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Abstract. Due to the digital revolution, the amount of data to be processed is 

growing every day. One of the more common functions used to process these data 

is classification. However, the results obtained by most existing classifiers are not 

satisfactory, as they often depend on the number and type of attributes within the 

datasets. In this paper, a maximum entropy model based on class probability 

distribution is proposed for classifying data in sparse datasets with fewer 

attributes and instances. Moreover, a new idea of using Lagrange multipliers is 

suggested for estimating class probabilities in the process of class label prediction. 

Experimental analysis indicates that the proposed model has an average accuracy 

of 89.9% and 86.93% with 17 and 36 datasets. Besides, statistical analysis of the 

results indicates that the proposed model offers greater classification accuracy for 

over 50% of datasets with fewer attributes and instances than other competitors. 

Keywords: classification, fewer attributes and instances, Lagrange multipliers, 

class probability distribution, relative gain, maximum entropy. 

1. Introduction 

In this digital era, data mining has become an inevitable technique and a milestone in 

technological development. It is applied to a wide range of historical data to extract 

useful information that helps to make decisions effectively [1]. It covers other important 

areas like machine learning, statistics and the database management system. It is 

extremely influential and even changed the perspective of handling business. Although it 

was originally used to develop the business, later it seems to be an inseparable technique 

in almost every area [2]. It focuses on extracting various piece of knowledge from the 

vast amount of data. This can be achieved by several data mining functions such as 

classification, association rule mining, prediction, outlier and cluster analysis and pattern 

recognition. Nevertheless, classification and prediction have become the two major 

pillars of data mining [3].  

                                                           

 
* Corresponding author 



950           Arumugam Saravanan et al. 

 

Classification and prediction are the most common methods that researchers use in all 

areas to find solutions to various problems. A few of the domain applications where 

classification and prediction are used frequently include the educational field (students’ 

performance classification, result prediction) [4], bank and financial sectors (customers 

classification based on their credit risk, fraud detection) [5], health care industries 

(diagnosing the disease based on the past data containing symptoms) [6], agricultural 

field (analysing soil nutrients and crop prediction) [7], retail industries (customer churn 

and sales prediction) [8], classifying spam or junk emails [9], weather forecasting and 

rainfall prediction [10], predicting current behaviour by analyzing the human activities 

[11], classifying customer segment [12], classifying attack traffic from normal network 

traffic [13], software defect prediction [14] and even more. 

Generally, classification outcomes are often influenced by the quality of input data. 

Pre-processing of input data is carried out before applying the classification model to 

improve its prediction accuracy. The data can be preprocessed by removing missing data 

and normalizing the attribute values along with the feature selection process [15]. 

Feature selection aims at selecting the relevant study-related attributes for the target 

class. In general, classification models can be based on machine learning or statistical 

models [16]. The machine learning based models include decision trees (DT), random 

forest (RF), artificial neural networks (ANN), k nearest neighbour (KNN), cased based 

reasoning (CBR), support vector machines (SVM), AdaBoost, Stochastic gradient 

descent (SGD), other ensemble and boosting classifiers. The statistical model includes 

linear and logistical regression and naïve Bayesian classifiers. These models are 

currently available and many more new models were also suggested by the various 

researchers. However, most of these existing models are an extension of specific 

conventional models designed for specific applications.  

The type of data to be classified, such as categorical data, real or integer-valued data, 

typically affects the performance of the classification model. Some algorithms are only 

suitable for certain types of data like logistic regression cannot manage huge categorical 

data. In addition to data types, the size of attributes and instances plays a crucial role in 

the accuracy of classification. If models are not chosen based on the analysis of the 

adequacy and applicability of the specific characteristics of the datasets, there is a 

greater possibility of classification error. Moreover, some classifiers classify the data 

with appropriate results, but with greater computational complexity. Consequently, 

classification models should be constructed by considering various other characteristics 

of the underlying datasets.  

This paper provides a simple statistical classification model that is appropriate for 

datasets with fewer attributes and instances. It utilizes the novel idea of using Lagrange 

multipliers on the class probabilities that is suitable for the classification of samples in 

small datasets. The proposed class probability distribution based maximum entropy 

classifier works as follows. To begin with, the dataset is subjected to feature selection 

and data pre-processing to improve the dataset's data quality and classification accuracy. 

During the training phase, the datasets are categorized according to the labels assigned 

to the target classes. Then, for each chosen attribute, the average class relative distance 

is estimated for the training samples, from which the attribute relative gain is calculated 

for the given test sample. The Lagrange multipliers are applied and evaluated to assess 

the class probabilities of the attribute by maximizing the entropy. Finally, the class 

probabilities of each attribute are aggregated to predict the class label for the given test 
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instance. An extensive experimental analysis is also made to examine the performance 

and effectiveness of the proposed model. 

The organization of the paper is as follows. Section 2 presents the works from the 

literature that are related to the proposed study. Section 3 discusses the study 

background. Section 4 describes the proposed class probability distribution based 

maximum entropy model for classification. The overall framework, algorithm 

pseudocode and working procedure with an illustration are presented in sub-sections. 

Section 5 presents the various experimental analysis, results obtained for the proposed 

model and research findings from the statistical analysis. Finally, the paper is concluded 

by listing out the scope for future enhancements. 

2. Related Works 

Owing to the widespread use of data mining and other machine learning techniques, 

classification models are evolving day by day. Several classification models and their 

variations were proposed in the literature by the researchers. For easy understanding, the 

existing classifiers that are related to the study are clustered under two groups. The first 

category is the standard classifiers that are significant and widely used in classification 

problems and the second category is the new existing state-of-the-art classifiers that are 

developed recently yet to be researched further. These categories are presented in this 

section. 

2.1. Standard Classifiers 

To properly categorize unlabeled data, the majority of supervised learning algorithms 

use statistical analysis of the training set in one way or another. Among these classifiers, 

KNN, Naïve Bayes (NB), Logistic regression (LR) and Decision trees use statistical 

inference to classify the data. A univariate location estimator, termed proximity based 

KNN classifier was a simple classic classification model proposed for estimating 

regression curve. In this model, the classification results of the given test data point are 

the closest point among a given set of data points [17]. In general, KNN classifier is 

computationally inefficient and challenging to determine the right k value, even though 

it is most frequently employed in numerous applications with numerous variants [18].  

Naïve Bayes classifiers are probabilistic model that applies the Bayes theorem to 

predict the class probability of the given instance [19]. The main drawback of this model 

is that the model treats each attribute independently and so cannot identify the 

relationship between the attributes. Nonetheless, the model is still frequently utilized in 

various applications because of its efficient performance [20]. Logistic regression is 

another statistical model that applies a logistic function for modelling the dependent 

variable using independent variables [21]. The model is sensitive to overfitting and 

cannot be used for non-linear problems or when the number of instances is less than the 

number of attributes. Decision trees are another type of classification model that makes 

use of the gain of an attribute at each precedent node [22]. Numerous types of trees exist 
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such as ID3, CART and C4.5 among which C4.5 [23] offers better results. However, the 

decision trees anticipate poor results with small datasets and cause overfitting. 

For the datasets with high dimensions or when the number of attributes is greater than 

the number of instances, SVM offers improved results and so it is widely popular among 

various fields [24], [25]. However, the SVM is not suitable for non-linear problems. 

Alternatively, Sparse Representation based Classification (SRC) [26] is another 

classifier model that offers better performance. However, SRC is more suitable for 

multimedia datasets involving image, audio and video data.  

