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Abstract. Crowd counting has a range of applications and it is an important task
that can help with the accident prevention such as crowd crushes and stampedes in
political protests, concerts, sports, and other social events. Many crown counting
approaches have been proposed in the recent years. In this paper we compare five
deep-learning-based approaches to crowd counting, reevaluate them and present a
novel CSRNet-based approach. We base our implementation on five convolutional
neural network (CNN) architectures: CSRNet, Bayesian Crowd Counting, DM-
Count, SFA-Net, and SGA-Net and present a novel approach by upgrading CSRNet
with application of a Bayesian crowd counting loss function and pixel modeling.
The models are trained and evaluated on three widely used crowd image datasets,
ShanghaiTech part A, part B, and UCF-QNRF. The results show that models based
on SFA-Net and DM-Count outperform state-of-the-art when trained and evaluated
on the similar data, and the proposed extended model outperforms the base model
with the same backbone when trained and evaluated on the significantly different
data, suggesting improved robustness levels.
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1. Introduction

Automatic estimation of a number of people in a crowd as illustrated in Figure 1 is an im-
portant technique with applications in many fields. Political protests, rallies, concerts, reli-
gious events, etc., are just some of the situations that can benefit from the automatic crowd
counting, since having a good estimate of the crowd can help prevent crowd crushes,
stampedes, and other accidents. Furthermore, in the light of the recent pandemic of the
COVID-19, crowd counting and crowd analysis can help prevent the spread of the virus
by ensuring enough physical distance between people in some usually crowded public
places, such as stores, cinemas, recreational areas, etc.

In addition to the mentioned applications, crowd counting is popular as it can be easily
extended to a task of counting objects in other fields. Some of them include counting vehi-
cles for traffic control [37, 49], monitoring discarded fish catch and counting animals for
environmental control [2, 13, 52, 50], counting leafs for plant phenotyping [1], estimating
the number of cells in microscopic images [27] or more generally detecting moving ob-
jects [6, 17, 23] Counting of objects is crucial in such tasks as it automates and speeds up
otherwise tedious processes.
⋆ Both authors contributed equally
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Fig. 1. Figure shows 4 randomly chosen images from the ShanghaiTech part A train set.
We can see that the images are cropped to contain dense crowds only.

Because of the wide variety of applications of crowd counting methods, a lot of
research has been made and many different algorithms have been proposed. Different
approaches to crowd counting exist, and they can be roughly divided into 3 groups–
detection, regression, and density based. While some related works include overviews of
existing crowd analysis methods [16, 32, 44, 48, 65], the other focus more on discovering
the new approaches [29, 33, 57, 59, 71].

In this paper we focus on CNN-based approaches, as they recently began to gain in the
popularity. We briefly describe and provide key features of five state-of-the-art models.
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Unlike some of the related works, which only gather the results from authors’ papers, we
try to train and evaluate the models ourselves on three popular crowd counting datasets.
Furthermore, we propose an improvement for one of the models and compare it to the
others. Source code and pretrained weights are available at our GitHub1. To summarize
our key contributions:

– Direct comparison of some the most popular state-of-the-art models and their re-
implementation. To the best of our knowledge, no comparison to this extent has not
been made in literature yet.

– Presentation and comparison of our own model. The model’s architecture is based on
CSRNet with dilated convolutions, with added pixel modeling and enhanced Bayesian
loss function.

– We make our implementations freely available for other researchers to use and mod-
ify.

This paper is organized as follows: In Chapter 2 we provide the most common ap-
proaches to crowd counting. In Chapter 3 we describe five state-of-the-art CNN models
and our suggested improvement. In Chapter 4 we describe the three datasets on which we
evaluate the models and discuss the results of our evaluation.

2. Crowd counting approaches

The goal of crowd (of people) counting methods is to determine the number of people
present in a particular area. There exist many different approaches of doing this and we
can divide the traditional approached into 3 main categories - detection, regression, and
density based approaches [16, 48]. CNNs dominate the more recent approaches, which
can be categorized into its own group. We would like to emphasize that despite the fact
that the term crowd could be used for any type of crowd of objects, all the mentions of a
crowd refer to the crowd of people.

