
Computer Science and Information Systems 19(3):1283–1304 https://doi.org/10.2298/CSIS210930031C

Nearest Close Friend Query in Road-Social Networks

Zijun Chen⋆, Ruoyu Jiang, and Wenyuan Liu

1 School of Information Science and Engineering, Yanshan University,
Qinhuangdao 066004, China

2 The Key Laboratory for Computer Virtual Technology and
System Integration of Hebei Province,

Qinhuangdao 066004, China
zjchen@ysu.edu.cn

jiangruoyu@stumail.ysu.edu.cn
wyliu@ysu.edu.cn

Abstract. Nearest close friend query (kℓNCF) in geo-social networks, aims to find
the k nearest user objects from among the ℓ-hop friends of the query user. Existing
efforts on kℓ-NCF find the user objects in the Euclidean space. In this paper, we
study the problem of nearest close friend query in road-social networks. We propose
two methods. One is based on Dijkstra algorithm, and the other is based on IS-
Label. For the Dijkstra-based method, Dijkstra algorithm is used to traverse the user
objects needed. For the label-based method, we make use of IS-Label to calculate
the distance between two vertices to avoid traversing the edges that do not contain
the desired user object. For each method, we propose effective termination conditon
to terminate the query process early. Finally, we conduct a variety of experiments
on real and synthetic datasets to verify the efficiency of the proposed methods.

Keywords: road-social networks, R-tree, IS-Label index, nearest neighbor query.

1. Introduction

With the development of location-aware smart devices, location-based applications have
received extensive attention. Smart devices can allow users to obtain their own location
information in location-based social networks, such as Foursquare, Facebook, Twitter,
and Weibo.

The k-Nearest ℓ-Close Friends (kℓ-NCF) query [22] retrieves the k nearest data ob-
jects to a query point pq from among the ℓ-hop friends of a query user u. The kℓ-NCF
query is proposed in the Euclidean space. In real life, from the location of these returned
data objects to the query point is limited by the road network. So, in this paper, we would
propose the k-nearest neighbor ℓ-close friend query in road-social networks, which can
also be applied in scenarios proposed in [22], such as making new friends, spatial crowd-
sourcing, blind dates, ridesharing, etc. We give one of the application scenarios in the
following example.

Example 1. Spatial crowdsourcing. Spatial crowdsourcing is a platform, in which human
workers can be assigned tasks related to a location. A requester q may issue a request to
collect pictures in a specific location pq . The worker who is assigned the task should be

⋆ Corresponding author

1284 Zijun Chen et al.

close to pq . To win the requester’s trust, the worker should have acceptable social links to
the requester. The 1-hop friends of the requester may be far away from pq , or they could
not accept the task. In this case, the requester may need to search the ℓ-hop friends of q.

In the road network shown in Fig. 1(a), there are four human workers B, C, D and
E, who could accept the task. According to the social network shown in Fig. 1(b), q has
two 1-hop friends B and F , and has 2-hop friends B, F , C and D. If only search 1-hop
friends of q, F is the nearest neighbor of pq . But F could not accept the task for some
reason. B is far away from pq . If search 2-hop friends of q, D is the nearest neighbor of
pq . In the Euclidean space, C is the nearest neighbor of pq . But in the road network, C is
farther away from pq than D.

 B

C

D

E
F

pq

(a) Road network

q

B
C

D
E

F

(b) Social network

Fig. 1. Example of application scenario

Since the computation cost of the road network distance is much higher than that in
Euclidean space, the methods proposed in [22] cannot be used to solve the problem of
kℓ-NCF in road-social networks directly.

For the kℓ-NCF query in road-social networks, we will propose two methods. One is
based on Dijkstra algorithm, and the other is based on IS-Label. For the Dijkstra-based
method, Dijkstra algorithm [4] is used to traverse the user objects needed. The other is
based on IS-Label, first use the R-Tree index to store the edges containing the user objects
needed, then use the Best-First algorithm to search the edges. IS-Label is used to calculate
the shortest distance between two verices.

Our major contributions are summarized as follows.
(1) We define the problem of kℓ-NCF query in road-social networks.
(2) We will propose two methods to tackle RSkℓ-NCF query. One is based on Dijkstra

algorithm, the other is based on IS-Label.
(3) We conduct extensive experiments on different datasets to verify the efficiency of

two algorithms.
The rest of the paper is organized as follows: Section 2 describes the related work

and Section 3 formalizes the problem. Section 4 presents the method based on Dijkstra

Nearest Close Friend Query... 1285

algorithm. Section 5 presents the method based on IS-Label. Section 6 presents the ex-
perimental results and analysis. Finally, we conclude this paper in Section 7.

2. Related work

2.1. kNN query on road network

Roussopoulos et al. [21] designed a branch-and-bound R-tree [9] traversal algorithm to
find the nearest neighbor object to the query point, and then generalize it to finding the
k nearest neighbors (kNN). For kNN query on road networks, there are many studies.
Hu et al. [12] simplified the network by replacing the graph topology with a set of inter-
connected tree-based structures called SPIE’s, and proposed a lightweight nd index for
the SPIE. Lee et al. [16] designed a new system framework ROAD for the spatial object
search on road networks. Jiang et al. [14] studied the top-k nearest keyword search prob-
lem in a massive graph and proposed algorithms that return the exact answers. Inspired by
R-tree, Zhong et al.[29] proposed a height-balanced and scalable index, namely G-tree, to
efficiently support three types of location-based queries on road networks. Zhao et al. [28]
studied the problem of group nearest compact POI set (GNCS) query and showed that this
problem is NP-hard. Ouyang et al. [20] studied the problem of top-k nearest neighbors
search on road networks. They proposed an effcient and progressive query processing al-
gorithm to output each result in well-bounded delay. He et al. [10] proposed a framework
on correctness-aware kNN queries, which aims at optimizing the system throughput while
guaranteeing query correctness on moving objects. Dong et al. [5] presented a direction-
aware KNN (DAKNN) query covering moving objects on road networks. Kim et al. [15]
proposed the moving view field nearest neighbor (MVFNN) query, which continuously
retrieves the nearest object in the query’s view field with the change of query location.