Ensemble classifiers are another milestone in the classification model. It utilizes two 

or more classifiers to classify the data and the results are combined using schemes such 

as majority voting or weighting technique [27]. The ensemble learners can use various 

techniques such as boosting, bagging or stacking to convert weak learners to strong 

learners. Algorithms such as AdaBoost (AB) and Gradient Boosting use boosting to 

reduce the bias between various models used [28]. Random forest algorithm employs 

bootstrap aggregation (bagging) to reduce the variance [29] or stacking [30] to increase 

the prediction. As gradient boosting interprets the boosting as an optimization, 

Stochastic Gradient Boosting Decision Trees (GBDT) apply regression to the gradient 

boosting algorithm [31]. Though ensemble learners offer better accuracy it is less widely 

used due to their increased time complexity.  

Not only machine learning techniques but artificial intelligence models were also 

incorporated for the classification of test instances. Artificial neural network (ANN) is 

widely adapted in classification inspired by the neural networks in the animal brain. 

These models are specifically designed to recognize patterns [32]. Similarly, Deep 

Learning (DL), a model that mimics the working of the human brain in recognizing 

patterns was proposed specifically for making decisions [33], [34]. Extreme Learning 

Machine (ELM), a feedforward neural network utilizes single-layer feed-forward neural 

networks [35]. These models offer better classification accuracy in minimum time than 

other traditional neural networks such as backpropagation. Still, the models are the least 

widely used since SVM outperforms them in various cases.  

Several analyses were made in the literature to examine the performance of the 

conventional classifiers. An analysis was made using several machine learning 

classifiers such as NB, Bayesian networks, J48, RF, multilayer perceptron (MLP), and 

LR to identify the better classifiers [36]. This study with the credit risk dataset indicates 

that the RF produce improved performance than others. Similar analysis was carried out 

for SVM, KNN, Gradient boosting, decision tree, RF and LR on diabetes datasets [37]. 

The results indicate that RF outperforms the other 6 classification algorithms with many 

of the evaluation metrics. An analysis of the performance of the classification algorithms 

such as ELM, SRC, DL, GBDT, SVM, RF, C4.5, KNN, LR, AB, and NB on various 

datasets was evaluated. The result outcomes are surprising that GBDT offers better 

results across various datasets than SVM and RF [38]. Most of the classification 

algorithms or the comparative studies found in the literature are specific to a particular 

application. Though the models were proved to be effective, the results may not be same 

for all the applications. Thus, lead to performance degradation for other applications or 

different datasets having different attribute types for the same applications [39]. 
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2.2. State-of-the-Art Classifiers 

Several researchers had contributed more on classification problems with various new 

probabilistic models for different data types. The use of various probabilistic models 

such as multinomial Bernoulli assuming naive Bayes [40], the combination of 

Expectation-Maximization (EM) and NB classifier [41], and generative/discriminative 

model [42] were found in the literature. The detailed study of these probabilistic models 

shows the performance improvement over text datasets than other data types. The use of 

conditional random fields based on a probabilistic model was proposed to segment and 

label the data. However, it was only evaluated sequence data and evidenced to have 

improved classification accuracy [43].  

Many instance based classifiers attained a notable position in the literature. Data 

Gravitation based Classification (DGC) makes the comparison between the data 

gravitation and distinct classes for classifying the given input record [44]. This work was 

extended by adding weights to the data gravitation (DGC+) [45]. Despite the improved 

accuracy, the models undergo high computational complexity. Another classification 

model that computes the average weighted pattern score (AWPS) to classify the given 

data using attribute rank based feature selection was proposed [46]. The comprehensive 

analysis of the study indicates that the model is suitable for imbalanced datasets and yet 

the results are not accurate for low dimensional space.  

An instant based classifier termed attribute value frequency based instance weighted 

naive Bayes (AVFWNB) was proposed [47]. In this model, the weights are assigned for 

the training sets that offer good results than traditional NB. Similarly, a simple model 

that is a variation of NB called correlation based attribute weighted naive Bayes 

(CAWNB) was proposed. The model aims at assigning weights for the attributes based 

on the dependency between the attribute and the class [48]. Moreover, the weights are 

verified using sigmoid transformation. The results of CAWNB proved to be effective 

with improved classification accuracy than NB. Inspired by AVFWNB and CAWNB 

models, a unique model that assigns weight for instances and attributes was proposed 

recently. This model utilizes two approaches eager learners (AIWNB
E
) aa lazy learners 

(AIWNB
L
) for implementing instance weights [49]. The performance of these classifiers 

highly depends on the how accurately the weights are assigned to the instances and 

attributes.  

Discriminatively weighted naive Bayes (DWNB) and eager learning approach was 

opposed that iteratively re-assigns the weights by computing the conditional probability 

loss. Though the model seems have effective performance in terms of accuracy, the 

model needs more iterations to improve efficiency in assigning weights [50]. A model 

that computes the weights for the instances and attributes collaboratively was proposed. 

The model utilizes posterior probability loss to compute the weights and is termed as 

collaboratively weighted naive Bayes (CWNB) [51]. An instance weighted hidden naive 

Bayes (IWHNB) was proposed that integrates the instance weight with a hidden naive 

Bayes model for computing probabilities [52]. For all these weight assignment based 

classifiers, the optimization in assigning weights to the instances and attributes is to be 

incorporated for ensuring effective performance. Moreover, in all these methods, the 

authors show improved performance than existing models, yet the accuracy still needs 

improvement. The summary of the significant existing classifiers is presented in Table 1. 
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Table 1. Summary of Existing State-of-the-Art Classifiers 

Model Authors Approach Merits Drawback 

Data gravitation 

classification (DGC) 

Peng et al., 

(2009) [44] 

Classifies the instances by 

comparing the data 

gravitation between the 

different data classes 

Simple and 

effective to 

implement  

Reduction in 

accuracy when the 

points are away 

from centroid and 

class borders 

Extended data 

gravitation 

classification 

(DCG+) 

Cano et al., 

(2013) [45] 

Assigns matrix of weights 

for attributes based on its 

significance in each class 

Improved 

accuracy 

High computational 

complexity 

Discriminatively 

weighted naive Bayes 

(DWNB) 

Jiang et al., 

(2012) [50] 

Iteratively the weights are 

re-assigned based on 

conditional probability loss 

Eager learning 

approach 

Needs more 

iterations 

Average weighted 

pattern score based 

classification 

(AWPS) 

Sathya Bama 

and 

Saravanan., 

(2019) [46] 

Feature selection with and 

classification using average 

weighted pattern score 

Simple and 

outperforms 

many existing 

classifiers 

Not accurate for 

low dimensional 

datasets 

Correlation-based 

attribute weighted 

naive Bayes 

(CAWNB) 

Jiang et al., 

(2018) [48] 

Attributes weight are 

assigned by computing the 

difference between 

attribute-class correlation 

and attribute-attribute 

redundancy 

Better than NB 

and simple to 

implement 

Need more time to 

compute similarity 

between the 

attributes in high 

dimensional space 

Attribute value 

frequency-based 

instance weighted 

naive Bayes 

(AVFWNB) 

Xu et al., 

(2019) [47] 

Instance weights are 

assigned based on attribute 

value frequency and 

attribute value number  

Better than NB 

and simple to 

implement 

Low performance 

on datasets with 

high dimensions  

Attribute and 

instance weighted 

naive Bayes 

(AIWNB) 

Zhang et al., 

(2021) [49] 