For the most comprehensive overview of the area we refer the reader to some of the
surveys on crowd counting approaches, such as [11]. Here we only skim through the more
popular approaches from the recent years.

Detection based approaches: This is the most straight-forward approach that can use
whole bodies (Monolithic detection [9, 10, 15, 26, 43, 53–55, 63]) or just parts of it (Part-
based detection [12, 28, 30, 62]), e.g., the combination of head and hands. Approaches in
the first group use features such as Haar wavelets or histogram of oriented gradient (HOG)
to represent the body, and then use a classifier with the sliding window approach across
the image to detect person candidates. Models can be then learned using support vector
machines, boosting, random forests, etc.

In the recent years many object detectors based on CNNs were also presented. YOLO
network [40] applies a single neural network to the full image, divides it into region, and
predicts bounding boxes and probabilities for each region. Other CNN approaches include
Fast R-CNN [19] and Faster R-CNN [41].

1 https://github.com/tersekmatija/crowd-counting-cnns
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Another approach uses shape learning, where humans are modeled with 3d shapes
composed of ellipsoids. A stochastic process is then employed to estimate the number
and shape configuration which best explains a given foreground mask in a scene [18, 69].
The drawback of detection based approaches is that they fail in high occlusion situations
or in highly crowded spaces [32].

Regression based approaches: The idea of this group’s methods is not to count indi-
viduals, but to estimate the crowd density, which is specifically useful in more crowded
places [4, 5, 7–9, 20, 21, 31, 34, 36, 38, 42, 51]. Methods in this group first encodes low-
level information with the help of foreground, edge, texture, and/or gradient features.
Then, with the help of a regression model, a mapping between low-level features and
people count is made. Different regressions, such as linear regression, ridge regression,
neural network, etc., can be used. The drawback of regression based approaches is that
when the same object is placed in different depths in the image, the values of features
extracted from those objects can vary upon the depth of where the object was placed.
However, this problem can be tackled by geometric correction [32].

Density based approaches: The idea of this group’s methods, such as [39, 61, 64, 67] in
its most simplistic form is to obtain a density map from an image and then integrate it in
order to get the estimation of people in the image. Contrary to the previous approaches,
these also consider the spatial information. The pioneering work include [27], who sug-
gest learning a linear mapping between local patch features and corresponding object
density maps. The methods differ in the choice of a training loss function (e.g., squared
error between the predicted density values and the ground truth) and in the choice of a
density map prediction method (e.g., with the help of a linear model) [24].

CNNs: In 2015 the pioneering work with deep networks in crowd counting was intro-
duced in [58], introducing CNN approaches to the crowd counting. Since then many of
CNN based approaches were proposed. The basic idea behind CNN based approaches
is that they normally try to predict the density map from the input image and infer the
count from it. This also means they are the most similar to the traditional density based
approaches. Models that are based on CNNs differ in the usage of different backbones
(e.g., VGG-16, VGG-19, Inception v3), loss functions, additional maps (e.g., attention
map), and model structure (e.g., single or multi column).

In recent surveys [48, 11] authors classify CNN-based approaches into four categories,
based on the property of the networks: Basic CNNs include networks with basic CNN
layers and represent initial deep learning approaches for crowd counting [14, 35, 56, 58,
67], scale-aware models that leverage multi-column or multi-resolution architectures to
achieve scale robustness [3, 25, 37, 68], context-aware models that incorporate global and
local contextual information to improve performance [45, 46], and multi-task frameworks
that combine crowd counting with tasks such as crowd velocity estimation, etc. [2, 47, 66,
70] Based on the inference methodology, they also classify them into patch-based, where
models are trained using patches from the image and the inference is done using sliding
window approach [2, 3, 14, 25, 35, 37, 56, 58, 66, 70], and whole image-based [45–47, 68,
60].
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We describe five CNN models for crowd counting along with their key features and
one improved model in the next chapter.

3. CNN models

In this section we shortly describe each of the models. Note that we put the main focus
on their features, where they differ the most from each other. The models were chosen
as each of them made a significant contribution in the field, as well as based on their
popularity in literature, at the time of writing.

