
Computer Science and Information Systems 17(1):229–252 https://doi.org/10.2298/CSIS180717038L

Visualization of path patterns in semantic graphs ?

José Paulo Leal

CRACS & INESC-Tec LA, Faculty of Sciences, University of Porto
Porto, Portugal

zp@dcc.fc.up.pt

Abstract. Graphs with a large number of nodes and edges are difficult to visualize.
Semantic graphs add to the challenge since their nodes and edges have types and
this information must be mirrored in the visualization. A common approach to cope
with this difficulty is to omit certain nodes and edges, displaying sub-graphs of
smaller size. However, other transformations can be used to summarize semantic
graphs and this research explores a particular one, both to reduce the graph’s size
and to focus on its path patterns.
A-graphs are a novel kind of graph designed to highlight path patterns using this
kind of summarization. They are composed of a-nodes connected by a-edges, and
these reflect respectively edges and nodes of the semantic graph.
A-graphs trade the visualization of nodes and edges by the visualization of graph
path patterns involving typed edges. Thus, they are targeted to users that require a
deep understanding of the semantic graph it represents, in particular of its path pat-
terns, rather than to users wanting to browse the semantic graph’s content. A-graphs
help programmers querying the semantic graph or designers of semantic measures
interested in using it as a semantic proxy. Hence, a-graphs are not expected to com-
pete with other forms of semantic graph visualization but rather to be used as a
complementary tool.
This paper provides a precise definition both of a-graphs and of the mapping of se-
mantic graphs into a-graphs. Their visualization is obtained with a-graphs diagrams.
A web application to visualize and interact with these diagrams was implemented
to validate the proposed approach.
Diagrams of well-known semantic graphs are presented to illustrate the use of a-
graphs for discovering path patterns in different settings, such as the visualization of
massive semantic graphs, the codification of SPARQL or the definition of semantic
measures.
The validation with large semantic graphs is the basis for a discussion on the insights
provided by a-graphs on large semantic graphs: the difference between a-graphs and
ontologies, path pattern visualization using a-graphs and the challenges posed by
large semantic graphs.

Keywords: Semantic Graph Visualization, Semantic Graph Summarization, Linked
Data Visualization, Path Pattern Discovery, Semantic Graph Transformation

1. Introduction

Graphs, like most mathematical entities, are inherently visual. In fact, our mathematical
intuition relies heavily on our ability to visualize angles, functions, vectors or geomet-
ric figures. It fails us, for instance, when we try to visualize a hypercube. However, the
? This is an extended version of an article presented at SLATE’18 [16].

230 José Paulo Leal

projection of multidimensional solids in 3- or 2-dimensional spaces gives us an idea of
these entities’ shape. The visualization of the hypercube is an apt metaphor of the key
insight that drives this research: the understanding of a complex entity may be improved
by looking at the shadow it casts.

Graphs have a particular role in visualization since they are the data model of most
diagrams. Diagrams enrich graphs in two ways: a graphical syntax for nodes and edges;
and the layout of nodes and edges on a surface. Different kinds of diagrams have been
developed for many purposes. These diagrammatic languages are used for modeling and
visualizing relationships among entities, even when they are purely abstract.

In spite of their ability to show relationships and symmetries, large diagrams are diffi-
cult to visualize. Too many nodes and too many entangled edges reduce our perception on
the underlying graph. This is particularly the case of the semantic web, where graphs are
growing increasingly larger and denser. Section 2 presents different attempts to provide
visualizations of large semantic graphs, with efficient approaches to process large quanti-
ties of data and methods to abstract them, mostly by omitting nodes and edges with certain
features. These diagrams represent the graphs themselves, and the layout may highlight
general properties, such as symmetry, but usually they do not reveal specific features such
as patterns formed by nodes and edges.

spouseOf

parentOf

Fig. 1. Immediate family relationships graph

Consider the diagram in Figure 1 that depicts immediate family relationships. Nodes
represent persons and there are two types of edges: the dotted edges represent the spouseOf
relationship and the dashed edges represent parentOf. The edges in this graph can be sum-
marized by the a-graph in Figure 2 that represents edge types as nodes. This kind of graph
resembles line graphs [12] that represent adjacencies between edges of a graph, although
a-graphs represent adjacencies between edge types. For that reason, the corresponding a-
graph is much smaller than the original graph. Moreover, even if the number of nodes and
edges increases in the original graph, the structure of the a-graph may remain unchanged.

Visualization of path patterns in semantic graphs 231

For instance, if the immediate family relationship graph was extended to consider all the
humans that ever lived, the corresponding a-graph would still be similar to the one de-
picted in Figure 2.

parentOfspouseOf

Fig. 2. Immediate family relationships a-graph

The novelty of the a-graph approach is the abstraction of large semantic graphs into
a much smaller graph highlighting its path patterns. The abstraction process consist on
mapping semantic graphs into a-graphs, a particular kind of graph with an associated di-
agram type. Sets of edges with the same type are mapped into nodes and sets of nodes
into edges. Section 3 defines a-graphs and their relationship with semantic graphs. It also
introduces the a-graph diagrams used for their visualization and provides small exam-
ples of this kind of diagram. The final subsection compares a-graphs with other forms of
representing the properties of semantic graphs, such as ontologies.

An implementation of the mapping and diagram layout is described in Section 4. It is
deployed as a web application for browsing a-graphs and exporting them as vector images,
such as the diagram shown in Figure 2. It is available online1 and is useful to validate the
proposed approach. Section 5 presents examples of diagrams produced with this tool to
illustrate different techniques to create meaningful visualizations of large semantic graphs
and discover relevant path patterns. Section 6 discusses the relationship between a-graphs
and ontologies, the efficacy and efficiency of a-graphs to display path patterns and the
ability and limitations of the current implementation to manage large semantic graphs.
The last section summarizes the a-graph proposal, highlights its main contributions and
identifies opportunities for future research.

2. Related Work

A-graphs are abstract representations of semantic graphs and thus related to graph sum-
marization [18]. This research field covers a wide variety of graph types, from plain
graphs described by an adjacency matrix to dynamic graphs described by data streams,
encompassing also labelled graphs. Semantic graphs are typed and types of nodes and
edges can be seen as labels.

The most popular approaches to graph summarization involve compression and group-
ing techniques. The former is inspired by information theory concepts, namely minimum

1 http://quilter.dcc.fc.up.pt/antigraph

232 José Paulo Leal

description length (MDL), to detect and compress frequent structures in graphs. The latter
aggregates nodes into supernodes connected by super edges to create a new structure, a
supergraph. In the case of labelled graphs, grouped nodes are structurally close to each
other. Many of these graph summarization approaches are database-centred and only a few
emerged from semantic graphs [18]. For instance, Song et al. [19] proposed an approach
to summarize knowledge graph characterized by graph patterns, called d-summaries, that
produce a supergraph as summarization. None of these approaches reverses edges for
nodes.

Graphs summarization has several applications. Some of these applications are outside
the scope of this research, such as to reduce data volume in storing of massive graphs, to
speedup graphs algorithms and queries. Other applications are in tune with the objectives
of a-graphs, such as to reduce noise in graphs or to support interactive visualization of
massive graphs. However, most approaches to semantic graph visualization described in
the literature do not rely on graph summarization.