Weights for instance is 

assigned based on the 

distribution of the instance 

Applies both 

lazy and eager 

approach for 

assigning 

weights 

Accuracy depends 

on weight 

assignment 

Collaboratively 

weighted naive Bayes 

(CWNB) 

Zhang et al., 

(2021) [51] 

Optimal weights for the 

instance are computed by 

maximizing   conditional 

log-likelihood with prior 

and conditional 

probabilities  

More accurate 

than Naïve 

Bayes and other 

similar models 

High computational 

complexity in 

assigning weights 

for the instances 

Instance weighted 

hidden naive Bayes 

(IWHNB) 

Yu et al., 

(2021) [52] 

Integrates the instance 

weighting with improved 

Hidden naïve Bayes model 

for computing probability 

estimates 

Better than NB 

and Low time 

complexity 

No optimization in 

assigning weight 

for the instances   
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3. Study Background 

3.1. Attribute Rank based Feature Selection 

The attribute rank based feature selection algorithm is a simple probabilistic method that 

makes use of probability based attribute scores for their contribution toward better 

classification. The relevant features that are significant for the classification are selected 

by computing the attribute rank based on the distinct attribute values present in the 

training set.  

Initially, the model computes the overall database score based on the class labels as in 

Eq. (1) where pi is the probability that an arbitrary instance in D belongs to class Ci. 

 

 
The attribute score for each attribute having n distinct values can be computed by 

grouping the tuples based on n distinct values as {G1, G2, …, Gj}. The count of tuples in 

each group is represented as {n1, n2, n3, …, nj}. The calculation of the attribute score 

Ascore is given in Eq. (3).   

 
where  is the probability that an arbitrary instance in Gj belongs to class Ci. 

Finally, the score is calculated and the rank is allocated for each attribute. The ranks are 

then converted to rank scores using the rank sum method. The attributes having a rank 

score higher than the specified threshold value are then selected for the further 

classification process. A detailed illustration of attribute selection is discussed in [46]. 

3.2. Lagrange Multipliers  

Shannon entropy computes the entropy of a random variable and it specifies the amount 

of information or the uncertainty in the variable [53]. Consider the random variable A 

with n possible outcomes as {A1, A2, .., An} that occur with the probability {P(A1), P(A2), 

.., P(An)}. Then the entropy of the variable A can be identified as in Eq. (4). 

 
However, in a more uncertain situation, the entropy value will be higher and it leads 

to chaos. Thus, to solve this problem effectively, Lagrange multipliers with maximum 

entropy can be applied. In simple words, maximum entropy allows choosing the best 

value from the number of the probability distribution that specifies the knowledge at the 
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current state [54]. Maximum entropy is a powerful probabilistic model that has wide 

usage in the classification of data in different datasets such as text [55], image [56], 

audio [57] and video [58]. To solve using Lagrange multipliers, several constraints are 

to be taken into account. 

For a random variable A, each possible outcome Ai has some probability of 

occurrence p(Ai) where i represents the index representing possible outcomes. Generally, 

the probability distribution of a variable p(A) has specific constraints such as (a) the 

probability of occurrence of each outcome p(Ai) always lies between 0 and 1 and (b) the 

sum of the probability of occurrence of all outcomes is 1 and is represented in Eq. (5). 

 
For framing the next constraint, the expected value of the variable is computed by 

averaging the values corresponding to each outcome and its probabilities. Therefore, for 

the quantity G with the value g(Ai) for each outcome, the probability distributions having 

the expected value G will be considered. However, the value of G always lies between 

the smallest g(Ai) and the largest g(Ai) and the constraint is given in Eq. (6). 

 

4. Proposed Class Probability Distribution based Maximum 

Entropy (CPDME) 

The proposed class probability distribution based maximum entropy model anticipates 

to classify the instances of sparse datasets having a minimum number of attributes and 

instances. The overall framework of the proposed class probability distribution based 

maximum entropy classification model (CPDME) is depicted in Fig. 1. The model is 

subdivided into four phases: 1) data pre-processing and feature selection, 2) relative 

distance computation, 3) attribute probability computation and 4) class probability based 

classification. Data pre-processing is an inevitable step in data mining that transforms 

incomplete raw data into a complete format that is suitable for mining [59]. In the 

proposed model, the missing and incomplete records are processed using predictive 

mean imputation [60]. Further, the data is transformed using data discretization [61] and 

min-max normalization [62]. To achieve feature selection, the model employs an 

attribute rank based feature selection (ARFS) which has been discussed in section 3.1.  
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Fig. 1. Overall Framework of the Proposed Class Probability Distribution based Maximum 

Entropy Model 

4.1. Relative Distance Computation 

To compute the relative distance, the class relative distance and the relative gain are 

evaluated. Primarily, the set of training records is grouped based on the class label i 

where i vary from 1 to n. The average class relative distance g(Ai) is computed for each 

attribute A concerning each class i as in Eq. (7). 

 
Thus, the value of g(Ai) is computed by finding the relative distance between the 

value of an attribute A of the test sample represented as At with the centroid of the 

attribute value of all the training records belonging to each class i represented as C(Ai). 

Here the centroid of the attribute value of all training records belonging to the class label 

i is the mean value of attribute A of i
th

 class. The centroid is computed as in Eq. (8) in 

which m represents the number of records in each class. 

 
Upon computing the value for g(Ai) for each class i, the value of average relative gain 

G is computed by averaging the distance between each class g(Ai) with all the other 
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classes. The formula to compute the relative gain G of each attribute is presented in Eq. 

(9). 

 

4.2. Attribute Probability Computation 

To compute the attribute probability, the maximum entropy principle has been extended 

to the larger system using Lagrange multipliers. Lagrange multipliers are named after the 

French mathematician, Joseph-Louis Lagrange [63]. Instead of processing the constraint 

equation to reduce the variables, Lagrange augments two more unknown variables α and 

β termed Lagrange multipliers. The Lagrange method assumes Maximum Entropy. Thus, 

the Lagrange function L can be defined by using the constraints given in Eq. (5) and Eq. 

(6) as in Eq. (10). 

 
Here, L can be maximized for each p(Ai) and is made by differentiating L concerning 

one of p(Ai) with α, β, and other p(Ai) as constant. The resulting functions are given in 

Eq. (11) and Eq. (12). 

11) 

12) 
The values of α and β can be computed from the above equation specified for p(Ai) 

and the results are shown in Eq. (13) and Eq. (14). 

 

 
The value of , since it maximizes the L. On determining the value of α and 

β, the value of Entropy S can be computed by using the shortcut formula as shown in Eq. 

(15). 

 
Thus, by solving Eq. (14), the value of the variable β can be obtained. And then by 

substituting the value β in Eq. (13), the value of α can be obtained. Once the value of α 

and β are known, they can be substituted in the expanded constraint given in Eq. (12) for 

various cluster groups i. Accordingly, the probability of an attribute for each class label 

p(Ai) is identified. The process is repeated for all the significant attributes selected 

through the feature selection phase.  
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4.3. Class Probability based Classification 

Consecutively, to find the class probability, the probabilities p(Ai) of all attributes for 

each class label i for the given test sample is averaged. Finally, the test sample t can be 

labelled with the class having maximum average class probability as in Eq. (16). 

 
Here i represents the class label that varies from 1 to n and j represents the attribute 

index that varies from 1 to m.  

The algorithm steps for the proposed class probability distribution based maximum 

entropy model for the classification of instances having fewer attributes are presented 

below in Algorithm 1.  