3.1. CSRNet

The architecture of this model is divided into 2 parts: a CNN at the front-end and a dilated
CNN at the back-end. The basis of CSRNet front-end is build on VGG-16 model with
the fully-connected layers removed [29]. Ten layers of VGG-16 are kept, with only three
pooling layers instead of five. The back-end consists of six dilated convolutional layers,
for which the authors suggest that it represents a good alternative to the pooling layers.
Dilated convolution can be used instead of the pooling layer, since it maintains the resolu-
tion of feature map and contains more detailed information. Another 1× 1 convolutional
layer is added as the output layer.

Authors suggest different models, which are determined by different back-end set-
tings that vary in the dilation rate. We use model B in our experiments, as it is the most
successful [29], where the dilation rate is set to 2 for all the back-end layers.

Dilated convolution. The idea of the dilated convolution is that it uses sparse kernels,
which enlarge the receptive field. The same can be achieved by adding more convolutional
layers, however, that increases the computational cost.

For input x(m,n) and filter w(i, j), of length M, width N, and the dilation rate r
(r = 1 results in a normal convolution), we can define output y(m,n) of the dilated
convolution as

M∑
i=1

N∑
j=1

x(m+ r × i, n+ r × j)w(i, j). (1)

Loss function and training. Loss function is derived from the Euclidean distance be-
tween the ground truth and estimated density map. The loss function is defined as

L =
1

2N

N∑
i

||Dest
i −Dgt

i ||22, (2)

where N is the size of the training batch, Dest
i the density map generated by the CSRNet,

and Dgt
i the ground truth density map of the input image.

In training the first 10 convolutional layers are fine-tuned from a trained VGG-16.
Initial settings for other layers are set with the help of a Gaussian distribution with 0.01
standard deviation, and stochastic gradient descent (SGD) with rate 1e − 6 is applied
during training.
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3.2. Bayesian crowd counting

The Bayesian model uses VGG-19 as the backbone, with the last pooling and the sub-
sequent fully connected layers removed. The output of the backbone is upsampled to 1

8
of the input image size by bilinear interpolation and fed to a regression header. The re-
gression header consists of two 3 × 3 convolutional layers, one with 256 and the other
with 128 channels, and one 1 × 1 convolutional layer. The produced output is a density
map [33].

Bayesian crowd counting model differs from other CNN based models in the utiliza-
tion of a loss function. Opposed to the previous models, which use a Gaussian kernel to
obtain the ground truth density map and define loss function as a sum of pointwise dis-
tances between ground truth and estimated density maps, it uses a novel Bayesian loss
function.

Bayesian Loss function and training. We can derive the loss function as follows. Let
x be a random variable describing the spatial location, and y be a random variable repre-
senting the annotated head point. Let m = 1, ...,M where M is the number of pixels in
the density map and let n = 1, ..., N , where N is the total crowd count. Let zn be a head
position and yn be a corresponding label. The likelihood function of location xm given
the label yn can be defined as

p(xm|yn) = N(xm; zn, σ
212×2), (3)

where N(xm; zn, σ
212×2) is a 2D Gaussian distribution evaluated at xm, with the mean

at the annotated point zn and an isotropic covariance matrix σ212×2.
Using Bayes we can then compute

p(yn|xm) =
p(xm|yn)p(yn)

p(xm)
=

N(xm; zn, σ
212×2)∑N

n=1 N(xm; zn, σ212×2)
. (4)

The Bayesian loss function can be defined as

LBayes =

N∑
n=1

F(1− E[cn]), (5)

where F is a distance function (ℓ1) and E[cn] is the expected value of a total count asso-
ciated with yn, that can be computed as

E[cn] =

M∑
m=1

p(yn|xm)Dest(xm). (6)

When inferring, the total count is just a sum over an estimated density map.
Additionally, authors introduce the background pixel modeling for background pixels

that are far away from any of the annotation points. They introduce an additional back-
ground label y0 = 0 in addition to the head labels, as it makes no sense to assign the
background pixels to any of the head labels. The posterior label probability is then rewrit-
ten and additional expected count for the entire background E[c0] is introduced. Pixel
modeling defines a new, enhanced loss function, as also described in Equation 7.
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MSRA initializer is used for the initialization of the regression header, whereas the back-
bone is pre-trained on ImageNet. Parameters are updated with the help of the Adam opti-
mizer with an initial learning rate 1e− 5.