Knowledge bases such as WordNet2 [8], Yago3 [15] and DBpedia4 [4], have a massive
amount of information. A typical representation of these knowledge bases are node-link
multigraphs, where each node has a type and nodes are connected by links representing
the relationship between them.

A convenient way to analyze this data is using data visualization. The most common
type of visualization is focused on the analysis of resources, in particular, those with a
high outdegree. The main challenge of semantic graph visualization and management is
related to the graph size. This type of graphs has several thousands of nodes and edges
and is usually very dense.

The literature presents several approaches to handle the visualization and manage-
ment of node-link graphs. Most of the related work on massive graphs visualization is
handled through hierarchical visualization. This type of approach has low memory re-
quirements, however, it depends on the characteristics of the graph. The graph hierarchy
can be extracted using different kinds of methods. Tools such as ASK-GraphView [1],
Tulip [3] and Gephi [5] explore clustering and partitioning methods, creating an abstrac-
tion of the original graph, using graph summarization, that is easier to visualize. Another
technique used to build hierarchies is based on the combination of edge accumulation
with density-based node aggregation [21]. Visual complexity can also be reduced by hub-
based hierarchies, where the graph is fragmented into smaller components, containing
many nodes and edges, making meta nodes, as described in [17]. GrouseFlocks [2] allows
users to manually define their own hierarchies.

There are specific tools when the semantic graph is in Resource Description Frame-
work (RDF) format, however, they require loading the full graph. Some desktop-based
tools, such as Protégé 5 and RDF Gravityare mainly used with purpose of aiding de-
velopers to construct their ontologies, providing also complex graph visualizations. Of
all available tools for linked data visualization the most notable ones are the following.
Fenfire [13] is a generic RDF browser and editor that provides a conventional graph rep-
resentation of the RDF model. The visualization is scalable by focusing on one central

2 https://wordnet.princeton.edu/
3 https://www.mpi-inf.mpg.de/yago-naga/yago
4 http://wiki.dbpedia.org/
5 http://protege.stanford.edu/

Visualization of path patterns in semantic graphs 233

node and its surroundings. RelFinder6 [14] is a tool that extracts from a Linked Open
Data (LOD) source the graph of the relationships between two subjects. It provides an
interactive visualization by supporting systematic analysis of the relationships, such as
highlighting, previewing and filtering features. ZoomRDF [20] is a framework for RDF
data visualization and navigation that uses three special features to support large scale
graphs. It uses space-optimized visualization algorithms that display data as a node-link
diagram using all visual space available. Fish-eye zooming is another feature that allows
the exploration of selected elements details, while providing the global context. The last
feature is the Semantic Degree of Interest assigned to all resources that consider both the
relevance of data and user interactions. LODeX [6] produces a high-level summarization
of a LOD source and its inferred schema using SPARQL endpoints. The representative
summary is both visual and navigable. The platform graphVizdb7 [7] is a tool for efficient
visualization and graph exploration. It is based on a spatial-oriented approach that uses a
disk-based implementation to support interactions with the graph.

3. A-graph definition

The most distinctive feature of a-graphs is that nodes and edges are reversed relatively to
the semantic graphs that generated them. Subsection 3.1 explains the motivation behind
this decision and characterizes the main components of a-graphs, namely a-nodes and
a-edges, as well as their features.

The proposed approach to the visualization of semantic graphs can be divided into
two parts. Firstly, the semantic graph is abstracted to another graph – the a-graph – that
promotes types of edges. Secondly, this abstracted graph is visualized using a special
kind of diagram – the a-graph diagram – that emphasises path patterns. The following
two subsections detail each facet of the a-graph approach.

3.1. Motivation

Nodes have the main role in a graph. Edges connect nodes and establish relationships
among them. The goal of a-graphs is to abstract a given graph, highlighting edges and re-
ducing its size. Hence, in an a-graph nodes and edges are reversed, i.e. an a-node abstracts
edges and an a-edge abstracts nodes.

It is important to note that an a-node abstracts an edge type rather than a single edge.
Hence the order (the number of nodes) of an a-graph is in general much smaller than that
of the graph it abstracts. For instance, the graph of WordNet 2.1 has about 2 million edges
with 27 edge types, hence 27 is the order of the reductions that abstract it.

An a-edge expresses a relationship between a pair of a-nodes, namely that the edge
types it represents can be connected to form a length 2 path. Two edges form a length 2
path when the target of the first is the source of the second. Since an a-edge represents a
set of nodes, the size (the number of edges) of an a-graph is much smaller than the size of
the graph it abstracts. Considering that a-edges can be loops, the number of a-edges is less
or equal to n2, where n is the number of a-nodes. For instance, the size of the WordNet

6 http://www.visualdataweb.org/relfinder.php
7 graphvizdb.imis.athena-innovation.gr/

234 José Paulo Leal

2.1 graph is about half a million but the size of its a-graph is only 214, well below the
maximum of 272 = 729.

The expressiveness of a-nodes and a-edges is increased by adding weights to them.
The weight of an a-node is the percentage of edges with the type it abstracts. For instance,
if a graph has half of its edges of type t then the a-node reflecting t has weight 1/2.
Hence, a-nodes with higher weight reflect edge types that are more frequent in the graph.
Obviously, the sum of a-node weights must be 1.

By the same token, the weight of an a-edge is the percentage of nodes that participate
in length 2 paths involving edge types they have as source and target, respectively. For
instance, if an a-node reflects the edge type t1 and another the edge type t2, and 1/3 of
the nodes are target of t1 and source of t2, then the weight of the a-edge t1 → t2 is 1/3.

One would expect every node to be reflected by an a-edge, but for that to happen the
nodes that are just sources (not the target of any edge) or just targets (not the source of any
edge) must also be abstracted by a-edges. To ensure that all nodes are reflected by a-edges
it is necessary to introduce two special a-nodes: bottom, denoted as ⊥; and top, denoted
by >. The bottom a-node represents a nonexisting edge type that would come before the
start of a path. Conversely, the top a-node represents a nonexisting edge type that would
come after the end of a path. Both special a-nodes have weight 0, thus maintaining the
invariant that the sum of all weights is 1.

The two special a-nodes – bottom and top – allow the definition of a-edges that ab-
stract nodes that are only source or target of edges. These a-nodes are considered special
to differentiate them from regular a-nodes, that have an associated edge type. The a-edge
⊥→ t abstracts the nodes with a null indegree that are sources of edges with type t, and
the a-edge t → > abstracts the nodes with a null outdegree that are targeted by edges of
type t.

In fact, both the indegrees and outdegrees of nodes must be taken into consideration
in the weight of all a-edges. Consider a node n with indegree 2 and outdegree 3. For
instance, if the two incoming edges and the three outgoing are of different types then
the contribution of that node to each a-edge is 1/6. Thus, the weight of an a-edge is the
percentage of connecting nodes in paths formed by the edge types, pondered by their
in(out)degrees. With this definition, the sum of a-edges weights is also 1.