2.2. Geo-Social query

Geo-social queries consider the location and social relationship. Liu et al. [18] proposed
a new type of query called Circle of Friend Query (CoFQ), which returns a group of
friends in a Geo-Social network whose members are close to each other both socially and
geographically. Emrich et al. [6] studied the problem of geo-social skyline queries. The
returned users are closely connected to the query user, and close to the query location.
Ahuja et al. [1] proposed geo-social keyword (GSK) search, and presented three specific
GSK queries. Jiang et al. [13] proposed the top-k local user search (TkLUS) query in geo-
tagged social media. Sohail et al. [24] proposed Top-k Famous Places (TkFP) query and
Socio-Spatial Skyline Query (SSSQ). For the queries, they proposed three approaches,
called Social-First, Spatial-First and Hybrid. There are also researches on group queries.
Zhu et al. [30] proposed a family of geo-social group queries (GSGQs) with minimum
acquaintance constraints, and devised two index structures, namely SaR-tree and SaR*-
tree. Sohail et al.[25] proposed the Geo-Social Group preference Top-k (SG-Topk) query,
which retrieves nearby places popular among a particular group of users based on spatial
and social relevance. Ma et al. [19] proposed the personalized geo-social group (PGSG)
query, which aims to retrieve a user group and a venue, where each user in the group is
socially connected with at least c other users in the group and the maximum distance of

1286 Zijun Chen et al.

all the users in the group to the venue is minimized. Ghosh et al.[8] proposed a novel Top
k Flexible Socio Spatial Group Query (Top k-FSSGQ) to find the top k groups of various
sizes w.r.t. multiple POIs. Shim et al. [23] proposed the ℓ-cohesive m-ridesharing group
(ℓmCRG) query, which retrieves a cohesive ridesharing group by considering spatial,
social, and temporal information.

2.3. Road-Social networks query

Road-Social networks query has drawn lots of attention in recent years. Zhao et al. [26]
proposed the Reverse Top-k Geo-Social Keyword (RkGSK) query on road networks, and
designed the GIM-tree index for the query. Attique et al.[2] proposed geo-social top-k
keyword (GSTK) query and geo-social skyline keyword (GSSK) query on road networks.
They proposed appropriate indexing frameworks and algorithms to efficiently process
these queries. Zhao et al.[27] proposed the diversified top-k geo-social keyword (DkGSK)
query on road networks, which considers not only the relevance but also the diversity of
the result. Li et al.[17] studied the skyline cohesive group query problem in road-social
networks.

In this paper, k-nearest neighbors ℓ-close friends (kℓ-NCF) query in road-social net-
works is closely related to the research of [22]. Shim et al.[22] studied the kℓ-NCF
query and proposed three approaches for the query: Neighboring Cell Search, Friend-
Cell Search, and Personal-Cell Search. The methods proposed in [22] cannot be directly
applied to road networks. Therefore, we would study the problem of kℓ-NCF query on
road networks.

3. Problem definition

The road-social network is composed of a pair of networks, a road network Gr and a social
network Gs, denoted as G = (Gr, Gs). The road network is modeled as an undirected
weighted graph Gr = (Vr, Er, W), where Vr is the vertex set, Er is the edge set, and W
is a function, such that w(ni, nj) is the weight of edge (ni, nj) ∈ Er. For (ni, nj) ∈
Er, if the id of ni is less than that of nj , we call ni and nj the starting vertex and the
ending vertex of (ni, nj) respectively, and vice versa. The social network is modeled as
an undirected graph Gs = (Vs, Es), where Vs is the vertex set (representing users), and
Es is the edge set (representing social relations). The user objects in social network are
mapped to the nearest intersection or edge on the road network based on their location. We
use rdist(a, b) to represent the shortest path length between a and b on the road network,
where a or b could be a query point, vertex or user object.

Definition 1. (ℓ-hop friend list [22]) V ℓ
v ⊆ Vs denotes the ℓ-hop friend list of v such that:

V ℓ
v =

{
{v′|∃e(v, v′) ∈ Es} (ℓ = 1)

V ℓ−1
v ∪ {v′|∃e(v′, v′′) ∈ Es ∧ v′′ ∈ V ℓ−1

v } \ {v} (ℓ > 1)
(1)

Example 2. Fig. 2 describes the social network containing the user vertex v0. The 1-hop
friend list of v0 is v1, v3. The 2-hop friend list of v0 consists of v2, v4, and the friends of
v0, because v2 and v4 are the friends of v1. In the same way, we can get the 3-hop and
4-hop friends list of v0, which are shown in Fig. 2.

Nearest Close Friend Query... 1287

ℓ-hop friend list of v0

1-hop {v1, v3}

2-hop {v1, v2, v3, v4}

3-hop {v1, v2, v3, v4, v5, v6}

4-hop {v1, v2, v3, v4, v5, v6, v7}

v1

v2

v4

v6

v7

v8

v9

pq

v5

v0

v3

Fig. 2. Social network and ℓ-hop friend lists of v0

The kℓ-NCF query is defined in [22]. Based on this, we would give the definition of
kℓ-NCF query on road networks as follows:

Definition 2. (kℓ-NCF on road networks) Given a road-social network G = (Gr, Gs), a
query point pq , a query user u, the number of result elements k, and a friendship degree
ℓ, the k-nearest ℓ-close friends (kℓ-NCF) query q = (pq , u, k, ℓ) on road networks finds a
result list R = (v1, v2, . . . , vk), such that (1 ≤ i < k):

R ⊆ V ℓ
v ∧ rdist(pq, vi) ≤ rdist(pq, vi+1) ∧ v′ ∈ V ℓ

v \R ∧ rdist(pq, vk) ≤ rdist(pq, v
′)

(2)

where, friendship degree represents the minimum number of edges (hops) between
two data objects in the graph [22].

Example 3. After mapping, we get the road network shown in Fig. 3, where v0, . . . , v9
are the user objects shown in Fig. 2. Given a kℓ-NCF query q = (pq, u = v0, k = 2, ℓ = 3)
on road networks, the result list is (v3, v5). Although v7 is closer to pq than v5, v7 is not
in the 3-hop friend list of v0, so v7 is not in the result list.

4. Method based on Dijkstra algorithm

In this section, we will propose a method based on Dijkstra algorithm. Before the kℓ-
NCF query on road networks is issued, we can prepare some information to speed up
query processing. We create adjacency lists for the social network and the road network
respectively. For all the user objects in the social network, we create a hash table UEHm
with the structure (v, (e, len)), where e is the edge on which v locates, and len is the road
network distance between v and the starting vertex of e.

In the following, we would introduce some data structures for the method.