3.3. Our proposed model

Concepts such as dilated convolution, use of Bayesian loss instead of Gaussian kernel and
using pixel modeling to suppress background pixels have been shown to improve crowd
couting performance [29]. We infer that combining all of these key concepts should result
in a more robust and better performing crowd counting model. Therefore we base our
proposed model on the CSRNet and Bayesian crowd counting loss function and pixel
modeling [33, 33], with the goal of improving performance.

The basic structure of our model is the same as the one of the CSRNet, described in
Subsection 3.1. We use the first ten layers of the VGG-16 with 3 pooling layers for the
front-end, 6 convolutional layers with the dilation rate set to 2 as the back-end, and an
additional 1× 1 layer as the output layer.

Loss function and training. Instead of CSRNet’s loss function provided in Equation 2,
we use the enhanced loss function defined as:

LBayes+ =

N∑
n=1

F(1− E[cn]) + F(0− E[c0]). (7)

The weights are initialized in the same way as in the CSRNet. The first 10 convo-
lutional layers are fine-tuned from a trained VGG-16, whereas initial settings for other
layers are obtained with the help of a Gaussian distribution with 0.01 standard deviation.
Parameters are updated with the help of the Adam optimizer with an initial learning rate
of 1e− 6.

3.4. SFANet

The next model we analyse is SFANet [71]. It uses the first 13 layers of a pre-trained
VGG-16-bn (VGG-16 with batch normalization) as the front-end feature map extractor.
It is suitable as it has a strong ability to represent features and can be easily concatenated
by the back-end dual path networks. Four source layers (conv2-2, conv3-3, conv4-3, and
conv5-3) are then connected to a dual multi-scale fusion networks with attention (density
map path and attention map path), which represent the back-end. Attention map path is
incorporated to tackle the background noise and non-uniformity of crowd distributions.

Loss function and training. In most models an Euclidean loss is used for measuring
estimation error, which is defined as:

LDEN =
1

N

N∑
i=1

∥Dest
i −Dgt

i ∥2, (8)
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where Dest
i is the estimated density map of i-th input image, Dgt

i represents the ground
truth density map, and N is the batch size. SFANet also uses the described loss function.
In addition, the model uses the attention map loss function, a binary class entropy defined
as

LATT = − 1

N

N∑
i=1

(Agt
i log(Pi) + (1−Agt

i ) log(1− Pi)), (9)

where Agt
i is the attention map ground truth, and Pi probability of each pixel in predicted

attention map activated by sigmoid function.
The unified loss function is then defined as

L = LDEN + αLATT, (10)

with α weighting weight set to 0.1.
The first 13 layers of a pre-trained VGG-16-bn are applied as the front-end feature

extractor. Other parameters are randomly initialized with a Gaussian distribution with a
standard deviation 0.01. Parameters are updated with the help of Adam optimizer with
learning rate of 1e− 4 and weight decay of 5e− 3.

Ground truth. Density map ground truth Dgt is obtained similarly as in most models,
with the use of Gaussian kernels.

Attention map ground truth is obtained from Dgt and Gaussian kernel as

Z = Dgt
i ×Gµ,σ2(x),

Agt
i (x) =

{
0, x < thresh

1, x ≥ thresh
,∀x ∈ Z,

(11)

with thresh set to 0.001.

3.5. DM-Count

DM-Count model considers crowd counting as a distribution matching problem [57]. The
architecture of the model is based on the VGG-19 and is the same as in the Bayesian
Crowd Counting model (see Subsection 3.2). Different to the previous models, who use
density map estimations that are computed with the help of Gaussian kernels, DM-Count
can preprocess ground truth annotations without the use of a Gaussian. Instead it uses Op-
timal Transport (OT) to measure the similarity between the normalized predicted density
map and the normalized ground truth density map. OT computation is then stabilized with
the help of a Total Variation (TV) loss.

Loss function and training. The loss function is the combination of the counting loss,
optimal transport loss, and the total variation loss. Let h ∈ Rn

+ be a vectorized binary map
for dot annotation, and ĥ ∈ Rn

+ a vectorized predicted density map.