As explained above, the introduction of the special a-nodes bottom and top is essen-
tial to abstract all the nodes of the original graph in a-edges connecting them. One may
wonder what other a-nodes types should be considered. It should be noted that a-nodes
may have a-edge loops if the graph contains homogeneous paths, i.e. paths formed by a
single type of edge. Since the goal of a-graphs is to highlight path patterns, it is important
to distinguish different cases that would be amalgamated by generic a-nodes with loops.

Certainly, not all a-nodes have loops. These are considered shallow a-nodes since they
have at most paths of length 1. In contrast a deep a-node has homogeneous paths of higher
length through its loop. Special cases of deep a-nodes can be also considered: cyclical,
where the loops contain homogeneous cycles, i.e. cycles using only the type of edge
represented by the a-node; and hierarchical, where the loops represent confluent paths,
i.e. where the nodes in homogeneous paths have branching factor above or equal to 2.
These types provide information on the kind of paths formed “within” an a-node, similar
to the information that can be extracted from other a-edges relating different a-nodes.

Visualization of path patterns in semantic graphs 235

In summary, an a-graph is an abstraction of a semantic graph. This does not mean that
an a-graph is a sort of schema. A semantic graph does not comply with its a-graph, it is
the other way round: a-graphs have a functional dependency to semantic graphs. Thus,
the information provided by an a-graph is of a different nature of that of an RDF or OWL
ontology, as discussed in Subsection 6.1.

3.2. Abstraction map

The previous subsection introduced the concepts of a-node, a-edge and their weights, as
well as the map between a semantic graph and the a-graph that it abstracts. This subsection
formalizes those concepts, starting by precising the concept of semantic graph. A semantic
graph G can be defined as a tuple G = (N,E, TN , TE , tN, tE) where:

set of nodes N
set of edges E ⊆ {(s, t) : s ∈ N ∧ t ∈ N}
set of types of nodes9 TN

set of types of edges10 TE

types of nodes tN : N → TN

types of edges tE : E → TE

The a-graph A of graph G is produced by a map defined as

abstract : G →A
(N,E, TN , TE ,MN ,ME) 7→ (N ′, E′,W ′

N ,W ′
E , tN ′)

It should be noted that the a-graph A is an abstraction of a semantic graph G, not itself
a semantic graph. The a-graph A is a tuple where:

set of a-nodes N ′ = TE ∪ {> ⊥}
set of a-edges E′ = E′

0 ∪ E′
⊥ ∪ E′

>
weight of a-nodes wN : N ′ → [0, 1]
weight of a-edges wE : E′ →]0, 1]
type of a-nodes tN ′ : N ′ → T ′ where

T ′ = {shallow deep cyclic hierarchical top bottom}

As defined above, the set of a-nodes is the union of types of edges of G with special
nodes > (top) and ⊥ (bottom). The definition of the set of a-edges is also the union of
three sets, namely the set of regular a-edges E′

0, the set of bottom a-edges E′
⊥, and the set

of top a-edges E′
>.

An ordered pair (⊥, t′) is in the set E′
⊥ if there is an edge of type t′ where the source

node s has a null indegree (deg-(s) = 0).

9 In an RDF graph, this would be set of URIs referring to resources rather than a set of RDFS
classes

10 In an RDF graph, this would be set of URIs referring to properties

236 José Paulo Leal

E′
⊥ = {(⊥, t′) : t′ ∈ TE ∧

(∃(s, t) ∈ E : tE((s, t)) = t′) ∧
deg-(s) = 0 }

Similarly, an ordered pair (s′,>) is in the set E′
> if there is an edge of this type where

the target node t has a null outdegree (deg+(t) = 0).

E′
> = {(s′,>) : s′ ∈ TE ∧

(∃(s, t) ∈ E : tE((s, t)) = s′) ∧
deg+(t) = 0 }

Finally, an ordered pair (s′, t′) of a-nodes is in a set of regular a-edges if there is a
path in the graph involving the two edge types.

E′
0 = {(s′, t′) : s′ ∈ TE ∧ t′ ∈ TE ∧

(∃(s,m) ∈ E : tE((s,m)) = s′) ∧
(∃(m, t) ∈ E : tE((m, t)) = t′) }

By definition, the weight of the special a-nodes, top and bottom, is null; and these are
the only a-nodes with null weight. The nonnull weight of a regular a-node n′ is the ratio
between the number of edges with that type and the total number of edges

wN(n
′) =

]{e : e ∈ E ∧ tE(e) = n′}
]E

The weight of an a-edge must be computed differently when its source s′ or target
t′ have special a-nodes. If the source s′ = ⊥ then the n-tuple Bt′ of nodes to consider
contains those that are sources of an edge of type t′ with a null indegree. The reader
should note that this is an n-tuple rather than a set, where each node s may appear more
than once. The order of the nodes in the n-tuples is immaterial. The purpose of the n-
tuples is merely to count the number of nodes. In all n-tuples Bt′ , as defined below, each
node s is repeated as many times as its outdegree deg+(s).

Bt′ = (s : (s, t) ∈ E ∧ tE((s, t)) = t′ ∧ deg-(s) = 0)

Similarly, if the target t′ = > then the n-tuple of nodes to consider is those that are the
target of an edge of type s′ with a null outdegree. In all n-tuples Ts′ each node t appears
repeated as many times as its indegree deg-(t).

Ts′ = (t : (s, t) ∈ E ∧ tE((s, t)) = s′ ∧ deg+(t) = 0)

Otherwise, if none of them is a special a-node then the nodes to consider are those
that participate in paths of length 2 where the first edge has type s′ and the second has
type t′. In this case the node m appears repeated deg-(m) deg+(m) times.

Visualization of path patterns in semantic graphs 237

Rt′

s′ = (m : (s,m) ∈ E ∧ (m, t) ∈ E ∧ tE((s,m)) = s′ ∧ tE((m, t)) = t′)

The weight of an a-edge wN((s
′, t′)) sums the contribution of n-tuples sets according

to each case. The contribution of each node is pondered with the inverse of its indegrees
or outdegrees, when these are not null. Thus, the definition of weight function is the
following,

wN((s
′, t′)) =


1
]E

∑
s∈Bt′

1
deg+(s) if s′ = ⊥

1
]E

∑
t∈Ts′

1
deg-(t) if t′ = >

1
]E

∑
m∈Rt′

s′

1
deg-(m) deg+(m) otherwise

Finally, the tN ′ function maps a-nodes to a type in T ′. The definition of this function
is based on the concept of graph reduction. A reduction of the graph G by the type t ∈ T
is the largest subgraph of G that has only edges of type t and without disconnected nodes;
i.e. nodes that are not the source or target of edges of type t are removed. It should be
noted that in general a graph reduction Gt has many strongly connected components, in
some cases as many as the number of edges (a value property, for instance). Consider the
following functions defined over the set of G of all graph reductions:

size of the largest path slp : G → N
number of cycles nc : G → N
average branching factor abf : G → R

Using these functions over graph reductions the a-node type function is defined as
follows.

tN ′(n′) =



shallow if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) < 3

deep if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) >= 3 ∧ abf(Gn′) < 2

hierarchic if n′ ∈ TE ∧ nc(Gn′) = 0

∧ slp(Gn′) >= 3 ∧ abf(Gn′) >= 2

cycle if n′ ∈ TE ∧ nc(Gn′) > 0

top if n′ = >
bottom if n′ = ⊥

The codomain of tN ′ captures a number of elemental path patterns involving a single
edge type. Shallow a-nodes correspond to paths with a single edge. Deep a-nodes cor-
respond to larger paths such as those resulting from transitive edges. Hierarchic a-nodes
are in fact a special case of deep a-nodes, where paths converge to a single, or a set of,
root nodes; these edges form hierarchies and are particularly interesting for discovering
edges types for path based semantic measures [10]. Finally, cyclic a-nodes are created by
reflexive edges.