1288 Zijun Chen et al.

0.6

pq

v0

n5

n1

n2

n3

n7 n4

v9

v4

 v6

v8
v7

v5

v3

v2

v1 2

1.7

6

1.1

0.4

0.9

0.5

0.8

1.1

0.8

1
1 1

0.8

0.8

0.3

1

0.8

n6

Fig. 3. Road network

closed: closed is a hash table to store the vertices which are closed. We call a vertex
closed if it has been extracted from the min heap.

clounvis: clounvis is a hash table to store the vertices that are closed but not visited.
We call a vertex visited if the user objects on all of its adjacent edges have been visited.

hE: hE is a hash table with the structure (e, UList), where UList is a list to store the
user object, such that the user object locates on the edge e and belongs to V ℓ

u (u represents
the query user).

The overall procedure of D-RSCNF is summarized as follows:
(1) Create the ℓ-hop friend list V ℓ

u of a query user u.
(2) Create the hash table hE.
(3) Dijkstra algorithm is used to expand from pq .
Algorithm 1 describes the query process based on Dijkstra algorithm. Lines 1-2 are

initialization. R is a max-heap with a maximum size of k, which is used to store the
results. H is a min heap, in which the key is the road network distance from a vertex (or
an object) to pq . For edgecount, it is used to record the number of edges visited in hE.
In lines 4-5, hE is created by using the user object v ∈ V ℓ

u and the edge where the object
locates.

In line 26, for the user object v on the edge (ni, nj), we could calculate rdist(pq, v)
with Formula (3). As shown in Fig. 4, v represents the required user object, svid is the
starting vertex, and tvid is the ending vertex. The shortest path length from pq to v in
Algorithm 1 is defined as:

rdist(pq, v) = min{rdist(pq, svid) + d(svid, v), rdist(pq, tvid) + d(tvid, v)} (3)

Nearest Close Friend Query... 1289

Algorithm 1: D-RSNCF Query
Input: RSkℓ-NCF query q = (pq, u, k, ℓ), the road-social network G = (Gr, Gs),

UEHm
Output: Result list R

1 R← ∅, H ← ∅, edgecount← 0, count← 0;
2 hE ← ∅, closed← ∅, clounvis← 0;
3 compute V ℓ

u with the adjacency list of the social network Gs;
4 for each user object v ∈ V ℓ

u do
5 find the edge e on which v locates using UEHm and update hE;

6 get the edge (sqid, tqid) on which pq locates;
7 insert (rdist(sqid, pq), sqid) and (rdist(tqid, pq), tqid) into H;
8 while H ̸= ∅ do
9 (rdist(ni, pq), ni)← H .delMin();

10 closed[ni]← ni;
11 clounvis[ni]← rdist(ni, pq);
12 flag ← 0;
13 for each adjacent vertex nj of ni do
14 if nj is not in closed then
15 flag ← 1;
16 if nj does not exist in H then
17 H .add(rdist(nj , pq), nj);

18 else
19 update (rdist(nj , pq), nj) in H;

20 else
21 if all the adjacent vertices of nj are in closed then
22 remove nj from clounvis table;

23 if edge (ni, nj) is in hE then
24 edgecount++;
25 for each user object v in hE[(ni, nj)] do
26 R.add(rdist(pq, v), v);
27 count++;

28 if hE.size()≤ edgecount then
29 R is sorted in ascending order by the value of rdist();
30 return R;

31 if count ≥ k then
32 if R.getRoot().rdist ≤ minrdist(clounvis) then
33 R is sorted in ascending order by the value of rdist();
34 return R;

35 if flag = 0 then
36 remove ni from clounvis table;

37 R is sorted in ascending order by the value of rdist();
38 return R;

1290 Zijun Chen et al.

where d(svid, v) represents the length from svid to v on the edge (svid, tvid), and
d(tvid, v) represents the length from tvid to v on the edge (svid, tvid).

tvid svid

pq

v

Fig. 4. Paths to be chosen for method based on Dijkstra algorithm

In lines 8-36, Dijkstra algorithm is used to expand. For an object v on the edge
(svid, tvid), in order to calculate rdist(pq, v), both svid and tvid need to be closed
before calculation. If a vertex is closed, it needs to enter closed table and clounvis table
(lines 10-11). If all adjacent vertices of a vertex have been closed, the vertex can be re-
moved from clounvis table. In line 12, we use the value of flag as 0 to indicate that all
adjacent vertices of ni have been closed. If one of adjacent vertices of ni is not closed,
flag is set to 1 in line 15. In line 19, the update is to find the shortest path length from pq
to nj and store it in H .

For a vertex in clounvis table, in order to remove it from clounvis table, there are
two cases: (1) it is closed after all its adjacent vertices; (2) it is not closed after all its
adjacent vertices. For case (1), in lines 35-36, ni is removed from clounvis table, where
ni is closed after all its adjacent vertices. For case (2), in lines 21-22, nj is removed from
clounvis table, where nj is closed before its adjacent vertex ni.

In the following theorem, we would prove the correctness of the termination condition
in lines 31-32 of Algorithm 1. In the condition, count is the size of R, R.getRoot().rdist
is the maximum distance in R and minrdist(clounvis) is the minimum distance in clounvis.

Theorem 1. If count ≥ k and R.getRoot().rdist ≤ minrdist(clounvis), then Algo-
rithm 1 could sort and return R to terminate the query correctly.

Proof. From Algorithm 1, we can see that clounvis is used to store the vertices that are
closed but not visited. In order to terminate the query, we should focus on the unvisited
user objects. For any unvisited user object v locating on edge (a, b), there are two cases:
(1) a or b is closed; (2) Neither a nor b is closed.

For case (1), without loss of generality, let a be in clounvis. Since b is not closed,
rdist(pq, b) ≥ rdist(pq, a). Then, we have rdist(pq, v) ≥ rdist(pq, a) ≥ minrdist

(clounvis). Therefore, if count ≥ k and R.getRoot().rdist ≤ minrdist(clounvis),
we have rdist(pq, v) ≥ R.getRoot().rdist, which indicates that v cannot or need not
replace the user object in R.