 

Algorithm1: CPDME_Model 

Input: A training set with m attributes, n instance, k classes, and test instances 

Output:  Class label prediction for test instances 

Procedure CPDME(training_set, test_data) 

Begin 

     //Preprocessing of Data 

1. Preprocess the given input training set by performing data cleaning by processing missing records, and 

data transformation using discretization and normalization. 

//Phase 1: Feature selection using ARFS 

2. Calculate the probability of the instances in each class c and the database score having k distinct 

classes. 

3. Compute the relevance score of the features having q discrete values 

4. Sort the attributes based on the computed score and rank them accordingly. 

5. Normalize the scores by evaluating rank weights using the rank sum method. 

6. Select the attributes having scores greater than the given threshold. 

7. For each attribute in the test instances 

//Phase 2: Relative Distance Computation 

a. Group the training instances based on the class variable 

b. Compute average class relative distance as in Eq. (7) 

c. Evaluate the value of relative gain G as in Eq. (9) 

//Phase 3: Class Probability Computation using the Lagrange model 

a. Evaluate the Lagrange multipliers α and β as in Eq. (13) and (14). 

b. Evaluate the Entropy constraints and compute class probabilities as in Eq. (12) for all 

classes. 

//Classification of the test instance 

8. For each class 

a. Aggregate the class probabilities of all the attributes obtained in the previous phase and 

average the class probability as in Eq. (16) 

b. Classify the instance with the class label having maximum probability 

End Procedure 

 

Here for each attribute, the sum of the probabilities of all the classes will always be 1. 

Similarly, the sum of class probabilities for each test instance will be 1. The overall 

workflow of the proposed CPDME model is presented in Fig. 2. This proposed 

classification model provides better results for the datasets having fewer attributes and 

instances. 
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Fig. 2. Detailed Workflow of the Proposed Class Probability Distribution based Maximum 

Entropy Model  

4.4. Case Study 

The case study for the proposed probability distribution based maximum entropy model 

is discussed in this section. To explain the proposed model, the Iris dataset, donated by 

R. A. Fisher is employed. The dataset contains three classes of Iris in which each class 

contains 50 instances with 4 attributes. Theoretical experimentation has been performed 

by selecting 3 instances in each class with a total of 9 instances at random. As the 

dataset does not contain any missing values and as the number of attributes in the dataset 

is minimum, the selected instances do not undergo pre-processing step. The selected 

random samples from the Iris dataset that serves as training instances are presented in 

Table 2. Two random samples are picked from the Iris dataset, to serve as test instances 

and are shown in Table 3. 

Initially, the training samples are grouped based on the class value. Then the 

probability of an attribute value of a test sample to be in each class is estimated. It is 

then combined with all the attribute values of the test sample to predict the 

classification. To proceed with an illustration of classifying the test sample T1, the sepal 

length attribute denoted as A1 is evaluated. The centroid of an attribute in class 1 

denoted as C(A1) is 5.27 by computing the mean of values of A1 in class 1. Similarly, the 

centroid of an attribute for other classes such as class 2 and class 3 are 5.77 and 6.77 

respectively.  
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Table 2. Random Training Samples from Iris Dataset 

Test Sample 

ID 

Sepal Length 

in cm 

Sepal Width 

in cm 

Petal Length 

in cm 

Petal Width 

in cm 
Class 

S1 4.7 3.2 1.3 0.2 Iris-Setosa 

S2 5.4 3.9 1.7 0.4 Iris-Setosa 

S3 5.7 3.8 1.7 0.3 Iris-Setosa 

S4 6.9 3.1 4.9 1.5 Iris-Versicolor 

S5 4.9 2.4 3.3 1 Iris-Versicolor 

S6 5.5 2.4 3.8 1.1 Iris-Versicolor 

S7 5.8 2.7 5.1 1.9 Iris-Virginica 

S8 7.7 2.8 6.7 2 Iris-Virginica 

S9 6.8 3.2 5.9 2.3 Iris-Virginica 

Table 3. Test Samples to be Classified 

Test Sample 

ID 

Sepal Length 

in cm 

Sepal Width 

in cm 

Petal Length 

in cm 

Petal Width 

in cm 

T1 4.7 3.2 1.3 0.2 

T2 7.7 3.0 6.1 2.3 

 

Then the value of g(A1), g(A2) and g(A3) are computed as in Eq. (7) which is the 

difference between the centroid of the attribute value of a class and a test sample T1 and 

it result in g(A1) =0.23, g(A2) =0.27, g(A3) =1.27. Based on the obtained values g(A1), 

g(A2) and g(A3), the expected value G is evaluated as in Eq. (9) and results in G 

=0.6889. 

Eventually, to find the value of β, Eq. (14) can be expressed as below. 

-0.46 x 2
0.46β 

- 0.42 x 2
0.42β 

+ 0.58 x 2
-0.58β 

= 0 

By applying Logarithm, the value of β is computed as 1.08962. 

On substituting the value of β in Eq. (13) results in  

α = log2 (2
-0.23β 

+ 2
-0.27β 

+ 2
-1.27β

) 

After evaluating the above equation, the value of α is evaluated as 1.0281 

The obtained value of α and β can be substituted in the expanded version of Eq. (12).  

p(A1) = 2
-1.0281 

x
 
2

(-1.08962 x 0.23) 
 

p(A2) = 2
-1.0281 

x
 
2

(-1.08962 x 0.27)
 

p(A3) = 2
-1.0281 

x
 
2

(-1.08962 x 1.27)
 

Upon solving the equations, we obtain p(A1)=0.412177, p(A2)=0.399911, 

p(A3)=0.187912. 

Table 4. Class Probability of the Test Sample T1 

Class/ Attributes 
Sepal 

Length 

Sepal 

Width 

Petal 

Length 

Petal 

Width 

Average Class 

Probability 

Iris-Setosa 0.4122 0.0955 0.3316 0.3232 0.2906 

Iris-Versicolor 0.3999 0.5581 0.3365 0.3625 0.4143 

Iris-Virginica 0.1879 0.3465 0.3319 0.3143 0.2951 

Attribute Probability 1.0000 1.0000 1.0000 1.0000 1.000 
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Table 5. Predicted Class for the Test Samples 

Test 

Sample 

Sepal Length 

in cm 

Sepal Width 

in cm 

Petal Length 

in cm 

Petal Width 

in cm 
Predicted Class 

T1 4.7 3.2 1.3 0.2 2(Iris-Versicolor) 

T2 7.7 3.0 6.1 2.3 3(Iris-Virginica) 

The above steps can be continued for all the attributes in the given training dataset. 

The probability of all the attributes in each class is evaluated and the obtained results are 

presented in Table 4. It also specifies the overall probability of the test sample in each 

class. Here, the average class probability of the test sample of class 2 (Iris-Versicolor) is 

higher than the other classes. Hence, the test sample can be classified as Iris-Versicolor. 

It is also noted that the sum of attribute probability for all the classes will always 1. The 

predicted class labels for both test instances are presented in Table 5. 

 

5. Experimental Analysis 

The experimental and result analysis carried out for the proposed study is presented in 

this section. The experiments are performed on a system with intel core, i3-4005U CPU 

at 1.70Hz, 8 GB RAM, running 64bit OS of Windows 8.1 Pro windows edition. The 

experimental analysis is made for the proposed model with various datasets and the 

results are analysed in two sections 1) performance and statistical analysis with standard 

classifiers and 2) performance analysis with existing classification models.  