Counting loss.
LCOUNT(h, ĥ) = |∥h∥1 − ∥ĥ∥1|, (12)

where ∥ · ∥ denotes the L1 norm.
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Optimal transport loss. Since h and ĥ are both unnormalized density functions, they
can be turned into the probability density functions (PDF) with dividing them by their
respective total mass. Optimal transport loss is then defined as

LOT(h, ĥ) = W(
h

∥h∥1
,

ĥ

∥ĥ∥1
)

=

〈
α∗,

h

∥h∥1

〉
+

〈
β∗,

ĥ

∥ĥ∥1

〉
,

(13)

where W is a Monge-Kantorovich’s Optimal Transport cost (see [57] for the definition),
with α∗ and β∗ being solutions of the optimal transport problem.

Authors suggest the use of OT instead of some other measure of similarity between
two PDFs, such as Kullback-Leibler divergence or Jensen-Shannon divergence, as it pro-
vides a valid gradient to train a network. The gradient with respect to ĥ can be obtained
as

∂LOT (h, ĥ)

∂ĥ
=

β∗

||ĥ||1
− ⟨β∗, ĥ⟩

||ĥ||21
, (14)

which can be back-propagated to learn the parameters of the density estimation network.

Total variation loss. OT loss is optimized with Sinkhorm algorithm for approximating
α∗ and β∗ in each training iteration. Due to this optimization, OT loss approximates well
more dense areas, but it performs poorer for the low density areas. To cope with that, Total
variation loss is additionally used and can be defined as

LTV(h, ĥ) =
1

2

∥∥∥∥∥ h

∥h∥1
− ĥ

∥ĥ∥1

∥∥∥∥∥
1

. (15)

3.6. SGANet

The SGANet model is the first model that investigates Inception-v3 as a backbone net-
work instead of VGG-16, VGG-19, or ResNet, as in the most state-of-the-art models [59].
Fully-connected layers and two maxpooling layers are removed. Before the last Inception
Module an upsampling layer is added, which is connected to both, the attention layer and
the last Inception Module. Attention layer’s output is then applied to the feature maps
generated by the last Inception Module.

Loss function and training. In SGANet a novel curriculum loss strategy to address the
issues caused by extremely dense regions was used. This is a strategy of model learn-
ing where easy examples are selected at the beginning of the training and more difficult
ones are added to the training set gradually. A threshold is used for determining the dif-
ficulty score, where density map pixels with higher values than the threshold have higher
difficulty scores, since such pixels are within the regions of denser crowds. The whole
training set is used throughout the training process, however, the threshold is first set to a
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low value and then gradually increased, which turns difficult pixels into easy ones so that
they contribute more to the training.

The loss function is defined as a sum of two loss functions:

L = LDEN + λLSEG, (16)

where λ is a hyper-parameter set to 20. The density map loss can be calculated as

LDEN =
1

2N

N∑
i=1

∥M̂den
i −Mden

i ∥2F (17)

and segmentation map loss is defined as the cross-entropy loss as

LSEG = − 1

N

N∑
i=1

∥Mseg
i ⊙ log(M̂seg

i )

+ (1−Mseg
i )⊙ log(1− M̂seg

i )∥1,

(18)

where ∥·∥1 denotes the element-wise matrix norm, ⊙ denotes elementwise multiplication
of two same-size matrices, and Mseg and Mden represent ground truth (without hat) and
estimated (with hat) segmentation and density maps.

Ground truth. Ground truth density map Mden is obtained using a Gaussian kernel
with fixed σ. Segmentation map ground truth is obtained similarly, but as

Mseg(x) =

N∑
i=1

δ(x− xi) ∗ Jn(x), (19)

where Jn(x) is an all-one matrix of size n×n centered at the position x. [59] set n = 25.
Model uses the Adam optimizer for updating the parameters, where the initial learning

rate is set to 1e − 4 and reduced by a factor of 0.5 after every 50 epochs. The weights of
the Inception layers are loaded from a pre-trained Inception-v3 model.

4. Experiments and Results

Here we describe our experiments, including data used, evaluation protocol, and present
results and findings. We relied on implementations provided by the authors. All models
were implemented in Pytorch and trained with provided default parameters.