For case (2), we have rdist(pq, v) ≥ min(rdist(pq, a), rdist(pq, b)) ≥ maxrdist

(clounvis) ≥ minrdist(clounvis), where maxrdist(clounvis) is the maximum distance
in clounvis. Therefore, if count ≥ k and R.getRoot().rdist ≤ minrdist(clounvis), we
have rdist(pq, v) ≥ R.getRoot().rdist. ■

Nearest Close Friend Query... 1291

Example 4. For Fig. 3, given a query q = (pq, u = v0, k = 2, ℓ = 2), we illustrate
the query process of Algorithm 1. According to the social network in Fig. 2, the 2-
hop friend list of v0 is {v1, v2, v3, v4}. Then the hash table hE is created. Based on
UEHm, we get the edges on which the 2-hop friend list of v0 locate. The edges are
(n1, n2), (n2, n3), (n6, n7), which are stored in hE. And get the edge (n3, n5) where pq
locates, so (0.9, n3) and (1.1, n5) are put into the min-heap H .

(1) The first removed from H is (0.9, n3), and n3 is put into closed and clounvis.
Then we find the adjacent vertices of n3, and (2.9, n2) is put into H . Note that (2.9, n5)
would not replace (1.1, n5) in H .

(2) The second removed from H is (1.1, n5). Similarly, n5 is put into closed and
clounvis. Then we find the adjacent vertices of n5 and (5.1, n6) is put into H . At the
moment, n3 and n5 are in closed, and the edge (n3, n5) is not in hE, so we can conclude
that there is no 2-hop friend of v0 on this edge.

(3) The third removed from H is (2.9, n2), and n2 is stored in closed and clounvis.
We find the adjacent vertices of n2, then (4.9, n1) and (5.9, n4) are put into H . For the
adjacent vertices of n2, n3 and n5 are in closed. For the adjacent vertices of n3, n2 and n5

are in closed, so n3 will be removed from clounvis. Since the edge (n2, n3) is in hE, we
find the user object v3 on (n2, n3), and calculate minrdist(pq, v3) according to Formula
(3). So (1.2, v3) is added to R.

(4) The fourth removed from H is (4.9, n1), and n1 is put into closed and clounvis.
Since the adjacent vertex n2 of n1 is in closed, we find the user objects v1 and v2 on
the edge (n1, n2). Calculate minrdist(pq, v1) and minrdist(pq, v2) according to Formula
(3). So (3.3, v2) is stored in R. Because n1 has only one adjacent vertex n2, and n2 is in
closed, we can remove n1 from clounvis.

(5) The fifth removed from H is (5.1, n6), and n6 is put into closed and clounvis.
For the adjacent vertex n7 of n6, (6.7, n7) is put into H . Since the adjacent vertex n5 of
n6 is in closed, and the edge (n5, n6) is not in hE, no user object is found. Because all
the adjacent vertices of n5 are in closed, we can remove n5 from clounvis.

(6) The sixth removed from H is (5.9, n4), and n4 is put into closed and clounvis.
Since the adjacent vertex n2 of n4 is in closed, and the edge (n2, n4) is not in hE, no
user object is found. Because all the adjacent vertices of n2 are in closed, we can remove
n2 from clounvis. Now, we have count ≥ 2 and R.getRoot().rdist ≤ min(clounvis),
where R.getRoot().rdist = minrdist(pq, v2) = 3.3 and min(clounvis) = 5.1, so we
can terminate the query. The process of this example is shown in Table 1.

Table 1. The process of Example 4

Order H .delMin() closed clounvis R

1 (0.9, n3) {n3} {(n3, 0.9)} ∅
2 (1.1, n5) {n3, n5} {(n3, 0.9), (n5, 1.1)} ∅
3 (2.9, n2) {n3, n5, n2} {(n5, 1.1), (n2, 2.9)} {(1.2, v3)}
4 (4.9, n1) {n3, n5, n2, n1} {(n5, 1.1), (n2, 2.9)} {(1.2, v3), (3.3, v2)}
5 (5.1, n6) {n3, n5, n2, n1, n6} {(n2, 2.9), (n6, 5.1)} {(1.2, v3), (3.3, v2)}
6 (5.9, n4) {n3, n5, n2, n1, n6, n4} {(n6, 5.1), (n4, 5.9)} {(1.2, v3), (3.3, v2)}

1292 Zijun Chen et al.

Time complexity of Algorithm 1: First, create the ℓ-hop friend list V ℓ
u for user u,

which is equivalent to a breadth-first search process. So, it takes at most O(|Vs| + |Es|)
to find V ℓ

u . Next, it takes at most O(|Vs|) to create hE. Then, it takes at most O(|Er|) to
find the edge on which pq locates. The top-k nearest user objects are found with the help
of Dijkstra algorithm, so, the time cost is O((|Vr|+ |Er|) · log|Vr|+ |Vs| · to), where to is
the time used to compute the shortest distance between pq and the user object according
to Formula (3). To sum up, the time complexity of Algorithm 1 is O(|Vs|+ |Es|+(|Vr|+
|Er|) · log|Vr|).

5. Method based on IS-Label

Because the method based on Dijkstra algorithm traverses the road network from near to
far, it is not very advantageous that the user object found by query is far from the query
point. Based on this situation, we propose a label-based method. IS-label index [7] is one
of the label indexes, and it is also applicable to large graphs. So, we use IS-label index to
calculate the minimum distance between pq and the vertex.

Algorithm 2: L-RSNCF Query
Input: RSkl-NCF query q = (pq, u, k, ℓ), the road-social network G = (Gr, Gs),

UEHm, IS-Label Index of Gr

Output: Result list R
1 R← ∅, hE ← ∅, count← 0;
2 Queue← NewPriorityQueue();
3 compute V ℓ

u with the adjacency list of the social network Gs;
4 for each user object v ∈ V ℓ

u do
5 find the edge e on which v locates using UEHm and update hE;

6 create the R-Tree index for all edges in hE;
7 get the edge (sqid, tqid) where pq locates;
8 Queue.Enqueue(index.Root,MinDist(pq, index.Root));
9 while not Queue.isEmpty() do

10 temp← Queue.Dequeue();
11 if temp is an object then
12 for each user object v on the edge temp do
13 R.add(rdist(pq, v), v);
14 count++;

15 if count ≥ k then
16 if R.getRoot().rdist ≤ Queue.getRoot().edist then
17 break;

18 else
19 for each child c of temp do
20 Queue.Enqueue(c,MinDist(pq, c));

21 R is sorted in ascending order by the value of rdist();
22 return R;

Nearest Close Friend Query... 1293

Algorithm 2 describes the query process based on IS-Label index, which adopts the
best-first traversal [11]. In line 1, R is the same as that in Algorithm 1. In line 2, Queue
is a min heap, in which the key is the minimum Euclidean distance from a node or an
object to pq (Definition 3). Lines 3-5 is the same as lines 3-5 in Algorithm 1. Line 6
is to create the R-Tree index with the edges in hE. In lines 8-20, best-first traversal is
used to search user objects with the R-Tree index. In lines 11-17, if the element removed
from the priority queue Queue is an edge, we access the user objects on this edge, and
calculate the minimum distance between pq and user objects using the IS-Label index. In
lines 15-17, we could jump out of the while loop early, which is proved in Theorem 2. In
lines 19-20, we process each child c of temp.