238 José Paulo Leal

The constants in the definition of tN ′ require some explanation. The threshold of 0 in
the number of cycles [nc(Gn′)] to distinguish a cycle from other regular types is rather
obvious, but not the threshold of 3 in the size of largest path [slp(Gn′)]. A threshold of
2 was, in fact, the first choice, but there are cases where paths of size 3 occur without
changing the type of an a-node. The most notable example is rdf:type. Since RDF types
have themselves a type (rdfs:Class), length 3 paths are usual in semantic graphs, but
they should be considered shallow and not hierarchic. Finally, with an average branching
factor [abf(Gn′)] above or equal to 2 the paths in a graph reduction form a hierarchy that
is suitable for classification. That is usually the case of rdfs:subClassOf, for instance, that
in conjunction with rdf:type creates a taxonomic relationship [10].

3.3. Diagram language

As explained in the previous Subsection, an a-graph is an abstraction of a semantic graph.
The a-graph diagram language is a visual representation of an a-graph intended to high-
light the path patterns of the abstracted semantic graph. An a-graph has a-nodes of differ-
ent types connected by a-edges.

deepshallow cyclehierar.

Fig. 3. Catalog of a-node types

The type of an a-node is conveyed by its shape. A shallow a-node is represented by a
horizontal rectangle, while a deep a-node is represented by a vertical rectangle. The height
of these rectangles is a visual cue of the path sizes contained in these a-nodes. A cyclical
a-node is represented by a circle or an ellipse, and a hierarchical a-node is represented by
an isosceles trapezoid. The position of these shapes is their geometric center. The a-graph
depicted in Figure 3 is a sort of catalog of a-node types, where the label of each regular
a-node is the type’s name.

The bottom and top a-nodes are represented by a pair of parallel lines rather than
shapes. As can be seen also in Figure 3, the parallel lines that represent each of these a-
nodes have different widths. The bottom a-node has a larger upper line and the top a-node
is the reverse. The bottom and top a-nodes are located respectively at the bottom and top
of the diagram, as their names suggest. This way the paths created by a-edges tend to be
directed upwards.

Unlike a-nodes, a-edges have a single type. Hence, they are represented all by solid
lines with an arrowhead positioned in their middle pointing to the target. Lines connecting
from the bottom a-node, or to top a-node, are straight. All the others are curved so that
a-edges with opposite directions do not overlap.

Visualization of path patterns in semantic graphs 239

A-nodes and a-edges have weights in the [0, 1] interval. Actually, both regular a-nodes
and a-edges have always nonnull weights; special a-nodes (top and bottom) have null
weights by definition. The nonnull weights of regular a-nodes and a-edges are conveyed
graphically too. The weight of an a-node is shown as a transparency, making dimmer
the a-edges representing a smaller number of edges in the abstracted graph. The same
principle applies to weights of a-edges. In this case, the weight is also shown as line
width, making thicker the a-edges that represent a larger number of nodes. The semantic
graph that originated the a-graph in Figure 3 has all edge types with the same number
of edges, hence all a-nodes have the same weight, thus they all have the same shade. A
different thing happens with a-edges; each has a different shade, reflecting their different
weights.

The regular a-nodes in the catalog diagram are not connected to each other, just to bot-
tom and top (with the exception of the cycle). This means that they do not form “joins”.
Using a syntax borrowed from SPARQL, it can be said that the semantic graph that gen-
erated it lacks triple patterns of the form

?a ?p ?b .
?b ?q ?c .

hasSubSectionhasChapter hasSection

Fig. 4. Book structure

The example in Figure 4 represents the structure of books, where a book has chapters
and these have sections. The a-graph of such semantic graph has the properties hasChap-
ter, hasSection and hasSubSection.

In this case “joins” are created using multiple edge types hence the a-nodes have a-
edges connecting them. In particular hasChapter is connected to hasSection and this to
hasSubSection. The reader should note that the three regular a-nodes are connected to the
top, meaning that there are chapters, sections and subsections that are not subdivided, and
that only hasChapter is connected from bottom, meaning that only these are connected
from root elements of the hierarchy.

The previous example reflects a hierarchical structure, although with a different type
of edge for each layer. The example in Figure 2 reflects a semantic graph with a couple of
family relationships, namely spouseOf and parentOf. Their associated a-nodes both have
loops, which means that paths with a single type of edges can be created. The parentOf
a-node has hierarchic as type, meaning that paths of length greater or equal to 3 can be
created and has an average branching factor greater or equal to 2.

The simple patterns identified in the small examples above occur also in larger seman-
tic graphs. Section 4 presents an a-graph browser that allows us to discover combinations
of these patterns in larger examples, as those analyzed in Section 5.

240 José Paulo Leal

4. A-graph browser

This section describes the design and implementation of a web application developed to
validate the concept of a-graph. This web application – the a-graph browser – produces
interactive a-graph diagrams from several data sources and is freely available online11.

The a-graph browser is a Java web application developed with the Google Web Toolkit
(GWT). It is composed of a client front-end running on a web browser and a server back
end. The server is responsible for transforming a semantic graph in RDF format into an
a-graph that is sent to the client. The front end is responsible for laying out diagrams and
managing user interaction, as explained in the following subsections.

4.1. Back end processing

The mapping of semantic graphs into a-graphs is performed in two stages by the back end.
Firstly, a set of graph reductions is produced from the semantic graph triples. Secondly,
the a-graph data is computed by processing these graph reductions.

A graph reduction instance aggregates edges of a single type, that is, the semantic
graph obtained by considering only the edges of that type. It records the nodes that are
sources and those that are targets, and computes their in and outdegrees. The links between
these nodes are also recorded to compute aggregate measures on the reduction such as the
number of cycles, depth and branching factor.

Graph reductions are computed by processing a stream of RDF triples. For each
subject-predicate-object triple the reduction corresponding to its predicate is selected,
with the subject recorded as source and the object as target.

Each reduction corresponds to an a-node. Thus the second stage creates an a-node for
each reduction found in the first stage, assigning it a weight computed as the percentage
of edges in the graph. The top and bottom a-nodes, with null weight, are also created.
Then it iterates over the pairs of reductions to create a-edges.

The computation of a-edges’ weights is more complex than that of a-nodes, as it in-
volves determining the intersection of the targets and source sets of nodes respectively of
the source and target a-nodes of each a-edge. Also, the contribution of each of these nodes
depends both on their in(out)degrees on the reduction. The pairs of a-nodes with nonnull
weights create a-edges.

A-edges connecting a-nodes to top and bottom need also to be considered. These are
created with the nodes that are not fully consumed to create a-edges among regular a-
nodes, following the same approach to compute weights. It should be noted that links
between top and bottom are impossible.