4.1. Data

We test the described models on the three publicly available datasets, described below.
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Fig. 2. Figure shows 4 randomly chosen images from the ShanghaiTech part B train set.
We can see that the images contain relatively sparse crowds. The background often
consists of buildings and vegetation, but can also include rivers as seen in the top left
image
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Fig. 3. Figure shows 4 randomly chosen images from the UCF-QNRF train set. We can
see that the images are more realistic than the images from the ShanghaiTech part A, as
they include not only crowds but also buildings, sky, and vegetation

ShanghaiTech Dataset. ShanghaiTech consists of two parts – part A and part B [68].
Part A contains 482 images downloaded from the internet, containing highly congested
scenes. It contains a total of 241, 667 annotated people, with a 501 average per image, and
3139 maximum. It comes split into a train and a test set, containing 300 and 182 images,
respectively. Images in this dataset are challenging to count, as they contain extremely
congested scenes, varied perspective, and unfixed resolution. Figure 1 shows some exam-
ples of ShanghaiTech part A train set images.

Part B contains 716 images that are taken from the busy streets of metropolitan areas
of Shanghai. Images are of fixed size and contain total of 88,488 annotated people, with
a 124 average per image, and 578 maximum. Same as the part A, it is already split into a
train and a test set, containing 400 and 316 images, respectively. As images are captured
in metropolitan areas, they contain relatively sparse crowds and include streets, buildings,
vegetation, and sometimes rivers as well. In Figure 2 we show some examples of the
ShanghaiTech part B train set images.

UCF-QNRF Dataset. UCF-QNRF is among the newest and the largest datasets for
crowd counting problems [22]. It consists of 1525 images and contains a total of 1, 251, 642
annotated people, with a 815 average, and 12, 865 maximum. It is split into a train and
a test set, containing 1201 and 334 images, respectively. Dataset contains images with
congested scenes with a diverse set of viewpoints, densities, and lighting variations. Dif-
ferent from the ShanghaiTech part A, which contains images with dense crowds that are
cropped to contain crowds only, images from this set also contain buildings, vegetation,
sky, and roads, as they are present in realistic scenarios captured in the wild, making the
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dataset more realistic but also more difficult to count. Figure 3 shows some examples of
UCF-QNRF train set images. We summarize the datasets in Table 1.

Table 1. A summary of used datasets. For each we show a number of images, average
and maximum people count per image, and a total number of annotated people

Dataset Images Avg count Max count Annotations

ShanghaiTech A [68] 482 501.4 3, 139 241, 677
ShanghaiTech B [68] 716 123.6 578 88, 488

QNRF [22] 1, 535 815 12, 865 1, 251, 642

4.2. Evaluation metrics

We use Mean Absolute Error (MAE) and Mean Squared Error (MSE) for the evaluation
and they are defined as follows

MAE =
1

n

n∑
i=1

|Ci − CGT
i |, (20)

MSE =

√√√√ 1

n

n∑
i=1

|Ci − CGT
i |2, (21)

where n is a number of images, Ci represents the inferred count, and CGT
i represents the

ground truth count.

4.3. Evaluation

We train and test the models on the three mentioned datasets – ShanghaiTech part A,
part B, and UCF-QNRF. In addition to training and evaluating models separately for the
three datasets, we also include the results of training the model with ShanghaiTech part A
train set and evaluating it with UCF-QNRF test set, to inspect how well the models learn
to generalize when trained on a similar dataset. We show the obtained MAE and MSE in
Table 2 and also provide some qualitative evaluation of the results. Furthermore, in Table 3
we also compare the sizes (in millions of trainable parameters) of the evaluated models,
showing that the performance of the proposed model is increased without increasing the
training complexity.