We should note that for each edge (a, b) on the road network, we create an object with
Minimum Bounding Rectangle (MBR) containing a and b for the R-Tree index.

Definition 3. (MinDist Distance [21]) In Euclidean space of dimension n, the minimum
distance between a point q and MBR N(s, u) is denoted by MinDist(q,N(s, u)), which
is defined as follows:

MinDist(q,N) =

n∑
i=1

|qi − ri|2, ri =


si, qi < si

ui, qi > ui

qi, otherwise
(4)

As shown in Fig. 5, sqid and tqid are the starting vertex and ending vertex of the
edge on which pq locates respectively. For the user object v, svid and tvid are the starting
vertex and ending vertex of the edge on which v locates respectively. The shortest path
length from pq to v in Algorithm 2 is defined as:

rdist(pq, v) = min{rdist1(pq, v), rdist2(pq, v), rdist3(pq, v), rdist4(pq, v)} (5)

where
rdist1(pq, v) = d(pq, sqid) + rdist(sqid, svid) + d(svid, v)
rdist2(pq, v) = d(pq, tqid) + rdist(tqid, tvid) + d(tvid, v)
rdist3(pq, v) = d(pq, sqid) + rdist(sqid, tvid) + d(tvid, v)
rdist4(pq, v) = d(pq, tqid) + rdist(tqid, svid) + d(svid, v)

v

sqid tqid

tvid svid

pq

Fig. 5. Paths to be chosen for method based on IS-Label

In the following theorem, we would prove the correctness of the termination condition
in lines 15-16 of Algorithm 2. In the condition, count is the size of R, R.getRoot().rdist

1294 Zijun Chen et al.

is the maximum distance in R and Queue.getRoot().edist is the minimum Euclidean
distance in Queue.

Theorem 2. If count ≥ k and R.getRoot().rdist ≤ Queue.getRoot().edist, then Al-
gorithm 2 could sort and return R to terminate the query correctly.

Proof. R is a max-heap with a maximum size of k, so R.getRoot().rdist is the maxi-
mum distance in R. Queue is a min heap, Queue.getRoot().edist is the minimum Eu-
clidean distance in Queue. In order to terminate the query, we should focus on the un-
visited user objects. For any unvisited user object v locating on the edge (a, b), we have
rdist(pq, v) ≥ min(rdist(pq, a), rdist(pq, b)) ≥ Queue.getRoot().edist. Therefore, if
count ≥ k and R.getRoot().rdist ≤ Queue.getRoot().edist, we have rdist(pq, v) ≥
R.getRoot().rdist, which shows that v cannot or need not replace the user object in R.
■

Example 5. For Fig. 3, given a query q = (pq, u = v0, k = 2, ℓ = 2), we illustrate the
query process of Algorithm 2. The 2-hop friend list of v0 and hE are the same as those in
Example 4. Next, we create an R-Tree index for all edges in hE. The MBR of the edge in
hE is shown in Fig. 6 using dashed rectangle.

(1) The first object to be removed from Queue is (n2, n3), and we find the user ob-
ject v3 on the edge (n2, n3). Then we calculate rdist(pq, v3). There are four paths from
pq to v3, which are pq → n3 → n2 → v3, pq → n5 → n3 → v3, pq → n3 →
n3 → v3, pq → n5 → n2 → v3. rdist(n2, n3), rdist(n2, n5), rdist(n3, n5) can be cal-
culated using the IS-Label index. According to Formula (5), we get rdist1(pq, v3) =
4.6, rdist2(pq, v3) = 3.4, rdist3(pq, v3) = 1.2, rdist4(pq, v3) = 4.8. So we get
rdist(pq, v3) = rdist3(pq, v3) = 1.2. Now we have R = {(1.2, v3)}.

(2) The second object to be removed from Queue is (n1, n2), and we find v1 and
v2 on the edge (n2, n3). Using the IS-Label index, we get rdist(pq, v1) = 4.1 and
rdist(pq, v2) = 3.3. Now we have R = {(1.2, v3), (3.3, v2)}.

(3) When (n6, n7) is the root of Queue, we have count ≥ 2 and R.getRoot().rdist ≤
Queue.getRoot().edist. Then we can jump out of the loop early, although v4 on the edge
(n6, n7) has not been processed.

Time complexity of Algorithm 2: In Algorithm 2, we use the traversal of R-Tree to
replace the traversal of the road network using Dijkstra algorithm. According to [11], it
takes at most O(|Er| · log|Er|) to traverse R-Tree. The time of other parts are similar
to that of Algorithm 1, so the time complexity of Algorithm 2 is O(|Vs| + |Es| + |Er| ·
log|Er|).

6. Experiments

6.1. Datasets and setting

This experiment uses two social network datasets and three road network datasets for
testing. The social network datasets are Brightkite(BR) and Gowalla(GA) [3]. They come
from http://snap.stanford.edu/data/. There are three road network datasets: (1)BAY; (2)San
Francisco (SF); (3)City of San Joaquin County (TG). BAY comes from http://users.diag.
uniroma1.it/challenge9/download.shtml. SF and TG come from http://www.cs.utah.edu/˜

Nearest Close Friend Query... 1295

0.6

pq

v0

n5

n1

n2

n3

n7 n4

v9

v4

 v6

v8
v7

v5

v3

v2

v1 2

1.7

6

1.1

0.4

0.9

0.5

0.8

1.1

0.8

1
1 1

0.8

0.8

0.3

1

0.8

n6

Fig. 6. Road network with MBRs

lifeifei/SpatialDataset.htm. The information of the road networks are shown in Table 2.
Standardize the latitude and longitude of the user locations in the two social networks into
a flat two-dimensional space, and then map the user to the nearest intersection or edge on
the road network according to the coordinates. BR rangeBAY and GA rangeBAY rep-
resents the social network dataset of Brightkite and Gowalla within the range of BAY
respectively. The information of the social networks are shown in Table 3. We use two
real datasets:(1) BR rangeBAY + BAY;(2) GA rangeBAY + BAY. BR rangeBAY + BAY
represents the road-social network formed by BR rangeBAY and BAY. GA rangeBAY +
BAY represents the road-social network formed by GA range BAY and BAY. In these two
real data sets, the user objects are sparse, so we also use synthetic datasets for testing.