4.2. Diagram layout

A-graphs serialized in JSON are sent to the front end where they are visualized as dia-
grams. The layout of these diagrams is computed using a force-directed algorithm [11].
A-nodes repel each other according to Coulomb’s law as if they were electrically charged
particles with the same signal. A-edges bind them together as springs following Hooke’s
law.
11 http://quilter.dcc.fc.up.pt/antigraph

Visualization of path patterns in semantic graphs 241

The top and bottom a-nodes, as well as the a-edges connecting them, are ignored in
this process. The layout is performed in a rectangular area that acts as a boundary that
confines regular a-nodes. Top and bottom a-nodes are positioned respectively at the top
and bottom of this rectangle, and a-edges connecting then are plotted perpendicularly to
them.

One of the advantages of a force-directed algorithm is that it adjusts to changes, either
of window dimensions or in the number of nodes. This enables the selection of a-nodes,
choosing which to display and which to hide, with the quick readjustment of the layout.
When an a-node is hidden so are the a-edges that link to it. Nevertheless, this algorithm
may introduce undesirable changes due to user actions. To remedy this issue, the incre-
mental layout can be toggled on or off, as explained in the next subsection.

A-graphs with a large number of a-nodes tend to have an even larger number of a-
edges, cluttering the layout. In this case, the natural candidates to hide are those with
smaller weight since they represent a smaller number of edges in the semantic graph. To
simplify this kind of selection the a-graph browser provides a node weight threshold. If
this threshold is provided then a-nodes are sorted by weight and their accumulated weight
is computed in this order. When this value exceeds the threshold the remaining a-nodes
are hidden, as well as the a-edges linking to them.

4.3. User interface

Figure 5 depicts the user interface of the a-graph browser available online. The main part
is the left central region where the diagram is displayed, following the approach described
in the previous subsection. Above this area, there is a toolbar with tools for controlling
the diagram layout. The smaller panel on the right contains a data source selector and
displays the current data source features. The remainder of this subsection describes these
panels in detail.

The a-graph browser has a number of features to control the diagram layout. These
features are accessible through the icons on the header toolbar. To start with, the incre-
mental layout can be toggled on and off using the traffic light icon, on the left of the
toolbar. The icons to its left provide ways to show and hide a-nodes, as well as the a-
edges connecting them. The most relevant (with higher weight) hidden a-node is shown
by pressing the outward spiral icon. Using this tool it is possible to gradually enlarge the
diagram. The reverse tool, bound to the inward spiral icon, hides the least relevant shown
a-node.

The following two icons operate on the currently selected a-node: to show all currently
hidden a-nodes connected to it, or to hide all a-nodes connected to it. A-nodes are selected
just by clicking on them. Clicking an a-node with the mouse’s middle button also toggles
a tool tip hovering the node. This tool tip displays the characteristics of the a-node, such
as label, type and weight.

The hide all and show all tools allow the user to set the layout at the two extremes.
These tools are respectively bound to the icons with an a-graph with no a-nodes and the
a-graph with several a-nodes and a-edges. The header toolbar includes two other icons on
its right side: the camera icon and the life saving icon. The latter opens a help window
expanding the information in this paragraph.

The camera icon produces a vector image of the diagram presented in the browser.
Using the normal browser features, it is possible to obtain a raster image of the diagram.

242 José Paulo Leal

Fig. 5. A-graph browser

However, this kind of image is inadequate for publication since it has a fixed and typi-
cally low resolution. The camera icon activates a feature that produces an SVG file with
the diagram, using the same layout algorithm described above. This conversion uses the
SVGKit12 package, that works well for graphic primitives (e.g. lines, rectangles, ellipses)
but has some limitations regarding fonts and shadows. The vector images look slightly
different from their raster counterparts, but have better quality when printed. The dia-
grams of the next section, as well as those of Subsection 3.3, were produced using this
tool.

The a-graph browser presents a second panel next to the diagram. Depending on the
width of the web browser’s window, this panel may be placed either to the right side (as
in Figure 5) or below the diagram. The panel contains a data source selector and displays
the main features of the current data source.

The upper part of the side panel is used for selecting a semantic graph as data source
for generating an a-graph. It provides three kinds of semantic graph sources: local, remote
and precomputed.

Local sources include small examples for testing the basic features of a-graphs, and
were presented in Subsection 3.3. The dialog box for the selection of local graphs presents
the RDF triples that will be processed to produce the a-graph. These triples are in N-
Triples format in an editable window. The user may modify, add or delete these triples, to
better understand how these changes are reflected on the a-graph diagram.

The remote sources are RDF graphs available on the web in XML/RDF format. This
dialog box presents each graph’s URLs and a threshold – the weight above which a-nodes
are included in the diagram. The last entry of this dialog box allows the user to enter a

12 http://svgkit.sourceforge.net/

Visualization of path patterns in semantic graphs 243

URL to any RDF/XML file available on the web, and assign it an initial threshold. This
threshold may be changed later on the current data source panel.

Both the local and remote data sources are processed on the fly by the server. The
precomputed data sources provide access to larger semantic graphs that require long pro-
cessing times and are already available on the client side. Most of these examples are
analyzed in detail in the next section.

The current data source panel displays its name, threshold and a grid listing its a-
nodes. This grid lists all the a-nodes in the a-graph, showing which are currently visi-
ble, their type and weight. By default, this information is ordered by descending a-node
weight, but the user can change it. The user can also (de)select the visible a-nodes, which
immediately changes the diagram layout. Also, changes in the diagram resulting from the
tools described above are also immediately reflected in this grid.

5. Validation

This section shows with concrete examples how a-graph diagrams emphasize the most
relevant path patterns of a semantic graph. It also explains how the tools in the a-graph
browser help the discovery of path patterns in large semantic graphs, by temporarily hid-
ing some of their a-nodes and the a-edges connecting them, thus producing meaningful
diagrams with a reasonable small size.

The a-graph browser has an example selector on its right top corner. These examples
are divided according to their availability: local examples, with their source text available
for inspection and editing, including the possibility of creating one from scratch; remote
examples, published on the web in RDF formats, including the possibility of providing
a URL; precomputed examples, of large freely available semantic graphs, that require a
much larger processing time. The data sources for these examples must be in RDF format,
either serialized in RDF/XML or in NTriples. The local examples include all a-graphs
presented in Subsection 3.3.

5.1. WordNet

Wordnet[8] 2.1, whose a-graph diagram is depicted in Figure 6, is a much larger graph
than those presented in Subsection 3.3. However, this figure refers only to 95% of Wordnet
2.1 since the 5% least representative edges are omitted. By default, when this example
is selected the threshold is set to 95%, but this value may be edited or removed in the
corresponding field.

The WordNet 2.1 graph has 27 types of nodes and their corresponding a-nodes would
clutter this figure. This approach quickly produces a simple visualization by temporarily
hiding the 2/3 least representative a-nodes, i.e. edge types. It is important to point out that
this is not specific of WordNet. All the semantic graphs tested with the a-graph browser
have most of their paths concentrated in a fairly small number of edge types, hence this
approach can be systematically used to improve the a-graph visualization.