Quantitative Analysis The best results in general are obtained on the ShanghaiTech
part B (SHB) dataset, which is expected due to the low average count per image and
relatively sparse crowds. We see that the best results are obtained by the SFA-Net (7.05
MAE) and SGA-Net (11.48 MSE), followed closely by the DM-Count (7.68 MAE). The
worst performance is given by the CSRNet (11.27 MAE), which is outperformed by our
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Table 2. In this table we show the evaluation of the models in terms of MAE and MSE
on different datasets. The best results are marked in bold. We see that SFA-Net and
DM-Count perform the best on ShanghaiTech part A (SHA), with the first giving the best
performance on ShanghaiTech part B (SHB), and the latter giving the best performance
also on the UCF-QNRF (QNRF). In terms of MSE, SGA-Net outperforms the SFA-Net
on the SHB dataset. Bayesian Crowd Counting yields the best results when trained on
SHA and evaluated on QNRF. We also show that our combination of Bayesian Crowd
Counting model and CSRNet, Bayesian CSRNet, is in fact an improvement of the
original CSRNet model. ”/” denotes situations where we could not execute the training
due to our hardware limitations. However, in these cases, where possible, we report
values from models’ papers – denoted by a ∗

Datasets SHA SHB QNRF QNRF on SHA

Method MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet 75.44 113.55 11.27 19.32 / / 199.54 319.09

Bayesian CSRNet 69.46 111.73 8.48 13.55 103.94 186.22 139.83 260.59

Bayesian Crowd Counting 66.92 112.07 8.27 13.56 90.43 161.41 138.39 256.81

DM-Count 61.39 98.56 7.68 12.66 88.97 154.11 141.43 260.23

SFA-Net 59.58 99.43 7.05 12.18 100 .8 ∗ 174 .5 ∗ 170.29 365.59

SGA-Net 61.58 101.59 7.60 11.48 89 .1 ∗ 150 .6 ∗ / /

Table 3. A size comparison of models. For each model we show a number of trainable
parameters (in table denoted by # of TP) in millions (M)

CSRNet Bay. CSRNet Bay. Crowd Count. DM-Count SFA-Net SGA-Net
# of TP [M] 16.3 16.3 21.5 21.5 17.0 18.1

improved model Bayesian CSRNet (8.48 MAE) and Bayesian Crowd Counting model
(8.27 MAE).

The results on ShanghaiTech part A (SHA) are better than those on the UCF-QNRF
due to the smaller dataset and smaller and less complicated images. The best results on
SHA dataset are obtained by SFA-Net and DM-Count. While the first has a lower MAE
(59.58), the second has lower a MSE (98.56). They are closely followed by SGA-Net
(61.58 MAE). The worst performance is obtained by CSRNet (75.44 MAE), however, we
show that our Bayesian CSRNet model is in fact an improvement of the original CSRNet,
with MAE of 66.92.

Due to the bigger size of the images from the QNRF dataset and our hardware limita-
tions, we were not able to train and evaluate all of the models. In cases like these modi-
fying the models in order to be able to retrain them on our limited settings could result in
falsely lower results. In order to avoid that, we either omit reporting results in these cases
(denoted as ”/” in Table 2) or show results as reported in the models’ respective papers
(written in italic and denoted by a star after the number in Table 2). However, since we
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could not verify the procedure we do not consider them in the analysis. Nevertheless, we
see that DM-Count once again performs the best (88.97 MAE), and is closely followed
by Bayesian Crowd Counting (90.43 MAE). Out of the three, our improved Bayesian
CSRNet performs the worst (103.94 MAE).

Due the problems with the QNRF dataset, we, in addition to the evaluation of the
models on SHA, SHB, and QNRF, also show the results of training the model on SHA
train set and evaluating it with QNRF test set, since they both contain relatively dense
crowds. The idea behind this experiment is also to see how well the models can learn to
generalize, when trained trained on similar, but slightly different images. We see that the
overall results here are significantly worse due to the models being trained on images that
are cropped to contain crowds only, not including buildings and vegetation in the back-
ground. As images in the test set include those objects in the backgrounds, models could
misinterpret them and count them as a crowd. The best results are given by the Bayesian
Crowd Counting model (138.39 MAE), followed relatively closely by DM-Count (141.43
MAE) and our Bayesian CSRNet (145.03 MAE). The worst performance is once again
achieved by the CSRNet (199.54 MAE).

Note that some results differ from the results reported in the author’s papers. We argue,
that the primary reason for this is that some authors use different implementations in their
papers (such as CSRNet, whose authors provide two official implementations – one in
Pytorch and one in Caffe). Furthermore, we were unable to train some models due to the
computational limitations (and our limited hardware) on the QNRF dataset. In cases like
these modifying the models in order to be able to retrain them on our limited settings
could result in falsely lower results. In order to avoid that, we either omit reporting results
in these cases (denoted as ”/” in Table 2) or show results as reported in the original papers
(denoted with ”*” after the number in Table 2).