5.1. Performance Analysis with Standard Classifiers 

To evaluate the performance of the proposed model with standard classifiers, 17 datasets 

are employed. These datasets are available publically and are extracted from the UCI 

repository [64,] and KEEL [65] for classification. The number of attributes in the 

datasets varies widely from a minimum of 4 to a maximum of 60. Among the datasets 

used in the study, the datasets Balance, Hayes Roth and Iris have a minimum of 4 

attributes and the dataset Sonar has a maximum number of attributes of 60. The number 

of classes in each dataset varies from 2 to 11. The datasets German_credit, Ionosphere, 

Mushroom, Phoneme, Pima and Sonar have the minimum number of class attribute 

values as 2 whereas Vowel_context has the maximum number of class attribute values as 

11. Also, the number of instances in the datasets varies from 150 to 8124 with Iris as the 

smallest dataset with fewer instances and Mushroom as the largest dataset with a 

maximum number of instances. The number of attributes (bars graph) and classes (line 

graph) in each dataset used for the study is presented in Fig. 3 and the number of 

instances in each dataset is presented in Fig. 4. 
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Fig. 3. Number of attributes and classes in different datasets 

 

Fig. 4. Number of instances in different datasets 

Diverse classifiers such as DL, NB, AB, LR, KNN, SRC, C4.5, SVM, ELM, RF, 

GBDT, DGC+ and AWPS are used for comparing the results of the proposed CPDME 

model. In general, 10-fold cross-validation is used for the evaluation of the proposed 

and existing models. For the classifiers that require parameter tuning, 80% of the 

instances in the datasets are used for training with 10% of the instances in the datasets 

being used as testing instances and the remaining 10% of the instances for tuning the 

parameters. While in the case of classifiers that do not require parameter tuning, 80% of 

the instances in the datasets are used for training and the remaining 20% of the instances 

in the datasets are used as a testing set [38]. Also, before applying classification, the 

significant attributes are selected utilizing the attribute rank based feature selection. 

Accuracy Comparison: Table 6 shows the accuracy obtained with different 

classifiers for various datasets used for the analysis. The underlined values indicate the 

highest accuracy obtained for each dataset. From the results obtained, it is evident that 

the proposed model offers a better accuracy rate for 7 datasets such as Car, Ecoli 
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Reduction, Glass_Detection, Hayes Roth, Iris, Phoneme and Vowel_Context out of 17 

datasets used for the evaluation. The average accuracy of CPDME with all 17 datasets is 

89.9%. Out of 13 classifiers compared, the classifiers such as AWPS, RF and GBDT 

have the next higher accuracies at 88.2%, 87.9% and 87.3% respectively. Though the 

proposed model seems to be effective only with 7 datasets, it acquires the top position in 

average classification accuracy with an average rank of 3.47 and the classifiers GBDT, 

AWPS and RF, acquire the next three positions with ranks of 4.18, 4.71 and 4.88 

respectively.  

The statistical analysis for the obtained accuracy for the classification process is made 

using ANOVA with the null hypothesis that there is no significant difference in the 

accuracy of the classification algorithms. The statistical model is generated using F-

distribution for which the obtained F value is 8.46 and the critical value is 1.76. The 

computed critical difference is 6.69 and the results are significant at a 5% significance 

level. Since the F value is greater than F critical value, the null hypothesis can be 

rejected and thus the alternate hypothesis is accepted indicating that there is a difference 

in the accuracy of the classification algorithms used for comparison. 

Table 6. Accuracy results for different datasets 

Dataset 

C
P

D
M

E
 

A
W

P
S

 

D
G

C
+

 

G
B

D
T

 

R
F

 

E
L

M
 

S
V

M
 

C
4

.5
 

S
R

C
 

K
N

N
 

L
R

 

A
B

 

N
B

 

D
L

 

Balance 0.987 0.904 0.899 0.968 0.952 0.952 0.921 0.857 1.000 0.952 0.937 0.809 0.968 0.460 

Car 1.000 0.995 0.952 1.000 0.971 0.948 0.919 0.954 0.861 0.856 0.676 0.671 0.786 0.671 

Cardiotocography 0.892 0.995 0.999 0.911 0.897 0.747 0.855 0.864 0.737 0.718 0.869 0.390 0.714 0.019 

Dermatology 0.963 0.979 0.975 0.973 0.946 0.946 1.000 0.946 0.973 0.919 0.973 0.541 0.946 0.324 

Ecoli Reduction 0.892 0.829 0.823 0.879 0.818 0.879 0.849 0.849 0.758 0.818 0.788 0.667 0.727 0.364 

German_Credit 0.735 0.752 0.732 0.760 0.740 0.710 0.720 0.740 0.690 0.720 0.720 0.710 0.760 0.740 

Glass_Detection 0.857 0.758 0.704 0.762 0.810 0.905 0.810 0.429 0.667 0.762 0.714 0.429 0.381 0.429 

Hayes Roth 0.872 0.854 0.840 0.786 0.786 0.786 0.786 0.786 0.643 0.500 0.643 0.214 0.786 0.571 

Ionosphere 0.912 0.945 0.931 0.917 0.917 0.889 0.806 0.944 0.944 0.889 0.889 0.917 0.806 0.722 

Iris 0.975 0.972 0.953 0.947 0.953 0.922 0.960 0.867 0.967 0.967 0.953 0.947 0.867 0.867 

Mushroom 0.987 0.999 0.995 1.000 0.995 0.978 1.000 1.000 1.000 0.998 0.987 0.967 0.957 0.967 

Phoneme 0.904 0.878 0.871 0.867 0.895 0.880 0.775 0.847 0.899 0.893 0.745 0.771 0.734 0.285 

Pima 0.827 0.737 0.745 0.701 0.805 0.662 0.650 0.766 0.597 0.610 0.805 0.831 0.753 0.597 

Sonar 0.852 0.835 0.848 0.905 0.952 0.619 0.905 0.762 0.857 0.714 0.667 0.857 0.762 0.667 

Vowel_Context 0.999 0.985 0.982 0.849 0.939 0.990 0.970 0.788 0.980 0.950 0.697 0.162 0.636 0.111 

Wine 0.982 0.972 0.973 1.000 0.944 0.722 0.944 1.000 0.944 0.833 0.889 0.889 0.944 0.278 

Yeast 0.645 0.598 0.593 0.622 0.622 0.649 0.628 0.514 0.574 0.547 0.622 0.412 0.595 0.331 

Avg. Accuracy 0.899 0.882 0.871 0.873 0.879 0.834 0.853 0.818 0.829 0.803 0.798 0.658 0.772 0.494 

Avg. Rank 3.47 4.71 6.06 4.18 4.88 7.29 6.00 6.82 6.76 8.71 8.41 10.59 9.24 12.65 
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AUC Comparison: Table 7 shows the AUC values obtained for the 13 classifiers with 

17 datasets in which the underlined values represent the maximum AUC obtained for 

each dataset. From the reported result, it is evident that the proposed model offers a 

better AUC value for 7 datasets such as Car, Ecoli Reduction, Glass_Detection, Hayes 

Roth, Iris, Phoneme and Yeast with an average AUC value of 0.946. Among 13 standard 

classifiers, the next highest average AUC values are acquired by DGC+, AWPS, and RF 

as 0.932, 0.930 and 0.883 respectively. Despite acquiring minimum AUC values with 10 

datasets, the proposed model holds the first position with an average rank of 2.82 which 

is better than other classifiers such as DGC+ and AWPS, with average ranks of 3.47 and 

3.59.  