This diagram immediately shows that the edges types that participate in most triples
are from imported namespaces – rdf:type and rdfs:label – since the corresponding a-nodes
are darker. Two a-nodes of the wn20schema namespace stand out from the pack for hav-
ing links to several others, namely hyponymOf and containsWordSense, but the former
participates in more “joins”, as evidenced by the darker a-edges.

244 José Paulo Leal

wn20schema
word

wn20schema
hyponymOf

wn20schema
synsetId

wn20schema
containsWord

wn20schema
tagCount

wn20schema
gloss

rdfs
label

rdf
type

wn20schema
lexicalForm Sense

Fig. 6. An a-graph diagram of WordNet 2.1

WordNet is frequently used as a semantic proxy by path based semantic measures [10].
These measures rely on taxonomic relationships to identify a least common ancestor be-
tween two concept nodes and compute the shortest path between them. Taxonomic rela-
tionships are created using partOf (hierarchical) and isA relationships. For instance, the
RDF and RDFS vocabularies provide the rdf:type and rdfs:subclassOf proper-
ties that can be used to create a taxonomic relationship between typed resources. However,
in this version of WordNet rdf:type is available, but rdfs:subclassOf is missing.

The a-graph diagram in Figure 6 shows how the hierarchic relationship hyponymOf,
complemented with another relationship, can be used to create a taxonomic relationship.
The rdfs:label relationship is connected by an a-edge with hyponymOf, hence they
can be combined to create a taxonomic relationship on words.

Of course, this is not new knowledge. It is well known that WordNet can be used as
a semantic proxy using hyponymOf and another property to create a taxonomic rela-
tionship. The point is that the a-graph diagram highlights the most promising candidates
to create a taxonomic relationship. This should be useful to discover candidates for taxo-
nomic relationships in even larger semantic graphs, such as DBpedia [4].

5.2. Yago

Yago13 [15] is a well known semantic knowledge base derived from several sources, such
as DBPedia, WordNet, and GeoNames. It has over 10 million entities but for this study,
only the core was used and labels were omitted. Still, this corresponds to over 20 million
triples with 60 property types. Hence it produces an a-graph with that order and size 487.
Even with a threshold of 80%, as it is by default on the a-graph browser, it is difficult to
grasp.

The diagram in Figure 7 was obtained by selecting a single a-node, hasArea, the sec-
ond most frequent edge type in this graph. Afterward, it was used the unhide tool to show
a-nodes connected to the one currently selected. The point is to find property types re-
lated to concepts that have an area. Examples of such concepts would be cities, regions or

13 https://www.mpi-inf.mpg.de/yago-naga/yago

Visualization of path patterns in semantic graphs 245

isCitizenOf

livesIn
diedIn

hasArea

isConnectedhappenedIn

isLeaderOf

To

Fig. 7. Yago core - a-nodes connecting to hasArea

Listing 1.1. SPARQL query to count leaders of geographic areas
SELECT COUNT(∗)
WHERE {

? p yago : i s L e a d e r O f ? g .
? g yago : hasArea ? a .

}

countries. In a sense, hasArea can be seen as a defining property for a class of geographic
concepts, although that is not explicit. The diagram shows that these geographic concepts
are connected to other properties, such as livesIn, or isLeaderOf. That is, it is possible to
retrieve information about who lives in or who is the leader of an concept that has an area.
The SPARQL query in Figure 1.1 should produce a nonempty result set. In fact, it was
checked on a Yago SPARQL endpoint14 and the result is 5666.

Listing 1.2. Counting places connected to where something happened
SELECT COUNT(∗)
WHERE {

? s yago : happenedIn ? g .
? g yago : i sConnec t edTo ? p .

}

Also, one can determine the area of entities where something happened, happenedIn,
or that are connected to each other. The type of this last a-node is cyclic, meaning that
its corresponds to a reflexive edge type. These two a-nodes are the only that are directly
connected without using hasArea. Hence, it must be possible to obtain a non empty answer

14 https://linkeddata1.calcul.u-psud.fr/sparql

246 José Paulo Leal

to the query “what places are connected to the place where something happened?”, using
the query in Listing 1.2, and it actually returns 888 solutions.

Surprisingly, the graph also indicates that one should not expect results for the query
“what places are connected to the place of citizenship of x” since these two a-nodes are
not connected. Running the SPARQL query in Listing 1.3 verifies that conclusion as the
result is zero.

Listing 1.3. Are citizens connected to other places?
SELECT COUNT(∗)
WHERE {

? s yago : i s C i t i z e n O f ? g .
? g yago : i sConnec t edTo ? p .

}

5.3. DBLP

dc-terms
references

rdf
type

owl
sameAs

swrc
number

dc
publisher

dc
title

dc-terms
issued

swrc
volume

dc
identifier

swrc
isbn

swrc
pages

rdfs
label

dc
type

rdfs
seeAlso

dc-terms
bibliographic

Citation

Fig. 8. DBLP open bibliographic information on computer science publications

DBLP15 is an on-line reference for open bibliographic information on computer sci-
ence journals and proceedings that publish its data in RDF format. Although it has a
massive size, about 134 million triples, it can be processed by sampling since its RDF file
has a regular structure. It is a sequence of blocks of triples, each block corresponding to a
publication. The diagram depicted in Figure 8 was obtained by processing the initial 1%

15 http://dblp.uni-trier.de/

Visualization of path patterns in semantic graphs 247

of DBLP’s RDF file. This approach was possible since this file keeps in consecutive lines
the triples related to a single author. If it were the case that lines were sorted by property
URL, for instance, then the first 1% of the file would not provide a meaningful represen-
tation of the complete graph. Thus, this approach cannot be applied systematically to any
semantic graph since it assumes a uniform distribution of property URLs in the stream of
triples.

The a-graph of DBLP reveals different patterns. The most simple are the a-nodes on
the left side of the diagram, such as swrc:isbn, dc:publisher and rdf:seeAlso that simply
connect the bottom to the top and not to any other a-node. Most of the other a-nodes have
also an a-edge from the a-node dc-terms:references that thus assumes a pivotal role in
this diagram and is the only cyclic a-node. The only other a-node with a loop is rdf:type,
most probably due to the type of a class. Apart from these cycles formed by edges of
the same type, there are also cycles with mixed types, composed of owl:sameAs and dc-
term:references.

6. Discussion

The goal of a-graphs is to provide visualizations of path patterns in order to give new
insights on large semantic graphs. In this section, we discuss if the concept of a-graph and
the current implementation of the a-graph browser meet this goal. Three main questions
are analyzed: how do a-graphs compare with ontologies in describing semantic graphs?
do a-graphs provide more information regarding paths patterns than classical visualization
tools? can a-graphs be computed in a reasonable time for large semantic graphs?

6.1. A-graphs and ontologies

Ontologies and a-graphs are somehow related in the sense that they both abstract semantic
graphs. Thus, it is relevant to question if these two concepts – ontologies and a-graphs –
overlap or compete in any way.

Semantic graphs are frequently encoded as sets of triples in the Resource Description
Framework (RDF). This framework supports multiple vocabularies, including a vocabu-
lary to describe other vocabularies – RDF Schema (RDFS) – which in turn lays the foun-
dations for a richer ontological language – OWL. RDFS and OWL describe vocabularies
in terms of classes and properties, where classes provide types for nodes and properties
types for edges of semantic graphs, and define hierarchical relationships among those
types.

