69,71,72,87,91,95,98]

HRSC-SC [2,4,14,34,38,40,45,52,55,64,73,76,80,90,100]

to pass image details from encoder to decoder, which can make full use of the historical
feature maps obtained from the networks and tackle the problem of gradient vanishing
caused by multiple nonlinear transformations. Besides, we introduce the hyper-graph reg-
ularized to consider the manifold structure reflecting geometric information within data
to accurately describe the multivariate relationship between data points and make the re-
sults of HSIs clustering more accurate. We execute the experiments on three HSI data sets
for the proposed HRSC-SC method to show that the proposed method has state-of-the-art
performance.

However, there are still the following problems that need to be improved in future
work. First, due to the training characteristics of deep learning, the running time of the
proposed HRSC-SC method spends much, which is an important topic to research in
future works. Second, the proposed HRSC-SC method shows good performance for the
band selection of HSIs, which can be used to study the clustering of HSIs in the future.
Third, due to the limitation of training time and equipment, we only intercepted part of
the three datasets for experiments. In future work, we will try to use the entire dataset
for testing to verify the effectiveness of the proposed algorithm. Finally, a self-supervised
network structure is used for learning in this paper, in future work, other methods, such
as generative adversarial networks, will be introduced to optimize the network structure.
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Fig. 10. Loss curve (blue full line) and accuracy curve (red dashed line) for the proposed
HRSC-SC approach on three data sets. (a) Indian Pines, (b) Salinas-A, and (c) Pavia
University.
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Fig. 11. Visualization of Affinity Matrix on three data sets. (a) Indian Pines, (b) Salinas-A,
and (c) Pavia University.
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