The statistical analysis for the obtained AUC is carried out using the ANOVA test 

with the null hypothesis stating that there is a difference in AUC values of the 

classification algorithms. The statistical model is constructed using F-distribution in 

which the obtained F value and critical value are 10.326 and 1.76 (10.326 > 1.76). The 

computed critical difference is 8.56 and the results are significant at a 5% significance 

level. Thus, the null hypothesis is rejected and the alternate hypothesis is accepted which 

indicates that there is a difference in AUC values of the classification algorithms under 

comparison. 

Table 7. AUC Comparison among different classifiers 

Dataset 

C
P

D
M

E
 

A
W

P
S

 

D
G

C
+

 

G
B

D
T

 

R
F

 

E
L

M
 

S
V

M
 

C
4

.5
 

S
R

C
 

K
N

N
 

L
R

 

A
B

 

N
B

 

D
L

 

Balance 0.992 0.862 0.875 0.833 0.833 0.833 0.867 0.781 1.000 0.984 0.956 0.724 0.833 0.500 

Car 1.000 0.994 0.998 1.000 0.951 0.930 0.897 0.929 0.878 0.836 0.575 0.500 0.867 0.509 

Cardiotocography 0.895 0.999 0.996 0.882 0.874 0.823 0.862 0.844 0.834 0.824 0.922 0.736 0.822 0.500 

Dermatology 0.983 0.989 0.991 0.980 0.980 0.960 1.000 0.921 0.980 0.980 0.980 0.752 0.960 0.684 

Ecoli  0.982 0.978 0.957 0.875 0.903 0.906 0.895 0.908 0.892 0.892 0.906 0.763 0.888 0.500 

German_Credit 0.832 0.751 0.743 0.699 0.939 0.654 0.645 0.685 0.623 0.694 0.654 0.613 0.741 0.500 

Glass_Detection 0.992 0.865 0.854 0.719 0.748 0.986 0.790 0.817 0.875 0.963 0.727 0.806 0.815 0.500 

Hayes Roth 0.965 0.936 0.948 0.955 0.927 0.952 0.949 0.902 0.936 0.834 0.895 0.914 0.952 0.904 

Ionosphere 0.902 0.950 0.931 0.889 0.644 0.844 0.835 0.909 0.909 0.864 0.869 0.889 0.809 0.622 

Iris 0.999 0.999 0.994 0.874 0.986 0.987 0.989 0.887 0.878 0.897 0.957 0.960 0.979 0.878 

Mushroom 0.992 0.999 0.995 1.000 0.994 0.992 0.992 0.935 0.994 0.927 0.994 0.972 0.991 0.921 

Phoneme 0.898 0.875 0.866 0.844 0.859 0.848 0.651 0.799 0.863 0.856 0.639 0.672 0.707 0.500 

Pima 0.857 0.788 0.866 0.677 0.747 0.628 0.617 0.731 0.563 0.579 0.774 0.806 0.725 0.500 

Sonar 0.799 0.886 0.891 0.896 0.885 0.882 0.799 0.721 0.879 0.882 0.789 0.633 0.856 0.692 

Vowel 0.998 0.985 0.982 0.914 0.935 0.999 0.998 0.914 0.997 1.000 0.853 0.713 0.791 0.576 

Wine 0.998 0.965 0.973 1.000 0.967 0.719 0.900 1.000 0.967 0.790 0.873 0.917 0.967 0.500 

Yeast 0.999 0.996 0.991 0.847 0.837 0.829 0.825 0.825 0.799 0.823 0.836 0.675 0.838 0.500 

Avg. AUC 0.946 0.930 0.932 0.876 0.883 0.869 0.854 0.853 0.875 0.860 0.835 0.767 0.855 0.605 

Avg. Rank 2.82 3.59 3.47 6.18 6.41 7.12 7.76 8.41 7.12 8.29 8.35 10.94 8.47 13.59 
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Execution Time Comparison: The running time to train and test the proposed CPDME 

model are analysed and compared with 13 different classifiers with 17 different datasets. 

The results of the execution time for the proposed and the existing models are presented 

in Table 8. The underlined values in the table represent the minimum execution time for 

the dataset. From the results obtained, it is clear that the proposed model has a minimum 

running time for the datasets such as Balance, Hayes Roth, Iris, Phoneme and Yeast 

which are less than 2 ms. In general, the average running time of the proposed model is 

4.64 ms and acquires 7
th

 rank whereas the execution times of the top 6 classifiers are 28 

ms (NB), 0.30 ms (KNN), 0.34 ms (C4.50), 0.34 ms (AB), 1.03 ms (LR), 3.77 ms 

(SVM), 4.14 ms (AWPS). Optimistically, still, the proposed model has a minimum 

execution time than the other 8 classifiers used in the comparison.  

Table 8. Execution Time (in ms) Comparison among different classifiers 

Dataset 

C
P

D
M

E
 

A
W

P
S

 

D
G

C
+

 

G
B

D
T

 

R
F

 

E
L

M
 

S
V

M
 

C
4
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S
R

C
 

K
N

N
 

L
R

 

A
B

 

N
B

 

D
L

 

Balance 0.121 4.45 5.71 15.47 7.481 4.11 0.723 0.022 4.88 0.022 0.04 0.02 0.016 3.09 

Car 0.236 5.06 11.89 34.71 12.73 38.93 0.589 0.044 83.32 0.028 0.15 0.06 0.034 2.964 

Cardiotocography 10.1 6.13 14.64 190.8 109.61 64.77 0.285 0.871 307.3 0.631 11.5 0.419 0.621 1.14 

Dermatology 9.98 2.12 9.89 20.7 48.25 1.54 0.125 0.879 1.25 0.325 0.879 0.623 0.741 2.85 

Ecoli 0.396 2.09 5.72 16.49 10.92 1.21 0.425 0.014 1.09 0.022 0.04 0.01 0.012 1.31 

German_Credit 2.36 4.11 13.18 13.29 89.69 11.92 0.171 0.952 20.66 0.369 0.234 0.412 0.357 4.265 

Glass_Detection 0.936 2.02 5.98 15.61 15.39 0.52 0.323 0.014 0.35 0.034 0.04 0.01 0.013 1.875 

Hayes Roth 0.109 1.96 5.07 11.58 10.36 9.55 7.51 0.187 2.35 0.245 0.09 0.09 0.131 5.87 

Ionosphere 2.91 3.94 10.56 7.22 60.14 1.21 0.721 0.532 0.99 0.567 0.236 0.413 0.561 3.89 

Iris 1.22 1.86 5.11 8.32 10.48 5.32 7.99 0.057 1.89 0.057 0.08 0.234 0.015 2.457 

Mushroom 3.978 13.84 26.01 16.32 31.26 19.49 28.78 0.723 45.5 0.811 1.18 0.987 0.725 30.49 

Phoneme 0.203 9.43 23.01 26.64 34.5 388.45 0.331 0.187 3530.1 0.074 0.19 0.22 0.091 2.753 

Pima 0.121 2.44 10.24 7.19 16.57 7.58 0.133 0.028 11.88 0.022 0.03 0.241 0.038 2.45 

Sonar 12.31 2.35 12.79 15.36 18.18 11.23 15.54 0.977 17.28 0.932 1.23 0.912 0.812 12.36 

Vowel 0.102 1.93 13.08 112.3 43.69 11.13 0.245 0.083 20.31 0.024 0.6 0.321 0.125 2.68 

Wine 0.222 1.85 6.37 8.57 19.79 0.57 0.345 0.012 0.59 0.023 0.03 0.369 0.235 1.235 