The definition of semantic graph presented in Subsection 3.2, on which the definition
of a-graphs relies, is also based on types. However, these types are of a different nature.
These node and edge types are not RDFS or OWL classes and properties, and they are
not hierarchically related among themselves. The node and edge types in the definition of
a-graphs are the actual URIs used to label them.

The concept of ontology varies for different communities [9]. In the semantic web,
an ontology is usually understood as a formal definition of a domain of discourse. It
declares a taxonomy of concepts and relationships among them. For instance, an ontology
may declare cat and dog as classes, both as subclasses of pet, and the property hasName
associating pets to their names (strings). RDFS and OWL ontologies are themselves RDF

248 José Paulo Leal

graphs, although not all RDF graphs are ontologies. In fact, most RDF graphs assert facts
on resources using types and properties, such as “Rex is a dog”16, but they do not define
hierarchies of classes (concepts) and properties (relationships).

By using inference with an ontology it is possible to entail new facts from existing
ones, such as “Rex is a pet”. The reverse, to induce an ontology from a collection of facts,
is much more complex. It is possible to process statements such as “Rex is a dog” and
“Fifi is a cat”, “Rex is a pet” and “Fifi is a pet” and induce an ontology similar to the
example in the previous paragraph. However, ontologies are not usually created this way.

Ontologies prescribe how certain semantic graphs must be. They are not summariza-
tions of existing semantic graphs. Also, if an ontology is applicable to a particular seman-
tic graph then the latter should be consistent with the former; and as more facts are added
to the graph that consistency should be preserved without changing the ontology.

An a-graph is, in fact, a summarization of a semantic graph. It maps edges into a-
nodes and nodes into a-edges in a way that the a-graph paths condense several paths of
the semantic graph it abstracts. However, only paths that actually exist in the semantic
graph are abstracted into a-graph paths, not all the paths that would be consistent with the
ontology. Moreover, since a-nodes and a-edges have weights, the path frequency is also
presented by the a-graph, which has no parallel in ontologies. As a semantic graph evolves
and new nodes and edges are added (or removed), its a-graph may change to reflect it. In
some cases, only the weights will be affected, if no kinds of path are created. In other
cases, new a-nodes result from edge types that did not exist before.

In summary, a-graphs and ontologies are different kinds of abstractions. A-graphs ab-
stract paths, highlighting the most frequent ones. Ontologies abstract relationships among
concepts. The two abstractions are non-overlapping and are in fact complementary.

6.2. Path visualization

A-graphs were designed to discover path patterns in semantic graphs. In this particular
point, a-graphs are quite different from other forms of graph visualization, including se-
mantic graph visualization, surveyed in Section 2. These approaches display the actual
paths, connecting a sequence of nodes, but do not reveal patterns in these paths.

A path in an a-graph corresponds to a collection of paths in the semantic graphs it
reflects. Since edges types are replaced by a-nodes, a-graphs put edge types in evidence
and aggregate a large number of nodes in a-edges. Paths built from a single edge type
are condensed in a-nodes types. Hence, a-node types such as hierarchic or cyclic already
condense path patterns.

Weights of a-nodes and a-graphs provide information on their relevance. This extra
information can be used both for visualization and browsing. Weights are translated to
colors and line widths in a-graphs to indicate the relevance of particular path patterns.
Moreover, weights can be used to browse a-graphs and hide the least relevant a-nodes.

The examples analyzed in Section 5 illustrate the ability of a-graphs to reveal infor-
mation about path patterns. Figure 6 immediately shows the existence of a hierarchic edge

16 “Rex is a dog” are two RDF facts. Assuming ex as an alias for a namespace, that sentence would
be represented by the RDF facts
ex:rex ex:hasName ‘‘Rex’’
ex:rex rdf:type ex:dog

Visualization of path patterns in semantic graphs 249

type and the edge types that connect it, which is relevant information for someone build-
ing a semantic measure. Figure 7 displays a number of edge types related to a particular
one that characterizes geographic places. It provides information on the type of path pat-
terns that can be used in SPARQL queries, estimating the possibility of returning non
empty result sets, which is relevant to someone interested in extracting information from
a triple store.

Surely the kind of insight provided by a-graphs is relevant to a specialized group
of users, those interested in path patterns rather than in individual paths. This is an issue
since it makes more difficult a thorough validation of the a-graph browser involving actual
users. The author acknowledges that such validation is necessary to unequivocally prove
the usefulness of a-graphs. However, this kind of users are difficult to find, hence this
validation has yet to be done.

6.3. Visualization of large semantic graphs

Discovering path patterns is particularly important in large semantic graphs. Hence, it is
important to be able to plot a-graph diagrams for such graphs within a reasonable time.
Plotting a-graph diagrams using a force-directed algorithm takes only a few seconds. The
time-consuming part is the mapping between semantic graphs and a-graphs.

The computational complexity of the mapping process described in the previous sec-
tions is linear on the number of triples, nodes, and property types. The first stage has
complexity O(t) where t is the number of triples in the semantic graph and the second
stage as complexity O(p∗n) where p is the number of property types and n the number of
nodes. Nevertheless, to process larger semantic graphs some optimizations are required.

Although the computational complexity of the a-graph mapping is small, processing
large sources takes several days. As explained before, the process has two stages, each
with a different complexity. Consider a large semantic graph with k triples, t edge types
and n different resource nodes, with k and n large (hundred of millions) and t fairly small
(less than a thousand). For the first stage, the complexity is linear on the number of triples,
and the only data are the t reductions. In contrast, for the second stage the complexity is
n × t, both in time and memory. Thus, for larger semantic graphs, the complexity is an
issue, particularly if the graph is too large to keep in memory.

The first stage of the mapping can be parallelized by splitting triples according to the
predicate (edges type). This can achieve a considerable speedup on the first stage but does
not reduce either the number of nodes or the number of types of edges, hence it has no
impact on the second stage.

An obvious way to improve efficiency would be to avoid computing weights alto-
gether, since this is the most time consuming task of the a-graph mapping. Of course, this
would reduce the informative value of a-graphs, that would not highlight the most relevant
path patterns.

An alternative to improve efficiency is sampling. Mapping a small enough subset
(sample) of all the triples in the graph has a significant improvement in performance.
Sampling is acceptable if it produces the same a-graph structure – a-nodes and a-edges –
with a small error on their weights.

A naive approach to sampling would be the random selection of triples. However, a
small (around 1%) random sample of triples typically has an impact on the structure of

250 José Paulo Leal

the a-graph, by not correctly identifying all the a-nodes (a-edges are not usually affected).
A larger sample (around 50%) solves that problem but significantly reduces the efficiency.

The DBLP example presented in Subsection 5.3 shows that this approach can be used
if a small sample of the triples is representative of the complete set. In this case, this was
achieved by considering the subset of triples related to the publications of a few authors.
Unfortunately, in most cases this is impossible, since triples in RDF files are usually either
grouped by edge type or just unordered.