Qualitative Analysis We show the results of our improved model in Figures 4 and 5. In
the first figure we show the input images from the ShanghaiTech part A and part B test
set, and predicted density maps and inferred counts on a model trained on ShanghaiTech
datasets. In the second figure we show the input image from the UCF-QNRF test set
and predicted density maps and inferred counts on models trained on UCF-QNRF and
ShanghaiTech datasets.

5. Conclusion

We reviewed definitions and provided concise descriptions of 5 CNN based models –
CSRNet, Bayesian Crowd Counting, DM-Count, SFA-Net and SGA-Net. In addition we
trained and evaluated the models ourselves, contrary to many other related works who
just provided evalution results from author’s papers. We evaluated the models on Shang-
haiTech part A dataset, ShanghaiTech part B dataset, and UCF-QNRF dataset. Addition-
ally, we wanted to see how good the results are when training the model on one dataset
(ShanghaiTech part A) and evaluating it on another (UCF-QNRF). We saw that the best
overall results are those obtained on ShanghaiTech part B dataset, as models work better
on images that are less complicated or have less dense crowds. The best results in terms
of MAE on the ShanghaiTech part A were obtained with the SFA-Net model, followed
closely by the DM-Count model. The first also performed best on the ShanghaiTech part
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ShanghaiTech Part A:

(a) Ground truth: 1156. (b) Prediction: 1116.56.

(c) Ground truth: 170. (d) Prediction: 170.54.
ShanghaiTech Part B:

(e) Ground truth: 106. (f) Prediction: 107.42.

(g) Ground truth: 92. (h) Prediction: 89.33.

Fig. 4. Images in the left column represent input images from the ShanghaiTech part A (a
– d) and ShanghaiTech part B (e – h) test sets, with 1156, 170, 106, and 92 annotated
people, respectively. Images in the right column represent the predicted density maps
obtained by our improved model Bayesian CSRNet. Estimated counts are 1116.56,
170.54, 107.42, and 89.33, respectively. We use the weights trained on the ShanghaiTech
part A train images for the first two density maps (b and d) and weights trained on the
ShanghaiTech part B train images for the bottom two density maps (f and h)
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(a) Ground truth: 436. (b) Ground truth: 479.
Trained on QNRF:

(c) Estimated: 437.30. (d) Estimated: 518.70.
Trained on Shanghai Part A:

(e) Estimated: 444.24. (f) Estimated: 466.95.

Fig. 5. The upper two images show input images from UCF-QNRF test set with 436 and
479 annotated people. The bottom 4 figures (c – f) show the predicted density maps
obtained by our Bayesian CSRNet trained on UCF-QNRF (middle row) and on
ShanghaiTech part A (bottom row) train sets. We see that the density maps in the middle
row are clearer, as the model is trained on similar images that also contain buildings and
streets, and it can better distinguish between them and the crowds. We also see that the
inferred result is slightly better on the model trained on UCF-QNRF for the left input
image, but the one trained on SHA performs slightly better for the input image from the
right column
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B, and the latter also performed best on the UCF-QNRF dataset. In terms of MSE, SGA-
Net outperforms the SFA-Net on ShanghaiTech part B. The results of training the models
on one dataset and evaluating them on the other were less good, however, that was ex-
pected due to the smaller train set with images that were cropped to contain crowds only,
whereas the images from the test set also included buildings, sky, and vegetation.

In addition to the evaluation of the 5 mentioned models, we also suggested an im-
provement of the CSRNet. We implemented a new model based on the CSRNet and
a Bayesian crowd counting loss function and pixel modeling. We showed that the new
model is in fact an improvement of the original model.

Due to the computational limitations we were unable to train/evaluate some models on
the QNRF dataset. For the future work we suggest the investigation of possible solutions.
Since many datasets exist, we also suggest the evaluation of the models on other datasets
(e.g., NWPU). SGA-Net also shows a possible investigation field, as it uses Inception-v3
model instead of VGG-16 or VGG-19, and yet still shows very promising results.
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