Yeast 1.832 4.87 14.24 93.85 25.96 29.36 0.184 0.259 112.8 0.949 0.89 0.412 0.196 1.857 

Avg. Exec. Time. 2.77 4.14 11.38 36.14 33.24 35.70 3.79 0.34 244.86 0.30 1.03 0.34 0.28 4.91 

Avg. Rank 6.47 8.71 10.88 12.41 13.06 9.94 6.29 3.18 10.94 3.06 4.35 3.65 2.71 9.12 

 

From the result analysis, it is clear that the proposed CPDME model outperforms 

other existing models for the various datasets such as Car, Ecoli Reduction, 

Glass_Detection, Hayes Roth, Iris, Phoneme and Vowel_Context in which most of the 

datasets have fewer attributes. This shows that the proposed model is effective with the 

datasets having the minimum number of attributes and offers better performance. The 

obtained ranks for accuracy, AuC and execution time of the proposed CPDME and the 

other standard models under comparison are presented as a graph and shown in Fig. 5. 
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Fig. 5. Ranks obtained for various metrics 

5.2. Performance Comparison with Existing Models 

An analysis has been carried out for the proposed model by evaluating the 

classification accuracy of various models using 36 datasets. The datasets used for the 

study are publically available and are downloaded from the UCI repository [64] and 

KEEL [65]. The results of the proposed model are compared with the various existing 

model such as AIWNB
E
, AIWNB

L
, CAWNB, AVFWNB and NB. The values in Table 

9 are the result of performing the average on the accuracies obtained from 10 individual 

runs under stratified ten-fold cross-validation as in [49]. The various algorithms are 

applied to the same training and test set.  The values represented in the boldface at each 

row indicate the highest accuracy value corresponding to the dataset. Moreover, the 

underlined values indicate that the proposed model outperforms other models under 

comparison with paired two-tailed t-tests at the p=0.05 significance level. The symbol * 

denotes the significant performance degradation over its competitors. The last two rows 

indicate the average accuracy and Win/Tie/Lose (W/T/L) of each classifier. Each W/T/L 

specifies that the proposed model wins W datasets, ties on T datasets and loses on L 

datasets to the respective competitor model [49]. 

From the analysis, it is clear that the proposed CPDME classifier has the highest 

accuracy for 15 datasets which is better than the competitors. The models IWHNB, 

AIWNB
E
, AIWNB

L
, CAWNB, AVFWNB and NB have the highest classification 

accuracy for 8, 3, 7, 3, 2 and 2 datasets respectively. In terms of the average 

classification accuracy, the proposed CPDME classifier is 86.93%. On the other hand, 

the models such as IWHNB, AIWNB
E
, AIWNB

L
, CAWNB, AVFWNB and NB have 

the average accuracy of 86.37%, 84.94%, 85.52%, 84.41%, 84.21% and 83.86% 

respectively. The performance of the proposed model is as similar as the IWHNB 

classifier. Also, the CPDME model has 6 wins, 26 ties and 4 losses which is better than 

the other models IWHNB (6 wins, 26 ties, 4 losses) AIWNB
E
 (8 wins, 25 ties, 3 losses), 

AIWNB
L
 (6 wins, 27 ties, 3 losses), CAWNB (13 wins, 21 ties, 2 loss), AVFWNB (14 

wins, 20 ties, 2 loss) and NB (17 wins, 17 ties, 2 loss). 
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Table 9. Comparison of Classification Accuracy 

Dataset  CPDME IWHNB AIWNB
E
 AIWNB

L
 CAWNB AVFWNB NB 

Anneal  98.94±1.12 98.31±1.29 98.94±1.05 98.90±1.10 98.5±1.29 98.62±1.15 96.36±1.97 

Anneal.ORIG  95.12±2.30 94.65±2.24 95.06±2.23 95.06±2.23 94.6±2.48 93.32±2.65 92.71±2.7 

Audiology  85.32±6.91 78.17±7.15 83.93±7.00 84.81±6.83 74.22±6.36 78.58±8.44 75.74±6.58 

Autos  88.93±9.01 85.56±7.93 78.04±9.02 79.80±8.63 77.95±8.95 77.27±9.43 77.02±9.69 

Balance-scale  74.21±4.51 69.05±3.74 73.75±4.22 73.52±4.39 73.76±4.15 71.1±4.3 71.08±4.29 

Breast-cancer  70.01±7.21 70.47±6.29 71.9±7.55 71.52±7.23 72.46±7.25* 71.41±7.98 72.32±7.91 

Breast-w  97.11±1.63 96.30±1.94 97.17±1.68 97.15±1.77 97.14±1.81 97.48±1.68* 97.25±1.79 

Colic  82.36±5.43 81.20±6.00 83.45±5.45* 83.4±5.44 83.34±5.62 81.47±5.86 81.2±5.8 

colic.ORIG  73.36±6.3 74.23±6.52 73.87±6.4 74.38±6.7* 73.7±6.46 72.91±6.34 73.43±6.27 

credit-a  86.12±3.84 85.23±3.82 87.03±3.83* 86.93±3.85 86.99±3.81 86.23±3.85 86.17±3.94 

credit-g  75.83±3.7 75.85±3.69 75.81±3.6 75.86±3.67 75.7±3.53 75.38±3.9 75.4±4.01 

Diabetes  79.36±4.7 76.75±4.20 77.87±4.86 78.32±4.67 78.01±4.89 77.89±4.66 77.88±4.65 

Glass  78.21±8.3 77.70±8.98 74.02±8.41 74.9±8.25 73.37±8.38 76.25±8.07 74.2±8.11 

heart-c  83.26±6.41 81.52±7.12 82.71±6.61 82.81±6.61 82.94±6.57 83.04±6.68 83.73±6.46* 

heart-h  84.87±5.91 84.56±6.05 84.29±5.85 84.26±5.89 83.82±6.16 84.9±5.68* 84.43±5.88 

heart-statlog  83.31±6.28 82.33±6.59 83.22±6.61 83.19±6.71 83.44±6.69 83.78±6.29 83.74±6.25 

Hepatitis  85.91±9.24 87.38±8.43* 85.75±8.97 86±9.07 85.95±9.25 85.38±9 85.05±9.45 

Hypothyroid  98.23±0.59 99.32±0.40* 99.07±0.48 99.05±0.5 98.56±0.56 98.98±0.48 98.74±0.57 

Ionosphere  92.25±3.92 93.96±3.65 92.4±4.13 92.68±3.76 91.82±4.34 91.94±4.09 91.37±4.55 

Iris  96.23±5.8 93.27±5.72 94.4±5.5 94.4±5.5 94.4±5.5 94.4±5.5 94.33±5.56 

kr-vs-kp  93.85±1.41 92.70±1.37 93.73±1.28 94.06±1.27* 93.58±1.32 88.18±1.86 87.81±1.9 

Labor  96.33±10.13 95.90±9.21 94.33±9.3 93.8±10.17 92.1±10.94 94.33±10.13 93.83±10.41 

Letter  85.6±0.85 90.17±0.62* 75.56±0.89 79.6±0.85 75.22±0.83 75.07±0.84 74.67±0.86 

Lymphography  86.12±7.83 85.89±8.02 84.68±7.99 85.08±7.72 84.81±8.13 85.49±7.83 85.7±7.95 