Both approaches, dropping weight evaluation and sampling, have disadvantages and
cannot be used systematically. However, they may be more effective if combined. More
precisely, instead of dropping weight evaluation, an approximation may be computed us-
ing sampling. In this approach, the first stage is processed exactly in the way described in
Subsection 4.1 but the second stage is modified. Hence, the a-nodes and their weights are
computed exactly as they are defined in Subsection 3.2. This means that a-node weights
maintain as invariant that their sum is 1. The same is not true for the second stage, where
a-edges are determined as pairs of a-nodes with nonnull weight.

Computing a-edges weights is the major contributor to the computational complexity
of the second stage. This is due to the fact that, in general, a single node may contribute
to the weight of several a-edges, as explained in Subsection 3.2. If these weights are
computed approximately using sampling then this complexity may be curbed.

Relaxing the computation of a-edge weights may have an impact on the structure
of the a-graph, since some low weight a-edges may be missed. Additionally, it will be
difficult, if not impossible, to maintain invariant the sum of a-edge weights. Everything
considered, it is preferable to risk missing the least relevant a-edges than any a-node, and
the weights of a-edges are less important than those of a-nodes to the visualization and
browsing of a-graph diagrams. In any event, although promising, this approach of relaxing
the computation of a-edges is not yet available and will require further research.

7. Conclusions and future work

Semantic graphs are hard to visualize due to a large number of typed nodes and edges.
The a-graph approach to abstract semantic graphs maps edge information into a-nodes and
node information into a-edges. The abstraction mapping produces a smaller graph that is
easier to visualize and highlights the patterns of paths in the original semantic graph.

A-nodes and a-edges are assigned with weights that reflect the relevance of the edges
and nodes they represent, and that can be used for further abstractions. For instance, a-
nodes with small weights, corresponding to types of edges that seldom occur in the se-
mantic graph, can be omitted to unclutter large a-graph diagrams.

The a-graph diagram is the proposed graphical syntax to represent a-graphs, and thus
visualize the semantic graphs. This kind of diagrams uses different shapes to represent
a-nodes according to their types, and transparency to denote weights. The special a-nodes
top and bottom are represented as parallel lines respectively on the top and bottom of
the diagram. In an a-graph, diagram paths are in general upwards, which facilitates their
detection.

The web application for visualizing and interacting with a-graphs is also an important
contribution of this research. It uses a force-directed algorithm, which allows the incre-
mental layout of the diagram after reposition or removal of a-nodes. This application can

Visualization of path patterns in semantic graphs 251

use data from different sources: local data entered on the interface, remote data available
on the web and precomputed data for a few preprocessed semantic graphs.

The proposed approach still faces the challenge of dealing with massive semantic
graphs with millions of triples, such as those of Yago and DBpedia. The major problem
is due to the computational complexity involving a-edge weights. However, there are ap-
proaches to curb this complexity that are currently being researched. After tackling this
issue, the a-graph browser will be easier to evaluate with real users interested in discover-
ing path patterns in large semantic graphs.

Acknowledgments. I am in debt to the anonymous reviewers for their careful reading of this
manuscript and their many insightful comments and suggestions.

This work is financed by the ERDF European Regional Development Fund through the Op-
erational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme,
by National Funds through the FCT Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) within project POCI-01-0145-FEDER-006961, and by FourEyes.
FourEyes is a Research Line within project TEC4Growth Pervasive Intelligence, Enhancers and
Proofs of Concept with Industrial Impact/NORTE-01- 0145-FEDER-000020 financed by the North
Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partner-
ship Agreement, and through the European Regional Development Fund (ERDF).

References

1. Abello, J., Van Ham, F., Krishnan, N.: Ask-graphview: A large scale graph visualization sys-
tem, Visualization and Computer Graphics, IEEE Transactions on 12 (5), 669–676 (2006)

2. Archambault, D., Munzner, T., Auber, D.: Grouseflocks: Steerable exploration of graph hi-
erarchy space, Visualization and Computer Graphics, IEEE Transactions on 14 (4), 900–913
(2008)

3. Auber, D.: Tulipa huge graph visualization framework, in: Graph Drawing Software, Springer,
105–126 (2004)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus for
a web of open data, Springer, (2007)

5. Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring
and manipulating networks., International Conference on Web and Social Media - ICWSM 8,
361–362 (2009)

6. Benedetti, F., Po, L., Bergamaschi, S.: A visual summary for linked open data sources, in:
International Semantic Web Conference (2014)

7. Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., Sellis, T.: Towards scalable visual
exploration of very large RDF graphs, in: The Semantic Web: ESWC 2015 Satellite Events,
Springer, 9–13 (2015)

8. Fellbaum, C.: WordNet, Wiley Online Library, (1999)
9. Guarino, N., Oberle, D., Staab, S.: What is an ontology?, in: Handbook on ontologies, Springer,

1–17 (2009)
10. Harispe, S., Ranwez, S., Janaqi, S., Montmain, J.: Semantic similarity from natural language

and ontology analysis, Synthesis Lectures on Human Language Technologies 8 (1), 1–254
(2015)

11. Kobourov, S. G. , Spring embedders and force directed graph drawing algorithms, CoRR
abs/1201.3011.
URL http://arxiv.org/abs/1201.3011

12. Harary, F.: Graph Theory, Massachusetts: Addison-Wesley (1972)

252 José Paulo Leal

13. Hastrup, T., Cyganiak, R., Bojars, U.: Browsing linked data with fenfire., in: Linked Data on
the Web (2008)

14. Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: Relfinder: Revealing rela-
tionships in rdf knowledge bases, in: Semantic Multimedia, Springer, 182–187 (2009)

15. Hoffart, J.,Suchanek, F. M.,Berberich, K., Weikum,G.: Yago2: A spatially and temporally en-
hanced knowledge base from wikipedia, in: Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, AAAI Press, 3161–3165 (2013)

16. Leal, J.P.: Path Patterns Visualization in Semantic Graphs, in: 7th Symposium on Languages,
Applications and Technologies, SLATE 2018, OASIcs, vol. 62, 15:1–15:15 (2018)

17. Lin, Z., Cao, N., Tong, H., Wang, F., Kang, U., Chau, D. H.: Demonstrating interactive multi-
resolution large graph exploration, in: Data Mining Workshops (ICDMW), 2013 IEEE 13th
International Conference on, IEEE, 1097–1100 (2013)

18. Liu, Y. et al: Graph summarization methods and applications: A survey. ACM Computing Sur-
veys (CSUR), 51.3: 62, (2018)

19. Song, Q. et al.: Mining summaries for knowledge graph search, in IEEE Transactions on
Knowledge and Data Engineering 30, no. 10, 1887–1900 (2018)

20. Zhang, K., Wang, H., Tran, Yu, D. T., Y.: Zoomrdf: semantic fisheye zooming on rdf data, in:
Proceedings of the 19th international conference on World wide web, ACM, 1329–1332 (2010)

21. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail rendering of
large graphs, Visualization and Computer Graphics, IEEE Transactions on 18 (12), 2486–2495
(2012)

José Paulo Leal graduated in mathematics from the Faculty of Sciences of the University
of Porto and earned a Ph.D. in Computer Science from the same institution. His main
research interests are technology enhanced learning, web adaptability, and semantic web.

Received: July 17, 2019; Accepted: October 6, 2019.