The synthetic datasets retain the number of vertices in the two social networks and
friendship relationship between users. The uniform function and the Zipf function are
used to randomly allocate the location information of all user vertices, and the range of
the horizontal and vertical coordinates is [0, 10000]. Uniform distribution is used for BR
and GA in Fig. 11(a) and (c) respectively. Zipf distribution is used for BR and GA in
Fig. 11(b) and (d) respectively. We get four synthetic datasets: (1)UBR+TG; (2)ZBR +
TG; (3)UGA + SF; (4)ZGA + SF. UBR+TG represents the dataset formed by BR and
TG, where uniform distribution is used for BR. ZBR+TG represents the dataset formed
by BR and TG, where Zipf distribution is used for BR. UGA + SF represents the dataset
formed by GA and SF, where uniform distribution is used for GA. ZGA + SF represents
the dataset formed by GA and SF, where Zipf distribution is used for GA. Table 4 shows
the density of road-social networks, where the density denotes the ratio of the number of
vertices in the social network to the number of edges on the road network.

1296 Zijun Chen et al.

(a) Uniform for Brightkite

(b) Zipf for Brightkite

(c) Uniform for Gowalla

(d) Zipf for Gowalla

Fig. 7. Data object distributions of the synthetic datasets

Table 2. Statistics of the road network datasets

Road network Vertices Edges
BAY 321270 400086
SF 174956 223001
TG 18263 23874

Table 3. Statistics of the social network datasets

Social network Vertices Edges
BR rangeBAY 2756 3819
GA rangeBAY 4794 11086
Brightkite(BR) 58228 214078
Gowalla(GA) 196591 950327

Nearest Close Friend Query... 1297

Table 4. Density of the road-social network datasets

Road-social network Density
BR rangeBAY + BAY 0.007
GA rangeBAY + BAY 0.012
UBR + TG 2.439
ZBR + TG 2.439
UGA + SF 0.882
ZGA + SF 0.882

Implementation: We implement all the algorithms on the Eclipse platform using Java.
The experimental machine configuration is the Windows 10 operating system, Intel(R)
Core(TM) i5-10500 CPU @ 3.10GHz and 8G RAM. In this experiment, we measure
the average value at each experiment performed 100 times with random query users and
vertices.

Parameters setting:: Parameters setting are shown in Table 5, where ℓ is the friend-
ship degree, k is the number of results, and rd is the Euclidian distance between the
query point location pq and the location of the query user u. The length unit of the data
set BR RangeBAY + BAY and GA RangeBAY + BAY is kilometer. The social network
datasets of the other four datasets are synthesized based on the range of the road network
TG and SF. The coordinate range of TG and SF is [0, 10000], and the range of parameter
rd for the synthetic datasets is [100, 200], [300, 400], [700, 800], [1500, 1600], [3100,
3200], and the default value is [1500, 1600].

Table 5. Parameters setting

Parameter Range Default
ℓ 1, 2, 3, 4, 5 3
k 10, 20, 30, 40, 50 20
rd (for real dataset) [1, 2], [3, 4], [7, 8], [15, 16], [31, 32] [15, 16]

6.2. Performance Evaluation

In order to test the effect of the experiment, RSkℓ-NCF query algorithm based on Dijkstra
(D-RSNCF) and RSkℓ-NCF query algorithm based on IS-Label index (L-RSNCF) were
compared on the datasets of six road-social networks.

(1) Effect of friendship degree ℓ on query time
Fig. 8 demonstrates the effect of varying ℓ. In Fig. 8(a), we set k = 10. As shown

in Fig. 8(a) and (b), with the increase of ℓ, the query speed of D-RSNCF algorithm is
accelerated. This is because with the increase of ℓ, more user objects will be added to
the ℓ-hop friend list of the query user u. Then the query range will become smaller. The
query speed of L-RSNCF is much faster than that of D-RSNCF. The road network used in
Fig. 8(a) and (b) is the largest in the three road network data sets, while few user objects

1298 Zijun Chen et al.

0.01

0.1

1

10

100

1000

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(a) BR rangeBAY + BAY

0.01

0.1

1

10

100

1000

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(b) GA rangeBAY + BAY

0.01

0.1

1

10

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(c) UBR + TG

0.01

0.1

1

10

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(d) ZBR + TG

0.01

0.1

1

10

100

1000

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(e) UGA + SF

0.01

0.1

1

10

100

1000

1 2 3 4 5

Q
ue

ry
 T

im
e(

s)

ℓ

D-RSNCF L-RSNCF

(f) ZGA + SF

Fig. 8. Effect of ℓ on query time

Nearest Close Friend Query... 1299

are mapped to the road network. This situation has a greater impact on D-RSNCF query
algorithm, so D-RSNCF will be much slower in this case. From Fig. 8(a) and (b), we can
see that ℓ has little effect on L-RSNCF.

As shown in Fig. 8(c) and (d), when ℓ reaches a certain value, D-RSNCF is faster than
L-RSNCF. The reason may be that UBR + TG and ZBR + TG have the largest density
in Table 4. Then D-RSNCF may traverse less edges for these two datasets than other
datasets. For larger ℓ, there may be more user objects that meet the friendship degree. So
with ℓ increasing, D-RSNCF may traverse less edges. In Fig. 8(e) and (f), the experimental
effect is similar to that shown in Fig. 8(c) and (d).

(2) Effect of numbers of result k on query time
Fig. 9 demonstrates the effect of varying k. In general, the query time of both methods

increases with the increase of k. The reason is that both methods need to traverse more
edges with k increasing. We can see that the influence of k on L-RSNCF is not obvious.
In Fig. 9(c)-(f), D-RSNCF is faster than L-RSNCF in most cases, which is similar to the
case in Fig. 8(c)-(f). From Fig. 8 and 9, we can see that for the six datasets, the higher the
density of the data set, the shorter the query time, and vice versa.