Mushroom  99.9±0.31 99.96±0.06 99.53±0.23 99.71±0.2 99.19±0.32 99.12±0.31 98.03±0.49 

primary-tumor  48.21±5.37 46.14±6.17 47.76±5.25 47.76±5.21 47.2±5.27 45.85±6.53 47.11±5.65 

Segment  95.18±1.41 96.87±1.07 94.16±1.38 95.32±1.32 93.47±1.46 93.69±1.41 92.91±1.56 

Sick  96.23±0.89 97.52±0.76 97.33±0.85* 97.36±0.83* 97.36±0.84* 97.02±0.86 97.07±0.84 

Sonar  83.89±8.57 84.63±7.72 82.23±8.65 82.28±8.57 82.56±8.25 84.49±7.79 84.96±7.57* 

Soybean  94.62±2.23 94.61±2.18 94.74±2.19 94.82±2.24 93.66±2.73 94.52±2.36 93.53±2.79 

Splice  96.32±1.11 96.24±1.00 96.21±0.99 96.55±1.01 96.19±0.99 95.61±1.11 95.58±1.12 

Vehicle  72.58±3.58 73.70±3.41* 63.59±3.92 67.57±3.27 62.91±3.88 63.36±3.87 62.64±3.84 

Vote  94.74±3.21 94.39±3.21 92.18±3.76 93.68±3.52 92.11±3.74 90.25±3.95 90.3±3.89 

Vowel  89.95±4.12 90.32±2.71 69.98±4.11 74.48±3.93 68.84±4.3 67.46±4.62 66±4.58 

waveform-

5000  
88.61±1.52 86.24±1.45 82.98±1.37 83.51±1.38 83.11±1.38 80.65±1.46 

80.76±1.49 

Zoo  98.71±5.2 98.33±3.72 96.05±5.6 96.05±5.6 95.96±5.61 96.05±5.6 95.75±5.68 

Average 86.93 86.37 84.94 85.52 84.41 84.21 83.86 

W/T/L - 6/26/4 8/25/3 6/27/3 13/21/2 14/20/2 17/17/2 
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6. Result Analysis of the Proposed Model 

6.1. Complexity Analysis 

The computational complexity of the proposed CPDME model using Big-O notation is 

O(nmk) where m is the attribute count in the dataset, k is the count of target class values 

and n is the count of the instances at each class in the dataset. The computation 

complexity of the other existing algorithms AWPS and DGC+ having higher ranks in 

average classification accuracy or AUC values are O(nm) and O(mn
2
), where n is the 

count of instances and m is the count of attributes in the dataset. Similarly, the 

computational complexity of RF is O(tmn(log n)) in which the complexity depends on 

the number of trees (t) to be constructed. Though the computational complexity of the 

proposed classifier is slightly higher than the other models, the accuracy of CPDME is 

better than many of the existing algorithms.  

6.2. Statistical Analysis of Results 

A statistical analysis has been carried out to assess the performance of the proposed 

model for which the results presented in Table 6 are used. The highest accuracy 

obtained by the proposed model among the 17 datasets is statistically distributed based 

on various characteristics such as attribute count, instance count and the number of 

classes. The statistical distribution is provided in Table 10. The column count indicates 

the number of datasets won by the proposed model with the highest accuracy and the 

percentage indicates the values in percentage. Thus, out of 12 datasets having an 

attribute count of less than 20, the proposed model acquires the highest accuracy for 7 

datasets indicating a success rate of 58.33%.  

Table 10. Statistical Analysis of Data Characteristics for Proposed CPDME 

Characteristics No. of datasets CPDME Other Models 

Count Percentage 

Attributes ≤ 20 12 7 58.33 41.67 

Attributes > 20 5 0 0 100 

Instances ≤ 500 8 4 50 50 

Instances >500  9 3 33.33 66.67 

Classes ≤ 5  11 4 36.36 63.64 

Classes > 5 6 2 33.33 66.67 

 

Similarly, out of 5 datasets having an attribute count greater than 20, the proposed 

model has 0 success signifying that the standard models under comparison achieve the 

highest accuracy (100%). While considering the instances less than or equal to 500, the 

proposed CPDME model has a success rate of about 50% with the highest accuracy for 

4 out of 8 datasets. On the other hand, for the datasets having an instance count greater 

than 500, the proposed model has less success rate of about 33.33% by achieving the 
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highest accuracy for 3 out of 9 datasets. With a distribution based on the distinct class 

count, the results are even for the proposed and existing models. Thus, the model offers 

better results than many other competitors with the datasets having fewer attributes or 

instances.  

Furthermore, the highest accuracy obtained by the proposed model and existing 

models among the 36 datasets presented in Table 9 is statistically distributed based on 

various characteristics such as attribute count, instance count. Table 11 provides the 

statistical distribution of highest accuracies on number of datasets for the models 

CPDME, IWHNB, AIWNB
E
, AIWNB

L
, CAWNB, AVFWNB and NB. 

Table 11. Comparison of the percentage of datasets having higher accuracy 

Characteristics CPDME IWHNB AIWNBE AIWNBL CAWNB AVFWNB NB 

Attributes ≤ 25 50.00 20.83 8.33 8.33 8.33 8.33 4.17 

Attributes > 25 25.00 25.00 8.33 41.67 8.33 0.00 8.33 

Instances ≤ 500 50.00 11.11 5.56 5.56 11.11 5.56 11.11 

Instances >500  

and ≤ 1000 
36.36 27.27 18.18 18.18 0.00 9.09 0.00 

Instances > 1000 28.57 42.87 0.00 57.14 14.29 0.00 0.00 

 

From the analysis, the proposed CPDME has a higher success rate of about 50% with 

the highest accuracy for the datasets having attributes less than or equal to 25, whereas 

the combined success rate of other 6 models is 50%. For the datasets having a number of 

attributes greater than 25, the proposed CPDME model has the lowest success rate of 

about 25% than other models (75%). Correspondingly, the proposed CPDME model has 

a higher lowest success rate of 50% and 36% with the highest accuracy for the datasets 

having a number of instances less than or equal to 500 and between 500 and 1000 

respectively. With the datasets having instance count greater than 1000, the proposed 

model has a less lowest success rate of about 28.57% of the highest accuracy. The 

increase in the number of instances or attributes gradually decreases the performance of 

the proposed model. Thus, from the results of the statistical analysis, it clear that the 

proposed model offers better results with the minimum number of attributes and 

instances.  

7. Conclusion 

This paper suggests the class probability distribution based on maximum entropy 

classification to classify the instances of the datasets having fewer attributes and 

instances. In the first phase, the important features are identified using attribute rank 

based feature selection. For each selected attribute, the average class relative distance is 

evaluated for the training samples. Then the relative gain of the attributes is computed 

from the test sample and the relative distance of each class. The Lagrange multipliers are 

applied and evaluated and the class probabilities concerning the attributes are computed 

by maximizing the entropy. Finally, the class label is predicted by aggregating the class 

probabilities of all the attributes. Experimental analysis has been performed with two 

sets of experiments using 17 and 36 datasets. The proposed model offers better average 
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accuracy of about 89.9% and 86.93% for the two experiments respectively which is 

better than many of the other existing and standard models. The statistical result analysis 

shows that the proposed model offers better results with improved accuracy for more 

than 50% of the datasets having fewer attributes and instances than other competitors. 

The future work focuses on the imbalanced class distribution along with the sparse 

distribution of attributes and instances. Though the proposed model has better accuracy, 

it suffers from time overhead which is below the top 5 positions in comparison with 

other models. Thus, future work concentrates on increasing the classification speed of 

the proposed model. 
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