(3) Effect of distance rd on query time
Fig. 10 shows the efficiency of the two query algorithms by changing the parameter

rd. As shown in Fig. 10(a) and (b), the query time of D-RSNCF increases with the in-
crease of rd. With rd increasing, most of the ℓ-hop friends of the query user u may be far
away from the location of pq . D-RSNCF is based on Dijkstra algorithm, so it will traverse
more edges to find the result in the ℓ-hop friends of u.

As shown in Fig. 10(c) and (e), the user objects are uniformly distributed. Then the
number of user objects in a given range is relatively stable, independent of the value of rd.
So the query time of D-RSNCF is relatively stable with the increase of rd. In Fig. 10(d)
and (f), the user objects follow the Zipf distribution. The number of edges needs to be
traversed by D-RSNCF is uncertain, so the query time of D-RSNCF is uncertain with rd
increasing.

For L-RSNCF, by using R-Tree it traverses only the edges containing the ℓ-hop friends
of the query user u, so the running time is uncertain, as shown in Fig. 10. With the increase
of rd, the running time of L-RSNCF does not change significantly.

6.3. Discussion

In this section, 6 datasets are used to test the two algorithms. D-RSNCF is not as efficient
as L-RSNCF in most cases, but D-RSNCF is more efficient than L-RSNCF on those four
synthetic datasets in most cases. The reason is that these four synthetic datasets have much
higher density than the two real datasets and D-RSNCF is based on Dijkstra algorithm. For
high-density dataset, the search range becomes smaller, so D-RSNCF is more efficient.
For dataset with lower density, the search range of D-RSNCF will become larger and the
efficiency will become lower. L-RSNCF is based on IS-Label index, so the change of
dataset density has no obvious impact on the running time of L-RSNCF.

7. Conclusion

This paper makes an in-depth exploration of the k-nearest ℓ-close friends (kℓ-NCF) query
in road-social networks. The RSkℓ-NCF query algorithm based on Dijkstra (D-RSNCF)

1300 Zijun Chen et al.

0.01

0.1

1

10

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(a) BR rangeBAY + BAY

0.01

0.1

1

10

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(b) GA rangeBAY + BAY

0

0.03

0.06

0.09

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(c) UBR + TG

0

0.02

0.04

0.06

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(d) ZBR + TG

0

0.2

0.4

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(e) UGA + SF

0

0.1

0.2

1 0 2 0 3 0 4 0 5 0

Q
ue

ry
 T

im
e(

s)

k

D-RSNCF L-RSNCF

(f) ZGA + SF

Fig. 9. Effect of k on query time

Nearest Close Friend Query... 1301

0

4

8

1 - 2 3 - 4 7 - 8 1 5 - 1 6 3 1 - 3 2

Q
ue

ry
 T

im
e(

s)

rd(km)

D-RSNCF L-RSNCF

(a) BR rangeBAY + BAY

0

2

4

1 - 2 3 - 4 7 - 8 1 5 - 1 6 3 1 - 3 2

Q
ue

ry
 T

im
e(

s)

rd(km)

D-RSNCF L-RSNCF

(b) GA rangeBAY + BAY

0

0.04

0.08

0.12

1 0 0 -
2 0 0

3 0 0 -
4 0 0

7 0 0 -
8 0 0

1 5 0 0 -
1 6 0 0

3 1 0 0 -
3 2 0 0

Q
ue

ry
 T

im
e(

s)

rd

D-RSNCF L-RSNCF

(c) UBR + TG

0

0.02

0.04

1 0 0 -
2 0 0

3 0 0 -
4 0 0

7 0 0 -
8 0 0

1 5 0 0 -
1 6 0 0

3 1 0 0 -
3 2 0 0

Q
ue

ry
 T

im
e(

s)

rd

D-RSNCF L-RSNCF

(d) ZBR + TG

0

0.2

0.4

0.6

1 0 0 -
2 0 0

3 0 0 -
4 0 0

7 0 0 -
8 0 0

1 5 0 0 -
1 6 0 0

3 1 0 0 -
3 2 0 0

Q
ue

ry
 T

im
e(

s)

rd

D-RSNCF L-RSNCF

(e) UGA + SF

0

0.1

0.2

0.3

1 0 0 -
2 0 0

3 0 0 -
4 0 0

7 0 0 -
8 0 0

1 5 0 0 -
1 6 0 0

3 1 0 0 -
3 2 0 0

Q
ue

ry
 T

im
e(

s)

rd

D-RSNCF L-RSNCF

(f) ZGA + SF

Fig. 10. Effect of rd on query time

1302 Zijun Chen et al.

and the RSkℓ-NCF query algorithm based on IS-Label index (L-RSNCF) are proposed.
For both methods, several hash tables are used to speed the query. D-RSNCF is based on
Dijkstra algorithm to traverse the user objects needed. L-RSNCF is based on IS-Label and
R-Tree to traverse the user objects needed. Real datasets and synthetic datasets are used
to test the two algorithms.Through experiments, we find that D-RSNCF is more suitable
for dataset with high user object density, while L-RSNCF is just the opposite.

References

1. Ahuja, R., Armenatzoglou, N., Papadias, D., Fakas, G.J.: Geo-social keyword search. In: Pro-
ceedings of the 14th International Symposium on Advances in Spatial and Temporal Databases,
SSTD 2015, Hong Kong, China. pp. 431–450 (2015)

2. Attique, M., Afzal, M., Ali, F., Mehmood, I., Ijaz, M.F., Cho, H.: Geo-social top-k and skyline
keyword queries on road networks. Sensors 20(3), 798 (2020)

3. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-
based social networks. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA. pp. 1082–1090 (2011)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1,
269–271 (1959)

5. Dong, T., Lulu, Y., Cheng, Q., Cao, B., Fan, J.: Direction-aware KNN queries for moving
objects in a road network. World Wide Web 22(4), 1765–1797 (2019)

6. Emrich, T., Franzke, M., Mamoulis, N., Renz, M., Züfle, A.: Geo-social skyline queries. In:
Proceedings of the 19th International Conference on Database Systems for Advanced Applica-
tions, DASFAA 2014, Part II, Bali, Indonesia. vol. 8422, pp. 77–91 (2014)

7. Fu, A.W., Wu, H., Cheng, J., Wong, R.C.: IS-LABEL: an independent-set based labeling
scheme for point-to-point distance querying. Proceedings of the VLDB Endowment 6(6), 457–
468 (2013)

8. Ghosh, B., Ali, M.E., Choudhury, F.M., Apon, S.H., Sellis, T., Li, J.: The flexible socio spatial
group queries. Proceedings of the VLDB Endowment 12(2), 99–111 (2018)

9. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceedings of
the ACM SIGMOD Annual Meeting on Management of Data, SIGMOD 1984, Boston, Mas-
sachusetts, USA. pp. 47–57 (1984)

10. He, D., Wang, S., Zhou, X., Cheng, R.: An efficient framework for correctness-aware kNN
queries on road networks. In: Proceedings of the 35th IEEE International Conference on Data
Engineering, ICDE 2019, Macao, China. pp. 1298–1309 (2019)

11. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on
Database Systems 24(2), 265–318 (1999)

12. Hu, H., Lee, D.L., Xu, J.: Fast nearest neighbor search on road networks. In: Proceedings of
the 10th International Conference on Extending Database Technology, EDBT 2006, Munich,
Germany. pp. 186–203 (2006)

13. Jiang, J., Lu, H., Yang, B., Cui, B.: Finding top-k local users in geo-tagged social media data.
In: Proceedings of the 31st IEEE International Conference on Data Engineering, ICDE 2015,
Seoul, South Korea. pp. 267–278 (2015)

14. Jiang, M., Fu, A.W., Wong, R.C.: Exact top-k nearest keyword search in large networks. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia. pp. 393–404 (2015)

15. Kim, W., Shim, C., Heo, W., Yi, S., Chung, Y.D.: Moving view field nearest neighbor queries.
Data & Knowledge Engineering 119, 58–70 (2019)

16. Lee, K.C.K., Lee, W., Zheng, B., Tian, Y.: ROAD: A new spatial object search framework for
road networks. IEEE Transactions on Knowledge and Data Engineering 24(3), 547–560 (2012)

Nearest Close Friend Query... 1303

17. Li, Q., Zhu, Y., Yu, J.X.: Skyline cohesive group queries in large road-social networks. In: Pro-
ceedings of the 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas,
TX, USA. pp. 397–408 (2020)

18. Liu, W., Sun, W., Chen, C., Huang, Y., Jing, Y., Chen, K.: Circle of friend query in geo-social
networks. In: Proceedings of the 17th International Conference on Database Systems for Ad-
vanced Applications, DASFAA 2012, Part II, Busan, South Korea. pp. 126–137 (2012)

19. Ma, Y., Yuan, Y., Wang, G., Bi, X., Wang, Y.: Personalized geo-social group queries in location-
based social networks. In: Proceedings of the 23rd International Conference on Database Sys-
tems for Advanced Applications, DASFAA 2018, Part I, Gold Coast, QLD, Australia. pp. 388–
405 (2018)

20. Ouyang, D., Wen, D., Qin, L., Chang, L., Zhang, Y., Lin, X.: Progressive top-k nearest neigh-
bors search in large road networks. In: Proceedings of the 2020 International Conference on
Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA]. pp.
1781–1795 (2020)

21. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, San Jose, California, USA.
pp. 71–79 (1995)

22. Shim, C., Kim, W., Heo, W., Yi, S., Chung, Y.D.: Nearest close friend search in geo-social
networks. Information Sciences 423, 235–256 (2018)

23. Shim, C., Sim, G., Chung, Y.D.: Cohesive ridesharing group queries in geo-social networks.
IEEE Access 8, 97418–97436 (2020)

24. Sohail, A., Cheema, M.A., Taniar, D.: Social-aware spatial top-k and skyline queries. The Com-
puter Journal 61(11), 1620–1638 (2018)

25. Sohail, A., Hidayat, A., Cheema, M.A., Taniar, D.: Location-aware group preference queries in
social-networks. In: Proceedings of the 29th Australasian Database Conference on Databases
Theory and Applications, ADC 2018, Gold Coast, QLD, Australia. pp. 53–67 (2018)

26. Zhao, J., Gao, Y., Chen, G., Jensen, C.S., Chen, R., Cai, D.: Reverse top-k geo-social keyword
queries in road networks. In: Proceedings of the 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA. pp. 387–398 (2017)

27. Zhao, J., Gao, Y., Ma, C., Jin, P., Wen, S.: On efficiently diversified top-k geo-social keyword
query processing in road networks. Information Sciences 512, 813–829 (2020)

28. Zhao, S., Xiong, L.: Group nearest compact POI set queries in road networks. In: Proceedings
of the 20th IEEE International Conference on Mobile Data Management, MDM 2019, Hong
Kong, SAR, China. pp. 106–111 (2019)

29. Zhong, R., Li, G., Tan, K., Zhou, L., Gong, Z.: G-tree: An efficient and scalable index for spatial
search on road networks. IEEE Transactions on Knowledge and Data Engineering 27(8), 2175–
2189 (2015)

30. Zhu, Q., Hu, H., Xu, C., Xu, J., Lee, W.: Geo-social group queries with minimum acquaintance
constraints. The VLDB Journal 26(5), 709–727 (2017)

Zijun Chen received the bachelor’s degree from the Northeast Heavy Machinery Insti-
tute, China, the master’s degree from Yanshan University, and the PhD degree from Fudan
University in 2002, all in computer science. Since 1995, he has been with the School of
Information Science and Engineering, Yanshan University, Qinhuangdao, China, where
he is currently a professor. His research interests include moving object databases, spatio-
temporal databases and graph databases.

Ruoyu Jiang received the bachelor’s degree in software engineering from Hebei Normal
University, China, in 2018. She received the master’s degree in computer technology from
Yanshan University, China, in 2021. Her research interest includes geo-social networks.

1304 Zijun Chen et al.

Wenyuan Liu received the bachelor’s and master’s degrees from the Northeast Heavy
Machinery Institute, China, and the PhD degree from the Harbin Institute of Technology
in 2000, all in computer science. Since 1996, he has been with the School of Information
Science and Engineering, Yanshan University, Qinhuangdao, China, where he is currently
a professor. His research interests include wireless sensor networks and mobile networks.

Received: August 30, 2021; Accepted: July 30, 2022.

	Introduction
	Related work
	kNN query on road network
	Geo-Social query
	Road-Social networks query

	Problem definition
	Method based on Dijkstra algorithm
	Method based on IS-Label
	Experiments
	Datasets and setting
	Performance Evaluation
	Discussion

	Conclusion

